Vx32: Lightweight User-level Sandboxing on the x86

Bryan Ford and Russ Cox
Massachusetts Institute of Technology
{baford,rsc}@pdos.csail mit.edu

Abstract

Code sandboxing is useful for many purposes, but most
sandboxing techniques require kernel modifications, do
not completely isolate guest code, or incur substantial
performance costs. Vx32 is a multipurpose user-level
sandbox that enables any application to load and safely
execute one or more guest plug-ins, confining each guest
to a system call API controlled by the host application
and to a restricted memory region within the host’s ad-
dress space. Vx32 runs guest code efficiently on several
widespread operating systems without kernel extensions
or special privileges; it protects the host program from
both reads and writes by its guests; and it allows the host
to restrict the instruction set available to guests. The key
to vx32’s combination of portability, flexibility, and effi-
ciency is its use of x86 segmentation hardware to sand-
box the guest’s data accesses, along with a lightweight
instruction translator to sandbox guest instructions.

We evaluate vx32 using microbenchmarks and whole
system benchmarks, and we examine four applications
based on vx32: an archival storage system, an extensi-
ble public-key infrastructure, an experimental user-level
operating system running atop another host OS, and a
Linux system call jail. The first three applications ex-
port custom APIs independent of the host OS to their
guests, making their plug-ins binary-portable across host
systems. Compute-intensive workloads for the first two
applications exhibit between a 30% slowdown and a 30%
speedup on vx32 relative to native execution; speedups
result from vx32’s instruction translator improving the
cache locality of guest code. The experimental user-level
operating system allows the use of the guest OS’s appli-
cations alongside the host’s native applications and runs
faster than whole-system virtual machine monitors such
as VMware and QEMU. The Linux system call jail in-
curs up to 80% overhead but requires no kernel modifica-
tions and is delegation-based, avoiding concurrency vul-
nerabilities present in other interposition mechanisms.

1 Introduction

A sandbox is a mechanism by which a host software
system may execute arbitrary guest code in a confined
environment, so that the guest code cannot compromise
or affect the host other than according to a well-defined
policy. Sandboxing is useful for many purposes, such
as running untrusted Web applets within a browser [6],
safely extending operating system kernels [5, 32], and
limiting potential damage caused by compromised ap-
plications [19,22]. Most sandboxing mechanisms, how-
ever, either require guest code to be (re-)written in a type-
safe language [5, 6], depend on special OS-specific facil-
ities [8, 15, 18, 19], allow guest code unrestricted read
access to the host’s state [29,42], or entail a substantial
performance cost [33,34,37].

Vx32 is a lightweight sandbox for the x86 architec-
ture that enables applications to run untrusted code effi-
ciently on standard operating systems without requiring
special privileges or kernel extensions. The vx32 sand-
box runs standard x86 instructions, so guest code may
be written in any language including assembly language,
and may use advanced processor features such as vec-
tor (SSE) instructions. An application may host multiple
sandbox instances at once; vx32 gives each guest its own
dynamically movable and resizable address space within
the host’s space. Vx32 confines both guest reads and
guest writes to the guest’s designated address region in
the host, protecting both the host’s integrity and the pri-
vacy of any sensitive data (e.g., SSL keys) it may hold
in its address space. Vx32 confines each guest’s system
calls to an API completely determined by the host appli-
cation. The guest system call API need not have any re-
lationship to that of the host operating system, so the host
application can keep its guest environments independent
of and portable across host operating systems.

The key to vx32’s combination of flexibility and effi-
ciency is to use different mechanisms to sandbox data ac-
cesses and instruction execution. Vx32 sandboxes guest

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

293

data accesses using the x86 processor’s segmentation
hardware, by loading a special data segment into the ds,
es, and ss registers before executing guest code. Ac-
cessing data through this segment automatically confines
both reads and writes to the guest’s designated address
region, with no performance overhead since the proces-
sor always performs segment translation anyway.

Since the vx32 sandbox runs entirely in user mode,
however, vx32 cannot rely on the processor’s privilege
level mechanism to prevent the guest from escaping its
sandbox—for example, the x86 privilege levels alone
would not prevent the guest from changing the segment
registers. Vx32 therefore prevents guest code from ex-
ecuting “unsafe” instructions such as segment register
loads by using dynamic instruction translation [9, 34],
rewriting each guest code sequence into a “safe” form be-
fore executing it. This dynamic translation incurs some
performance penalty, especially on control flow instruc-
tions, which vx32 must rewrite to keep execution con-
fined to its cache of safe, rewritten code. Since vx32 con-
fines data accesses via segmentation, it does not need to
rewrite most computation instructions, leaving safe code
sequences as compact and efficient as the guest’s original
code. Vx32’s on-demand translation can in fact improve
the cache locality of the guest code, sometimes result-
ing in better performance than the original code, as seen
previously in dynamic optimization systems [4].

Because common OS kernels already provide user-
level access to the x86 segmentation hardware, vx32
does not require any special privileges or kernel exten-
sions in order to fully sandbox all memory reads and
writes that guest code performs.

Vx32 is implemented as a library that runs on Linux,
FreeBSD, and Mac OS X and is being used in several
applications. VXA [13] is an archival storage system
that stores executable decoders along with compressed
content in archives, using vx32 to run these decoders at
extraction time; thus the archives are “self-extracting”
but also safe and OS-independent. Alpaca [24] is an
extensible PKI framework based on proof-carrying au-
thorization [3] that uses vx32 to execute cryptographic
algorithms such as SHA-1 [12] that form components of
untrusted PKI extensions. Plan 9 VX is a port of the
Plan 9 operating system [35] to user space: Plan 9 kernel
code runs as a user-level process atop another OS, and
unmodified Plan 9 user applications run under the Plan 9
kernel’s control inside vx32. Vxlinux is a delegation-
based system call interposition tool for Linux. All of
these applications rely on vx32 to provide near-native
performance: if an extension mechanism incurs substan-
tial slowdown, then in practice most users will forego
extensibility in favor of faster but less flexible schemes.

Previous papers on VXA [13] and Alpaca [24] briefly
introduced and evaluated vx32 in the context of those ap-

plications. This paper focuses on the vx32 virtual ma-
chine itself, describing its sandboxing technique in detail
and analyzing its performance over a variety of applica-
tions, host operating systems, and hardware. On real ap-
plications, vx32 consistently executes guest code within
a factor of two of native performance; often the overhead
is just a few percent.

This paper first describes background and related work
in Section 2, then presents the design of vx32 in Sec-
tion 3. Section 4 evaluates vx32 on its own, then Sec-
tion 5 evaluates vx32 in the context of the above four
applications, and Section 6 concludes.

2 Related Work

Many experimental operating system architectures per-
mit one user process to isolate and confine others to en-
force a “principle of least privilege”: examples include
capability systems [25], L3’s clan/chief model [26],
Fluke’s nested process architecture [14], and generic
software wrappers [15]. The primary performance cost
of kernel-mediated sandboxes like these is that of travers-
ing hardware protection domains, though with careful
design this cost can be minimized [27]. Other systems
permit the kernel itself to be extended with untrusted
code, via domain-specific languages [31], type-safe lan-
guages [5], proof-carrying code [32], or special kernel-
space protection mechanisms [40]. The main challenge
in all of these approaches is deploying a new operating
system architecture and migrating applications to it.
Other work has retrofitted existing kernels with sand-
boxing mechanisms for user processes, even taking ad-
vantage of x86 segments much as vx32 does [8]. These
mechanisms still require kernel modifications, however,
which are not easily portable even between different x86-
based OSes. In contrast, vx32 operates entirely in user
space and is easily portable to any operating system that
provides standard features described in Section 3.
System call interposition, a sandboxing method imple-
mented by Janus [19] and similar systems [7,17, 18,22,
36], requires minor modifications to existing kernels to
provide a means for one user process to filter or handle
selected system calls made by another process. Since
the sandboxed process’s system calls are still fielded by
the host OS before being redirected to the user-level
“supervisor” process, system call interposition assumes
that the sandboxed process uses the same basic system
call API as the host OS: the supervisor process can-
not efficiently export a completely different (e.g., OS-
independent) API to the sandboxed process as a vx32
host application can. Some system call interposition
methods also have concurrency-related security vulnera-
bilities [16,43], whose only clear solution is delegation-
based interposition [17]. Although vx32 has other uses,

294

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

it can be used is to implement efficient delegation-based
system call interposition, as described in Section 5.4.

Virtualization has been in use for decades for purposes
such as sharing resources [10] and migrating applications
to new operating systems [20]. Since the x86 architecture
did not provide explicit support for virtualization until re-
cently, x86-based virtual machines such as VMware [1]
had to use dynamic instruction translation to run guest
kernel code in an unprivileged environment while sim-
ulating the appearance of being run in privileged mode:
the dynamic translator rewrites instructions that might re-
veal the current privilege level. Virtual machines usually
do not translate user-mode guest code, relying instead on
host kernel extensions to run user-mode guest code di-
rectly in a suitably constructed execution environment.
As described in Section 5.3, vx32’s dynamic translation
can be used to construct virtual machines that need no
host kernel extensions, at some performance cost.

Dynamic instruction translation is frequently used for
purposes other than sandboxing, such as dynamic opti-
mization [4], emulating other hardware platforms [9,44]
or code instrumentation and debugging [28,34]. The
latter two uses require much more complex code trans-
formations than vx32 performs, with a correspondingly
larger performance cost [37].

A software fault isolation (SFI) system [29,42] stati-
cally transforms guest code, preprocessing it to create a
specialized version in which it is easy for the verifier to
check that all data write instructions write only to a des-
ignated “guest” address range, and that control transfer
instructions branch only to “safe” code entrypoints. SFI
originally assumed a RISC architecture [42], but PittS-
Fleld adapted SFI to the x86 architecture [29]. SFI’s
preprocessing eliminates the need for dynamic instruc-
tion translation at runtime but increases program code
size: e.g., 60%-100% for PittSFleld. For efficiency,
SFI implementations typically sandbox only writes and
branches, not reads, so the guest can freely examine host
code and data. This may be unacceptable if the host ap-
plication holds sensitive data such as passwords or SSL
keys. The main challenge in SFI on x86 is the archi-
tecture’s variable-length instructions: opcode sequences
representing unsafe instructions might appear in the mid-
dle of legitimate, safe instructions. PittSFleld addresses
this problem by inserting no-ops so that all branch targets
are 16-byte aligned and then ensures that branches clear
the bottom four bits of the target address. MiSFIT [39]
sidesteps this problem for direct jumps by loading only
code that was assembled and cryptographically signed by
a trusted assembler. Indirect jumps consult a hash table
listing valid jump targets.

Applications can use type-safe languages such as
Java [6] or C# [30] to implement sandboxing completely
in user space. This approach requires guest code to be

written in a particular language, making it difficult to
reuse existing legacy code or use advanced processor fea-
tures such as vector instructions (SSE) to improve the
performance of compute-intensive code.

3 The Vx32 Virtual Machine

The vx32 virtual machine separates data sandboxing
from code sandboxing, using different, complementary
mechanisms for each: x86 segmentation hardware to
sandbox data references and dynamic instruction trans-
lation to sandbox code. The dynamic instruction trans-
lation prevents malicious guest code from escaping the
data sandbox. Vx32’s dynamic translation is simple and
lightweight, rewriting only indirect branches and replac-
ing unsafe instructions with virtual traps. The use of
dynamic translation also makes it possible for client li-
braries to restrict the instruction set further.

This section describes the requirements that vx32
places on its context—the processor, operating system,
and guest code—and then explains the vx32 design.

3.1 Requirements

Processor architecture. Vx32 is designed around the
x86 architecture, making the assumption that most sys-
tems now and in the foreseeable future are either x86-
based or will be able to emulate x86 code efficiently.
This assumption appears reasonable in the current desk-
top and server computing market, although it may pre-
vent vx32 from spreading easily into other domains, such
as game consoles and handheld mobile devices.

Vx32 uses protected-mode segmentation, which has
been integral to the x86 architecture since before its ex-
tension to 32 bits [21]. The recent 64-bit extension of the
architecture disables segment translation in 64-bit code,
but still provides segmentation for 32-bit code [2]. Vx32
therefore cannot use segmentation-based data sandbox-
ing to run 64-bit guest code, but it can still run 32-bit
sandboxed guest code within a 64-bit host application.

Host operating system. Vx32 requires that the host OS
provide a method of inserting custom segment descrip-
tors into the application’s local descriptor table (LDT), as
explained below. The host OS can easily and safely pro-
vide this service to all applications, provided it checks
and restricts the privileges of custom segments. All
widely-used x86 operating systems have this feature.!

To catch and isolate exceptions caused by guest code,
vx32 needs to register its own signal handlers for proces-
sor exceptions such as segmentation faults and floating
point exceptions. For full functionality and robustness,
the host OS must allow vx32 to handle these signals on a

'One Windows vulnerability, MS04-011, was caused by inadequate
checks on application-provided LDT segments: this was merely a bug
in the OS and not an issue with custom segments in general.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

295

separate signal stack, passing vx32 the full saved register
state when such a signal occurs. Again, all widely-used
x86 operating systems have this capability.

Finally, vx32 can benefit from being able to map disk
files into the host application’s address space and to
control the read/write/execute permissions on individual
pages in the mapping. Although these features are not
strictly required by vx32, they are, once again, provided
by all widely-used x86 operating systems.

On modern Unix variants such as Linux, FreeBSD,
and OS X, specific system calls satisfying the above re-
quirements are modify_1dt/i386_set_1dt, sigaction,
sigaltstack, mmap, and mprotect. Windows NT, 2000,
and XP support equivalent system calls, though we have
not ported vx32 to Windows. We have not examined
whether Windows Vista retains this functionality.

Guest code. Although vx32 uses x86 segmentation
for data sandboxing, it assumes that guest code running
in the sandbox conforms to the 32-bit “flat model” and
makes no explicit reference to segment registers. In fact,
vx32 rewrites any guest instructions referring to segment
registers so that they raise a virtual illegal instruction
exception. This “flat model” assumption is reasonable
for practically all modern, compiled 32-bit x86 code; it
would typically be a problem only if, for example, the
sandboxed guest wished to run 16-bit DOS or Windows
code or wished to run a nested instance of vx32 itself.

Some modern multithreading libraries use segment
registers to provide quick access to thread-local storage
(TLS); such libraries cannot be used in guest code under
the current version of vx32, but this is not a fundamental
limitation of the approach. Vx32 could be enhanced to
allow guest code to create new segments using emulation
techniques, perhaps at some performance cost.

Host applications may impose further restrictions on
guest code through configuration flags that direct vx32 to
reject specific classes of instructions. For example, for
consistent behavior across processor implementations,
the VXA archiver described in Section 5.1 disallows the
non-deterministic 387 floating-point instructions, forcing
applications to use deterministic SSE-based equivalents.

3.2 Data sandboxing: segmentation

In the x86 architecture, segmentation is an address trans-
lation step that the processor applies immediately before
page translation. In addition to the eight general-purpose
registers (GPRs) accessible in user mode, the processor
provides six segment registers. During any memory ac-
cess, the processor uses the value in one of these seg-
ment registers as an index into one of two segment trans-
lation tables, the global descriptor table (GDT) or lo-
cal descriptor table (LDT). The GDT traditionally de-
scribes segments shared by all processes, while the LDT
contains segments specific to a particular process. Upon

Host Operating System
Kernel Address Space

(x86-32 or x86-64)

AVAVAVAVAVY
VA VA VANV AVAN

Host Application
Address Space

(x86-32 or x86-64)

(guest address space expands
as heap grows) 4

guest heap

Flat Model
Code, Data
Segments

guest code, data, bss

Guest
default guest stack Data
) 4 Segment

Guest Address Space
(always x86-32) 0

Guest
Control
Segment

guest execution state,
code fragment cache

vx32 sandbox library ‘

Host Application
code, data, bss, heap
(x86-32 or x86-64)

o\

Figure 1: Guest and Host Address Space Structure

finding the appropriate descriptor table entry, the proces-
sor checks permission bits (read, write, and execute) and
compares the virtual address of the requested memory
access against the segment limit in the descriptor table,
throwing an exception if any of these checks fail. Fi-
nally, the processor adds the segment base to the virtual
address to form the linear address that it subsequently
uses for page translation. Thus, a normal segment with
base b and limit / permits memory accesses at virtual ad-
dresses between 0 and /, and maps these virtual addresses
to linear addresses from b to b+/. Today’s x86 operating
systems typically make segmentation translation a no-op
by using a base of 0 and a limit of 23>—1. Even in this so-
called “flat model,” the processor continues to perform
segmentation translation: it cannot be disabled.

Vx32 allocates two segments in the host application’s
LDT for each guest instance: a guest data segment and a
guest control segment, as depicted in Figure 1.

The guest data segment corresponds exactly to the
guest instance’s address space: the segment base points
to the beginning of the address space (address O in the
guest instance), and the segment size is the guest’s ad-
dress space size. Vx32 executes guest code with the
processor’s ds, es, and ss registers holding the selec-

296

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

grow-down area (fragment index table) \

v

Code fragment cache

* Guest
Control
grow-up area (code fragments) Segment

Entrypoint hash table

Fixed execution state, register save area /

Figure 2: Guest Control Segment Structure

tor for the guest data segment, so that data reads and
writes performed by the guest access this segment by de-
fault. (Code sandboxing, described below, ensures that
guest code cannot override this default.) The segmenta-
tion hardware ensures that the address space appears at
address 0 in the guest and that the guest cannot access
addresses past the end of the segment. The translation
also makes it possible for the host to unmap a guest’s ad-
dress space when it is not in use and remap it later at a
different host address, to relieve congestion in the host’s
address space for example.

The format of the guest data segment is up to vx32’s
client: vx32 only requires that it be a contiguous, page-
aligned range of virtual memory within the host address
space. Vx32 provides a loader for ELF executables [41],
but clients can load guests by other means. For example,
Plan 9 VX (see section 5.3) uses mmap and mprotect to
implement demand loading of Plan 9 executables.

The guest control segment, shown in Figure 2, con-
tains the data needed by vx32 during guest execution.
The segment begins with a fixed data structure contain-
ing saved host registers and other data. The entrypoint
hash table and code fragment cache make up most of the
segment. The hash table maps guest virtual addresses to
code sequences in the code fragment cache. The trans-
lated code itself needs to be included in the guest con-
trol segment so that vx32 can write to it when patching
previously-translated unconditional branches to jump di-
rectly to their targets [38].

Vx32 executes guest code with the processor’s fs or
gs register holding the selector for the guest control seg-
ment. The vx32 runtime accesses the control segment by
specifying a segment override on its data access instruc-
tions. Whether vx32 uses fs or gs depends on the host
system, as described in the next section.

3.3 Code sandboxing: dynamic translation

Data sandboxing ensures that, using the proper segments,
data reads and writes cannot escape the guest’s address
space. Guests could still escape using segment override
prefixes or segment register loads, however, which are
unprivileged x86 operations. Vx32 therefore uses code

scanning and dynamic translation to prevent guest code
from performing such unsafe operations.

As in Valgrind [34] and just-in-time compilation [11,
23], vx32’s code scanning and translation is fully dy-
namic and runs on demand. The guest is allowed to place
arbitrary code sequences in its address space, but vx32
never executes this potentially-unsafe code directly. In-
stead, whenever vx32 enters a guest instance, it translates
a fragment of code starting at the guest’s current instruc-
tion pointer (eip) to produce an equivalent safe fragment
in vx32’s code fragment cache, which lies outside the
guest’s address space. Vx32 also records the eip and
address of the translated fragment in the entrypoint hash
table for reuse if the guest branches to that eip again. Fi-
nally, vx32 jumps to the translated code fragment; after
executing, the fragment either returns control to vx32 or
jumps directly to the next translated fragment.

On 32-bit hosts, vx32 never changes the code segment
register (cs): it jumps directly to the appropriate frag-
ment in the guest’s code fragment cache. This is safe be-
cause the code fragment cache only contains safe trans-
lations generated by vx32 itself. The code translator en-
sures that all branches inside translated code only jump
to the beginning of other translated fragments or back to
vx32 to handle events like indirect branches or virtual-
ized guest system calls.

On 64-bit hosts, since segmentation only operates
while executing 32-bit code, vx32 must create a special
32-bit code segment mapping the low 4GB of the host ad-
dress space for use when running guest code. The guest
control and data segments must therefore reside in the
low 4GB of the host address space on such systems, al-
though other host code and data may be above 4GB.

Because vx32 never executes code in the guest’s ad-
dress space directly, vx32 requires no static preprocess-
ing or verification of guest code before it is loaded, in
contrast with most other sandboxing techniques. In-
deed, reliably performing static preprocessing and verifi-
cation is problematic on the x86 due to the architecture’s
variable-length instructions [29, 39].

Translation overview. Vx32’s translation of guest
code into code fragments is a simple procedure with four
stages: scan, simplify, place, and emit. The stages share
a “hint table” containing information about each instruc-
tion in the fragment being translated. The eventual out-
put is both the translated code and the hint table, which
the translator saves for later use by exception handlers.

1. Scan. The translator first scans guest code starting
at the desired eip, decoding x86 instructions to de-
termine their lengths and any required transforma-
tions. The translator scans forward until it reaches
an unconditional branch or a fragment size limit
(currently about 128 bytes of instructions). The

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

297

scan phase records the length, original offset, in-
struction type, and worst-case translated size in the
hint table. Jumps are the only instructions whose
translated size is not known exactly at this point.

2. Simplify. The next phase scans the hint table for di-
rect branches within the fragment being translated;
it marks the ones that can be translated into short in-
trafragment branches using 8-bit jump offsets. After
this phase, the hint table contains the exact size of
the translation for each original guest instruction.

3. Place. Using the now-exact hint table information,
the translator computes the exact offset of each in-
struction’s translation. These offsets are needed to
emit intrafragment branches in the last phase.

4. Emit. The final phase writes the translation into
the code fragment cache. For most instructions, the
translation is merely a copy of the original instruc-
tion; for “unsafe” guest instructions, the translation
is an appropriate sequence chosen by vx32.

Vx32 saves the hint table, at a cost of four bytes per
original instruction, in the code fragment cache along-
side each translation, for use in exception handling as de-
scribed in Section 3.4. The hint table could be discarded
and recomputed during exception handling, trading ex-
ception handling performance for code cache space.

The rest of this section discusses specific types of
guest instructions. Figure 3 shows concrete examples.

Computational code. Translation leaves most instruc-
tions intact. All ordinary computation and data access
instructions (add, mov, and so on) and even floating-point
and vector instructions are “safe” from vx32’s perspec-
tive, requiring no translation, because the segmentation
hardware checks all data reads and writes performed by
these instructions against the guest data segment’s limit.
The only computation instructions that vx32 does not
permit the guest to perform directly are those with x86
segment override prefixes, which change the segment
register used to interpret memory addresses and could
thus be used to escape the data sandbox.

Guest code may freely use all eight general-purpose
registers provided by the x86 architecture: vx32 avoids
both the dynamic register renaming and spilling of trans-
lation engines like Valgrind [34] and the static register
usage restrictions of SFI [42]. Allowing guest code to
use all the registers presents a practical challenge for
vx32, however: it leaves no general-purpose register
available where vx32 can store the address of the saved
host registers for use while entering or exiting guest
code. As mentioned above, vx32 solves this problem by
placing the information in the guest control segment and
using an otherwise-unused segment register (fs or gs)
to address it. (Although vx32 does not permit segment

override prefixes in guest code, it is free to insert them
for its own use in the code fragment translations.)

It is common nowadays for thread libraries to use one
of these two segment registers—fs or gs—as a pointer
to thread-local storage. If vx32 reused the thread-local
segment register, it would have to restore the segment
register before calling any thread-aware library routines,
including routines that perform locking, such as printf.
On recent GCC-based systems, the thread-local segment
register is even used in function call prologues to look up
the stack limit during a stack overflow check. Also, some
64-bit x86 operating systems (e.g., Linux) use privileged
instructions to initialize the thread-local segment register
with a base that is impossible to represent in an ordinary
32-bit segment descriptor. On such systems, restoring
the thread-local segment register would require a system
call, increasing the cost of exiting guest code. For these
reasons, vx32 uses whichever segment register is not be-
ing used by the host OS’s thread library. With care, vx32
could share the thread library’s segment register.

Control transfers. To keep guest execution safely con-
fined to its cache of translated code fragments, vx32
must ensure that all control transfer instructions—calls,
jumps, and returns—go to vx32-generated translations,
not to the original, unsafe guest code.

In the worst case, a control transfer must search the
translation hash table, invoking the instruction transla-
tor if no translation exists. Once a translation has been
found, vx32 can rewrite or “patch” direct jumps and di-
rect calls to avoid future lookups [34,38]. To implement
this patching, the instruction translator initially translates
each fixed-target jump or call instruction to jump to a
stub that invokes the hash table lookup and branch patch-
ing function. The branch patching function looks up the
target address and then rewrites the jump or call instruc-
tion to transfer directly to the target translation.

Patching cannot be used for indirect branches, includ-
ing indirect calls and returns. This hash table lookup for
indirect branches, especially during return instructions,
is the main source of slowdown in vx32.

Other dynamic translation systems optimize indirect
branches by caching the last target of each indirect
branch and the corresponding translation address, or by
maintaining a cache of subroutine return targets analo-
gous to what many modern processors do [37]. Such op-
timizations would be unlikely to benefit vx32: its indirect
target lookup path is only 21 instructions in the common
case of an immediate hash table hit. Only the computa-
tion of the hash index—>5 instructions—would be elimi-
nated by using a single-entry branch cache. Most of the
other instructions, which save and restore the x86 condi-
tion code flags and a few guest registers to give the target
lookup code “room to work,” would still be required no
matter how simple the lookup itself.

298

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

(a) An indirect jump to the address stored at 08049248:
08048160 jmp [0x08049248]

U
b7d8d0f9 mov
b7d8d100 mov
b7d8d107 mov
b7d8d10d jmp

ebx, fs:[0x2c]
fs:[0x2c], ebx

ebx, [0x08049248]
vxrun_lookup_indirect

The fs segment register points to the guest control segment.
The first line of every translated code fragment is a prologue
that restores the guest’s ebx (at b7d8d0f9 in this case), be-
cause vx32 jumps into a fragment using a jmp [ebx] in-
struction.

The translation of the jmp instruction itself begins on the
second line (at b7d8d100). The translated code saves ebx
back into the guest control segment, loads the target eip into
ebx, and then jumps to vxrun_lookup_indirect, which lo-
cates and jumps to the cached fragment for the guest address
in ebx.

The first two lines cannot be optimized out: other frag-
ments may directly jump past the first instruction, as shown
below.

(b) A direct jump to 08048080:
08048160 jmp 0x08048080
U

b7d8d0f9 mov
b7d8d100 jmp
b7d8d105 mov
b7d8d110 jmp
b7d8d115 dword
b7d8d119 dword

ebx, fs:[0x2c]
0xb7d8d105

fs:[0x5c], 0x00008115
vxrun_Tlookup_backpatch
0x08048080

0xb7d8d105

The first jmp in the translation is initially a no-op that just
jumps to the next instruction, but vxrun_lookup_backpatch
will rewrite it to avoid subsequent lookups. The word
stored into fs:[0x5c] is an fs-relative offset telling
vxrun_lookup_backpatch where in the control segment to
find the two dwords arguments at b7d8d115. The control
segment for the guest begins at b7d85000 in this example.
The first argument is the target eip; the second is the
address of the end of the 32-bit jump offset to be patched.
Since ebx has not been spilled at the point of the jump,
vxrun_Tookup_backpatch patches the jump to skip the one-
instruction prologue in the target fragment that restores ebx.

(¢) A return instruction:
08048160 ret

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x2c], ebx
b7d8d107 pop ebx
b7d8d108 jmp vxrun_lookup_indirect

A return is an indirect jump to an address popped off the
stack.

(d) An indirect call:
08048160 call [0x08049248]
U

b7d8d0f9 mov
b7d8d100 mov
b7d8d107 mov
b7d8d10d push
b7d8d112 jmp

ebx, fs:[0x2c]
fs:[0x2c], ebx

ebx, [0x08049248]
0x08048166
vxrun_lookup_indirect

The translation is almost identical to the one in (a). The
added push instruction saves the guest return address onto
the stack.

(e) A direct call:
08048160 call 0x8048080

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 push 0x8048165
b7d8d105 jmp 0xb7d8d10a

b7d8d10a mov
b7d8d115 jmp
b7d8dlla dword
b7d8d1lle dword

fs:[0x5c], 0x000081la
vxrun_lookup_backpatch
0x08048080

0xb7d8d10a

The translation is identical to the one in (b) except for the
addition of the push that saves the return address.

(f) A software interrupt:
08048160 1int 0x30

U
b7d8d0f9 mov
b7d8d100 mov
b7d8d106 mov
b7d8d10b mov
b7d8d116 jmp

ebx, fs:[0x2c]
fs:[0x20], eax

eax, 0x230
fs:[0x40], 0x8048162
vxrun_gentrap

The translation saves the guest eax into the guest control
segment, loads the virtual trap number into eax (the 0x200
bit indicates an int instruction), saves the next eip into the
guest control segment, and then jumps to the virtual trap
handler, which will stop the execution loop and return from
vx32, letting the library’s caller handle the trap.

(g) An unsafe or illegal instruction:
08048160 mov

U
b7d8d0f9 mov
b7d8d100 mov
b7d8d106 mov
b7d8d10b mov
b7d8d116 jmp

ds, ax

ebx, fs:[0x2c]
fs:[0x20], eax

eax, 0x006
fs:[0x40], 0x8048160
vxrun_gentrap

The translation generates a virtual trap with code 0x006. In
contrast with (f), for illegal instructions the saved eip points
at the guest instruction itself rather than just past it.

Figure 3: Guest code and vx32 translations. Most instructions—arithmetic, data moves, and so on—are unchanged by trans-

lation.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

299

Traps. Vx32 translates instructions like int, syscall,
and sysenter, which normally generate hardware traps,
into code sequences that generate virtual traps instead:
they record the trap code and then cause vx32 to return
to its caller, allowing the host application to handle the
trap as it wishes. Typical applications look for a specific
trap code to interpret as a “virtual system call” and treat
any other trap as reason to terminate the guest.

Privileged or unsafe instructions. Vx32 translates
privileged or unsafe instructions (for example, kernel-
mode instructions or those user-mode instructions that
manipulate the segment registers) into sequences that
generate (virtual) illegal instruction traps.

3.4 Exception handling

With help from the host OS, vx32 catches processor ex-
ceptions in guest code—for example, segmentation vi-
olations and floating point exceptions—and turns them
into virtual traps, returning control to the host application
with full information about the exception that occurred.

Since the eip reported by the host OS on such an ex-
ception points into one of vx32’s code translations, vx32
must translate this eip back to the corresponding eip
in the guest’s original instruction stream in order for it
to make sense to the host application or the developer.
To recover this information, vx32 first locates the trans-
lation fragment containing the current eip and converts
the eip’s offset within the fragment to an offset from the
guest code address corresponding to the fragment.

To locate the translation fragment containing the trap-
ping eip efficiently, vx32 organizes the code fragment
cache into two sections as shown earlier in Figure 2:
the code translations and instruction offset tables are al-
located from the bottom up, and the fragment index is
allocated from the top down. The top-down portion of
the cache is thus a table of all the translation fragments,
sorted in reverse order by fragment address. The excep-
tion handler uses a binary search in this table to find the
fragment containing a particular eip as well as the hint
table constructed during translation.

Once vx32’s exception handler has located the correct
fragment, it performs a second binary search, this one in
the fragment’s hint table, to find the exact address of the
guest instruction corresponding to the current eip.

Once the exception handler has translated the fault-
ing eip, it can finally copy the other guest registers un-
changed and exit the guest execution loop, transferring
control back to the host application to handle the fault.

3.5 Usage

Vx32 is a generic virtual execution library; applications
decide how to use it. Typically, applications use vx32
to execute guest code in a simple control loop: load a
register set into the vx32 instance, and call vx32’s run

function; when run eventually returns a virtual trap code,
handle the virtual trap; repeat. Diversity in vx32 appli-
cations arises from what meaning they assign to these
traps. Section 5 describes a variety of vx32 applications
and evaluates vx32 in those contexts.

Vx32 allows the creation of multiple guest contexts
that can be run independently. In a multithreaded host
application, different host threads can run different guest
contexts simultaneously with no interference.

4 Vx32 Evaluation

This section evaluates vx32 in isolation, comparing
vx32’s execution against native execution through mi-
crobenchmarks and whole-system benchmarks. Sec-
tion 5 evaluates vx32 in the context of real applications.
Both sections present experiments run on a variety of test
machines, listed in Figure 4.

4.1 Implementation complexity

The vx32 sandbox library consists of 3,800 lines of C
(1,500 semicolons) and 500 lines of x86 assembly lan-
guage. The code translator makes up about half of the
C code. Vx32 runs on Linux, FreeBSD, and Mac OS X
without kernel modifications or access to privileged op-
erating system features.

In addition to the library itself, the vx32 system pro-
vides a GNU compiler toolchain and a BSD-derived C
library for optional use by guests hosted by applications
that provide a Unix-like system call interface. Host ap-
plications are, of course, free to use their own compilers
and libraries and to design new system call interfaces.

4.2 Microbenchmarks

To understand vx32’s performance costs, we wrote a
small suite of microbenchmarks exercising illustrative
cases. Figure 5 shows vx32’s performance on these tests.

Jump. This benchmark repeats a sequence of 100 no-
op short jumps. Because a short jump is only two bytes,
the targets are only aligned on 2-byte boundaries. In con-
trast, vx32’s generated fragments are aligned on 4-byte
boundaries. The processors we tested vary in how sensi-
tive they are to jump alignment, but almost all run con-
siderably faster on vx32’s 4-byte aligned jumps than the
2-byte jumps in the native code. The Pentium 4 and the
Xeon are unaffected.

Jumpal. This benchmark repeats a sequence of 100
short jumps that are spaced so that each jump target is
aligned on a 16-byte boundary. Most processors execute
vx32’s equivalent 4-byte aligned jumps a little slower.
The Pentium 4 and Xeon are, again, unaffected.

Jumpfar. This benchmark repeats a sequence of 100
jumps spaced so that each jump target is aligned on a
4096-byte (page) boundary. This is a particularly hard

300

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

Label CPU(s) RAM Operating System
Athlon64 x86-32 1.0GHz AMD Athlon64 2800+ 2GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Core 2 Duo 1x2 2.33GHz Intel Core 2 Duo 1GB Mac OS X 10.4.10
Opteron x86-32 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Opteron x86-64 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (64-bit)
Pentium 4 3.06GHz Intel Pentium 4 2GB Ubuntu 7.10, Linux 2.6.22
Pentium M 1.0GHz Intel Pentium M 1GB Ubuntu 7.04, Linux 2.6.10
Xeon 2x2 3.06GHz Intel Xeon 2GB Debian 3.1, Linux 2.6.18

Figure 4: Systems used during vx32 evaluation. The two Opteron listings are a single machine running different operating systems.
The notation 1x2 indicates a single-processor machine with two cores. All benchmarks used gecc 4.1.2.

oo oo o
] (] A ©
- -
O[] [t}
5 ©
< <
o X
< =
o o
x)) @
4— 5% % > Ex
£ £ E ©
x =433] <
¥ oo - o © @
X E o N3 5))
w3 © & 4 £ T Smm_. <2<
3 x O=-x288 | (o] ® o o
] 3 x =S 3 X% - el b
£3355% Sesdcc 3 It
—a £ =3 - xX X s
Xé.j.EE AS.c 99 é::x § [
p T -4 ~EY222Q EEE © =
o o <« €
O—{Em%$ 2 EZSS X% 2 Pl x x x
2 SS 2 & 2T S = N g 3ol — | 5| x| x oS x|x | x| x S| x| x
3 T8989 Oo Eooo OS5 E£EQRQRY g(2[2 g|3|2 g(2]|2 HEIE]
A Eo XX n ¢omnO - d % © © il < | .S QS |S SlEls SlEls
S g XX [re B W SS 0 X ® x| x o i] x|« |F[25 (3 x| x NS5 x| x 5|5
N = © § 5 A 3 ¥ X X X SIS ag] < Sl—lai| o< SB[l < SIS o<
o599 9 =[g B EEYcc 2|12 BlZ2 || I E I GRS I RIS
s Ss g S NSS5®©90 9 Of5[E[S[2[o5 2| < O|5|ES5|D |« O|5|ES5|2 |«
2L - =2 c 55 S22]8]o|© S| 18] | S22 [8]| S L E S S
1 (&) S o o B o) <) AR °) 2183 [°) [RS8 [3 [°) [RS8 [3
m < OO 50 o 2o 3|2 | x| == x| % S|=|s x| % SIS x| %
Qw 3aa=00 _IEEEEE Qlel |3lc|c Qlelgld|c|c Alcleld| <<
Yol 18Ry < «~ Lls|o Lls|s Lls|s Qls|s
o N NN < © SElEl 2] 2 S e 212 N)SIS|c|e8 N SEERe O | S
© - = NEEEEE oS Sls|a NEEEEE o|E[E|lS|3|
© oo S99 - 2lele|s2|2 2l =22 2lelels| 2|2 2|22
SS9 22cs o Slo|o|S|e|le S|lo £l2a(a olo|la|S|[2|a Slola|[S|2e|a
0 — 19 9—1— Ofa|a|<|O|0 Oo|a <[00 Olaja|<[O]|O Ola|a|<|O]|O
jump jumpal jumpfar call callind nullrun syscall

Figure 5: Normalized run times for microbenchmarks running under vx32. Each bar plots run time using vx32 divided by run
time for the same benchmark running natively (smaller bars mark faster vx32 runs). The benchmarks are described in Section 4.2.
Results for the Intel Xeon matched the Pentium 4 almost exactly and are omitted for space reasons.

case for native execution, especially if the processor’s
instruction cache uses only the low 12 bits of the instruc-
tion address as the cache index. Vx32 runs this case sig-
nificantly faster on all processors, because of better in-
struction cache performance in the translation.

Call. This benchmark repeatedly calls a function con-
taining only a return instruction. The call is a direct
branch, though the return is still an indirect branch.

Callind. This benchmark is the same as call, but the
call is now an indirect branch, via a register.

Comparing the bars for call against the bars for call-
ind may suggest that vx32 takes longer to execute direct
function calls than indirect function calls, but only rela-
tive to the underlying hardware: a vx32 indirect call takes
about twice as long as a vx32 direct call, while a native
indirect call takes about four times as long as a native
direct call. The call bars are taller than the callind bars
not because vx32 executes direct calls more slowly, but
because native hardware executes them so much faster.

Nullrun. This benchmark compares creating and ex-
ecuting a vx32 guest instance that immediately exits
against forking a host process that immediately exits.

Syscall. This benchmark compares a virtual system
call relayed to the host system against the same system
call executed natively. (The system call is close(-1),
which should be trivial for the OS to execute.)

4.3 Large-scale benchmarks
The microbenchmarks help to characterize vx32’s per-
formance executing particular kinds of instructions, but
the execution of real programs depends critically on how
often the expensive instructions occur. To test vx32
on real programs, we wrote a 500-line host application
called vxrun that loads ELF binaries [41] compiled for
a generic Unix-like system call interface. The system
call interface is complete enough to support the SPEC
CPU2006 integer benchmark programs, which we ran
both using vx32 (vxrun) and natively. We ran only the C
integer benchmarks; we excluded 403.gcc and 429.mcf
because they caused our test machines, most of which
have only 1GB of RAM, to swap.

Figure 6 shows the performance of vx32 compared to
the native system on five different 32-bit x86 processors.
On three of the seven benchmarks, vx32 incurs a perfor-

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

301

©
SN
- < < 59
. N o e} —1— © © ©
© © © 0 o g - —
or 2 2 o = —
Rl P N~ <« = v 5 oy
Q <[DRI N - = [}
5 - T - < = 1 ®
i At = hal >
= = | ©
& - o s =38
< < - © © A d -
- - © N © o) — - T - | —
~883c - S 3 a2 d3 e =
S22 2 = - S2s?] m
o — Y Y] - -
g <] NN 2] Al
1 =] x —S3 x @ x| 1 x| o x| x| o [—
2| 3 2 sS s[2(3 o5 ElE =E] &l = &l = &l =
£|2 = £|2 o £|2 £|2 £|2 £|2 £|2
d 1% x| ;'__l x| ;'__l = x (—\l'__l X1 x| s :__l x| x| s :__l x| x| s :__l x| x| ;'__l
3 i 3 i 3 7 3 7 =] T 3 i 3 T
B1212| =[] |8I12|2] [|GIE[E] |28 [B|E|2] e[S |8|E|2] [|8I12[2] |2 |G[E[E] ||
=1 = © |5 =1 = © |5 d =0 = 5 A=l =i Q5 =l = © (5 |HD © 5 Al | Q5
] Sl 328 Sl 3RS gl x2S Sl x2S Sl 3128 Sl 3128 Sl 328
Szvggx SEvgsx SEvg:x SEvg:x SE#E:x 8§¢g:x SEﬂ-g;x
E[E|S|S]|5 E[E[S|S]5 E|E[S|S]|s E[E|S|S|s E[E|S|S]|s E[E|S|2]|5 E[E|S|S]|5
4 191212 |5[8 N2l =l5]2 N22]zl5]2 Nls2lels] S NI32] el5]2 N312[z]l5]2 N2 =l5]2
SIE|E[c|2|2 CIE|E| o[22 LIEIE| o[22 LIEIE| o|2|2 2IE|E| |22 2IE|E|s|=2|2 SIE|E|c|2|2
Qlo|o|d|=| 2 Qlo|o|o|=| 2 Qlo|o|o|=| 2 Qlo|lo|o|=|2 Qlo|o|d|=| 2 Qlo|o|d|=| 2 Qlo|o|d|=| 2
0 Ool|la|a|X|<|O Ola|a|X|<|O Ola |a|X[<|O Oola|a|X[<|O Ol |a|X|<|O Ool|la|a|X|<|O Ool|la|a|X|<|O
401.bzip2 456.hmmer 462.libquantum 445.gobmk 458.sjeng 400.perlbench 464.h264ref

Figure 6: Normalized run times for SPEC CPU2006 benchmarks running under vx32. Each bar plots run time using vx32 divided
by run time for the same benchmark running natively (smaller bars mark faster vx32 runs). The left three benchmarks use fewer
indirect branches than the right four, resulting in less vx32 overhead. The results are discussed further in Section 4.3.

2— ~ ~
NN v ©
- 8 3 3 3 - = & ¢
- - - -~ —
= Y
- A -
- = z 8 2 0 0
= _ - 8 g 2 @
1 i =1 = = | [
N =2 a=s =2
n o
[(3 [[(3 [(3 (3 [(3 (3 [(93 (3
Z(3[2|S 2(8|2(S Z(8|2|9 Z(3[2|S Z(8]|2(S 2(8|2|9 Z(3[2|S
SRR HHER SRR SRR HHER SRR SRR
115151515 (B1515(5] (B(5]515] (5I5(5(5] (RI3I5(5] |R(5|513] [5|%(5/|%
AT A || SR ISR A A SE ST A || S || S S SRS AR Y
O ™™ |©|© M|M|©|© ®(M|©|© Mm|M|©|© MM |©|© MM |© Mm|m™|©|©
401.bzip2 456.hmmer 462.libquantum 445.gobmk 458.sjeng 400.perlbench 464.h264ref

Figure 7: Normalized run times for SPEC CPU2006 benchmarks running in four configurations on the same AMD Opteron system:
natively on 32-bit Linux, under vx32 hosted by 32-bit Linux, natively on 64-bit Linux, and under vx32 hosted by 64-bit Linux.
Each bar plots run time divided by run time for the same benchmark running natively on 32-bit Linux (smaller bars mark faster
runs). Vx32 performance is independent of the host operating system’s choice of processor mode, because vx32 always runs guest
code in 32-bit mode. The results are discussed further in Section 4.3.

mance penalty of less than 10%, yet on the other four, the
penalty is 50% or more. The difference between these
two groups is the relative frequency of indirect branches,
which, as discussed in Section 3, are the most expensive
kind of instruction that vx32 must handle.

Figure 8 shows the percentage of indirect branches re-
tired by our Pentium 4 system during each SPEC bench-
mark, obtained via the CPU’s performance counters [21].
The benchmarks that exhibit a high percentage of indi-
rect call, jump, and return instructions are precisely those
that suffer a high performance penalty under vx32.

We also examined vx32’s performance running under
a 32-bit host operating system compared to a 64-bit host
operating system. Figure 7 graphs the results. Even
under a 64-bit operating system, the processor switches
to 32-bit mode when executing vx32’s 32-bit code seg-
ments, so vx32’s execution time is essentially identical
in each case. Native 64-bit performance often differs
from 32-bit performance, however: the x86-64 architec-
ture’s eight additional general-purpose registers can im-
prove performance by requiring less register spilling in

401.bzip2
456.hmmer
462.libquantum
445.gobmk
458.sjeng []
400.perlbench [
464.h264ref [|

1% 2%

[other indirect branches retired

0%
O return instructions retired

Figure 8: Indirect branches as a percentage of total instructions
retired during SPEC CPU2006 benchmarks, measured using
performance counters on the Pentium 4. The left portion of
each bar corresponds to return instructions; the right portion
corresponds to indirect jumps and indirect calls. The indirect-
heavy workloads are exactly those that experience noticeable
slowdowns under vx32.

compiled code, but its larger pointer size can hurt per-
formance by decreasing cache locality, and the balance
between these factors depends on the workload.

302

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

S Applications

In addition to evaluating vx32 in isolation, we evaluated
vx32 in the context of several applications built using
it. This section evaluates the performance of these ap-
plications, but equally important is the ability to create
them in the first place: vx32 makes it possible to create
interesting new applications that execute untrusted x86
code on legacy operating systems without kernel modifi-
cations, at only a modest performance cost.

5.1 Archival storage

VXA [13] is an archival storage system that uses vx32 to
“future proof” compressed data archives against changes
in data compression formats. Data compression algo-
rithms evolve much more rapidly than processor archi-
tectures, so VXA packages executable decoders into the
compressed archives along with the compressed data it-
self. Unpacking the archive in the future then depends
only on being able to run on (or simulate) an x86 pro-
cessor, not on having the original codecs used to com-
press the data and being able to run them natively on the
latest operating systems. Crucially, archival storage sys-
tems need to be efficiently usable now as well as in the
future: if “future proofing” an archive using sandboxed
decoders costs too much performance in the short term,
the archive system is unlikely to be used except by pro-
fessional archivists.

VXA uses vx32 to implement a minimal system call
API (read, write, exit, sbrk). Vx32 provides exactly
what the archiver needs: it protects the host from buggy
or malicious archives, it isolates the decoders from the
host’s system call API so that archives are portable across
operating systems and OS versions, and it executes de-
coders efficiently enough that VXA can be used as a
general-purpose archival storage system without notice-
able slowdown. To ensure that VXA decoders behave
identically on all platforms, VXA instructs vx32 to dis-
able inexact instructions like the 387 intrinsics whose
precise results vary from one processor to another; VXA
decoders simply use SSE and math library equivalents.

Figure 9 shows the performance of vx32-based de-
coders compared to native ones on the four test archi-
tectures. All run within 30% of native performance, of-
ten much closer. The jpeg decoder is consistently faster
under vx32 than natively, due to better cache locality.

5.2 Extensible public key infrastructure

Alpaca [24] is an extensible public-key infrastructure
(PKI) and authorization framework built on the idea of
proof-carrying authorization (PCA) [3], in which one
party authenticates itself to another by using an explicit
logical language to prove that it deserves a particular
kind of access or is authorized to request particular ser-

vices. PCA systems before Alpaca assumed a fixed set
of cryptographic algorithms, such as public-key encryp-
tion, signature, and hash algorithms. Alpaca moves these
algorithms into the logical language itself, so that the ex-
tensibility of PCA extends not just to delegation policy
but also to complete cryptographic suites and certificate
formats. Unfortunately, cryptographic algorithms like
round-based hash functions are inefficient to express and
evaluate explicitly using Alpaca’s proof language.

Alpaca uses Python bindings for the vx32 sandbox to
support native implementations of expensive algorithms
like hashes, which run as untrusted “plug-ins” that are
fully isolated from the host system. The lightweight
sandboxing vx32 provides is again crucial to the appli-
cation, because an extensible public-key infrastructure
is unlikely to be used in practice if it makes all crypto-
graphic operations orders of magnitude slower than na-
tive implementations would be.

Figure 10 shows the performance of vx32-based hash
functions compared to native ones. All run within 25% of
native performance. One surprise is the Core 2 Duo’s ex-
cellent performance, especially on whirlpool. We believe
the Core 2 Duo is especially sensitive to cache locality.

5.3 Plan9 VX

Plan 9 VX (9vx for short) is a port of the Plan 9 oper-
ating system [35] to run on top of commodity operating
systems, allowing the use of both Plan 9 and the host sys-
tem simultaneously and also avoiding the need to write
hardware drivers. To run user programs, 9vx creates an
appropriate address space in a window within its own ad-
dress space and invokes vx32 to simulate user mode exe-
cution. Where a real kernel would execute iret to enter
user mode and wait for the processor to trap back into
kernel mode, 9vx invokes vx32 to simulate user mode,
waiting for it to return with a virtual trap code. 9vx
uses a temporary file as a simulation of physical memory,
calling the host mmap and mprotect system calls to map
individual memory pages as needed. This architecture
makes it possible to simulate Plan 9’s shared-memory
semantics exactly, so that standard Plan 9 x86 binaries
run unmodified under 9vx. For example, Plan 9 threads
have a shared address space except that each has a pri-
vate stack. This behavior is foreign to other systems and
very hard to simulate directly. Because all user-mode ex-
ecution happens via vx32, 9vx can implement this easily
with appropriate memory mappings.

The most surprising aspect of 9vx’s implementation
was how few changes it required. Besides removing the
hardware drivers, it required writing about 1,000 lines of
code to interface with vx32, and another 500 to interface
with the underlying host operating system. The changes
mainly have to do with page faults. 9vx treats vx32 like
an architecture with a software-managed TLB (the code

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

303

Q0 1~
I N o -
N ~ -~ & ©
- -5] - - ™
@ ~1— 2 - BEPN
S 8 S < S| s ~ ~ o - <
o oo =~ = o o 53 — 1~ | o ©® O e} =
dpoo - 5538~ — a2 =8 @ =]
1 So - - ® 5 = = 53 19— S — & S &1
1= =X S S =] =}
wl[
™
TN o
i Soc®o
=]
x| x x| x x| x x| x x| x 2| x
B 2 B 2 B 2 B 2 B 2 8 2
S-S S-S S-S S-S S|E =l .=
X x| o (\T_l X x| o (\i_l X x| o N__l X[x| o N__l X[x| o d_l X[x| o (\i_l
- 3 T 3 7 3 7 3 7 3 T =] I
BIE(2] [BIE(2] [=|s BIE(2] [=|s Sle12| [2| Sle12| [2| Ble12| [=|
o =1 =1 I - S o =1 =1 I - S o =1 =1 I - o =1 =1 I = o = = I =T S o = = I =T S
glolz %218 glolz %28 glalz %28 olol= %1218 olo|= %1218 olo|= %1218
SEvg:x SEvg:x SEvg:x SEvE:x SEvE:x SEvE:x
- E[E[(T|a]|5 E[E[T|a]|5 E[E[(T|a]|5 E[E(T|a]|5 E[E[T|e]|5 E[E[T|e|5
NS5 || NS5 || NS5 || NS5 || NS5 || NS5 ||
NE = IR E NE = IR EE NE = IR EE NE = IR EE NE = IR EE o|lE|E|<c|S |
slelelol=|2 2lelelo|=|2 2lele|lo|=|2 2lelelo|=|2 2lele|lo|=|2 2lele|lo|=|2
Jlos|ls|la|S|a Jlos|ls|lal|S|a Jlos|lo|a|S|a Qlos|o|a|S|a Qlos|lo|a|S|a Qlos|o|(a|S|2
O|a|a|X|<|O O|a|a|X|<|O Ol|a|a|X|<|O O|a|a|X|<|O O|a|a|X|<|O O|a|a|X|<|O
zlib bz2 ipeg ip2 vorbis flac

Figure 9: Normalized run times for VXA decoders running under vx32. Each bar plots run time using vx32 divided by run time
for the same benchmark running natively (smaller bars mark faster vx32 runs). Section 5.1 gives more details. The jpeg test runs
faster because the vx32 translation has better cache locality than the original code.

|1.23
|1.18
[1.17
|1.14
[1.08
[1.04
|1.21
[1.10
[1.16
|1.17

[1.11
[1.08
[1.03
|1.15
[1.07
[1.02
]1.06
[1.04
[1.11
|1.14
Jo.98
|1.07
[1.07
[1.03
[1.11
[1.11
|1.03

Jo.92
Jo.85

0.74

Core 2 Duo, OS X
Pentium M, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Core 2 Duo, OS X
Pentium M, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Core 2 Duo, OS X
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux

Pentium M, Linux
Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux

Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Xeon, Linux

Pentium 4, Linux

Pentium 4, Linux
Xeon, Linux

Pentium 4, Linux
Xeon, Linux

Xeon, Linux

sha512 ripemd whirlpool

(2]
>
[
=y

md5

Figure 10: Normalized run times for cryptographic hash functions running under vx32. Each bar plots run time using vx32 divided
by run time for the same benchmark running natively (smaller bars mark faster runs).

@©|™ - i\ o] — (<]
4 < [N o [N N - & 2
el]
0
— ~ i ~
3 5 0 o o
i @ o
88
2 — 3 - =
e o
Rl . S|
o <
@ 2 ~ o[
1 (=] - 0 Q I
E:) ED 9_)3 _93 93 OQD OQD
s3EE ElRIER| ElREE BlEE EiRERE EEEE EEER
0 g Z2|5|o 225 |o g2 ¥|5]|o g 2|5|o g5 |o g2 ¥|5]|o g|2|5|o
syscall pipe-byte pipe-bulk rdwr shaizero du mk

Figure 11: Normalized run times for simple Plan 9 benchmarks. The four bars correspond to Plan 9 running natively, Plan 9 VX,
Plan 9 under VMware Workstation 6.0.2 on Linux, and Plan 9 under QEMU on Linux using the kgemu kernel extension. Each
bar plots run time divided by the native Plan 9 run time (smaller bars mark faster runs). The tests are: swtch, a system call that
reschedules the current process, causing a context switch (s1eep(0)); pipe-byte, two processes sending a single byte back and forth
over a pair of pipes; pipe-bulk, two processes (one sender, one receiver) transferring bulk data over a pipe; rdwr, a single process
copying from /dev/zero to /dev/null; shalzero, a single process reading /dev/zero and computing its SHA1 hash; du, a single
process traversing the file system; and mk, building a Plan 9 kernel. See Section 5.3 for performance explanations.

304 USENIX °08: 2008 USENIX Annual Technical Conference USENIX Association

was already present in Plan 9 to support architectures
like the MIPS). 9vx unmaps all mapped pages during a
process context switch (a single munmap call) and then
remaps pages on demand during vx32 execution. A fault
on a missing page causes the host kernel to send 9vx a
signal (most often SIGSEGV), which causes vx32 to stop
and return a virtual trap. 9vx handles the fault exactly
as Plan 9 would and then passes control back to vx32.
9vx preempts user processes by asking the host OS to
deliver SIGALRM signals at regular intervals; vx32 trans-
lates these signals into virtual clock interrupts.

To evaluate the performance of 9vx, we ran bench-
marks on our Pentium M system in four configurations:
native Plan 9, 9vx on Linux, Plan 9 under VMware
Workstation 6.0.2 (build 59824) on Linux, and Plan 9
under QEMU on Linux with the kgemu module. Fig-
ure 11 shows the results. 9vx is slower than Plan 9 at con-
text switching, so switch-heavy workloads suffer (swtch,
pipe-byte, pipe-bulk). System calls that don’t context
switch (rdwr) and ordinary computation (shalzero) run
at full speed under 9vx. In fact, 9vx’s simulation of sys-
tem calls is faster than VMware’s and QEMU'’s, because
it doesn’t require simulating the processor’s entry into
and exit from kernel mode. File system access (du, mk)
is also faster under 9vx than Plan 9, because 9vx uses
Linux’s in-kernel file system while the other setups use
Plan 9’s user-level file server. User-level file servers are
particularly expensive in VMware and QEMU due to the
extra context switches. We have not tested Plan 9 un-
der VMware ESX server, which could be more efficient
than VMware Workstation since it bypasses the host OS
completely.

The new functionality 9vx creates is more important
than its performance. Using vx32 means that 9vx re-
quires no special kernel support to make it possible to
run Plan 9 programs and native Unix programs side-by-
side, sharing the same resources. This makes it easy to
experiment with and use Plan 9’s features while avoid-
ing the need to maintain hardware drivers and port large
pieces of software (such as web browsers) to Plan 9.

5.4 Vxlinux

We implemented a 250-line host application, vxlinux,
that provides delegation-based interposition [17] by run-
ning unmodified, single-threaded Linux binaries under
vx32 and relaying the guest’s system calls to the host OS.
A complete interposition system would include a policy
controlling which system calls to relay, but for now we
merely wish to evaluate the basic interposition mecha-
nism. The benefit of vxlinux over the OS-independent
vxrun (described in Section 4) is that it runs unmodi-
fied Linux binaries without requiring recompilation for
vx32. The downside is that since it implements system
calls by passing arguments through to the Linux kernel,

it can only run on Linux. The performance of the SPEC
benchmarks under vxlinux is essentially the same as the
performance under vxrun; we omit the graph.

6 Conclusion

Vx32 is a multipurpose user-level sandbox that enables
any application to load and safely execute one or more
guest plug-ins, confining each guest to a system call
API controlled by the host application and to a restricted
memory region within the host’s address space. It exe-
cutes sandboxed code efficiently on x86 architecture ma-
chines by using the x86’s segmentation hardware to iso-
late memory accesses along with dynamic code transla-
tion to disallow unsafe instructions.

Vx32’s ability to sandbox untrusted code efficiently
has enabled a variety of interesting applications: self-
extracting archival storage, extensible public-key infras-
tructure, a user-level operating system, and portable or
restricted execution environments. Because vx32 works
on widely-used x86 operating systems without kernel
modifications, these applications are easy to deploy.

In the context of these applications (and also on the
SPEC CPU2006 benchmark suite), vx32 always deliv-
ers sandboxed execution performance within a factor of
two of native execution. Many programs execute within
10% of the performance of native execution, and some
programs execute faster under vx32 than natively.

Acknowledgments

Chris Lesniewski-Laas is the primary author of Alpaca.
We thank Austin Clements, Stephen McCamant, and the
anonymous reviewers for valuable feedback. This re-
search is sponsored by the T-Party Project, a joint re-
search program between MIT and Quanta Computer Inc.,
Taiwan, and by the National Science Foundation under
FIND project 0627065 (User Information Architecture).

References

[1] Keith Adams and Ole Agesen. A comparison of software

and hardware techniques for x86 virtualization. In ASP-

LOS XIII, December 2006.

Advanced Micro Devices, Inc. AMD x86-64 architecture

programmer’s manual, September 2002.

[3] Andrew W. Appel and Edward W. Felten. Proof-carrying

authentication. In 6th ACM CCS, November 1999.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Baner-

jia. Dynamo: a transparent dynamic optimization system.

ACM SIGPLAN Notices, 35(5):1-12, 2000.

[5] Brian N. Bershad et al. Extensibility, safety and perfor-
mance in the SPIN operating system. In /5¢th SOSP, 1995.

[2

—

[4

—_

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

305

(6]

[7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

[23]

[24]

Brian Case. Implementing the Java virtual machine. Mi-
croprocessor Report, 10(4):12-17, March 1996.

Suresh N. Chari and Pau-Chen Cheng. BlueBox: A
policy-driven, host-based intrusion detection system. In
Network and Distributed System Security, February 2002.
Tzi-cker Chiueh, Ganesh Venkitachalam, and Prashant
Pradhan. Integrating segmentation and paging protection
for safe, efficient and transparent software extensions. In
17th SOSP, pages 140—153, December 1999.

Bob Cmelik and David Keppel. Shade: A fast instruction-
set simulator for execution profiling. SIGMETRICS PER,
22(1):128-137, May 1994.

R. J. Creasy. The origin of the VM/370 time-sharing
system. [BM Journal of Research and Development,
25(5):483-490, 1981.

L. Peter Deutsch and Allan M. Schiffman. Efficient im-
plementation of the Smalltalk-80 system. In Principles of
Programming Languages, pages 297-302, Salt Lake City,
UT, January 1984.

D. Eastlake 3rd and T. Hansen. US secure hash algorithms
(SHA and HMAC-SHA), July 2006. RFC 4634.

Bryan Ford. VXA: A virtual architecture for durable com-
pressed archives. In 4th USENIX FAST, San Francisco,
CA, December 2005.

Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann,
Godmar Back, and Stephen Clawson. Microkernels meet
recursive virtual machines. In 2nd OSDI, pages 137-151,
1996.

Timothy Fraser, Lee Badger, and Mark Feldman. Hard-
ening COTS software with generic software wrappers. In
IEEE Symposium on Security and Privacy, pages 2—-16,
1999.

Tal Garfinkel. Traps and pitfalls: Practical problems in
system call interposition based security tools. In Network
and Distributed System Security, February 2003.

Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia:
A delegating architecture for secure system call interposi-
tion. In Network and Distributed System Security, Febru-
ary 2004.

Douglas P. Ghormley, David Petrou, Steven H. Ro-
drigues, and Thomas E. Anderson. SLIC: An extensibil-
ity system for commodity operating systems. In USENIX,
June 1998.

Ian Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewer. A secure environment for untrusted helper appli-
cations. In 6th USENIX Security Symposium, San Jose,
CA, 1996.

Honeywell Inc. GCOS Environment Simulator. Decem-
ber 1983. Order Number AN05-02A.

Intel Corporation. IA-32 Intel architecture software de-
veloper’s manual, June 2005.

K. Jain and R. Sekar. User-level infrastructure for system
call interposition: A platform for intrusion detection and
confinement. In Network and Distributed System Secu-
rity, February 2000.

Andreas Krall. Efficient JavaVM just-in-time compila-
tion. In Parallel Architectures and Compilation Tech-
niques, pages 54-61, Paris, France, October 1998.
Christopher Lesniewski-Laas, Bryan Ford, Jacob Strauss,

[25]
[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Frans Kaashoek, and Robert Morris. Alpaca: extensi-
ble authorization for distributed services. In ACM Com-
puter and Communications Security, October 2007.
Henry M Levy. Capability-based Computer Systems.
Digital Press, 1984.

Jochen Liedtke. A persistent system in real use: experi-
ences of the first 13 years. In IWOOOS, 1993.

Jochen Liedtke. On micro-kernel construction. In /5¢h
SOSP, 1995.

Chi-Keung Luk et al. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI,
June 2005.

Stephen McCamant and Greg Morrisett. Evaluating SFI
for a CISC architecture. In /5th USENIX Security Sym-
posium, August 2006.

Microsoft Corporation. C# language specification, ver-
sion 3.0, 2007.

Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Ac-
cetta. The packet filter: An efficient mechanism for user-
level network code. In Symposium on Operating System
Principles, pages 39-51, Austin, TX, November 1987.
George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. In 2nd OSDI, pages 229-243,
1996.

Nicholas Nethercote and Julian Seward. Valgrind: A pro-
gram supervision framework. In Third Workshop on Run-
time Verification (RV’03), Boulder, CO, July 2003.
Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. In PLDI, June 2007.

Rob Pike et al. Plan 9 from Bell Labs. Computing Sys-
tems, 8(3):221-254, Summer 1995.

Niels Provos. Improving host security with system call
policies. In /2th USENIX Security Symposium, August
2003.

K. Scott et al. Overhead reduction techniques for software
dynamic translation. In NSF Workshop on Next Genera-
tion Software, April 2004.

Richard L. Sites, Anton Chernoft, Matthew B. Kirk, Mau-
rice P. Marks, and Scott G. Robinson. Binary translation.
Communications of the ACM, 36(2):69-81, 1993.
Christopher Small and Margo Seltzer. MiSFIT: Con-
structing safe extensible systems. [EEE Concurrency,
6(3):34-41, 1998.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the reliability of commodity operating sys-
tems. In /9th ACM SOSP, 2003.

Tool Interface Standard (TIS) Committee. Executable and
linking format (ELF) specification, May 1995.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient software-based fault isolation.
ACM SIGOPS Operating Systems Review, 27(5):203—
216, December 1993.

Robert N. M. Watson. Exploiting concurrency vulnerabil-
ities in system call wrappers. In /st USENIX Workshop on
Offensive Technologies, August 2007.

Emmett Witchel and Mendel Rosenblum. Embra: Fast
and flexible machine simulation. In Measurement and
Modeling of Computer Systems, pages 6879, 1996.

306

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

