USENIX Association

Proceedings of the
18th USENIX Conference on File and Storage

Technologies

February 24-27, 2020
Santa Clara, CA, USA

© 2020 by The USENIX Association
All Rights Reserved
This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.
ISBN 978-1-939133-12-0

Cover Image created by freevector.com and distributed under the Creative Commons Attribution-ShareAlike 4.0 license
(https://creativecommons.org/licenses/by-sa/4.0/).

Conference Organizers

Program Co-Chairs

Sam H. Noh, UNIST (Ulsan National Institute of Science
and Technology)

Brent Welch, Google

Program Committee

Nitin Agrawal, ThoughtSpot

George Amvrosiadis, Carnegie Mellon University

John Bent, Seagate

Pramod Bhatotia, The University of Edinburgh

Suparna Bhattacharya, Hewlett Packard Enterprise

William J. Bolosky, Microsoft Research

André Brinkmann, Johannes Gutenberg-University Mainz

Randal Burns, Johns Hopkins University

Ali Butt, [Tech

Young-ri Choi, UNIST (Ulsan National Institute of Science
and Technology)

Angela Demke Brown, University of Toronto

Gary Grider, Los Alamos National Laboratory

Haryadi Gunawi, University of Chicago

Dean Hildebrand, Google

Yu Hua, Huazhong University of Science and Technology

H. Howie Huang, The George Washington University

Jian Huang, University of Illinois at Urbana—Champaign

Jooyoung Hwang, Samsung Electronics

Bill Jannen, Williams College

Kimberly Keeton, HP Labs

Geoff Kuenning, Harvey Mudd College

Patrick P. C. Lee, The Chinese University of Hong Kong

Sungjin Lee, DGIST (Daegu Gyeongbuk Institute of Science
and Technology)

Darrell Long, University of California, Santa Cruz

Xiaosong Ma, Qatar Computing Research Institute

Umesh Maheshwari, Hewlett Packard Enterprise

Ethan L. Miller, University of California, Santa Cruz,
and Pure Storage

Changwoo Min, Virginia Tech

Kiran-Kumar Muniswamy-Reddy, Amazon

Dalit Naor, IBM Research

Sam H. Noh, UNIST (Ulsan National Institute of Science
and Technology)

Don Porter, The University of North Carolina at Chapel Hill
Rob Ross, Argonne National Laboratory
Keith A. Smith, MongoDB

Vasily Tarasov, IBM Research

Devesh Tiwari, Northeastern University

Carl Waldspurger, Carl Waldspurger Consulting
Brent Welch, Google

Ric Wheeler, Facebook

Avani Wildani, Emory University

Youjip Won, Korea Advanced Institute of Science and
Technology (KAIST)

Gala Yadgar, Technion—Israel Institute of Technology
Jishen Zhao, University of California, San Diego

Poster Session Chair
Dean Hildebrand, Google

Work-in-Progress Reports (WiPs) Chair
Avani Wildani, Emory University

Test of Time Awards Committee
Jiri Schindler, Tranquil Data
Bianca Schroeder, University of Toronto

Tutorial Coordinators
Andy Klosterman, NetApp
John Strunk, Red Hat

Steering Committee

Nitin Agrawal, ThoughtSpot

Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs

Geoff Kuenning, Harvey Mudd College

Arif Merchant, Google

Florentina Popovici, Google

Raju Rangaswami, Florida International University
Erik Riedel

Jiri Schindler, Tranquil Data

Bianca Schroeder, University of Toronto

Keith A. Smith, MongoDB

Eno Thereska, Amazon

Carl Waldspurger, Carl Waldspurger Consulting
Hakim Weatherspoon, Cornell University

Ric Wheeler, Facebook

Erez Zadok, Stony Brook University

External Reviewers

Kang Chen Ke Yang Pradeep Kumar Tao Zhang
Guanyu Feng Guangyan Zhang Ankush Jain Jaehun Han
Cheng Li Xiaowei Zhu Michael Kuchnik Simon Bertron

Message from the
FAST ’20 Program Co-Chairs

Welcome to the 18th USENIX Conference on File and Storage Technologies, FAST *20. This year’s conference continues the
tradition of bringing together researchers and practitioners from both industry and academia for a program of innovative and
rigorous storage-related research. We are pleased to present a diverse set of papers on topics such as cloud storage, key-value
stores, consistency, reliability, caching, HPC systems, SSD, and traditional file systems. Submissions to the conference came
from authors representing academia, industry, and the open source community.

FAST 20 received 138 submissions. Of these, we accepted 23 papers, for an acceptance rate of 17%. The Program
Committee used a two-round online review process and then met in person to select the final program. In the first round,
each paper received at least three reviews. For the second round, 79 papers received at least three more reviews. The Program
Committee discussed 61 papers in an all-day meeting on December 6, 2019, at Google in Sunnyvale, CA. We used Eddie
Kohler’s excellent HotCRP software to manage all stages of the review process, from submission to author notification.

As in the previous years, we included a category of short papers. Short papers provide a vehicle for presenting completed
research that does not require a full-length paper to describe and evaluate. We received 25 short paper submissions, of

which 2 were accepted. Also in line with previous years, we included a category of deployed-systems papers, which address
experience with the practical design, implementation, analysis or deployment of large-scale, operational systems. We received
6 deployed-systems submissions, of which we accepted 3.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the authors
who submitted their work to FAST "20. We would also like to thank the attendees of FAST "20 and the future readers of
these papers. Together with the authors, you form the FAST community and make storage research vibrant and exciting.

We extend our thanks to the entire USENIX staff, especially Casey Henderson, Jasmine Murcia, Sarah TerHune, Camille
Mulligan, Olivia Vernetti, and Arnold Gatilao, who have provided outstanding support throughout the planning and
organizing of this conference with the highest degree of professionalism and friendliness. Most importantly, their behind-the-
scenes work makes this conference actually happen. We would like to thank the Poster and Work-in-Progress Session Chairs,
Dean Hildebrand and Avani Wildani. Our thanks go also to the members of the FAST Steering Committee who provided
invaluable advice and feedback, and to our Steering Committee Liaison, Keith Smith, for his guidance and encouragement on
many issues, large and small, over the past year.

Finally, we wish to thank our Program Committee for their many hours of hard work reviewing, discussing, and shepherding
the submissions. Some of the PC traveled halfway across the world for the one-day, in-person PC meeting. In total, the PC
wrote 653 thoughtful and meticulous reviews. HotCRP recorded approximately 473,000 words in reviews and comments
(excluding HotCRP boilerplate language). The reviewers’ evaluations, and their thorough and conscientious deliberations at
the PC meeting, contributed significantly to the quality of our decisions. Each paper had a shepherd that reviewed the final
submission and provided additional feedback. In many cases this led to significant improvements in the final quality of the
submissions. We look forward to an interesting and enjoyable conference!

Brent Welch, Google
Sam H. Noh, UNIST (Ulsan National Institute of Science and Technology)
FAST °20 Program Co-Chairs

FAST ’20: 18th USENIX Conference on File and Storage
Technologies February 25-27, 2020
Boston, MA, USA

Cloud Storage

MarX: Controlled Data Migration in the Expansion of Decentralized Object-Based Storage Systems 1
Li Wang, Didi Chuxing; Yiming Zhang, NiceX Lab, NUDT; Jiawei Xu and Guangtao Xue, S/TU

Lock-Free Collaboration Support for Cloud Storage Services with Operation Inference and Transformation 13
Jian Chen, Minghao Zhao, and Zhenhua Li, Tsinghua University; Ennan Zhai, Alibaba Group Inc.; Feng Qian, University

of Minnesota - Twin Cities; Hongyi Chen, Tsinghua University; Yunhao Liu, Michigan State University & Tsinghua
University; Tianyin Xu, University of lllinois Urbana-Champaign

POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native

Relational Database etiiiiiiiiiiiiiiietiiieeiiieeuneeeaseeaaseensssenssosassosaseannssanns 29
Wei Cao, Alibaba; Yang Liu, ScaleFlux; Zhushi Cheng, Alibaba; Ning Zheng, ScaleFlux; Wei Li and Wenjie Wu,

Alibaba; Lingiang Ouyang, ScaleFlux; Peng Wang and Yijing Wang, Alibaba; Ray Kuan, ScaleFlux; Zhenjun Liu and

Feng Zhu, Alibaba; Tong Zhang, ScaleFlux

File Systems

Carver: Finding Important Parameters for Storage System Tuningociiiiiiiiiiiiiiiiienenenns 43
Zhen Cao, Stony Brook University; Geoff Kuenning, Harvey Mudd College; Erez Zadok, Stony Brook University

Read as Needed: Building WiSER, a Flash-OptimizedSearchEngine................c ittt 59

Jun He and Kan Wu, University of Wisconsin—Madison; Sudarsun Kannan, Rutgers University; Andrea Arpaci-Dusseau
and Remzi Arpaci-Dusseau, University of Wisconsin—Madison

How to Copy Files . ..o vvviini ittt ittt ieteeeeeeneeeresossssesncsssssncnssesasnsas 75
Yang Zhan, The University of North Carolina at Chapel Hill and Huawei; Alexander Conway, Rutgers University;

Yizheng Jiao and Nirjhar Mukherjee, The University of North Carolina at Chapel Hill; Tan Groombridge, Pace

University; Michael A. Bender, Stony Brook University; Martin Farach-Colton, Rutgers University; William Jannen,
Williams College; Rob Johnson, VM Ware Research; Donald E. Porter, The University of North Carolina at Chapel Hill;

Jun Yuan, Pace University

HPC Storage

Uncovering Access, Reuse, and Sharing Characteristics of I/O-Intensive Files on Large-Scale Production

HPC SyStemS « o v oo et tttttneeteeeaoneasesossasesessasssssossssasssossssssssossssasssossssssssassssas 91
Tirthak Patel, Northeastern University; Suren Byna, Glenn K. Lockwood, and Nicholas J. Wright, Lawrence Berkeley

National Laboratory, Philip Carns and Robert Ross, Argonne National Laboratory; Devesh Tiwari, Northeastern University

GIFT: A Coupon Based Throttle-and-Reward Mechanism for Fair and Efficient I/O Bandwidth Management on
Parallel Storage SyStemsouiuiutetiereeetereeensesessssscesossssssssessssssassssasssossssssas 103
Tirthak Patel, Northeastern University;, Rohan Garg, Nutanix; Devesh Tiwari, Northeastern University

SSD and Reliability

Scalable Parallel Flash Firmware for Many-core Architectures.ocvveieiiveeeesrscnonsrerossssssnes 121
Jie Zhang and Miryeong Kwon, KAIST; Michael Swift, University of Wisconsin-Madison; Myoungsoo Jung, KAIST

A Study of SSD Reliability in Large Scale Enterprise Storage Deployments........coovviiiuieesrerosnseannes 137
Stathis Maneas and Kaveh Mahdaviani, University of Toronto, Tim Emami, NetApp,; Bianca Schroeder, University of Toronto
Making Disk Failure Predictions SMARTer!ooituiiiiiiiiiiiiiiiiireeseronesessassscsossssssssssssans 151

Sidi Lu and Bing Luo, Wayne State University, Tirthak Patel, Northeastern University; Yongtao Yao, Wayne State
University; Devesh Tiwari, Northeastern University;, Weisong Shi, Wayne State University

Performance

An Empirical Guide to the Behavior and Use of Scalable Persistent Memoryccooeiiiiiiieeneeneennnn 169
Jian Yang, Juno Kim, and Morteza Hoseinzadeh, UC San Diego; Joseph Izraelevitz, University of Colorado, Boulder;
Steve Swanson, UC San Diego

DC-Store: Eliminating Noisy Neighbor Containers using Deterministic I/O Performance and Resource Isolation . .183
Miryeong Kwon, Donghyun Gouk, and Changrim Lee, KAIST; Byounggeun Kim and Jooyoung Hwang, Samsung;
Myoungsoo Jung, KAIST

GoSeed: Generating an Optimal Seeding Plan for Deduplicated Storageccoiiiiiiiinrerenenennnns 193
Aviv Nachman and Gala Yadgar, Technion - Israel Institute of Technology; Sarai Sheinvald, Braude College of Engineering

Key Value Storage

Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook................... 209
Zhichao Cao, University of Minnesota, Twin Cities, and Facebook; Siying Dong and Sagar Vemuri, Facebook; David
H.C. Du, University of Minnesota, Twin Cities

FPGA-Accelerated Compactions for LSM-based Key-Value Storecoiiiiiiiiiiiiiiiiiiiennenenns 225
Teng Zhang, Alibaba Group, Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Zhejiang University;
Jianying Wang, Xuntao Cheng, and Hao Xu, Alibaba Group; Nanlong Yu, Alibaba-Zhejiang University Joint Institute of
Frontier Technologies, Zhejiang University; Gui Huang, Tieying Zhang, Dengcheng He, Feifei Li, and Wei Cao, Alibaba
Group; Zhongdong Huang and Jianling Sun, Alibaba-Zhejiang University Joint Institute of Frontier Technologies,

Zhejiang University

HotRing: A Hotspot-Aware In-Memory Key-Value Store.cciiiiiiiiiiiiiiiiiiiiieierereeeeennnns 239
Jigiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan Sun, Huan Liu, and Feifei Li, Alibaba Group

Caching

BCW: Buffer-Controlled Writes to HDDs for SSD-HDD Hybrid Storage Server............ccoviiiiiiienenn. 253
Shucheng Wang, Ziyi Lu, and Qiang Cao, Wuhan National Laboratory for Optoelectronics, Key Laboratory of

Information Storage System; Hong Jiang, Department of Computer Science and Engineering, University of Texas at
Arlington, Jie Yao, School of Computer Science and Technology, Huazhong University of Science and Technology;
Yuanyuan Dong and Puyuan Yang, Alibaba Group

INnrFINICAcHE: Exploiting Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache 267
Ao Wang and Jingyuan Zhang, George Mason University; Xiaolong Ma, University of Nevada, Reno; Ali Anwar, Lukas
Rupprecht, Dimitrios Skourtis, and Vasily Tarasov, IBM Research—Almaden; Feng Yan, University of Nevada, Reno; Yue
Cheng, George Mason University

Quiver: An Informed Storage Cache for Deep Learningcciiiiiiiiiiiiiiiiiiiiieinenrneeeenenns 283
Abhishek Vijaya Kumar and Muthian Sivathanu, Microsoft Research India

Consistency and Reliability

CRaft: An Erasure-coding-supported Version of Raft for Reducing Storage Cost and Network Cost............ 297
Zizhong Wang, Tongliang Li, Haixia Wang, Airan Shao, Yunren Bai, Shangming Cai, Zihan Xu, and Dongsheng Wang,
Tsinghua University

Hybrid Data Reliability for Emerging Key-Value Storage Devices.ccviiiiiiiiiirneerersecnsessesnsns 309
Rekha Pitchumani and Yang-suk Kee, Memory Solutions Lab, Samsung Semiconductor Inc.

Strong and Efficient Consistency with Consistency-Aware Durabilitycc0iiiiiiiiiiiiiineennnns 323
Aishwarya Ganesan, Ramnatthan Alagappan, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau, University of
Wisconsin—Madison

MAPX: Controlled Data Migration in the Expansion of
Decentralized Object-Based Storage Systems

Li Wang
laurence.liwang @ gmail.com
Didi Chuxing

Yiming Zhang
sdiris @ gmail.com (Corresponding)
NiceX Lab, NUDT

Jiawei Xu

titan_xjw @cs.sjtu.edu.cn
SJTU

Guangtao Xue

xue-gt@cs.sjtu.edu.cn
SJTU

Abstract

Data placement is critical for the scalability of decentralized
object-based storage systems. The state-of-the-art CRUSH
placement method is a decentralized algorithm that de-
terministically places object replicas onto storage devices
without relying on a central directory. While enjoying
the benefits of decentralization such as high scalability, ro-
bustness, and performance, CRUSH-based storage systems
suffer from uncontrolled data migration when expanding the
clusters, which will cause significant performance degrada-
tion when the expansion is nontrivial.

This paper presents MAPX, a novel extension to CRUSH
that uses an extra time-dimension mapping (from object
creation times to cluster expansion times) for controlled
data migration in cluster expansions. Each expansion is
viewed as a new layer of the CRUSH map represented by
a virtual node beneath the CRUSH root. MAPX controls
the mapping from objects onto layers by manipulating the
timestamps of the intermediate placement groups (PGs).
MAPX is applicable to a large variety of object-based storage
scenarios where object timestamps can be maintained as
higher-level metadata. For example, we apply MAPX to
Ceph-RBD by extending the RBD metadata structure to
maintain and retrieve approximate object creation times at
the granularity of expansions layers. Experimental results
show that the MAPX-based migration-free system outper-
forms the CRUSH-based system (which is busy in migrating
objects after expansions) by up to 4.25x in the tail latency.

1 Introduction

Object-based storage systems have been widely used for var-
ious scenarios such as distributed file storage, remote block
storage, small object (e.g., profile pictures) storage, blob
(e.g., large videos) storage, etc. Compared to filesystem-
based storage, object-based storage simplifies data layout
by exposing an interface for reading and writing objects
via unique object names, and thus reduces management
complexity at the backend.

Objects are distributed among a large number of object
storage devices (OSDs) possibly with various capacities and
characteristics, making data placement critical for the scala-
bility of object-based systems. Decentralized placement
methods uniformly distribute objects among OSDs without
relying on a central directory, and usually outperform cen-
tralized methods because their clients could directly access
objects by calculating (instead of retrieving) the responsible
OSDs. CRUSH [67] is the state-of-the-art placement algo-
rithm that allows structured mapping from objects onto a hi-
erarchical cluster map comprising nodes representing OSDs,
machines, racks, etc. Currently, CRUSH has been widely
adopted in large-scale storage systems (like Ceph [66] and
Ursa [44]]) owing to its simplicity and generality.

While enjoying the benefits of decentralization such as
high scalability, robustness, and performance, CRUSH-
based storage systems suffer from uncontrolled data mi-
gration after expanding the clusters and/or adding more
intermediate placement groups (PGs). Although the mi-
gration could re-balance the load of the entire system right
after the expansion, it also causes significant performance
degradation when the expansion is nontrivial (e.g., adding
several racks of storage machines).

In practical deployment of distributed storage systems,
it is preferred to avoid large-scale data migration after
cluster expansions [15], even at the cost of temporary load
imbalance. Ceph [66] is a CRUSH-based object storage
system which mitigates CRUSH’s migration problem via
implementation-level optimizations. It limits the migration
rate to a relatively-low level, performing writes to the old
OSDs if the written object is waiting for migration. However,
all object replicas will be eventually migrated to the target
OSDs calculated by the CRUSH algorithm, making Ceph
experience degraded performance for a long period of time.

In contrast, traditional centralized placement methods
could easily control data migration for cluster expansions.
For example, Haystack [15] and HDFS [9] maintain a central
directory recording object positions, so as to keep existing
objects unaffected during expansions and place only new

USENIX Association

18th USENIX Conference on File and Storage Technologies 1

objects onto the newly-added OSDs.

In this paper we present MAPX, a novel extension to
CRUSH that uses an extra dimensional mapping (from object
creation times to cluster expansion times) for controllable
data migration in the expansion of decentralized object-
based storage systems. Each expansion is viewed as a new
layer of the CRUSH map represented by a virtual node
beneath the CRUSH root. MAPX controls the mapping from
objects onto layers by manipulating the timestamps of the
intermediate PGs.

The time-dimension mapping cannot support general ob-
ject storage where the maintenance overhead of per-object
timestamps might be overwhelming. However, MAPX is
applicable to a large variety of object-based storage sce-
narios (such as block storage and file storage), where the
object creation timestamps can be maintained as higher-
level storage metadata. We apply MAPX to Ceph-RBD
(Reliable-autonomic-distributed-object-store Block Device)
[3] and CephFS (Ceph File System) [4] with minimum
modifications to the original CRUSH algorithm in Ceph
(Luminous) [S]]. For Ceph-RBD, we extend the rbd_header
metadata structure to maintain and retrieve approximate
object creation times at the granularity of expansion layers;
while for CephFS, we extend the inode metadata structure to
take the files’ creation times, which could also be maintained
at the granularity of layers, as the creation times of the
files’ objects. More complex applications of MAPX could
be built based on block storage (Ceph-RBD) or file storage
(CephFS). Experimental results show that the MAPX-based
migration-free system outperforms the CRUSH-based sys-
tem (which is busy in migrating objects after expansions) by
up to 4.25 x in the tail latency.

The rest of this paper is organized as follows. Section
introduces the background and problem of CRUSH. Sec-
tion [3] presents the design of MAPX. Section [evaluates
the performance of MAPX and compares it with CRUSH.
Section [5] introduces related work. And finally Section [6]
concludes the paper and discusses future work.

2 Background
2.1 CRUSH Overview

CRUSH uses a logical cluster map to abstract the storage
cluster’s hierarchical structure. Fig. [I] illustrates a three-
level storage hierarchy, where the entire cluster (root) is
composed of cabinets (representing racks), which are filled
with shelves (representing storage machines) each installing
many OSDs (disks). The internal nodes (root, cabinet, and
shelf) in the hierarchy are referred to as buckets (the types
of which are straw2 throughout this paper as discussed in
detail in Section[5.1). The hierarchy is flexible for extension.
For example, cabinets might be further grouped into “row”
buckets for larger clusters.

Object-Based RBDs

take(root) Toot(32)36)-

cabi(8) | [caba(8) | [caby®) | [cabu(®)(12) |

,,,,, bty o(4)
[shfi @ [[shtoi@ JI[shfs @) I shei@) [F

_---Affected weights

select(3, cabinet)

select(1, shelf)

’
I
]
1
I
I
I
1
I
I
I
]
1
I
I

\ select(1,0sd)

-

Figure 1: Example of CRUSH placement algorithm. An
RBD is mapped to a PG which is subsequently mapped to a
list of OSDs. The second operation (select (3, cabinet))
realizes three-way replication with three different cabinets.
For simplicity each leaf OSD has the same weight of one.

Each OSD has a weight assigned by the administrator to
control the OSD’s relative amount of stored data, so that the
load of an OSD is on average proportional to its weight. The
weight of an internal bucket is (recursively) calculated as the
sum of the weights of its child items. There are mainly two
steps for CRUSH to place object replicas onto OSDs, which
are briefly introduced below and will be discussed in more
details in Section[3.1]

First, the objects are categorized into PGs by computing
the modulo of the hashing of object names, i.e., pgid =
HASH (name) mod PG_NUM. Second, the objects in a PG are
mapped to a list of OSDs following the CRUSH algorithm.
The first step is similar to traditional hashing and in the rest
of this section we will briefly introduce the second step.

The CRUSH algorithm supports flexible constraints for
reliable replica placement by (i) encoding the information
of failure domains (like shared power source or network)
into the cluster map, and (ii) letting the administrator define
the placement rules that specify how replicas are placed by
recursively selecting bucket items.

Fig. [I] demonstrates a typical placement procedure of
CRUSH (for the dark blue PG) beginning at the root, where
the values in the buckets’ parentheses represent the weights.
The first operation (take (root)) of the rule selects the root
of the storage hierarchy and uses it as an input to subsequent
operations. The second operation (select(3,cabinet))
repeatedly computes the following Eq. [(T)] to choose x = 3
items (cabinets at this level) for three-way replication, from
totally |{| = 4 items € 7 beneath the root:

C(pgid,i,r) = argmax HASH (pgid, r,ID(i)) x W (i), (1)

ic€i

where pgid is the ID of the input PG, r = 1,2,--- is a pa-
rameter for the argmax computation, HASH is a three-input
hash function, and ID(i) and W (i) are the ID and weight of
an item i € i, respectively. To choose x distinct items, it is

2 18th USENIX Conference on File and Storage Technologies

USENIX Association

70000 58619,
o
60000 5.86%
”
¥ 50000
°
& 40000
2
® 30000
s 776, 1‘;299;;/ 14155,
§ 20000 3.23% -IY7 5902, 58.98%
10000 867, 0.59% I
0.09
0 Ao an M
Adding 1 OSD Adding 1 host Adding 1 rack
(10 OSDs) (80 OSDs)

W Small cluster (240 OSDs) M Large cluster (10,000 OSDs)

Figure 2: Data migration of two simulated CRUSH clusters
during expansions.

possible to perform Eq. [(T)] more than x times because the
output of Eq. may have already been chosen in previous
computation or the chosen item may be failed/overloaded.
Similarly, the subsequent operations (select(1,shelf)
and select(1,0sd)) follow Egq. to choose x = 1 shelf
and OSD beneath each of the three cabinets. The final result
of the placement rule is the three darkblue OSDs in Fig.[T]

2.2 The Main Drawback of CRUSH

CRUSH achieves statistical load balancing without a central
directory, and could automatically re-balance the load when
the storage cluster map changes. On the downside, however,
it also causes uncontrollable data migration in cluster expan-
sions. For instance, adding a new shelf (shf4_3) with 4 OSDs
beneath a cabinet (caby) in Fig. |I| will affect the weights
(labeled in the second red parentheses) of all items along the
path from the newly-added shelf up to the root, and thus will
lead to data movement not only from other shelves in caby to
the newly-added shf, 3 but also from other cabinets to caby.
The amount of data migration can be as high as h% if Aw is
small relative to W [[67]], where £ is the number of levels in
the hierarchy, and Aw and W are the increased weight of the
expansion and the total weight of all OSDs, respectively.

To demonstrate the severity of the problem, we measure
the amount of data movement in two simulated CRUSH-
based three-level Ceph clusters, which adopt three-way repli-
cation taking a rack as a failure domain. One rack consists
of 8 hosts each containing 10 OSDs. The first small cluster
has a total of 3 racks, 24 hosts, and 240 OSDs, and stores
24,000 PGs; while the second large cluster has 125 racks,
1000 hosts, and 10,000 OSDs, and stores 1,000,000 PGs.
We respectively add one OSD, one machine, and one rack to
the two clusters. The result (Fig.[2) shows that the migration
is significant when the expansion is nontrivial, e.g., almost
60% of the PGs will be affected when adding one rack to
the small cluster, which will inevitably cause performance
degradation during the entire migration period.

| cab, | | cab, | ------ | cab, I |cab,,1 || cab, |

—+ —+ —+ — —
[shelf |_|-|| shelf |_|J [shelf U—‘ [shelt Lu [shelf I_H

(a) The composite cluster map after two expansions

RBD, RBD, RBD;

(take(root) \
i select(1, layer) | i
| select(3, cabinet) | | :
| select(1, shelf) I E

\

Ll P _ layer; } L
! !
. P
i P
. b
. b

i i

i
Lo

TN TR T TR
0!

Tayer, | |
"select(l, 0sd) ¥ %

(b) Time-dimension mapping to three layers

Figure 3: MAPX records each expansion as a layer. MAPX
implicitly adds a select operation (select(1,layer)) to
the placement rule.

3 MAPX Design

Compared to moderate load imbalance, large-scale data
migration often has much more negative impact on I/O
performance in the expansion of distributed storage systems.
The CRUSH placement algorithm suffers from data migra-
tion after each cluster expansion because it “crushes” the
differences between the new and the old objects/OSDs. To
address this problem, MAPX extends the original CRUSH
algorithm with an extra time-dimension mapping.

3.1 Migration-Free Expansion

Storage systems usually prefer to avoid data migration after
cluster expansion even at the cost of temporary load imbal-
ance. For instance, Haystack and HDFS leverage a central
directory to keep existing objects unaffected during cluster
expansions. As new objects are stored onto the new OSDs,
the available capacity of them decreases over time and thus
eventually the entire system will achieve approximate load
balancing. Data migration can be performed (with metadata
modification) at any time as needed.

Inspired by the centralized placement methods, our goal is
to achieve controlled data migration for cluster expansions.
To achieve this, we design MAPX on top of CRUSH by
introducing an extra time-dimension mapping to distinguish
the new and the old objects/OSDs, while still preserving the
benefits of randomness and uniformness of CRUSH.

Fig. Bfa) depicts an example of two expansions to the
original cluster which consists of n cabinets each having
two shelves. The first expansion adds a shelf (represented
by a red rectangle) to each of the n cabinets and the second
expansion adds m cabinets (represented by blue rectangles).

USENIX Association

18th USENIX Conference on File and Storage Technologies 3

Algorithm 1 Extended select Procedure of MAPX
1: procedure SELECT (number, type)
2: if rype #“layer” then
return CRUSH_SELECT(number, type)
end if
layers < layers beneath currently-processing bucket
> each layer represents an expansion

A

6 num_layers < number of layers in layers
7: pg < current Placement Group
8 o0+ @ > output list
9 for (i = num_layers—1;i > 0;i— —) do
10: layer < layers]i]
11: if layer.timestamp < pg.timestamp then
12: if layer was chosen by previous select then
13: continue
14: end if
15: 0+ 8+ {layer}
16: number <— number — 1
17: if number == 0 then
18: break
19: end if
20: end if
21: end for
22: return ¢

23: end procedure

Unlike CRUSH which monolithically updates the cluster
map, MAPX views each expansion, as well as the original
cluster, as a separate layer which contains not only the new
leaf OSDs but also all the internal buckets (shelves, cabinets,
etc.) from the leaf OSDs up to the root.

To support the time-dimension mapping with minimum
modifications to CRUSH, we insert a virtual level beneath
the common CRUSH root (Fig. b)), where each virtual
node represents a layer of expansion. The virtual level en-
ables MAPX to realize migration-free expansion by mapping
new objects to the new layer before further processing of the
CRUSH algorithm. Since the new layer will not affect the
weights of the old ones, the placement of old objects within
old layers will not change.

Mapping objects to PGs. In each expansion, the new layer
is assigned with a certain number of newly-created PGs each
having a timestamp (f,4;) equal to the layer’s expansion
time (#;). When writing/reading an object O (with creation
timestamp 7,), we first compute the ID (pgid) of O’s PG by

pgid = Hash(name) mod INIT_PG_NUM]/]
j-1
+ Z INIT_PG_NUM[i], 2)
i=0
where name is the object name, INIT_PG_.NUM]Ji] is the
initial number of PGs of the i layer, and the j™ layer has the
latest timestamp #; < ¢, among all layers. Note that although

PGs might be remapped to other layers for, e.g., load
rebalancing (Section[3.2)), INIT_PG_NUM is a layer’s constant
and thus the mapping from objects to PGs is immutable.
Consequently, each object is mapped to a responsible PG
during creation, which has the latest timestamp #,¢s < 1,
among all PGs. For instance, suppose that the three RBD,
RBD,, and RBDj in Fig. [3[b) are created respectively after
the expansions of layery, layer;, and layer,. The objects
of RBD;, RBD;,, and RBD3 will use the three layers’
INIT_PG_NUM to calculate their PGs respectively within
layery, layer;, and layer,.

Mapping PGs to OSDs. Similar to CRUSH, MAPX maps a
PG onto a list of OSDs following a sequence of operations in
a user-defined placement rule. As shown in Fig.[3(b), MAPX
implicitly adds a select operation (select(1l,layer)) to
the placement rule, so as to realize the time-dimension
mapping from PGs to layers without disturbing the adminis-
trators. Internally, MAPX extends CRUSH’s original select
operation to support the layer-type select (), as shown in
Algorithm [T} If rype is not “layer”, then the processing is
the same as the original CRUSH (Lines 2 ~ 4). Otherwise,
we initialize an array of layers which stores all layers
beneath the currently-processing bucket (usually the root) in
an ascending order of the layers’ timestamps (Line 5). We
also initialize num_layers (the number of layers), pg (the
placement group), and & (the output list) at Lines 6 ~ 8. Then
the loop (Lines 9 ~ 21) adds number layers in the array of
layers to the output list 6. In most cases number = 1 so
that the PG could be mapped to OSDs in one layer, but it is
also possible to specify a larger number for, e.g., mirroring
between two layers of expansions.

Note that the replicas of an object are not necessarily
all placed on the newest layer. For example, suppose
that the last expansion (layerp) adds only two cabinets in
Fig. B(a) (i.e., m = 2) but the second select () function
(Select(3, cabinet)) requires three cabinets. This will
cause the first select () function (select(l, layer)) to be
invoked twice to satisfy the rules following the backtracking
mechanism of CRUSH: when a select () function cannot
select enough items beneath a “layer” bucket, MAPX will
retain (rather than abandon) the selected items and backtrack
to the root to select the lacking items beneath a previous
layer. Lines 12 ~ 14 check whether /ayer has been chosen
by previous select () and if so we continue to the next loop,
so as to avoid duplicate layer selection when performing
backtracking. The double check ensures Algorithm [I] to
correctly handle this situation, respectively returning layer,
and layer) for the first and second select () functions.

3.2 Migration Control

The MAPX-based migration-free placement algorithm pro-
vides (statistical) load balancing within each layer, owing
to the randomness and uniformness of the original CRUSH

4 18th USENIX Conference on File and Storage Technologies

USENIX Association

algorithm, and achieves approximate load balancing among
different layers by timely expanding the cluster when the
load of the current layer increases to the same level as
previous layers.

However, the load of a layer might change because of,
e.g., removals of objects, failures of OSDs, or unpredictable
workload changes. In Fig.[3] for example, it is possible that
the cluster performs the second expansion (layer,) when the
load of the first expansion (layer;) is as high as that of the
original cluster (layerp), but afterwards a large number of
objects of layer; are removed and consequently the loads of
the first two layers may get imbalanced.

To address the potential load imbalance problem, we
design three flexible strategies for dynamically managing the
load in MAPX, namely, placement group remapping, cluster
shrinking, and layer merging.

PG remapping. MAPX supports to control object data
migration by dynamically remapping the PGs. Each PG
has two timestamps, namely, a static timestamp (¢,,s) that
is equal to the expansion time of the PG’s initial layer, and
a dynamic timestamp (#,¢4) that could be set to any layer’s
expansion time. Different from the mapping from objects to
PGs which uses static timestamps (Section[3.I]), the mapping
from PGs to layers is performed by comparing the PGs’
dynamic timestamps to the layers’ timestamps (Line 11 in
Algorithm [T). Consequently, a PG can be easily remapped
to any layer by manipulating the dynamic timestamp (as
illustrated in Fig. Ekb)), which will be notified to all OSDs
and clients via incremental map updates. The storage
overhead for PGs’ timestamps is moderate. For example, if
we use a one-byte index for each PG timestamp (pointing
to the corresponding layer’s timestamp) which supports a
maximum of 28 = 256 layers), and suppose that one machine
has 20 OSDs each responsible for 200 PGs, then the memory
overhead of timestamps for a 1000-machine cluster is 1000 x
20 %200 x 2 x 1B = 8MB.

Cluster shrinking. When the load of a layer becomes lower
than a threshold, MAPX shrinks the cluster by removing the
layer’s devices (such as OSDs, machines, and racks) from
the cluster, as an inverse operation of cluster expansions.
Given a layer Q to be removed from the cluster, we first
assign all PGs in Q to the remaining layers according to their
aggregated weights (for simplicity the reassignment does not
consider the actual loads of the layers), and then migrate the
PGs to the target layers through remapping (as discussed
above). After shrinking the layer Q is logically preserved
(with no physical devices or PGs) and its INIT_PG_NUM will
not change, so as not to affect the mapping from objects to
PGs (following Eq. [2)).

Layer merging. MAPX balances the loads of two layers (Q
and Q') via layer merging, which could be easily realized by
setting the expansion time of one layer (') to be the same
as that of the other (Q).

3.3 Implementing MAPX in Ceph

We have implemented the MAPX structure in Ceph by
augmenting the original CRUSH algorithm with an extra
time-dimension mapping. As shown in Fig.[3(b), the internal
buckets (like shelves, cabinets, and rows, but not leaf OSDs)
may belong to multiple layers. Therefore, we assign an
internal device in a particular layer (i.e., beneath a particular
virtual node) with a virtual device ID by concatenating the
physical device ID and the layer’s timestamp. We use
the weight fields of the virtual nodes to record the layers’
timestamps, which will be compared with the PGs’ dynamic
timestamps for layer selection.

MAPX is not suitable for general object stores, mainly
because it is nontrivial to maintain and retrieve the times-
tamps of arbitrary objects. The overhead of per-object
timestamp maintenance is similar to that of the maintenance
of a central directory, and thus should be avoided in de-
centralized placement methods like CRUSH and MAPX.
However, MAPX is applicable to a large variety of object-
based storage systems such as block storage (Ceph-RBD [3]))
and file storage (Ceph-FS [4]), where the object timestamps
can be maintained as higher-level metadata.

Ceph-RBD. We have implemented the metadata-based time-
stamp retrieval mechanism for Ceph-RBD (RADOS Block
Device). Ceph stores the metadata (such as the prefix of
data object names, and the information of volume, snapshot,
striping, etc.) of an RBD in its rbd_header structure,
which will be retrieved when a client mounts the RBD via
rbd_open. Since an object of an RBD can be created after
any expansions, we inherit the timestamp of the current layer
(when an object is created) as the object’s timestamp. There-
fore, we add a per-object index (named ob ject_timestamp)
to the rbd_header structure which points to each layer’s
expansion time. The storage overhead for the extra metadata
is moderate. For example, if we use one byte for the
per-object index and each object is 4MB, then the storage
overhead of the object timestamp array for a4TB RBD is at
most % x 1B = 1MB.

CephFS. We have also (partially) implemented the time-
stamp retrieval mechanism for CephFS (Ceph Filesystem).
Ceph stores the file metadata (including file creation times)
in the inode structure. A client reads inode when opening a
file and gets the file creation time. Currently we let all the
objects of a file inherit the file’s timestamp, so that we could
control the time-dimension mapping at the granularity of
files. We also plan to support finer-grained object timestamp
maintenance. If the size of a file exceeds a threshold T
(e.g., T = 100 MB), we could divide it into subfiles each
smaller than 100 MB. The file’s metadata maintains both
the mapping from the file to its sub-files and the creation
timestamp of each subfile, so that we could control the time-
dimension mapping at the granularity of subfiles.

USENIX Association

18th USENIX Conference on File and Storage Technologies 5

latency(ms)

origin origin expand 1 expand 1 expand 2 expand 2
read write read write read write

Figure 4: 99" percentile 1/0 latency of MAPX and CRUSH
(during cluster expansions).

4 Evaluation

In this section we evaluate the performance of the MAPX-
based Ceph and compare it with that of the original CRUSH-
based Ceph. Our testbed consists of four machines, of which
three machines run the Ceph OSD storage servers and the
other machine runs the client. Each machine has dual 20-
core Xeon E5-2630 2.20GHz CPU, 128GB RAM, and one
10GbE NIC, running CentOS 7.0. Each storage machine,
installs four 5.5TB HDDs, and runs Ceph 12.2 (Luminous)
with the BlueStore backend. In all experiments every storage
machine is viewed as a failure domain. The Ceph monitor is
co-located with one of the storage servers. The client runs
the fio benchmark.

4.1 1/0O Performance during Expansions

We compare the I/O performance of MAPX and CRUSH
during expansions, respectively being used as the object
placement methods for Ceph.

We use the default values of all parameters of Ceph
except OSD_max_backfills. ~As discussed in Section [I]
Ceph mitigates the migration problem of CRUSH via
implementation-level optimizations. It uses the parameter
OSD_max_backfills > 1 to trade off between the severity
and duration of performance degradation caused by data
migration.

By default Ceph sets the parameter OSD_max_back fills =
1, which makes migration have the lowest priority so
that objects in PGs could be migrated with an extremely-
low speed. Although partially mitigating the degradation
problem, setting OSD_max_backfills = 1 will significantly
extend the migration period and largely increase the write
load before the migration completes: writes to a PG waiting
for migration will first be performed to the origin OSD
and then be asynchronously migrated to the target OSD.
Clearly, this makes Ceph experience less severe performance
degradation but for a longer period of time. We set

800

600

10PS

400

200

origin origin expand 1 expand 1 expand 2 expand 2
read write read write read write

Figure 5: IOPS of MAPX and CRUSH (during cluster
expansions).

OSD_max_backfills = 10, which is more reasonable in this
experiment so that migration could get a higher priority to
demonstrate the algorithm-level difference between MAPX
and CRUSH. We will discuss more on the impact of migra-
tion priority in Section[5.2}

The initial Ceph cluster has three storage machines each
of which has two OSDs. We create 128 PGs, and the
three-way replication results in (on average) 128 x 3 +3 =
2 = 64 PGs for which each OSD will be responsible. We
create 40 RBD images (each with 20GB data) in the initial
cluster. We expand the storage cluster by respectively adding
one and two OSDs to each machine in the cluster. We
evaluate the performance (including I/O latency and IOPS)
of Ceph running the migration-free MAPX, and compare it
with the performance of Ceph running the original CRUSH
algorithm. The I/O size is 4KB. The iodepth is 1 and 128 in
the latency and IOPS tests, respectively.

Fig. Ié—_ll shows the evaluation result for the 99" percentile
tail latencies. Note that cloud storage scenarios usually care
about the (99", 99.9"" or 99.99™" percentile) tail latency
rather than the mean or median latency, so as to guarantee
SLA. MAPX outperforms CRUSH by up to 4.25 %, mainly
because the migration in CRUSH severely contends with
the normal I/O requests. In this experiment, MAPX always
uses six OSDs of the initial cluster to serve I/O requests
because it does not migrate existing RBDs to the new
OSDs. In contrast, CRUSH respectively uses six, nine,
and twelve OSDs, but the CRUSH-induced data migration
severely degrades the performance, which is unacceptable
for latency-sensitive applications.

Fig|5[shows the evaluation result for IOPS respectively in
MaprX and CRUSH. Each result is the mean of 20 runs, and
we omit the error bars because the variances to the mean are
relatively small (less than 5%). Similar to the latency test,
MAPX significantly outperforms CRUSH by up to 74.3%
in the IOPS test, because CRUSH’s data migration contends
with the normal I/O requests.

6 18th USENIX Conference on File and Storage Technologies

USENIX Association

60

51.651.8

50
40
29.930.2
20 18.618.9
13.413.7
9.710.93 10.711.1 II
0 II II
600

1200 2400 4800 9600 19200

Time (us)
w
o

[
o

B CRUSH ® MapX

Figure 6: Computation overhead of MAPX and CRUSH.

140
120
100
80
60

Latency (ms)

40
25.56 28

0
MapX CRUSH
Hread M write

Figure 7: 99" percentile 1/O latency of MAPX and CRUSH
(during cluster shrinking).

4.2 Computational Overhead

We compare the computation times of MAPX and CRUSH
by simulating a Ceph cluster of different numbers of OSDs
(varying from 600 to 19,200). The result (Fig [6) shows
that both MAPX and CRUSH can map an object to an OSD
in tens of microseconds. The small extra times of MAPX
compared to CRUSH come from the computation of the
time-dimension mapping beneath the root.

4.3 1/0 Performance during Shrinking

We evaluate the I/O performance of MAPX (used as the
object placement methods for Ceph) in shrinking. The Ceph
cluster has three storage machines each initially having three
OSDs, and we expand the cluster by adding one OSD to
each of the three machines using the same configurations as
that in Section f.T] We then remove the newly-added layer
(i.e., removing one OSD from each of the three machines),
following the shrinking method (introduced in Section [3.2).
We control the migration speed by setting the number of
concurrently migrated PGs to eight.

Fig. El depicts the 99™ percentile I/O latency of MAPX

3217

256.1

152.4

M Total No. PGs
M 3rd exp (CRUSH)

M 1st exp (CRUSH)
M 4th exp (CRUSH)

2nd exp (CRUSH)
Layer Merge (MapX)

Figure 8: Number of affected PGs in layer merging in MAPX
(after four expansions). Since CRUSH does not support
merging, for reference we measure the number of affected
PGs after each expansion in CRUSH.

during cluster shrinking. For reference, Fig.[7]also shows the
99" percentile latency of CRUSH in shrinking by removing
one OSD from each of the three machines. Ceph shrinks
the cluster by directly modifying the cluster map. Note that
the result does not necessarily mean that MAPX has lower
latency than CRUSH in shrinking, because they adopt dif-
ferent throttling mechanisms. However, MAPX outperforms
CRUSH during cluster shrinking in that MAPX requires less
migration than CRUSH. For instance, removing an OSD in
CRUSH will lower the entire subtree’s weight and thus may
result in unnecessary data migration. In contrast, MAPX
never causes migration between preserved OSDs because
shrinking occurs at the granularity of layers. We omit the
result for IOPS during shrinking due to lack of space, which
has similar trends with that for I/O latency.

4.4 Layer Merging

We use CrushTool [6] to emulate layer merging in MAPX.
We adopt three-way replication where each object has three
replicas stored on three OSDs. Initially the storage cluster
consists of 5 racks each having 20 machines. One machine
has 20 OSDs. There are totally 100 machines and 2000
OSDs, storing 200,000 PGs. We expand the cluster four
times. In each expansion, we add a new layer of one rack
(of 20 machines and 400 OSDs), and add 40,000 new PGs
to the new layer. Clearly, MAPX maps all the new PGs onto
the newly-added OSDs and thus no migration happens. After
the four expansions, there are totally 9 racks, 180 machines,
and 3600 OSDs, storing 360,000 PGs. We then merge the 40
machines of the first and second expansions (as introduced
in Section [3.2), and measure how many PGs are affected by
the merging in MAPX.

The result is depicted in Fig. [8] where layer merging
in MAPX affects 70,910 PGs among all the 80,000 PGs
of the two merged layers. The relatively high ratio of
affected PGs in layer merging of MAPX is decided by the

USENIX Association

18th USENIX Conference on File and Storage Technologies 7

nature of CRUSH. For reference, we also emulate the four
expansions in CRUSH, where we let the cluster initially have
360,000 PGs and do not add new PGs during expansions,
because otherwise CRUSH will change the mapping from
objects to PGs causing many more PGs to be migrated.
Fig. [§] also shows how many PGs are affected by each
expansion in CRUSH. For instance, almost 90% of all the
PGs are affected in the fourth expansion when the number of
machines increases from 160 to 180.

5 Related Work

5.1 CRUSH in Ceph

Ceph [660] is a widely-used object-based storage system
supporting block storage [3], file storage [4], and simple
object storage [8] (like S3 [1]). To deterministically and
uniformly maps data objects onto OSDs without relying
on a central directory, Ceph applies CRUSH by taking the
following two steps.

In the first step, Ceph computes the placement groups
(PGs) of the objects. The actual computation of PGs is
slightly more complicated than simple hashing and modulo
(discussed in Section [2.1) when the PG number (PG_NUM)
is not a power of two: it computes the pgids with double-
modulo by using two values of 2" power near PG_NUM, so
as to minimize pgid changes when changing the numbers
of PGs. For instance, consider two objects A and B with
HASH(A) = 25 and HASH(B) = 29. Suppose that at first
the PG has PG_NUM; = 8, which results in pgid4s = 1 and
pgidp = 5. Then, suppose that we increase the PG number
to PG_NUM, = 12. Since 23 < 12 < 2*, Ceph first computes
the modulo for A and B using 2* = 16, and respectively gets
pgida =9 and pgidp = 13. For pgid4 < PG_NUM,, Ceph will
take pgids =9 as the final pgid of A. In contrast, for pgidg >
PG_NUM,, Ceph will compute the modulo again using 2° = 8
and get pgidp =5 as the final pgid of B. Clearly, the double-
modulo mechanism makes the pgids not to change when the
first modulo is between PG_NUM, = 12 and 2% = 16.

In the second step, Ceph maps pgids onto OSDs in the
storage cluster, where the hierarchy is composed of OSDs
and buckets. Buckets can contain any number of OSDs
or other buckets. OSDs are always at the leaves and are
assigned weights by the administrator to control the relative
amount of data they are responsible for. Bucket weights are
the sum of the weights of its items. Currently CRUSH has
five types (uniform, list, tree, straw, and straw2) of buckets,
and different bucket types use different formulas to choose
a given number of items beneath the bucket. The straw2
buckets are the most popular because they have the smallest
migration overhead when changing the cluster map or the
number of PGs. By default all buckets in Ceph have the
straw? type.

5.2 Load Balancing & Migration Overhead

Ceph developers have realized the performance degradation
problem due to expansion-caused migration. They alleviate
this problem through implementation-level optimizations by
lowering the priority of migration tasks to avoid bursty
migration after the expansion [7]. However, the PGs cal-
culated by CRUSH have to be eventually migrated. Further,
the conservative migration settings significantly extend the
migration period during which a large fraction of PGs are
waiting for migration. This complicates their write proce-
dure (first being written to the origin OSDs and then to the
target OSDs), unnecessarily increasing the load.

In contrast, MAPX provides administrators with the abi-
lity to control the migration at the algorithm level: the
migration may never happen if (as in most cases) there is
not severe imbalance between the loads of different layers.
Further, sometimes CRUSH needs to increase the number of
PGs, for example to reduce the per-OSD load, which causes
a large fraction of objects to be migrated even using the
double-modulo method (Section @, while MAPX could
smoothly add PGs during expansions without migration.

Focusing on OSD failure caused data migration, Ref. [36]]
proposes to use cluster device flags to selectively label failed
OSDs for reducing data transfer. However, it is not clear how
to use the flags to address/alleviate the migration problem
when expanding the storage clusters.

Consistent distributed hash tables (DHTs) [63} 157, (74,
59, 160, 38, [73]] are widely used for decentralized overlay
storage. Early DHTSs require multi-hop routing to locate the
data and thus are not suitable for distributed object storage.
For example, Chord [63] uses hashing to map both the IDs
of storage nodes and the keys of data onto a ring. A node
is responsible for a key if it is the nearest node after the key
on the ring. Each node only has routing information about
a subset of nodes on the ring, and it takes O(logN) time
to locate a key in an N-node Chord network. Later DHT
networks (like OneHop [18]) support direct key locating
by maintaining all routing information on each node in
the system, and have been adopted in some decentralized
object stores including Amazon Dynamo [28], S3 [1], and
OpenStack Swift [L1].

Compared to CRUSH, most DHTs cannot express the
storage hierarchy including OSDs, machines, racks, etc.
DHT-based storage systems have to use additional mech-
anisms to model the hierarchy (e.g., Cassandra [41] and
CubeX [71] respectively adopt virtual nodes and multi-level
cubic ring [70], and hierarchy-aware DHTs[33} 51} 29} 139,
69] adopt hierarchical routing tables), which are inflexible
compared to CRUSH. Further, load assignment in DHTs is
decided by the positions of the nodes and keys on the ring,
and thus adding a new node will only make a portion of
the load of its successor move to it, which inevitably causes
imbalance (although introducing less migration).

8 18th USENIX Conference on File and Storage Technologies

USENIX Association

5.3 Storage Systems

Decentralized Object storage systems. In recent years,
decentralized object storage has been widely used in various
scenarios. For example, Twitter uses virtual buckets to store
its photos [2]], LinkedIn designs Ambry [54] which adopts
logical grouping and asynchronous replication to realize
geo-distributed object storage [61]], and Facebook designs
F4 [52] which adopts erasure coding [45] to reduce repli-
cation factors for its warm objects. Key-value (KV) storage
systems [[10} 20} 28} 140l [47] could be viewed as generalized
object stores that provide an interface for reading, writing,
deleting and modifying the values associated with keys.
Unlike general object stores, their values are often relatively
small.

Centralized Object storage systems. Some object stores
adopt a centralized metadata directory to simplify data
placement. Haystack [15] is a centralized object store
for Facebook’s large amounts of small objects like photos,
audio/video pieces, HS files, etc. Haystack places object data
(packed into needles) in large files stored in data servers,
and stores object positions (i.e., on which machines) in
a central directory. Similar to Haystack, Lustre [16]] and
HDEFS [9] leverage a central directory to maintain object
positions which helps keep existing objects unaffected dur-
ing cluster expansions. The central directory based place-
ment methods are inefficient in scalability and robustness.
Further, the multi-phase I/O of metadata and data leads to
poor performance and complicates consistency issues [23}
221 155, 134]] and thus cannot satisfy the requirement of the
emerging OLDI (online data-intensive) applications [25}(68]].
Compared to the centralized placement methods, MAPX
preserves the benefits of decentralized CRUSH placement al-
gorithm while providing flexible control over data migration
in expanding the storage clusters.

Block storage systems. Large-scale block storage sys-
tems [63) 149} 42| |35]] adopt distributed protocols [12, [17]]
to provide block interface to remote clients. For example,
Ursa [44] designs a hybrid block store for optimizing SSD-
based storage [46, 14} 27, 26, [13]. Salus [64] provide
virtual disk service based on HBase [31]. Blizzard [50]
realizes high-performance parallel I/O based on FDS [53].
PARIX [45] [72]] performs speculative partial writes to alle-
viate the inability of erasure coding (EC) [19, 162} [37]] and
efficiently support random small writes.

File systems. Distributed file systems spread the data of a
file across many storage servers [22, 24} [30} 32} 35] 43} 48|
58]|. For instance, GFS [30] is a large-scale fault-tolerant file
system for data-intensive cloud applications. Zebra [32] uses
striping on RAID [21]] and logs for high disk parallelism.
BPFS [24] focuses on persistent memory hardware and uses
epoch barrier to provide an in-memory file system with
ordering guarantees. OptFS [22]] improves the journaling file
system [56] by decoupling durability from ordering.

6 Conclusion

The contention between decentralized and centralized data
placement methods has been long lived in the design
of large-scale object storage systems. The decentralized
CRUSH method achieves high scalability, robustness, and
performance, but suffers from uncontrollable data migra-
tion in cluster expansions. This paper presents MAPX, a
novel extension to CRUSH that embraces the best of both
decentralized and centralized methods. MAPX controls data
migration by introducing an extra time-dimension mapping
from object creation times to cluster expansion times, while
still preserving the randomness and uniformness of CRUSH.
We have applied MAPX to Ceph-RBD and CephFS, re-
spectively by extending the rbd_header and inode metadata
structures. In our future work, we will study how to reduce
the maintenance overhead of object timestamps, so as to
apply MAPX to a broader range of object-based storage
scenarios.

Acknowledgement

We would like to thank John Bent, our shepherd, and the
anonymous reviewers for their insightful comments. We
thank Mingya Shi and Haonan Wang for helping in the
experiments, and we thank the Didi Cloud Storage Team
for their discussion. Li Wang and Yiming Zhang are co-
primary authors. Jiawei Xu implemented some parts of
MAPX when he was an intern at Didi Chuxing. This research
is supported by the National Key R&D Program of China
(2018YFB2101102), the National Natural Science Founda-
tion of China (NSFC 61772541, 61872376 and 61370018).
and the Joint Key Project of the NSFC (U1736207).

References

[1] https://aws.amazon.com/s3/.

[2] https://blog.twitter.com/engineering/en_us/a/2012/
blobstore-twitter-s-in-house-photo-storage-system.
html.

[3] https://ceph.com/ceph-storage/block-storage/|
[4] https://ceph.com/ceph-storage/file-system/|

[5] https://docs.ceph.com/docs/master/releases/
luminous/|

[6] https://docs.ceph.com/docs/mimic/man/8/crushtool/,

[7] https://docs.ceph.com/docs/mimic/rados/
configuration/osd-config-ref/.

[8] https://github.com/ceph/ceph/tree/master/src/rgw.

[9] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.
html.

[10] https://rocksdb.org/|

[11] https://www.swiftstack.com/product/open-source/
openstack-swift/.

USENIX Association

18th USENIX Conference on File and Storage Technologies 9

https://aws.amazon.com/s3/
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://ceph.com/ceph-storage/block-storage/
https://ceph.com/ceph-storage/file-system/
https://docs.ceph.com/docs/master/releases/luminous/
https://docs.ceph.com/docs/master/releases/luminous/
https://docs.ceph.com/docs/mimic/man/8/crushtool/
https://docs.ceph.com/docs/mimic/rados/configuration/osd-config-ref/
https://docs.ceph.com/docs/mimic/rados/configuration/osd-config-ref/
https://github.com/ceph/ceph/tree/master/src/rgw
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://rocksdb.org/
https://www.swiftstack.com/product/open-source/openstack-swift/
https://www.swiftstack.com/product/open-source/openstack-swift/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

AIKEN, S., GRUNWALD, D., PLESZKUN, A. R., AND WILLEKE, J.
A performance analysis of the iscsi protocol. In Mass Storage Systems
and Technologies, 2003.(MSST 2003). Proceedings. 20th IEEE/11th
NASA Goddard Conference on (2003), IEEE, pp. 123-134.

ANAND, A., MUTHUKRISHNAN, C., KAPPES, S., AKELLA, A.,
AND NATH, S. Cheap and large cams for high performance data-
intensive networked systems. In NSDI (2010), USENIX Association,
pp. 433-448.

ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHANISHAY-
EE, A., TAN, L., AND VASUDEVAN, V. Fawn: a fast array of wimpy
nodes. In SOSP (2009), J. N. Matthews and T. E. Anderson, Eds.,
ACM, pp. 1-14.

BEAVER, D., KUMAR, S., L1, H. C., SOBEL, J., AND VAJGEL, P.
Finding a needle in haystack: facebook’s photo storage. In Usenix
Conference on Operating Systems Design and Implementation (2010),
pp. 47-60.

BRAAM, P. The lustre storage architecture.
iv:1903.01955 (2019).

CASHIN, E. L. Kernel korner: Ata over ethernet: putting hard drives
on the lan. Linux Journal 2005, 134 (2005), 10.

CASTRO, M., COSTA, M., AND ROWSTRON, A. I. T. Debunking
some myths about structured and unstructured overlays. In NSDI
(2005).

CHAN, J. C., DING, Q., LEE, P. P., AND CHAN, H. H. Parity
logging with reserved space: Towards efficient updates and recovery
in erasure-coded clustered storage. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies (FAST 14)
(2014), pp. 163-176.

CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH,
D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND GRUBER,
R. E. Bigtable: A distributed storage system for structured data. Acm
Transactions on Computer Systems 26, 2 (2008), 1-26.

CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND
PATTERSON, D. A. Raid: High-performance, reliable secondary
storage. ACM Computing Surveys (CSUR) 26, 2 (1994), 145-185.

CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic crash consistency. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 228-243.

CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Consistency without ordering. In
Proceedings of the 10th USENIX conference on File and Storage
Technologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012
(2012), p. 9.

CONDIT, J., NIGHTINGALE, E. B., FrRosT, C., IPEK, E., LEE,
B., BURGER, D., AND COETZEE, D. Better i/o through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (2009), ACM,
pp. 133-146.

DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM 51, 1 (2008),
107-113.

DEBNATH, B., SENGUPTA, S., AND LI, J. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2011), SIGMOD ’11, ACM, pp. 25-36.

DEBNATH, B. K., SENGUPTA, S., AND LI, J. Flashstore: High
throughput persistent key-value store. PVLDB 3, 2 (2010), 1414—
1425.

DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G.,
LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHAL-
L, P., AND VOGELS, W. Dynamo: amazon’s highly available key-
value store. Acm Sigops Operating Systems Review 41, 6 (2007), 205—
220.

arXiv preprint arX-

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

GANESAN, P., GUMMADI, P. K., AND GARCIA-MOLINA, H. Canon
in g major: Designing dhts with hierarchical structure. In ICDCS
(2004), pp. 263-272.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file
system. In SOSP (2003), pp. 29-43.

HARTER, T., BORTHAKUR, D., DONG, S., AIYER, A., TANG, L.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Analysis
of hdfs under hbase: A facebook messages case study. In Proceedings
of the 12th USENIX Conference on File and Storage Technologies
(FAST 14) (2014), pp. 199-212.

HARTMAN, J. H., AND OUSTERHOUT, J. K. The zebra striped
network file system. ACM Transactions on Computer Systems (TOCS)
13,3 (1995), 274-310.

HARVEY, N.J. A., JONES, M. B., SAROIU, S., THEIMER, M., AND
WOLMAN, A. Skipnet: A scalable overlay network with practical
locality properties. In USENIX Symposium on Internet Technologies
and Systems (2003).

HERLIHY, M. P., AND WING, J. M. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.
12, 3 (July 1990), 463-492.

HILDEBRAND, D., AND HONEYMAN, P. Exporting storage systems
in a scalable manner with pnfs. In 22nd IEEE/I13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST’05)
(2005), IEEE, pp. 18-27.

HuaNg, M., Luo, L., LI, Y., AND LIANG, L. Research on data
migration optimization of ceph. In 2017 14th International Computer
Conference on Wavelet Active Media Technology and Information
Processing (ICCWAMTIP) (2017), IEEE, pp. 83-88.

JIN, C., FENG, D., JIANG, H., AND TIAN, L. Raid6l: A log-assisted
raid6 storage architecture with improved write performance. In 2011
IEEE 27th Symposium on Mass Storage Systems and Technologies
(MSST) (2011), IEEE, pp. 1-6.

KAASHOEK, M. F., AND KARGER, D. R. Koorde: A simple degree-
optimal distributed hash table. In I/PTPS (2003), pp. 98-107.

KARGER, D. R., AND RUHL, M. Diminished chord: A protocol for
heterogeneous subgroup formation in peer-to-peer networks. In /PTPS
(2004), pp. 288-297.

LAKSHMAN, A., AND MALIK, P. Cassandra:a structured storage
system on a p2p network. In Proc Acm Sigmod International
Conference on Management of Data (2009).

LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Review
44, 2 (2010), 35-40.

LEE, E. K., AND THEKKATH, C. A. Petal: Distributed virtual disks.
In ACM SIGPLAN Notices (1996), vol. 31, ACM, pp. 84-92.

LEUNG, A. W., PASUPATHY, S., GOODSON, G. R., AND MILLER,
E. L. Measurement and analysis of large-scale network file system
workloads. In USENIX annual technical conference (2008), vol. 1,
pp- 2-5.

L1, H., ZHANG, Y., L1, D., ZHANG, Z., L1U, S., HUANG, P., QIN,
Z., CHEN, K., AND XIONG, Y. Ursa: Hybrid block storage for
cloud-scale virtual disks. In Proceedings of the Fourteenth EuroSys
Conference 2019 (2019), ACM, p. 15.

L1, H., ZHANG, Y., ZHANG, Z., Liu, S., L1, D., Liu, X., AND
PENG, Y. Parix: speculative partial writes in erasure-coded systems.
In 2017 USENIX Annual Technical Conference (USENIX ATC 17)
(2017), USENIX Association, pp. 581-587.

LimM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Silt: A
memory-efficient, high-performance key-value store. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples (2011), ACM, pp. 1-13.

10

18th USENIX Conference on File and Storage Technologies

USENIX Association

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

Lu, L., GOPALAKRISHNAN, H., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Wisckey: Separating keys from values in
ssd-conscious storage. Acm Transactions on Storage 13,1 (2017), 5.

McKusICK, M. K., Joy, W. N., LEFFLER, S.J., AND FABRY, R. S.
A fast file system for unix. ACM Transactions on Computer Systems
(TOCS) 2, 3 (1984), 181-197.

MEYER, D. T., AGGARWAL, G., CULLY, B., LEFEBVRE, G.,
FEELEY, M. J., HUTCHINSON, N. C., AND WARFIELD, A. Parallax:
virtual disks for virtual machines. In ACM SIGOPS Operating Systems
Review (2008), vol. 42, ACM, pp. 41-54.

MICKENS, J., NIGHTINGALE, E. B., ELSON, J., GEHRING, D.,
FAN, B., KADAvV, A., CHIDAMBARAM, V., KHAN, O., AND
NAREDDY, K. Blizzard: Fast, cloud-scale block storage for cloud-
oblivious applications. In 1/th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14) (2014), pp. 257-273.

MISLOVE, A., AND DRUSCHEL, P. Providing administrative control
and autonomy in structured peer-to-peer overlays. In IPTPS (2004),
pp. 162-172.

MURALIDHAR, S., LLOYD, W., Roy, S., HILL, C., LIN, E., LIU,
W., PAN, S., SHANKAR, S., SIVAKUMAR, V., AND TANG, L. f4:
Facebook’s warm blob storage system. In Usenix Conference on
Operating Systems Design and Implementation (2014), pp. 383-398.

NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN, O., How-
ELL, J.,, AND SUZUE, Y. Flat datacenter storage. In OSDI (2012).

NOGHABI, S. A., SUBRAMANIAN, S., NARAYANAN, P,
NARAYANAN, S., HOLLA, G., ZADEH, M., LI, T., GUPTA, 1., AND
CAMPBELL, R. H. Ambry:linkedin’s scalable geo-distributed object
store. In International Conference on Management of Data (2016),
pp- 253-265.

ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTERHOUT,
J. K., AND ROSENBLUM, M. Fast crash recovery in ramcloud. In
SOSP (2011), pp. 29-41.

PIERNAS, J., CORTES, T., AND GARCIA, J. M. Dualfs: a new
journaling file system without meta-data duplication. In Proceedings
of the 16th international conference on Supercomputing (2002), ACM,
pp. 137-146.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R. M., AND
SHENKER, S. A scalable content-addressable network. In Proceed-
ings of the ACM SIGCOMM 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication,
August 27-31, 2001, San Diego, CA, USA (2001), pp. 161-172.

REN, K., ZHENG, Q., PATIL, S., AND GIBSON, G. Indexfs: Scaling
file system metadata performance with stateless caching and bulk
insertion. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2014),
IEEE Press, pp. 237-248.

ROWSTRON, A. I. T., AND DRUSCHEL, P. Pastry: Scalable,
decentralized object location, and routing for large-scale peer-to-peer
systems. In Middleware (2001), pp. 329-350.

SHEN, H., XU, C.-Z., AND CHEN, G. Cycloid: A constant-degree
and lookup-efficient p2p overlay network. Perform. Eval. 63,3 (2006),
195-216.

SPIROVSKA, K., DIDONA, D., AND ZWAENEPOEL, W. Optimistic
causal consistency for geo-replicated key-value stores. In Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Confer-
ence on (2017), IEEE, pp. 2626-2629.

STODOLSKY, D., GIBSON, G., AND HOLLAND, M. Parity logging
overcoming the small write problem in redundant disk arrays. In
ACM SIGARCH Computer Architecture News (1993), vol. 21, ACM,
pp. 64-75.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

STOICA, 1., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for internet applications. ACM SIGCOMM Computer Communication
Review 31,4 (2001), 149-160.

WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P., KIRUBANAN-
DAM, J., ALvVIsI, L., AND DAHLIN, M. Robustness in the salus
scalable block store. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13) (2013), pp. 357-370.

WARFIELD, A., ROSS, R., FRASER, K., LIMPACH, C., AND HAND,
S. Parallax: Managing storage for a million machines. In HorOS
(2005).

WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D., AND
MALTZAHN, C. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation (2006), pp. 307-320.

WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND MALTZAHN,
C. Crush: Controlled, scalable, decentralized placement of replicated
data. In SC’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (2006), IEEE, pp. 31-31.

ZAHARIA, M., CHOWDHURY, M., DAS, T., AND DAVE, A. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI (2012), pp. 1-14.

ZHANG, Y., CHEN, L., LU, X., AND L1, D. Enabling routing control
in a dht. IEEE Journal on Selected Areas in Communications 28, 1
(2009), 28-38.

ZHANG, Y., L1, D., Guo, C., Wu, H., XIONG, Y., AND LU, X.
Cubicring: Exploiting network proximity for distributed in-memory
key-value store. IEEE/ACM Transactions on Networking 25,4 (2017),
2040-2053.

ZHANG, Y., L1, D., AND LI1U, L. Leveraging glocality for fast failure
recovery in distributed ram storage. ACM Transactions on Storage
(TOS) 15,1 (2019), 1-24.

ZHANG, Y., L1, H., Liu, S., XU, J., AND XUE, G. Pbs: An
efficient erasure-coded block storage system based on speculative
partial writes. ACM Transactions on Storage (TOS) 15 (2020), 1-26.

ZHANG, Y., AND L1u, L. Distributed line graphs: A universal
technique for designing dhts based on arbitrary regular graphs. IEEE
Transactions on Knowledge and Data Engineering 24, 9 (2011),
1556-1569.

ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH,
A. D., AND KUBIATOWICZ, J. Tapestry: a resilient global-scale
overlay for service deployment. [EEE Journal on Selected Areas in
Communications 22, 1 (2004), 41-53.

USENIX Association

18th USENIX Conference on File and Storage Technologies 11

Lock-Free Collaboration Support for Cloud Storage Services
with Operation Inference and Transformation *

Jian Chen'*, Minghao Zhao'*, Zhenhua Li'™, Ennan Zhai?
Feng Qian’, Hongyi Chen', Yunhao Liu!**, Tianyin Xu’
YTsinghua University, >Alibaba Group, 3 University of Minnesota, *Michigan State University, >UIUC

Abstract

This paper studies how today’s cloud storage services support
collaborative file editing. As a tradeoff for transparency/user-
friendliness, they do not ask collaborators to use version con-
trol systems but instead implement their own heuristics for
handling conflicts, which however often lead to unexpected
and undesired experiences. With measurements and reverse
engineering, we unravel a number of their design and im-
plementation issues as the root causes of poor experiences.
Driven by the findings, we propose to reconsider the col-
laboration support of cloud storage services from a novel
perspective of operations without using any locks. To enable
this idea, we design intelligent approaches to the inference
and transformation of users’ editing operations, as well as
optimizations to the maintenance of files’ historic versions.
We build an open-source system UFC2 (User-Friendly Collab-
orative Cloud) to embody our design, which can avoid most
(98%) conflicts with little (2%) overhead.

1 Introduction

Computer-supported collaboration allows a group of geo-
distributed people (i.e., collaborators) to cooperatively work
online. To enable this, the most common technique is Ver-
sion Control Systems (VCSes) like Git, SVN and Mercurial,
which require the mastery of complex operations and thus are
not suited to non-technical users [58]. In contrast, dedicated
online editors, such as Google Docs and Overleaf, provide
web-based easy-to-use collaboration support, but with limited
functions and “walled-garden” concerns [8, 10, 13,68]. As an
alternative approach, cloud storage services (e.g., Dropbox,
OneDrive, Google Drive, and iCloud) have recently evolved
their functionality from simple file backup to online collabora-
tion. For example, over 300,000 teams have adopted Dropbox
for business collaboration, submitting ~4000 file edits per
second [62]. For ease of use, collaboration is made transparent
by almost every service today through automatic file synchro-
nization. When a user modifies a file in a “sync folder” (a
local directory created by the service), the changed file will
be automatically synchronized with the copy maintained at

*Co-primary authors. Zhenhua Li is the corresponding author.

Pattern 1: Losing updates

Alice is editing a file. Suddenly, her file is overwritten
by a new version from her collaborator, Bob. Sometimes,
Alice can even lose her edits on the older version.

All studied
cloud storage
services

Pattern 2: Conflicts despite coordination

Alice coordinates her edits with Bob through emails to
avoid conflicts by enforcing a sequential order. Every
edit is saved instantly. Even so, conflicts still occur.

All studied
cloud storage
services

Pattern 3: Excessively long sync duration Dropbox,
Alice edits a shared file and confirms that the edit has OneDrive,
been synced to the cloud. However, Bob does not SugarSync,
receive the updates for an excessively long duration. Seafile, Box

Pattern 4: Blocking collaborators by opening files Seafile

Alice simply opens a shared Microsoft Office file with- | (only for
out making any edits. This mysteriously disables Microsoft
Bob’s editing the file. Office files)

Table 1: Common patterns of unexpected and undesired collabora-
tive editing experiences studied in this paper.

the cloud side. Then, the cloud will further distribute the new
version of the file to the other users sharing the file.

Collaboration inevitably introduces conflicts — simultane-
ous edits on two different copies of the same file. However, it
is non-trivial to automatically resolve conflicts, especially if
the competing edits are on the same line of the file. Instead of
requiring users to learn complex diff-and-merge instructions
to solve conflicts in VCSes, all of today’s cloud storage ser-
vices opt for transparency and user-friendliness — they devise
different approaches to preventing conflicts or automatically
resolving conflicts. Unfortunately, these efforts do not work
well in practice, often resulting in unexpected results. Table 1
describes four common patterns of unexpected/undesirable
collaborative experiences caused by cloud storage services.

To “debug” these patterns from the inside out, we study
eight widely-used cloud storage services based on traffic anal-
ysis with trace-driven experiments and reverse engineering.
The studied services include Dropbox, OneDrive, Google
Drive, iCloud Drive, Box [2], SugarSync [20], Seafile [16],
and Nutstore [11]. Also, we collect ten real-world collabora-
tion traces, among which seven come from the users of differ-
ent services and the other three come from the contributors
of well-known projects hosted by Github. Our study results
reveal a number of design issues of collaboration support in
today’s cloud storage services. Specifically, we find:

USENIX Association

18th USENIX Conference on File and Storage Technologies 13

R Upload it oot
Organize it grap Find a minimum-

Sy
Alice Vn and V, cost path
—=>[00..J
Exist true
Organize - conflicts?
Va and V, cost path _
—= 00

)...Ol
Upioad S,
Edit graph
Bob

(a) Step 1: Operation Inference

Reorganize 888 Transform operations &

S1and S2

Conflict Retain editing intentions

graph

(b) Step 2: Operation Transformation

No
m Execute S, Allce
Directly transform and merge S, on Vg Send the
VI 2 merged version
0 8

(c) Step 3: Merged Version Generation Bob

Figure 1: Working principle for merging two versions of the same file at the cloud side: (a) inferring the operation sequences S; and S, that
respectively change V to V| and V, using edit graphs; (b) transforming and merging S and S; into S, with the minimal conflict, based on a
conflict graph and topological sorting when necessary; (c) executing S, on V; to generate the merged version V| ».

e Using file-level locks to prevent conflicts is difficult due to
the unpredictability of users’ real-time editing behavior (as
cloud storage services can neither designate nor monitor
the editor) and the latency between clients and the server.

e Existing conflict-resolution solutions are too coarse-
grained and do not consider user intention — they either
keep the latest version based on the server-side timestamp
or distribute all the conflicting versions to the users.

Most surprisingly, we observe that the majority of “con-
flicts” reported by these cloud storage services are not true
conflicts but are artificially created. In those false-positive
conflicts (or false conflicts), the collaborators were editing
different parts of a shared file. This is echoed by the com-
mon practice of mitigating false conflicts in cloud storage
service-based collaborative editing by intentionally dividing
an entire text file into multiple separate files [18,23]. Such
false conflicts can be automatically resolved at the server side
without user intervention.

In this paper, we show that it is feasible to provide effective
collaboration support in cloud storage services by intelligently
merging conflicting file versions using the three-way merge
method [54, 63], where two conflicting versions are merged
based on a common-context version. This is enabled by the in-
ference and transformation of users’ editing operations; mean-
while, no lock is used so as to achieve the transparency and
user-friendliness. As depicted in Figure 1, our basic idea is to
first infer the collaborators’ operation sequences [1(a)], and
then transform these sequences based on their true conflicts
(if any) [1(b)] to generate the final version [1(c)]. Compared
to a file-level or line-level conflict resolution (e.g., adopted by
Dropbox or Git), our solution is more fine-grained: modifica-
tions on different parts of the same file or even the same line
can be automatically merged.

Building a system with the above idea, however, requires
us to address two technical challenges. First, inferring opera-
tion sequences in an efficient way is non-trivial, since it is a
computation-intensive task for cloud storage services'. As il-
lustrated in Figure 1(a), when two versions V| and V, emerge,
we need to first find the latest common-context version V,

'In contrast, it is straightforward and lightweight to acquire a user’s
operation sequences in Google Docs [7], Overleaf [15], and similar services,
where a dedicated editor is used and monitored in real time.

hosted at the cloud, and then infer two operation sequences
S1 and S5 that convert Vy to V; and V,, respectively. The com-
mon approach using dynamic programming [33,44,57] may
take excessive computing time in our scenario, e.g., ~30 sec-
onds for a 500-KB file. To address the issue, we leverage an
edit graph [4,55] to organize Vj and V7, and thus essentially
reduce the inference time, e.g., ~200 ms for a 500-KB file.

The second challenge is how to transform and merge S| and
S, into S, with minimal conflict, i.e., 1) simplifying manual
conflict resolution of text files by sending only one merged
version (V]) to the collaborators; and 2) retaining the collab-
orators’ editing intentions while minimizing the amount of
conflicts to be manually resolved in Vi 5. As illustrated in Fig-
ure 1(b), it is easy to directly transform and merge S| and S»,
via operation transformation [39], if there is no true conflict.
To address the challenging case (of true conflicts), we utilize
a conflict graph [53] coupled with topological sorting to reor-
ganize all operations, so as to prioritize the transformation of
real conflicting operations and minimize their impact on the
transformation of other operations.

Besides solving the above challenges, we facilitate conflict
resolution by maintaining each shared file’s historic versions
at the cloud with CDC (content-defined chunking [59]) dedu-
plication. For a user-uploaded version, we adopt full-file sync
for small files and delta sync for larger files to achieve the
shortest upload time. For a server-merged version, we design
operation-based CDC (OCDC) which exploits the implicit
operations inferred during conflict resolution to accelerate
CDC - only the boundaries of those chunks affected by the
operations need recalculation.

We build UFC2 (User-Friendly Collaborative Cloud) on top
of Amazon EFS (Elastic File System) and S3 to implement
our design. Our evaluation using real-world traces indicates
that conflicts generated during collaboration are significantly
reduced by 98% on average (the remainder are true conflicts).
Meanwhile, the incurred time overhead by a conflict resolu-
tion is usually between 10 and 80 ms, which is merely 0.6%—
4% (2% on average) of the delivery time for a file update.
In addition, our designed OCDC optimization outpaces the
traditional CDC by ~3 times, thus reducing the data chunk-
ing time from 30—-400 ms to 10—-120 ms for a common file.
Finally, we have made all the source code and measurement
data publicly available at https://UFC2.github.io.

14 18th USENIX Conference on File and Storage Technologies

USENIX Association

https://UFC2.github.io

Trace Timespan #Col-s #Files # Versions Avg. File Size Major File Types
Dropbox-1 11/2/2018-2/6/2019 5 305 3527 86 KB tex (52%), pdf (16%), Matlab src (24%) & fig (4%)
Dropbox-2 4/3/2019-5/14/2019 6 216 2193 67 KB tex (57%), pdf (21%), Matlab fig (9%)
OneDrive 3/15/2019-5/31/2019 5 253 2673 83 KB tex (61%), pdf (15%), Matlab fig (7%)
iCloud Drive 2/1/2019-4/30/2019 6 301 3211 59 KB tex (53%), pdf (22%), Matlab fig (12%)
Box 3/21/2019-5/2/2019 8 273 2930 60 KB tex (66%), pdf (27%)
SugarSync 4/11/2019-5/26/2019 9 325 3472 89 KB tex (49%), pdf (25%), Matlab src (19%) & fig (3%)
Seafile 2/17/2019-4/30/2019 7 251 2823 71 KB tex (55%), pdf (19%), Matlab fig (10%)
Spark-Git 1/15/2018-3/27/2019 58 15181 129957 4 KB Scala (78%), Java (6%), py (5%)
TensorFlow-Git 7/24/2018-3/27/2019 86 16754 246016 9KB py (30%), C header (14%) & src (29%), txt (20%)
Linux-Git 9/9/2018-3/30/2019 87 63865 901167 13 KB C header (31%) & src (42%), txt (16%)

Table 2: Statistics of the ten real-world collaboration traces. “Col-s” means collaborators, “src”” means source code, and “py” means python.

2 Design Challenges

In this section, we employ trace-driven experiments, special
benchmarks, and reverse engineering to deeply understand the
design challenges of collaborative support in today’s cloud
storage services. In particular, we analyze the root causes of
poor experiences listed in Table 1.

2.1 Study Methodology

In order to quantitatively understand how today’s cloud stor-
age services behave under typical collaborative editing work-
loads, we first collected ten real-world collaboration traces as
listed in Table 2. Among them, seven are provided by users
(with informed consent) that collaborate on code/document
writing using different cloud storage services. The other three
are extracted from well-known open-source GitHub projects.
Each trace contains all the file versions uploaded by every
involved user during the collection period.

For the first seven traces, relatively few (i.e., 5-9) collabo-
rators work on a project for a couple of months. Each of their
workloads is unevenly distributed over time: during some pe-
riods collaborators frequently edit the shared files, whereas
during the other periods there are scarcely any edits to the
shared files. By contrast, in the last three traces, a large num-
ber of collaborators constantly submit their edits for quite a
few months, and thus generate many more file versions. In
addition, the collaborators involved in all the ten traces are
located across multiple continents.

Using these traces, we conducted a comparative measure-
ment study of eight mainstream cloud storage services: Drop-
box, OneDrive, Google Drive, iCloud Drive, Box, SugarSync,
Seafile, and Nutstore. For each service, we ran its latest PC
client (as of Jul. 2019) on Windows-10 VMs rented from Ama-
zon EC2; these VMs have the same hardware configuration
(a dual-core CPU@2.5 GHz, 8 GB memory, and 32 GB SSD
storage) and network connection (whose downlink/uplink
bandwidth is restricted to 100 / 20 Mbps by WonderShaper to
resemble a typical residential network connection [1, 19]).

We deployed puppet collaborators on geographically dis-
tributed VMs across five major regions to replay a trace, with
one client software and one puppet collaborator running on

one VM. Specifically, we rented AWS VMs in South America,
North America, Europe, the Middle-East, and the Asia-Pacific
(including East Asia and Australia). We instructed the puppet
collaborators to upload different file versions (as recorded
in the trace) to the cloud. To safely reduce the duration of
the replay, we skipped the “idle” timespan in the trace dur-
ing which no file is edited by any collaborator. In addition,
we strategically generated some “corner cases” that seldom
appear in users’ normal editing, so as to make a deeper and
more comprehensive analysis. For example, we edited fix-
sized small (KB-level) files to measure cloud storage services’
sync delay, so as to avoid the impact of file size variation;
we edited a random byte on a compressed file to figure out
their adoption of delta sync mechanisms; and we performed
specially controlled edits to investigate their usage of locks,
as well as their delivery time of lock status.

We captured all the IP-level sync traffic in the trace-driven
and benchmark experiments via Wireshark [25]. From the
traffic, we observe that almost all the communications during
the collaboration are carried out with HTTPS sessions (using
TLS v1.1 or v1.2). By analyzing the traffic size and occur-
rence time of respective HTTPS sessions, we can understand
the basic design of these eight mainstream cloud storage ser-
vices, e.g., using full-file sync or delta sync mechanisms to
deliver a file update.

To reverse engineer the implementation details, we at-
tempted to reverse HTTPS by leveraging man-in-the-middle
attacks with Charles [3], and succeeded with OneDrive, Box,
and Seafile. For the three services, we are able to get the
detailed information of each synced file (including its ID, cre-
ation time, edit time, and to our great surprise the concrete
content), as well as the delivered lock status and file update.
Furthermore, since Seafile is open source, we also read the
source code to understand the system design and implementa-
tion, e.g., its adoption of FIFO message queues and the CDC
delta sync algorithm.

For the remaining five cloud storage services, we are unable
to reverse their HTTPS sessions, as their clients do not accept
the root CA certificates forged by Charles. For these services,
we search the technical documentation (including design doc-
uments and engineering blogs) to learn about their designs,
such as locks and message queues [5,9,12,14,21,22,31].

USENIX Association

18th USENIX Conference on File and Storage Technologies 15

Cloud Storage Service

Lock Mechanism

Conflict Resolution

\ Message Queue \ File Update Method

Dropbox No lock Keep all the conflicting versions LIFO rsync
OneDrive No lock Keep all the conflicting versions Queue Full-file sync
Google Drive No lock Keep only the latest version - Full-file sync
iCloud Drive No lock Ask users to choose among multiple versions - rsync
Box Manual locking Keep all the conflicting versions Queue Full-file sync
SugarSync No lock Keep all the conflicting versions Queue rsync
Seafile Automatic/manual® Keep all the conflicting versions FIFO CDC
Nutstore Automatic locking Keep all the conflicting versions - Full-file & rsync

[T

Table 3: A brief summary of the collaboration support of the eight mainstream cloud storage services in our study. “x”: Seafile only supports

[TIRIN

automatic locking for Microsoft Office files. “-””: we do not observe obvious queuing behavior.

2.2 Results and Findings

Our study quantifies the occurrence of conflicts in different
cloud storage services, and uncovers their key design princi-
ples as summarized in Table 3.

Occurrence probability of conflicts. When the ten traces
are replayed with each cloud storage service, we find con-
siderable difference (ranging from O to 4.8%) in the ratio of
conflicting file versions (generated during a replay) over all
versions, as shown in Table 4. Most notably, Google Drive
appears to have never generated conflicts, because once it
detects conflicting versions of a file (at the cloud) it only
keeps the latest version based on their server-side timestamps.
In contrast, the most conflicting versions are generated with
iCloud Drive, because its sync delay (i.e., the delivery time of
a file update) is generally longer than that of the other cloud
storage services (as later indicated in Figure 3 and Table 5).
In comparison, for each trace Nutstore generates the fewest
conflicting versions (with Google Drive not considered), as
its automatic locking during collaboration can avoid a portion
(7.6%—19.1%) of conflicts.

Locks. We observe that the majority of the studied cloud
storage services (Dropbox, OneDrive, Google Drive, iCloud
Drive, and SugarSync) never use any form of locks for files
being edited. As a consequence, collaboration using these
products can easily lead to conflicts. Box, Seafile, and Nut-
store use coarse-grained file-level locks; unfortunately, we
find that their use of locks is either too early or too late?,
leading to undesired experiences. This is because cloud stor-
age services are unable to acquire users’ real-time editing
behaviors and thus cannot accurately determine when to re-
quest/release locks. Specifically, locking too early leads to
Pattern 4 in Table 1, locking too late (locking after editing)
leads to Pattern 1, and unlocking too early leads to Pattern 2.

Box only supports manual locks on shared files. When
Alice attempts to lock a shared file f and Bob has not opened
it, f is successfully locked by Alice and then Bob cannot edit
it (until it is manually unlocked by Alice). However, if Bob

’Ideally, a file should be locked right before the user starts editing, and
unlocked right after the user finishes the editing.

has already opened f when Alice attempts to lock it, he can
still edit it but cannot save it, because when Bob attempts
to save his edit the file editor (e.g., MS Word) will re-check
the permission of f. In essence, Box implements locks by
creating a process on Bob’s PC, which attempts to “lock” a
file by changing the file’s permission as read-only. In this
case, if Bob is using an exclusive editor (not allowing other
applications to write the file it opened), Alice’s edits cannot
be synced to Bob, thus leading to Pattern 3; otherwise, Bob’s
edits will be overwritten by Alice’s, leading to Pattern 1.

Seafile automatically locks a shared file f when f is opened
by an MS Office application, and f will not be unlocked
until it is closed. This locking mechanism is coarse-grained
and may lead to Pattern 4. For non-MS Office files, Seafile
supports manual locks in the same way as Box, and thus they
have the same issue in collaboration.

Nutstore attempts to lock a shared file f automatically,
when Alice saves her edit. At this time, if Bob has not opened
f, f is successfully locked by Alice and Bob cannot edit it;
after Alice’s saved edit is propagated to Bob, f is automati-
cally unlocked. However, if Bob opened the shared file before
Alice saves the file, Nutstore has the same problems as Box
and Seafile (Patterns 1 and 3 in Table 1).

Finally, we are concerned with the delivery time of a
lock status (i.e., whether a file is locked). According to our
measurements, the lock status is delivered in real time with
~100% success rates. As in Figure 2, the delivery time ranges
from 0.7 to 1.6 seconds, averaging at 1.0 second. This indi-
cates that today’s cloud storage services implement dedicated
infrastructure (e.g., queues) for managing locks.

In summary, implementing desirable locks in cloud storage
services is not only complex and difficult but also somewhat
expensive. Therefore, we feel it wiser to give up using locks.

Conflict resolution. We find three different strategies for
resolving the conflicts. First, Google Drive only keeps the
latest version (defined by the timestamp each version arrives
at the cloud). All the older versions are discarded and can
hardly be recovered by the users (Google Drive does not
reserve a version history for any file). Note that this notion
of “latest” may not reflect the absolute latest (which depends
on the client-side time), e.g., when the real latest version

16 18th USENIX Conference on File and Storage Technologies

USENIX Association

1 i 1 = =Ny —> A Minimum-Cost Path
08)/ 08 ¢ — Dropbox ©o_p r o P o r Y
! 1 = =OneDrive
L 0.6 I, X 0.6 1 Google Drive P
! HE iCloud Drive u
o4 ’ o4 - -Box
‘ Nutstore 1 s s r
! — =Seafile | ugarSync
0.2 K — Box o2y |, ﬁeffi'e o
A =—Nutstore
0=+ oL o |
0.8 1 12 14 16 0 10 20 30
Delivery Time (Second) Delivery Time (Second) e (8.6)

Figure 2: CDF of the delivery time of a lock
status. Note that among all the studied ser-
vices, only three of them use locks.

Trace[DB [OD [GD [ID [Box [SS [SF [NS
DB1 | 44%| 44%| O 45% | 43% | 43% | 4.3% | 3.6%
DB2 | 47%| 47%| O 48% | 4.6% | 4.7% | 4.6% | 3.8%
OD | 41%| 41%| O 42% | 4.0% | 4.0% | 4.1% | 3.5%
ID 4.1%| 40%| O 41% | 41% | 41% | 4.1% | 3.4%
Box | 43%| 43%| O 44% | 42% | 43% | 4.3% | 3.7%
SS 42% | 41% | O 42% | 42% | 41% | 42% | 3.71%
SF 45% | 45%| O 4.6% | 4.5% | 45% | 4.5% | 3.8%
SG 13%| 13%| O 13% | 13%| 13%| 13%| 1.2%
TG 3.5%| 3.5%| O 35% | 3.5%| 3.5%| 3.5%| 3.2%
LG | 40%| 40%| O 4.0% | 4.0% | 4.0% | 4.0% | 4.0%

Table 4: Ratio of conflicting file versions (over all versions) when the
ten traces are replayed with each of the studied cloud storage services.
DB=Dropbox, OD=O0neDrive, GD=Google Drive, ID=iCloud
Drive, SS=SugarSync, SF=Seafile, NS=Nutstore, SG=Spark-Git,
TG=TensorFlow-Git, and LG=Linux-Git.

arrives earlier due to network latency. Second, iCloud Drive
asks the user to choose one version from all the conflicting
versions. The user has to compare them by hand, and then
make a decision (which is often not ideal). Third, a more
common solution is to keep all the conflicting versions in the
shared folder, and disseminate them to all the collaborators.
This solution is more conservative (which does not cause
data loss), but leaves all burdens to users. Moreover, given
the distributed nature, merging efforts from the collaborators
could cause further conflicts if not coordinated well.

Given the difficulties in resolving conflicts, we advocate
that cloud storage services should make more effort to proac-
tively avoid, or at least significantly reduce, the conflicts.

Delivery latency and message queue. Delivery latency of a
file (update) prevalently exists in cloud storage at both infras-
tructure (e.g., S3 and Azure Blob) and service (e.g., Dropbox)
levels [34,35,43,64,67,74]. It stems from multiple factors
such as network jitter, system I/O, and load balancing in the
datacenter [43,50]. We measure the delivery time of a file up-
date regarding the eight cloud storage services. As in Figure 3
and Table 5, some services always have reasonable delivery
time. On the other hand, in a few services, the maximum

Figure 3: CDF of the delivery time of a file
update, where the file is several KBs in size.

Figure 4: A simple edit graph for reconciling
Vo (the horizontal word “properly”) and V;
(the vertical word “purple”).

Cloud Service Min Median Mean P99 Max
Dropbox 1.6 2.0 1412 312 17751
OneDrive 1.6 4.0 334 106 4415

Google Drive 10.9 11.7 11.7 12.9 18.1
iCloud Drive 8.1 11.8 11.9 11.9 16.9
Box 44 5.1 41.8 115 6975
SugarSync 2.0 6.8 51.3 124 7094
Seafile 2.7 4.0 53.8 99 9646
Nutstore 4.2 5.0 5.0 5.0 5.6

Table 5: Statistics (in unit of second) of the delivery time of a file
update, where the file is several KBs in size.

delivery time reaches several hours for a KB-level file, and
the 99-percentile (P99) delivery time can reach hundreds of
seconds. The unpredictability and long tail latency can some-
times break the time order among file updates, which is the
main root cause of Patterns 2 and 3.

Additionally, we find that the implementation of message
queues in some cloud storage services aggravates the delivery
latency. Specifically, different services have very different
message queue implementations, leading to different queue-
ing behaviors. For a FIFO queue (used by Seafile), when the
server is overloaded, many requests for file/fetch updates are
processed by the server but not accepted by the client due
to client-side timeout, thus wasting the server’s processing
resources. This problem can be mitigated by using LIFO
queues (used by Dropbox). However, for a LIFO queue, the
requests from “unlucky” users (who encounter the server’s
being overloaded after issuing fetch update requests) wait for
a long duration. We suspect that the services with excessively
long delivery time are using big shared queues with no QoS
consideration, and may benefit from using a dedicated queue
like QJUMP [41].

File update methods. Collaboration results in frequent,
short edits to files. Delta sync is known to be efficient in updat-
ing short edits, compared with full-file sync where the whole
file has to be transferred [49]. To understand the file update
method, we let Alice modify a Z-byte highly compressed file,

USENIX Association

18th USENIX Conference on File and Storage Technologies 17

where Z € {1,1K,10K, 100K, 1M}, and observed the traffic
usage in delivering the file update. By comparing the traffic
usages in uploading and downloading an update, we find that
OneDrive, Google Drive, and Box adopt full-file sync, and
the others adopt delta sync (rsync [72] or CDC [59]). Espe-
cially, we confirm Seafile’s adoption of CDC from its source
code [17]. In terms of Nutstore, it adopts a hybrid file update
method: full-file sync for small (<64 KB) files and delta sync
for the other files, so as to achieve the highest update speed,
because small and large files are more suitable for full-file and
delta sync, respectively (full-file sync requires fewer rounds
of client-server message exchanges).

2.3 Implications

Our study results show that today’s cloud storage services
either do not use any locks or use coarse-grained file-level
locks to prevent conflicts. The former would inevitably lead
to conflicts. The latter, however, is hard to prevent conflicts
in practice for two reasons: 1) it is hard to accurately pre-
dict user’s editing behaviors in real time and therefore to
determine the timing of applying the lock, and 2) the latency
between the client and the server can vary significantly, so
file-level conflicts are generally inevitable. Furthermore, the
study shows that full-file and delta sync methods can be com-
bined to accelerate the delivery of a file update. To address
the revealed issues, we explore the possibility of developing
lock-free conflict resolution by inferring fine-grained user in-
tentions. We also explore a hybrid design of full-file and delta
sync methods for efficient file update and synchronization.

3 Our Solution

This section aims to address the challenges uncovered in §2.
Our key idea is to model file editing events as insert or
delete operations (§3.2). Based on the operation model, we
infer the collaborators’ operation sequences (§3.3), and then
transform these sequences (§3.4) based on their conflicts to
generate the final version. We explain the above procedure
with a simple case of two file versions, and demonstrate its
applicability to the complex case of multiple versions (§3.5).
We also design optimizations to the maintenance of shared
files’ historic versions (§3.6),

3.1 True and False Conflicts

We examine the conflicting file versions as listed in Table 4
in great detail. We find that ~1/3 of them come from non-text
(e.g., PDF or EXE) files, which, as mentioned in §1, are typ-
ically generated based on text files and thus can be simply
deleted or regenerated from text files for pretty easy conflict
resolution. The remainder relate to text files, the vast majority
of which, to our surprise, only contain “false positive” con-

flicts as the collaborators in fact operated on different parts of
a shared file.

Take the Dropbox-1 collaboration trace as an example.
When it is replayed with Dropbox or OneDrive, among the
3,527 file versions hosted at the cloud side, 154 text files
are considered (by Dropbox and OneDrive) to be conflicting
versions and then distributed to all the collaborators. Actually,
152 out of the 154 apparently conflicting versions can be
correctly merged at the cloud side. The remaining two cannot
be correctly merged as two collaborators happen to edit the
same part of the shared file in parallel, thus generating 9 frue
conflicts. In other words, the vast majority of the (coarse-
grained) file-level conflicts are false (positive) conflicts when
seen at the (fine-grained) operation level.

3.2 Explicit and Implicit Operations

We model operation as the basic unit in collaborative file
editing. A shared file can be regarded as a sequence of char-
acters, and an explicit operation is a user action that has truly
occurred to the shared file, modifying some of its characters.
In detail, an explicit operation O consists of seven properties:

e There are two possible operation types: insert and
delete; O.type represents the operation type of O.

e The rargeted string is the string that will be inserted or
deleted by O, which is denoted by O.str.

e The length of O is the (character) length of O.str, which is
denoted by O.len.

e The position of O is where O.str will be inserted to or
deleted from in the shared file, which is denoted by O.pos.

e O must be performed on a context (file version), which is
called the base context of O, or denoted as O.bc.

e O is performed on O.bc to generate a new context, which
is called the result context of O, or denoted as O.rc.

o The range of characters impacted by O in O.bc is the impact
region of O, denoted as O.ir. It is calculated as:
[0.pos,0.pos+1) if O.type = insert;

O.ir =
[0.pos,0.pos+ O.len) if O.type = delete.

This formula tells that when a string is inserted to O.bc, the
insert operation only affects the position (in O.bc) where the
string is inserted; but when a string is deleted from O.bc,
the positions where all the characters of the string formerly
appear at O.bc are affected.

Automatically acquiring a user’s explicit operations is triv-
ial and lightweight when the editor can be monitored, e.g., in
Google Docs [7] and Overleaf [15]. In these systems, users
are required to use a designated online file editor, by moni-
toring which all the collaborators’ explicit operations can be
directly captured in real time.

In contrast, our studied cloud storage services are supposed
to work independently with any editors and support any types
of text files, thus bringing great convenience to their users

18 18th USENIX Conference on File and Storage Technologies

USENIX Association

(especially non-technical users). Therefore, we do not attempt
to monitor any editors or impose any restrictions on the file
types, and thus cloud storage services cannot capture users’
explicit operations. Instead, we choose to analyze users’ im-
plicit operations based on the numerous file versions hosted
at the cloud side. For a shared file f, implicit operations repre-
sent the cloud-perceived content changes to f (i.e., the even-
tual result of a user’s editing actions), rather than the user’s
editing actions that have actually happened to f. Obviously,
implicit operations, as well as their various properties, have to
be indirectly inferred from the different versions of f. Since
we focus on implicit operations in this work, we simply use
“operations” to denote “implicit operations” hereafter.

3.3 Operation Inference (OI)

When no conflict happens, inferring the operations from two
consecutive versions of a file is intuitive, so in this part we
only consider the OI when two conflicting versions emerge at
the cloud. Note that when there are more than two conflicting
versions, our described algorithms below still apply.

When two conflicting versions of a file, V| and V; (of n;
and ny bytes in length) are uploaded to the cloud by two
collaborators, the cloud first pinpoints their latest common-
context version Vj (of ng bytes in length) hosted in the cloud.
Generally, the cloud knows which version is consistent with
a collaborator’s local copy during her last connection to the
cloud. When the collaborator uploads a new version, this
“consistent” version is regarded as the base context (version)
of the new version, so that all versions of a shared file consti-
tute a version tree, in which the parent of a version is its base
context. Therefore, to pinpoint Vj is to find the latest common
ancestor of V| and V; in the version tree.

After pinpointing Vp, the cloud starts to infer the operation
sequences (S; and S3) that change Vj to V| and V», respec-
tively. To infer S, the common approach is to first find the
longest common subsequence (LCS) between V) and V; us-
ing dynamic programming [33,44,57]. Then, by comparing
the characters in Vj and the LCS one by one, a sequence of
delete operations can be acquired, which changes Vj to the
LCS; in a similar manner, a sequence of insert operations
that changes the LCS to V| can be acquired. After that, the ac-
quired delete and insert operations are combined to consti-
tute Sy (S, is constituted in a similar manner). Unfortunately,
this common approach requires O(ng *n;) computation com-
plexity, which may require considerable time for a large file,
e.g., ~30 seconds for a 500-KB file.

To address this problem, we leverage an edit graph [4,55]
to organize Vj and V;. Figure 4 exemplifies how to calculate
the LCS between two words “properly” (Vy, on the horizontal
axis) and “purple” (Vi, on the vertical axis) using an edit
graph, where a diagonal edge has weight 0 and a horizontal
or vertical edge has weight 1. Accordingly, finding the LCS
between Vp and V) is converted to finding a minimum-cost

path that goes from the start point (i.e., (0,0) in Figure 4) to
the end point (i.e., (8,6) in Figure 4). With an edit graph, the
problem can be solved with O((ng + n;) * d) complexity [55],
where d = ny+n — 21 is the number of horizontal and vertical
edges (i.e., the length of difference between Vp and V;) and /
is the number of diagonal edges (i.e., the length of the LCS).
Note that d is usually much smaller than g and n; in practice:
in our collected traces, the median and mean values of noin]

are merely 0.12% and 2.19%. Thus, the cloud can infer S;
and S, efficiently using the edit graph, e.g., for a 500-KB file
the inference time is typically optimized from ~30 seconds
to ~200 ms, resulting in a 150 reduction.

3.4 Operational Transformation (OT)

After the operation sequences S; and S, are inferred, which
contain s; and s, operations respectively (all operations in
a sequence are sorted by their position and have the same
base context Vjy), the cloud first detects whether there exist
true conflicts, and then constructs a conflict graph [53] (as
shown in Figure 5) if there are any. A conflict graph is a
directed acyclic graph that has s; + s vertices representing
the aforementioned s1 + s, operations. After that, operation
transformation (OT) [39] is adopted to transform and merge
S1 and S5 into a result sequence S, which can be executed on
Vo to generate the merged file version Vi .

Detecting true conflicts. In order to detect true conflicts
between S and S5, the cloud first merges S; and S, into
a temporary sequence Sy, sorted by the operations’ posi-
tion, and initializes the conflict graph G with s; + s, vertices
and 0 edges. Then, for each operation in Sy, the cloud
checks whether the operations behind it conflict with it — this
is achieved by checking whether the impact regions of two
operations overlap each other. If two operations Sy, [i] and
StempJj] are real conflicting operations, an edge ¢; ; connect-
ing v; to v; (denoted by solid arrows in Figures 5a and 5b)
is added to G to represent a true conflict. If there are no true
conflicts between any two operations, G is useless and sim-
ply discarded. The detection, in the worst case (where each
operation in S7 conflicts with each operation in S,), bears
O((s1+ 52)?) complexity. However, in common cases there
exist only a few conflicts, and thus the detection can be quickly
carried out with O(s| + s2) complexity.

Basics of OT. As the de facto technique for conflict res-
olution in distributed collaboration, OT [39] has been well
studied [40,61] and used (e.g., Google Docs [7], Overleaf [15],
Wave [24], and Etherpad [6]). It resolves conflicts by trans-
forming parallel operations on a shared file to equivalent
sequential operations (if possible). A very simple example of
OT is shown in Figure 6. More details and examples of OT
can be found at https://UFC2.github.io

OT when there are no true conflicts. According to our
detection results on the ten collaboration traces (cf. Table 2),

USENIX Association

18th USENIX Conference on File and Storage Technologies 19

https://UFC2.github.io

. Inferred operations in S;

O Inferred operations in S,
Operation position

© @100 -0 -0

Figure 5: Reordering conflicting operations with a conflict graph.
(a) In the two operation sequences S; and S, a dashed line denotes a
sequence, while a solid arrow represents a true conflict. (b) S} and S
are reorganized into a conflict graph, where conflicting operations are
linked with directed edges. (c) In the result sequence S,, operations
are sorted by their topological order in the conflict graph.

Vo
Vo [oF
m L V4
Vi A 0,

V‘\,Z
Figure 6: An example of OT that merges V| and V,, in which O, is
transformed to 0’2 to resolve the conflict between O and O;.

when a file-level conflict occurs there are no true conflicts
with a very high (>95%) probability, which is consistent
with the results of our manual examination in §3.1. When
there are no true conflicts detected, the cloud directly applies
OT on §; and S to generate S, and V) ». Traditionally, the
computation complexity of OT is deemed as O((s| +s2)?). In
our case, since there are no true conflicts and Sy, are already
sorted by the operations’ position, we choose to transform the
operations in Sy, in their descending order of position, thus
achieving a much lower complexity of O(s| +s7). After the
transformation, we get S, and execute S, on V to generate
the merged version.

OT in the presence of true conflicts. If there are true con-
flicts detected, it is impossible to directly and correctly resolve
the conflicts as in the above case. Consequently, we choose to
prioritize the mitigation of user intervention while preserving
potentially useful information, so as to facilitate users’ man-
ual conflict resolution. Specifically, two principles should be
followed: 1) the cloud should send only one merged version
V12 to the collaborators for easy manual conflict resolution;
and 2) users’ editing intentions should be retained as much
as possible, while the number of conflicts that have to be
manually resolved in V; > had better be minimized.

To realize the two principles, our first step is to utilize
topological sorting [46] to reorganize and help transform S

and S, (via their conflict graph G) following two rules. First,
real conflicting operations should be transformed and put
into S, in the ascending order of their position, so that their
conflicts can be resolved at one time and thus do not negatively
impact the transformation of other operations. Second, non-
conflicting operations should be put into S, in the descending
order of their position, so that they can be quickly transformed
like in the case of no true conflicts.

After S1 and S, are topologically sorted and put into S,
(see Figure 5c), we apply our customized OT scheme to em-
body the aforementioned two principles for resolving true
conflicts. First of all, we classify true conflicts into differ-
ent categories that are suited to different processing strate-
gies. Given two conflicting operations O; and O, working
on the same base context (Vj), there seem to be four differ-
ent categories of conflicts in the form of “Oy.type/O;.type”:
1) delete/delete, 2) delete/insert, 3) insert/delete,
and 4) insert/insert. Here “/” means O1.pos < O;.pos.
However, by carefully examining the impact regions of O
and O, (Oy.ir and O;.ir) in each category, we find that
insert/delete conflicts are never true conflicts, because
an insert operation only affects the targeted string at the po-
sition it appears, and never affects a to-be-deleted string that
starts behind this position. Thus, we only need to deal with
the other three categories as follows.

e For a delete/delete conflict, all the characters deleted
by the users (say, Alice and Bob) are O;.str U O,.str. To
retain both users’ editing intentions as much as possible,
we choose to delete only the characters both users want
to delete (i.e., O;.str M O;.str), while preserving the other
characters with related information. For example, let Vy =
“We need foods, water, clothes, and books.”; O made by
Alice is to delete “foods, water, ” at position 8, whereas
0, made by Bob is to delete “water, clothes, ” at posi-
tion 15. In this case, O; is transformed to insert “[Al-
ice delete:foods,]” at position 8, and O; is transformed
to insert “[Bob delete:clothes,]” at position 30 (= 8+
the length of “[Alice delete:foods, |”). After the two trans-
formed operations are executed on Vj, the merged version
Vi, is “We need [Alice delete:foods,][Bob delete:clothes,
Jand books.” This is not a perfect result, but is pretty easy
to be manually resolved by Alice and Bob.

e For adelete/insert conflict, we notice that the charac-
ters deleted by Alice might be the literal context of the
characters inserted by Bob. Thus, the deleted characters
should be preserved to facilitate (mostly Bob’s) manual
conflict resolution. For example, let Vj = “There is a cat
in the courtyard.”; O is to delete ““ in the courtyard” at
position 14, changing Vj to V| (“There is a cat.”), whereas
0, is to insert “spacious ” at position 22, changing Vj to
V, (“There is a cat in the spacious courtyard.”). Without
appropriate transformation, the merged version is “There
is a catspacious .”, which is obviously confusing. In this

20 18th USENIX Conference on File and Storage Technologies

USENIX Association

Trace # File Versions # Conflicting Versions # MV Conflicts # Conflicts # True Conflicts Reduction of Conflicts
Dropbox-1 3527 154 8 501 9 98.2%
Dropbox-2 2193 104 12 257 5 98.1%

OneDrive 2673 109 10 284 7 97.5%
iCloud Drive 3211 133 9 402 8 98.0%
Box 2930 125 5 374 8 97.9%
SugarSync 3472 147 13 523 11 97.9%
Seafile 2823 126 11 411 9 97.8%
Spark-Github 129957 1728 133 6724 167 97.5%
TensorFlow-Github 246016 8621 845 66231 1097 98.3%
Linux-Github 901167 36048 3210 216584 2882 98.7%

Table 6: Measurement statistics when the ten collaboration traces are replayed with UFC2. “MV Conflicts” denote the conflicts of multiple
versions, i.e., > 3 conflicting versions are generated from the same base version.

case, O is split into two operations: one is to insert
“[Alice delete: in the] at position 14, and the other is to
insert “[Alice delete: courtyard]” at position 37 (= 14+
the length of “[Alice delete: in the]”); and O, is trans-
formed to insert “[Bob insert: spacious]” at position 37.
Afterwards, V1 > is “There is a cat[Alice delete: in the [[Bob
insert: spacious][Alice delete: courtyard].”, which is also
imperfect but easy to be manually resolved.

e For an insert/insert conflict, except when O;.str =
0,.str (which rarely happens), we choose to preserve both
O .str and O,.str by inserting O.str after Oy .str, mean-
while adding the related information. For example, let Vy =
“We need foods and books.” O; is to insert “, water,” at
position 13, whereas O, is to insert “, clothes,” at the
same position. In this case, V; is “We need foods, [Alice
insert:water|[Bob insert:clothes], and books.”

3.5 Merging Conflicts of Multiple Versions

Our above-designed scheme, despite being described with
a simple case of two versions, is also applicable to solving
conflicts between multiple versions. Multi-version conflicts
do not often happen in practice, e.g., we can calculate from
Table 6 that they only account for 9% of the total conflicts.

In this complex case, suppose multiple collaborators (say
n > 3) simultaneously edit the same base version V) and then
generate n conflicting versions Vi, V,, V3, ..., V,,. To resolve
such conflicts, we first figure out the operation sequences (i.e.,
S1, 82, 83, ..., Sp) for each version using edit graphs, which
represent the changes in each version relative to their common
base version Vj. Afterwards, with our devised operation trans-
formation method, all the operation sequences are merged
one by one, so as to generate the result operation sequence
Sri25. .- Specifically, Sy and S5 are first merged to generate
S,ljzy, and then S3 are merged with S, , to generate S, , ;. This
procedure is repeated until all the operation sequences are
merged, resulting in Sy, ,, . Finally, similar to the simple
case of two versions , Sy, ,, , is executed on V) to generate
the final version V123 .. ,.

Delete
o
(a) Chunks in Vo and T T T
two operations I ® @ ® 1 @! |
T t
(b) Mark the affected I I [|
chunks in V12 @ 0] '® ®
: A : AN : J
Mark Mark Mark
(c) Recalculate boundariesl I [[[|
for the marked chunks (©) {@ © @ ®

New boundary
Figure 7: Boundary recalculation in OCDC. Chunk (2) is split into
® and (© as its size exceeds the size limitation of a single chunk
after the characters are added. Chunks 3) and @) are re-partitioned
as (@ and (© as the total sizes of their remaining parts exceed the
size limitation of a single chunk (otherwise, they will be combined).

New boundary

3.6 Maintenance of Historic Versions

The merged version V) > of a shared file, as well as the pre-
vious versions, should be kept in the cloud so that 1) users
can retrieve any previous versions as they wish, and 2) the
cloud can pinpoint V{y from historic versions in future conflict
resolutions. To save the storage space for hosting historic ver-
sions, we break each version into variable-sized data chunks
using CDC [59] for effective chunk-level deduplication.

For a user-uploaded file version, guided by the findings in
§2.2, we adopt full-file sync for small (<64 KB) files and
CDC delta sync for larger files to achieve the (expected) short-
est upload time. Here we adopt CDC delta sync rather than
the more fine-grained rsync to make our delta sync strategy
compatible with the aforementioned CDC-based version data
organization. In other words, we allow a little extra network
traffic to save expensive computation cost.

For a server-merged version Vi 2, we exploit the implicit op-
erations inferred during the aforementioned conflict resolution
to accelerate CDC, which is referred to as operation-based
CDC (OCDC). Specifically, for each operation in the result
sequence S,, we examine whether its impact region overlaps
the boundaries of any chunks of V (see Figure 7 (a)); if yes,
we mark the boundary (or boundaries) as “changed” (see Fig-
ure 7 (b)). After examining all operations in S,, we use the
unchanged boundaries to split V; » into multiple parts, and
recalculate the block boundaries of those parts that contain

USENIX Association

18th USENIX Conference on File and Storage Technologies 21

100
0
E 80! R=09236
[0}
£
'_
[0}
o
C
o
3
=
0 50 100
File Size (KB)

Figure 8: Time overhead incurred by our de-
vised operation inference. Here R is the corre-
lation coefficient between the measurements
and linear fitting.

= = Linear Fitting - True Conflicts (x)
—Linear Fitting - False Conflicts (+)

o
©

o
)

H1 =0.9446
Ff2= 0.9521

I
»

o
n

Transformation Time (ms)

o
o

50 100
Number of Operations

Figure 9: Time overhead incurred by our de-
vised operation transformation. Here R| and
R, are the correlation coefficients with and
without true conflicts.

- I -File Update
—JConflict Resolution

: }_l,[,—l-af{‘i‘}’}'[

0 50 100
File Size (KB)

Figure 10: Total time overhead of a con-
flict resolution vs. the delivery time of a file
update (using the hybrid full-file/delta sync
method).

“changed” boundaries (see Figure 7 (c)). OCDC is especially
effective when there is only small difference between V/V,
and Vy (which is the usual case in practice).

4 Implementation and Evaluation

To implement our design, we build a prototype system UFC2
(User-Friendly Collaborative Cloud) on top of Amazon Web
Services (AWS) with 5,000 lines of Python code, and evaluate
UFC2 using real-world workloads in multiple aspects.

4.1 Implementation

At the infrastructure level of UFC2, we host the (hierarchical)
metadata of historic versions in Amazon EFS for efficient file
system access, and the (flat) data chunks in Amazon S3 for
economic content storage — note that the unit storage price
of EFS (~$0.3/GB/month) is around 10x higher than that of
S3 [38]. Besides, the web service of UFC2 runs on a standard
VM (with a dual-core CPU @2.5 GHz, 8-GB memory, and 32-
GB SSD storage) rented from Amazon EC2. Moreover, the
employed EFS storage, S3 storage, and EC2 VM are located
at the same data center in Northern Virginia, so there is no
bottleneck among them. At the client side, we deploy puppet
collaborators on geo-distributed VMs rented from Amazon
EC2 to replay our collected ten real-world collaboration traces
(cf. Table 2). Details of these VMs and the replay processes
are the same as those described in §2.1.

4.2 Experiment Results

Ratio of conflicts resolved. Our first metric to evaluate the
collaboration support of cloud storage services is the num-
ber of conflicts. We replay the ten traces with UFC2, and
observe that the file versions generated by UFC2 (at the cloud
side) are slightly different from those generated by Drop-
box/OneDrive/iCloud Drive/Box/SugarSync/Seafile (cf. §2.2)
due to the variation (esp., in latency) of network environments;
also, the resulting conflicts are slightly different. Notably, all
the false conflicts are automatically resolved by UFC2. The

remaining conflicts are all true conflicts that should be manu-
ally resolved by the collaborators, assisted with the helpful
information automatically added by UFC2. As listed in Ta-
ble 6, the ratio of conflicts is reduced by 97.5%-98.7% for
different traces, i.e., an average reduction by 98%.

Time overhead of conflict resolution. Conflict resolution
in UFC2 consists of two steps: operation inference (OI, §3.3)
and operation transformation (OT, §3.4). Thus, we first exam-
ine the time overhead incurred by the two steps separately, and
then analyze the total time of conflict resolution (compared
to the delivery time of a file update).

First, we record the time of OI in every conflict resolu-
tion when replaying the ten traces with UFC2. The results
are plotted as a scatter diagram shown in Figure 8, together
with a linear fitting. The correlation coefficient (R) between
the measurements and the linear fitting results is as large as
0.9236, indicating that the time of Ol is generally proportional
to the file size. This is because by leveraging an edit graph,
we reduce the computation complexity of OI from O(ng *ny)
to O((ng +ny) xd) (refer to §3.3 for the details).

Second, we record the time of OT in every conflict resolu-
tion, and find it is very small (<1 ms) compared to the time
of OI. As shown in Figure 9, the time of OT is highly pro-
portional to the number of operations; in addition, the perfor-
mance is quite similar with or without true conflicts. Accord-
ing to §3.4, the complexity of our devised OT is O(s; +s52),
which explains the experiment results.

Further, we calculate the total time of a conflict resolution,
and record the delivery time of the corresponding file update
(using the hybrid full-file/delta sync method). As shown in
Figure 10, the total time of a conflict resolution is 10-80
ms, while the delivery time of a file update is 1.5-3 seconds.
The former is merely 0.6%—4% (on average 2%) of the latter,
showing that our conflict resolution brings negligible perfor-
mance overhead to the collaboration in cloud storage.

Time overhead of OCDC vs. traditional CDC. We record
the time spent in breaking a merged file version into data

22 18th USENIX Conference on File and Storage Technologies

USENIX Association

‘» 400 x

é = = Linear Fitting - Tranditional CDC (x)

[0} — Linear Fitting - OCDC (+)

€ 300 7

= H1 =0.9861 f‘i,}g&

o000} R,=0.9690 '

= P

g 4 M

& 100 e

o] K X

© +

o o

0 50 100

File Size (KB)

Figure 11: Data chunking time for a com-
mon file, using OCDC vs. traditional CDC.

250
-F-Google Drive i
o 200 Nutstore -
X iCloud Drive /,//
2150 -F Dropbox =t
® —+urc2 1 -1
=100 1 { =]
2
c
& 50
0
0 50 100

File Size (KB)

Figure 14: Sync traffic of UFC2 and repre-
sentative cloud storage services for a file up-
date when there exist file-level conflicts.

120

N -F-Google Drive
@ 100 1| f-uFc2 A
X 80 Nutstore el
2 iCloud Drive z/’z
T 60 -F Dropbox g
'— B P
o 40 / \
c I

20 v}z--——:—;——:—‘-y__—_ﬂ--!-g

o3 ——
0 50 100

File Size (KB)

Figure 12: Sync traffic of UFC2 and repre-
sentative cloud storage services for a file up-
date when there are no file-level conflicts.

= -}-Google Drive
-g 30 iCloud Drive
o -TF Dropbox
% Nutstore I
=20 —I—UFcz -] g
e | Lt
= it S 3 -=-
o 10 ;._:-f—l--I w1
c
S
N -——I——‘—"—'—_I\!—i—l—l
0
0 50 100
File Size (KB)

Figure 15: Sync time of UFC2 and represen-
tative cloud storage services for a file update
when there exist file-level conflicts.

12
=5 -F-Google Drive
c 10 iCloud Drive
o
o - Dropbox
3 8 Nutstore 1 §_.
o 6 —J-urc2 S L o8
=
= 4
g
> 27§
n

0

0 50 100
File Size (KB)

Figure 13: Sync time of UFC2 and represen-
tative cloud storage services for a file update
when there are no file-level conflicts.

15 Il No Deduplication
© [JuFc2
g
o
21
el
Q
N
©
Eos
o
2
0
ZANE AN @OF 00 € (W0 (0 P
o Coi o OVE R \\
0(090‘09°0“§oﬁd0 6 o st oo

5@‘ @O
<

Figure 16: Normalized storage overhead of
historic file versions for the ten real-world
collaboration traces.

chunks with OCDC when replaying the ten traces with UFC2.
For comparison, we also break the same merged file version
into data chunks with traditional CDC.

As shown in Figure 11, for both OCDC and traditional
CDC, the data chunking time is highly proportional to the
file size. This is quite intuitive because a larger file is usually
broken into more chunks. Additionally, we notice that OCDC
outperforms traditional CDC by ~3 times, reducing the data
chunking time from 30-400 ms to 10-120 ms.

Network overhead. We compare the sync traffic of UFC2
with those of Dropbox, Google Drive, iCloud Drive, and Nut-
store, for a file update. We only select the four cloud storage
services since Dropbox, Google Drive, and iCloud Drive each
represent a typical strategy for conflict resolution adopted by
existing cloud storage services (i.e., keep all conflicting ver-
sions, only keep the latest version, and force users to choose
one version, cf. §2.2) while Nutstore is the only service that
combines full-file sync and delta sync to enhance the file
update speed.

As shown in Figure 12, when there are no file-level con-
flicts, the sync traffic of Google Drive is close to the file size,
as Google Drive adopts full-file sync. In contrast, Dropbox
and iCloud Drive always consume nearly 10 KB and 30 KB
of sync traffic respectively due to their adoption of delta sync;

we infer that the sync granularity of Dropbox is finer than
that of iCloud Drive. In contrast, Nutstore and UFC2 resem-
ble Google Drive for small (<64 KB) files and Dropbox for
larger files, as they both adopt full-file sync for small files and
delta sync for larger files to achieve the shortest sync time
(see Figure 13). This hybrid sync method results in substantial
savings of sync traffic for Nutstore and UFC2 after the turning
point (64 KB) in Figures 12 and 14.

As shown in Figure 14, when there exist file-level conflicts,
the sync traffic of Google Drive is nearly twice of the file size.
This is because (the client of) Google Drive first uploads the
local version, and then downloads the cloud-hosted newer ver-
sion to overwrite the local version. In contrast, the sync traffic
consumed by Dropbox or iCloud Drive is close to the file
size; this is because the client of Dropbox (or iCloud Drive)
renames one of the conflicting versions, and the renamed one
is uploaded as a newly-created file using full-file sync (which
usually consumes more traffic than necessary since delta sync
can still be applied).

The case of Nutstore in Figure 14 is a bit complex: for small
files, its sync traffic is nearly twice of the file size (similar
to Google Drive); for larger files, the traffic is slightly larger
than the file size (similar to Dropbox/iCloud Drive). This
is because Nutstore renames one of the conflicting versions

USENIX Association

18th USENIX Conference on File and Storage Technologies 23

when a file-level conflict occurs — if the file is small (<64
KB), the two files are both uploaded to the cloud using full-file
sync; otherwise, the renamed file is uploaded using full-file
sync (which usually consumes unnecessary traffic) whereas
the original file is uploaded using delta sync.

Finally, we examine the case of UFC2 in Figure 14. Its
client first uploads a conflicting version and then downloads
the merged version from the cloud. For a small file, the two
versions are both delivered using full-file sync, so the sync
traffic is nearly twice of the file size; for a larger file, the two
versions are both delivered using delta sync (which is more
traffic-saving than what Nutstore does for a larger file), so the
sync traffic is always as small as ~20 KB. This is why UFC2
achieves the shortest sync time, as shown in Figure 15.

Storage Overhead. For the maintenance of a file’s historic
versions, the straightforward approach is to store all versions
separately without data deduplication; its storage overhead
is taken as the baseline and normalized as 1.0, as shown in
Figure 16. Utilizing CDC-based deduplication, the storage
overhead of UFC2 is normalized between 0.43 and 0.59 (0.49
on average) with respect to the ten traces. In comparison, the
storage overhead of Google Drive is normalized as small as
0.05-0.1, because Google Drive only stores the latest version
and discards all previous versions. We do not quantify the stor-
age overhead of the other mainstream cloud storage services
since we do not know their cloud-side storage organization.

5 Related Work

Various schemes have been proposed to address the collabo-
ration conflicts in distributed file systems (DFS) and version
control systems (VCSes). In this section, we survey the typical
schemes and compare them to our design choices.

Conflict resolution in DFSes. LOCUS [73], Coda [47] and
InterMezzo [32] mark files with unresolved conflicts as incon-
sistent, so that these files are inaccessible until users manually
rename and merge them. These schemes prevent users from
accessing the conflicting files before conflicts are resolved,
and the idea of restrictive access is inherited by some recent
cloud-backed file systems such as SCFS [30].

In contrast, Ficus [60] and Rumor [42] attempt to design
specific conflict resolvers (using semantic knowledge of cer-
tain file types or user-made rules), so as to automatically
merge conflicts of specific kinds. Bayou [69] preserves all
conflicting files and allows users to access them. Similar
approaches are adopted by recent large-scale systems like
Dynamo [36], TierStore [37], Depot [52], and COPS [51],
where all conflicting file versions are preserved, and users are
forced to manually resolve all file-level conflicts. In fact, the
above described strategies are also adopted (in part) by our
studied popular cloud storage services.

Our work essentially differs from the aforementioned
schemes by providing not only effective but also transpar-
ent and user-friendly collaboration support for replicated files

in distributed environments. The desired features are enabled
by our novel perspective and intelligent technical approaches
in addressing the concurrent conflicts.

Conflict resolution in VCSes. Popular VCSes, such as
SVN, CVS, Git, RCS [71], and SunPro [26], generally oper-
ates at a (text) line level. To resolve the conflicts between two
versions of a shared file, they use delta algorithms like bdiff
[70] and UNIX diff [45] to find the modified lines, which
are then simply combined to form a merged version. However,
if two users’ modifications are made on the same line, they
have to manually pick which line to retain. Recently, a more
advanced approach called structured merge [27,28,48,75] has
emerged in the software engineering community, which takes
the syntactic structure of a program into account and thus
can resolve very detailed conflicts happening to non-essential
elements (e.g., comments, tabs, and blanks) of a program. Dif-
ferent from VCSes’ line-level or syntactic approaches that is
mostly designed for developers, our work studies conflict res-
olution for general-purpose cloud storage services designed
for regular end users.

6 Conclusion

Despite a rich body of techniques for resolving conflicts in
collaborative systems [29,40, 56,65, 66], today’s mainstream
cloud storage services still use the simplest form, i.e., coarse-
grained file-level conflict detection and resolution. Given that
collaboration has become a major use case of cloud storage
services, existing mechanisms, as revealed in this paper, are
deficient, inconvenient, and sometimes frustrating.

To address the issue, we make a series of efforts towards
understanding and improving collaboration in cloud storage
services from a novel perspective of operations without using
any locks. We find that the vast majority of conflicts reported
by today’s cloud storage services are false conflicts, and de-
sign intelligent approaches to efficient operation inference,
user-friendly operation transformation, and judicious mainte-
nance of historic versions. We implement all the approaches
in an open-source prototype system that can significantly
reduce collaboration conflicts and meanwhile preserve the
transparency and user-friendliness of cloud storage services.

Acknowledgements

We thank our shepherd, Geoff Kuenning, and the anonymous
reviewers for their valuable feedback and suggestions. Also,
we thank Liangyi Gong for his help in typesetting, and Feng-
min Zhu for his generous discussion. This work is supported
in part by the National Key R&D Program of China under
grant 2018YFB 1004700, the National Natural Science Foun-
dation of China (NSFC) under grants 61822205, 61632020
and 61632013, and the Beijing National Research Center for
Information Science and Technology (BNRuist).

24 18th USENIX Conference on File and Storage Technologies

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Average U.S. Internet Speeds More Than Double
Global Average. https://www.ncta.com/whats-n
ew/average-us—-internet-speeds-more-double-
global-average.

Box — Secure File Sharing, Storage, and Collaboration.
https://www.box.com/.

Charles Web Debugging Proxy. https://www.charle
Sproxy.com/.

Diff Match Patch is a High-performance Library in Mul-
tiple Languages that Manipulates Plain Text. https:
//github.com/google/diff-match-patch.

Dropbox Tech Blog. https://blogs.dropbox.com/
tech/.

Etherpad: Really Real-time Collaborative Document
Editing. https://github.com/ether/etherpad-1i
te.

Google Docs: Free Online Documents for Personal Use.
https://www.google.com/docs/about/.

Google Drive privacy warning — could yours have leaked
data? https://www.welivesecurity.com/2014/07
/11/google-drive-privacy-warning/.

Meet Bandaid, the Dropbox Service Proxy.
https://blogs.dropbox.com/tech/2018/03/m
eet-bandaid-the-dropbox-service-proxy/.

Never-Googlers: Web Users Take the Ulti-
mate Step to Guard Their Datae. https:
//www.washingtonpost.com/technology/2019

/07/23/never-googlers-web-users-take-ultim

ate-step-guard-their-data/.

Nutstore — Share Your Files Anytime, Anywhere, with
Any Device. https://www.jianguoyun.com/.

Nutstore Help Center. http://help. jianguoyun.co
m/.

Online Discussion — Those who refuse to
use Google for privacy reasons. https:

//www.reddit.com/r/apple/comments/9%9ed071/t
hose_who_refuse_to_use_google_for_privacy/.

Optimizing Web Servers for High Throughput and Low
Latency. https://blogs.dropbox.com/tech/2017/
09/optimizing-web-servers-for-high-through
put-and-low-latency/.

Overleaf, Online LaTeX Editor. https://www.overle
af.com/.

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Seafile - Open Source File Sync and Share Software.
https://www.seafile.com/en/home/.

Seafile Source Code. https://github.com/haiwen/
seafile.

Simultaneous Collaborative Editing of a LaTeX File
(Online Forum Discussion). https://tex.stackexc
hange.com/questions/27549/simultaneous—-col
laborative-editing-of-a-latex-file.

Speedtest Global Index — Global Speeds August 2019.
https://www.speedtest.net/global-index.

SugarSync — Cloud File Sharing, File Sync & Online
Backup From Any Device. https://www2.sugarsy
nc.com/.

SugarSync Help Center. https://support.sugars
ync.com/hc/en-us/.

The SugarSync Blog. https://www.sugarsync.com/
blog/.

Tool for the (collaborative) job. https:
//blogs.ams.org/phdplus/2016/09/11/tool-
for-the-collaborative-job/.

Wave | Real-time Collaboration and Coediting Service.
https://www.codox.io/.

Wireshark Network Protocol Analyzer. http://www.
wireshark.org/.

E. Adams, W. Gramlich, S. S. Muchnick, and S. Tirfing.
SunPro: Engineering a Pratical Program Development
Environment. In Proceedings of International Workshop
on Advanced Programming Environments, pages 86-96.
Springer-Verlag, 1986.

S. Apel, O. LeBenich, and C. Lengauer. Structured
Merge with Auto-tuning: Balancing Precision and Per-
formance. In Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineer-
ing (ASE), pages 120-129. ACM, 2012.

T. Apiwattanapong, A. Orso, and M. J. Harrold. JDiff:
A Differencing Technique and Tool for Object-oriented
Programs. Automated Software Engineering, 14(1):3—
36, 2007.

H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison,
H. Yang, and M. Zawirski. Specification and Com-
plexity of Collaborative Text Editing. In Proceedings
of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 259-268. ACM, 2016.

USENIX Association

18th USENIX Conference on File and Storage Technologies 25

https://www.ncta.com/whats-new/average-us-internet-speeds-more-double-global-average
https://www.ncta.com/whats-new/average-us-internet-speeds-more-double-global-average
https://www.ncta.com/whats-new/average-us-internet-speeds-more-double-global-average
https://www.box.com/
https://www.charlesproxy.com/
https://www.charlesproxy.com/
https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch
https://blogs.dropbox.com/tech/
https://blogs.dropbox.com/tech/
https://github.com/ether/etherpad-lite
https://github.com/ether/etherpad-lite
https://www.google.com/docs/about/
https://www.welivesecurity.com/2014/07/11/google-drive-privacy-warning/
https://www.welivesecurity.com/2014/07/11/google-drive-privacy-warning/
https://blogs.dropbox.com/tech/2018/03/meet-bandaid-the-dropbox-service-proxy/
https://blogs.dropbox.com/tech/2018/03/meet-bandaid-the-dropbox-service-proxy/
https://www.washingtonpost.com/technology/2019/07/23/never-googlers-web-users-take-ultimate-step-guard-their-data/
https://www.washingtonpost.com/technology/2019/07/23/never-googlers-web-users-take-ultimate-step-guard-their-data/
https://www.washingtonpost.com/technology/2019/07/23/never-googlers-web-users-take-ultimate-step-guard-their-data/
https://www.washingtonpost.com/technology/2019/07/23/never-googlers-web-users-take-ultimate-step-guard-their-data/
https://www.jianguoyun.com/
http://help.jianguoyun.com/
http://help.jianguoyun.com/
https://www.reddit.com/r/apple/comments/9ed07l/those_who_refuse_to_use_google_for_privacy/
https://www.reddit.com/r/apple/comments/9ed07l/those_who_refuse_to_use_google_for_privacy/
https://www.reddit.com/r/apple/comments/9ed07l/those_who_refuse_to_use_google_for_privacy/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://www.overleaf.com/
https://www.overleaf.com/
https://www.seafile.com/en/home/
https://github.com/haiwen/seafile
https://github.com/haiwen/seafile
https://tex.stackexchange.com/questions/27549/simultaneous-collaborative-editing-of-a-latex-file
https://tex.stackexchange.com/questions/27549/simultaneous-collaborative-editing-of-a-latex-file
https://tex.stackexchange.com/questions/27549/simultaneous-collaborative-editing-of-a-latex-file
https://www.speedtest.net/global-index
https://www2.sugarsync.com/
https://www2.sugarsync.com/
https://support.sugarsync.com/hc/en-us/
https://support.sugarsync.com/hc/en-us/
https://www.sugarsync.com/blog/
https://www.sugarsync.com/blog/
https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-collaborative-job/
https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-collaborative-job/
https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-collaborative-job/
https://www.codox.io/
http://www.wireshark.org/
http://www.wireshark.org/

[30] A. Bessani, R. Mendes, T. Oliveira, et al. SCFS: A
Shared Cloud-backed File System. In Proceedings of
the USENIX Annual Technical Conference (ATC), pages
169-180, 2014.

[31] R. Bhargava. Evolution of Dropbox’s Edge Network,
2017. https://blogs.dropbox.com/tech/2017/06
/evolution-of-dropboxs-edge-network/.

[32] P.Braam, M. Callahan, P. Schwan, et al. The InterMezzo
File System. In Proceedings of the 3rd of the Perl Con-
ference, O’Reilly Open Source Convention, 1999.

[33] G. Canfora, L. Cerulo, and M. Di Penta. Ldiff: An
Enhanced Line Differencing Tool. In Proceedings of
the International Conference on Software Engineering
(ICSE), pages 595-598. IEEE Computer Society, 2009.

[34] Z. Chen, Q. He, Z. Mao, H.-M. Chung, and S. Maharjan.
A Study on the Characteristics of Douyin Short Videos
and Implications for Edge Caching. In Proceedings
of the ACM Turing Celebration Conference - China
(TURC), page 13:1-13:6. ACM, 2019.

[35] Y. Cui, N. Dai, Z. Lai, M. Li, Z. Li, Y. Hu, K. Ren,
and Y. Chen. Tailcutter: Wisely Cutting Tail Latency
in Cloud CDNs under Cost Constraints. I[EEE/ACM
Transactions on Networking, 27(4):1612-1628, 2019.

[36] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. In Proceedings of ACM Sym-
posium on Operating Systems Principles (SOSP), pages
205-220. ACM, 2007.

[37] M. Demmer, B. Du, and E. Brewer. TierStore: A Dis-
tributed Filesystem for Challenged Networks in Devel-
oping Regions. In Proceedings of the USENIX Confer-
ence on File and Storage Technologies (FAST), pages
35-48. USENIX, 2008.

[38] J. E, Y. Cui, M. Ruan, Z. Li, and E. Zhai. HyCloud:
Tweaking Hybrid Cloud Storage Services for Cost-
efficient Filesystem Hosting. In Proceedings of the

IEEE Conference on Computer Communications (IN-
FOCOM), pages 1-9. IEEE, 2019.

[39] C. Ellis and S. Gibbs. Concurrency Control in Group-
ware Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIG-
MOD), pages 399-407. ACM, 1989.

[40] A.J.Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. SPORC: Group Collaboration Using Untrusted
Cloud Resources. In Proceedings of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 337-350. USENIX, 2010.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues Don’t
Matter When You Can JUMP Them! In Proceedings of
the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 1-14, 2015.

R. G. Guy, P. L. Reiher, D. Ratner, M. Gunter, W. Ma,
and G. J. Popek. Rumor: Mobile Data Access Through
Optimistic Peer-to-peer Replication. In Advances in
Database Technologies, pages 254-265. Springer, 1999.

B. Hou and F. Chen. GDS-LC: A Latency-and Cost-
aware Client Caching Scheme for Cloud Storage. ACM
Transactions on Storage, 13(4):40, 2017.

J. J. Hunt, K.-P. Vo, and W. F. Tichy. Delta Algorithms:
An Empirical Analysis. ACM Transactions on Software
Engineering and Methodology, 7(2):192-214, 1998.

J. W. Hunt and M. D. Macllroy. An Algorithm for
Differential File Comparison. Bell Laboratories Murray
Hill, 1976.

A. B. Kahn. Topological Sorting of Large Net-
works. Communications of the ACM, 5(11):558-562,
Nov. 1962.

J. J. Kistler and M. Satyanarayanan. Disconnected Op-
eration in the Coda File System. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), pages 213-225. ACM, 1991.

O. LeBenich, S. Apel, C. Kastner, G. Seibt, and J. Sieg-
mund. Renaming and Shifted Code in Structured Merg-
ing: Looking Ahead for Precision and Performance. In
Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 543—
553. IEEE, 2017.

Z.Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu,
Y. Dai, and Z.-L. Zhang. Towards Network-level Effi-
ciency for Cloud Storage Services. In Proceedings of

the Conference on Internet Measurement Conference
(IMC), pages 115-128. ACM, 2014.

G. Liang and U. C. Kozat. Fast Cloud: Pushing
the Envelope on Delay Performance of Cloud Storage
with Coding. IEEE/ACM Transactions on Networking,
22(6):2012-2025, 2014.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t Settle for Eventual: Scalable Causal
Consistency for Wide-area Storage with COPS. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 401-416. ACM, 2011.

P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud Storage with

26 18th USENIX Conference on File and Storage Technologies

USENIX Association

https://blogs.dropbox.com/tech/2017/06/evolution-of-dropboxs-edge-network/
https://blogs.dropbox.com/tech/2017/06/evolution-of-dropboxs-edge-network/

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Minimal Trust. In Proceedings of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 307-322. USENIX, 2010.

D. Marx. Graph Colouring Problems and Their Applica-
tions in Scheduling. Periodica Polytechnica Electrical
Engineering (Archives), 48(1-2):11-16, 2004.

T. Mens. A State-of-the-art Survey on Software Merg-
ing. IEEE Transactions on Software Engineering,
28(5):449-462, 2002.

E. W. Myers. An O(ND) Difference Algorithm and Its
Variations. Algorithmica, 1(1):251-266, Nov. 1986.

D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping.
High-latency, Low-bandwidth Windowing in the Jupiter
Collaboration System. In Proceedings of the Annual
ACM Symposium on User Interface and Software Tech-
nology (UIST), pages 111-120. ACM, 1995.

Y. S. Nugroho, H. Hata, and K. Matsumoto. How Dif-
ferent Are Different Diff Algorithms in Git? Empirical
Software Engineering, pages 1-34, 2019.

S. Perez De Rosso and D. Jackson. What’s Wrong with
Git?: A Conceptual Design Analysis. In Proceedings of
the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software
(Onward!), pages 37-52. ACM, 2013.

C. Policroniades and I. Pratt. Alternatives for Detecting
Redundancy in Storage Systems Data. In Proceedings of
the USENIX Annual Technical Conference (ATC), pages
73-86. USENIX, 2004.

P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and
G. Popek. Resolving File Conflicts in the Ficus File Sys-
tem. In Proceedings of the USENIX Summer Technical
Conference, pages 183—-195. USENIX, 1994.

B. Shao, D. Li, T. Lu, and N. Gu. An Operational Trans-
formation Based Synchronization Protocol for Web 2.0
Applications. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW), pages
563-572. ACM, 2011.

C. Smith. 33 Staggering Dropbox Statistics and Facts
(2019) | By the Numbers, 2019. https://expandedra
mblings.com/index.php/dropbox-statistics/.

M. Sousa, I. Dillig, and S. K. Lahiri. Verified Three-way
Program Merge. Proceedings of the ACM on Program-
ming Languages, 2(OOPSLA):1-29, 2018.

Y. Su, D. Feng, Y. Hua, and Z. Shi. Understanding the
Latency Distribution of Cloud Object Storage Systems.
Journal of Parallel and Distributed Computing, 128:71—
83, 2019.

[65]

[66]

[67]

(68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achiev-
ing Convergence, Causality Preservation, and Intention
Preservation in Real-time Cooperative Editing Systems.
ACM Transactions on Computer-Human Interaction
(TOCHI), 5(1):63-108, Mar. 1998.

D. Sun and C. Sun. Context-Based Operational Trans-
formation in Distributed Collaborative Editing Systems.
IEEE Transactions on Parallel and Distributed Systems
(TPDS), 20(10):1454—-1470, Oct. 20009.

L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3:
Cutting tail latency in cloud data stores via adaptive
replica selection. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 513-527, 2015.

D. Svantesson and R. Clarke. Privacy and Consumer
Risks in Cloud Computing. Computer law & security
review, 26(4):391-397, 2010.

D. B. Terry, M. Theimer, K. Petersen, A. J. Demers,
M. Spreitzer, and C. Hauser. Managing Update Con-
flicts in Bayou, a Weakly Connected Replicated Storage
System. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 172-182.
ACM, 1995.

W. E. TICHY. The String-to-String Correction Problem
with Block Moves. ACM Transactions on Computer
Systems, 2(4):309-321, 1984.

W. E. Tichy. RCS — A System for Version Control. Soft-
ware: Practice and Experience, 15(7):637-654, 1985.

A. Tridgell and P. Mackerras. The Rsync Al-
gorithm. Technical report, 1996. https:
//openresearch-repository.anu.edu.au/bit
stream/1885/40765/3/TR-CS-96-05.pdf.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS Distributed Operating System. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 49-70. ACM, 1983.

Z. Wu, C. Yu, and H. V. Madhyastha. Costlo: Cost-
effective Redundancy for Lower Latency Variance on
Cloud Storage Services. In Proceedings of the USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 543-557, 2015.

F. Zhu and F. He. Conflict Resolution for Structured
Merge via Version Space Algebra. Proceedings of the
ACM on Programming Languages, 2(OOPSLA):166,
2018.

USENIX Association

18th USENIX Conference on File and Storage Technologies 27

https://expandedramblings.com/index.php/dropbox-statistics/
https://expandedramblings.com/index.php/dropbox-statistics/
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf

POLARDB Meets Computational Storage: Efficiently Support Analytical
Workloads in Cloud-Native Relational Database

Wei Cao®, Yang Liu*, Zhushi Cheng®, Ning Zheng*, Wei Li*, Wenjie Wu', Lingiang Ouyang*,
Peng Wang', Yijing Wang®, Ray Kuan*, Zhenjun Liu®, Feng Zhu', Tong Zhang*
T Alibaba Group, Hang Zhou, Zhejiang, China
¥ ScaleFlux Inc., San Jose, CA, USA

Abstract

This paper reports the deployment of computational storage
drives in Alibaba Cloud to enable cloud-native relational
database cost-effectively support analytical workloads. With
its compute-storage decoupled architecture, cloud-native re-
lational database should pushdown data-intensive tasks (e.g.,
table scan) from front-end database nodes to back-end storage
nodes in order to adequately support analytical workloads.
This however makes it a challenge to maintain the cost ef-
fectiveness of storage nodes. The emerging computational
storage opens a new opportunity to address this challenge: By
replacing commodity SSDs with computational storage drives,
storage nodes can leverage the in-storage computing power
to much more efficiently perform table scans. Practical imple-
mentation of this simple idea is non-trivial and demands cohe-
sive innovations across the software (i.e., database, filesystem
and I/O) and hardware (i.e., computational storage drive) lay-
ers. This paper presents such a holistic implementation for
Alibaba cloud-native relational database POLARDB. To the
best of our knowledge, this is the first real-world deployment
of cloud-native databases with computational storage drives
ever reported in the open literature.

1 Introduction

Relational database is an essential building block in mod-
ern information technology infrastructure. Therefore, all the
cloud vendors have invested significant efforts to grow their
relational database service (RDS) business. Not surprisingly,
some cloud vendors have developed their own cloud-native
relational database systems, e.g., Amazon Aurora [28] and
Alibaba POLARDB [9]. In order to achieve sufficient scala-
bility and fault resilience, cloud-native relational databases
naturally follow the design principle of decoupling compute
from data storage [4,17]. Meanwhile, they typically aim to be
compatible with mainstream open-source relational databases
(e.g., MySQL and PostgreSQL) and achieve high performance
for OLTP (online transaction processing) workloads at a much
lower cost than their on-premise counterparts.

It is highly desirable for cloud-native relational databases
to adequately support analytical workloads. As pointed out by
the authors of [28], because cloud-native relational databases
decouple compute from data storage, the network band-
width between database nodes and storage nodes becomes a
scarce resource. This however does not match well to ana-
lytical workloads that involve intensive data access. To best
serve OLTP workloads, cloud-native relational databases typ-
ically employ the row-store model (or the hybrid-row/column
model [5]). This could make the network bandwidth an even
bigger bottleneck for analytical workloads. In order to bet-
ter serve analytical workloads, the almost only viable option
is to off-load data-access-intensive tasks (in particular table
scan) from database nodes to storage nodes. This concept is
certainly not new and has been adopted by both proprietary
database appliances (e.g., Oracle Exadata) and open-source
databases (e.g., MySQL NDB Cluster). In spite of the simple
concept, its practical implementation in the context of cloud-
native databases is particularly non-trivial. On one hand, each
storage node must be equipped with sufficient data process-
ing power to handle table scan tasks. On the other hand, to
maintain the cost effectiveness of cloud-native databases, we
cannot significantly (or even modestly) increase the cost of
storage nodes. By complementing CPUs with special-purpose
hardware (e.g., GPU and FPGA), heterogeneous computing
architecture appears to be an appealing option to address this
data processing power vs. cost dilemma.

This work applies heterogeneous computing in POLARDB
storage nodes to efficiently support table scan pushdown. The
key idea is simple: Each POLARDB storage node off-loads
and distributes table scan tasks from its CPU to its data stor-
age devices. Under this framework, each data storage device
becomes a computational storage drive [1] that can carry
out table scan on the I/O path. Compared with off-loading
table scan to a dedicated stand-alone computing device (e.g.,
FPGA/GPU-based PCle card), distributing table scan across
all the storage drives can minimize the data traffic across the
storage/memory hierarchy and obviate data processing hot-
spot. This simple concept is not new and has been discussed

USENIX Association

18th USENIX Conference on File and Storage Technologies 29

(e.g., see [11, 14]). However, its practically viable implemen-
tation and real-world deployment remain completely missing,
at least in the open literature. This is mainly due to the dif-
ficulty of addressing two challenges: (1) how to practically
support the table scan pushdown across the entire software
hierarchy, and (2) how to implement low-cost computational
storage drives with sufficient table scan processing capability.
Over the course of materializing this simple idea in the
context of POLARDB on Alibaba Cloud, we developed a
set of software/hardware techniques to cohesively address
the two challenges. To reduce the product development cy-
cle and meanwhile ensure cost effectiveness, computational
storage drives use an FPGA-centric host-managed architec-
ture. Inside each computational storage drive, a single mid-
range low-cost Xilinx FPGA chip handles both flash mem-
ory control and table scan. With highly optimized software
and hardware design, each computational storage drive can
support high-throughput (i.e., over 2GB/s) table scan on com-
pressed data and meanwhile achieve storage I/O performance
comparable to leading-edge NVMe SSDs. We developed a
variety of techniques that enable POLARDB storage nodes
fully exploit the capability of computational storage drives.
This paper presents these design techniques and elaborates
on their implementation, and further presents evaluation re-
sults to demonstrate their effectiveness. Based on the TPC-H
queries, we extracted six individual table scan tasks and ran
these scan tasks on one storage node. Such node-level evalua-
tion shows that the computational storage drives can largely
reduce both scan latency and CPU utilization of the storage
node. We further carried out system-level evaluations on a PO-
LARDB cloud instance over 7 database nodes and 3 storage
nodes. Results show that this solution can noticeably reduce
the TPC-H query latency. To the best of our knowledge, this
is the first application of emerging computational storage in
production database ever reported in the open literature.

2 Background and Motivation

2.1 POLARDB: Basic Architecture

POLARDB is a new cloud-native OLTP database designed
by Alibaba Cloud. Its design goals come from our cloud cus-
tomers’ real needs: large per-instance storage capacity (tens
of TB), high TPS (transactions per second), high and scalable
QoS and high availability. POLARDB provides enterprise-
level cloud database services and is compatible with MySQL
and PostgreSQL. Fig. 1 illustrates the compute-storage decou-
pled architecture of Alibaba POLARDB. Database computing
nodes and storage nodes are connected through high-speed
RDMA network. In each POLARDB instance, there is only
one read/write database node that handles both the read and
write requests, and the other database nodes handle only read
requests. All the nodes in an instance, including read/write
nodes and read-only nodes, are able to access the same copy

of data on a storage node. To ensure the high availability, PO-
LARDB uses the Parallel-Raft protocol to write three copies
of data across the storage nodes [9].

Application Application Application
Cloud Server Cloud Server Cloud Server
t Read/Write Splitter
_amam, With Load Balancing
2
0>
Write l Failover Read 1 Read

DB Server
(Replica)

DB Server
(Primary)

DB Server
(Replica)

User Space Scale
File System Out/In

User Space
File System

User Space
File System

Data Router
& Cache

Data Router
& Cache

Data Router
& Cache

R/W gkead Only

Read Only

Data Chunk
=== Server

m:e

Parallel-Raft Protocol & Storage Serverless

Figure 1: Illustration of POLARDB architecture.

2.2 POLARDB: Table Scan Pushdown

Off-loading table scan from database nodes to storage nodes
is important for cloud-native relational database to effectively
handle analytical workloads. This concept trades heavier data
processing load on storage nodes for significantly reduced
network traffic between database nodes and storage nodes.
Moreover, since POLARDB employs the row-store model
to better serve OLTP workloads, the column-oriented nature
of table scan tends to demand even higher data processing
power in storage nodes. Therefore, the key design issue is how
to cost-effectively equip storage nodes with sufficient data
processing power to handle the additional table scan tasks.

The most straightforward option is to simply scale up each
storage node, which nevertheless is not practically desirable
mainly due to the cost overhead. Table scan over row-store
data does not fit well to modern CPU architecture and tends
to largely under-utilize CPU hardware resources (e.g., cache
memory, and SIMD processing resource) [2]. As a result, we
have to more aggressively scale up the storage nodes to com-
pensate for the inefficiency of CPU-based implementation.
Hence, this straightforward option is economically unappeal-
ing and even unacceptable, especially as the classical CMOS
technology scaling is quickly approaching its end [8].

An alternative is to complement storage node CPUs with
special-purpose hardware (e.g., FPGA or GPU) that can carry
out table scan with much better cost effectiveness. Under

30 18th USENIX Conference on File and Storage Technologies

USENIX Association

this heterogeneous computing framework, the conventional
practice uses a centralized heterogeneous architecture where
the special-purpose hardware is implemented in the form of a
single stand-alone FPGA/GPU-based PCle card (e.g., see [24,
26,29]). Nevertheless, this approach has several drawbacks
for our targeted systems: (1) High data traffic: All the raw data
in their row-store format must be fetched from the storage
devices into the FPGA/GPU-based PCle card. Due to the
data-intensive nature of table scan, this leads to a very heavy
data traffic over the PCIe/DRAM channels. The high data
traffic can cause significant energy consumption overhead
and inter-workload interference. (2) Data processing hot-spot:
Each storage node contains a large number of NVMe SSDs,
each of which can achieve multi-GB/s data read throughput.
As aresult, analytical processing workloads could trigger very
high aggregated raw data access throughput that is far beyond
the I/O bandwidth of one PCle card. This could make the
FPGA/GPU-based PCle card become the system bottleneck.
The above discussion suggests that a distributed heteroge-
neous architecture is a better option. As illustrated in Fig. 2,
by distributing table scans directly into each storage drive,
we can eliminate the high data traffic over the PCle/DRAM
channels, and obviate data processing hot-spot in the system.
This intuition directly motivated us to develop and deploy
computational storage drives in POLARDB storage nodes.

2.3 Computational Storage Drive

Loosely speaking, any data storage device that can carry out
data processing tasks beyond its core storage duty can be
called a computational storage drive. The simple concept
of empowering storage devices with additional computing
capability can trace back to over 20 years ago [3,21,22].
Computational storage complements with CPU to form a het-
erogeneous computing system. Compared with its CPU-only
counterpart, a heterogeneous computing system not surpris-
ingly can achieve higher performance and/or energy efficiency
for many applications, as demonstrated by prior research (e.g.,
see [10,11,15,16,18,23,27]). However, it is apparently subject
to two cost overheads: (1) the hardware cost of implementing
computational storage drives, and (2) the development cost on
developing all the necessary hardware and software solutions
to enable its real-world deployment. In spite of the over two
decades of research, computational storage has not yet entered
the mainstream market, arguably because of the absence of a
practically justifiable benefit vs. cost trade-off.

To overcome the cost barrier, we chose an FPGA-based
host-managed computational storage drive design strategy.
This can reduce the development cost from two aspects: (1)
We use a single FPGA to realize both flash memory control
and computation (i.e., table scan in this work) inside compu-
tational storage drives. Compared with ASIC-based approach,
the circuit-level programmability of FPGA can significantly
reduce the computational storage drive development cycle and

CPU & DRAM

T S E— ‘]\\, High data
A)
Centralized

' ,,,,,,,,,,,,,,,, f ,,,,,,,,, > traffic
Flash control Flash control ;] /" computing
4 . 4 Table Scan !

Accelerator Compute
NAND Flash NAND Flash (FPGA/GPU) hot-spot

(a) Centralized heterogeneous computing architecture

CPU & DRAM
I [I [I BN
- \, Low data
PCle Root Complex & Switch 7 traffic
f """"""""""""""" == Distributed
Flashcontrol” ||~ || Flash control [/ |]” Flashcontrol-1L /" computing
"R tablesscan-+-----i- & table scan -+~ &tablescan | !

No compute

NAND Flash NAND Flash NAND Flash hot-spot

(b) Distributed heterogeneous computing architecture

Figure 2: Illustration of (a) centralized heterogeneous comput-
ing architecture, and (b) distributed heterogeneous computing
architecture.

cost. (2) The computational storage drive is fully managed by
the host for the functions such as address mapping, request
scheduling, and garbage collection. Its host-management na-
ture can facilitate integrating computational storage drive into
existing software stack. It enables a high flexibility to devise
and optimize the computational storage drive’s API through
which applications can utilize its configurable computation
capability. Meanwhile, the host-managed computational stor-
age drive natively integrates into the Linux I/O stack as a
storage block device to serve normal I/O requests.

However, in return for its circuit-level programmability,
FPGA is expensive (e.g., modern high-end FPGA chip could
cost few thousand dollars), leading to a higher hardware cost
of computational storage drive. Meanwhile, the objective of
this work is to deploy computational storage drive to cost-
effectively support table scan pushdown. Therefore, one key
issue is how to minimize the hardware cost overhead while
achieving sufficiently high storage I/O and table scan process-
ing performance, which will be discussed in the next section.

3 Design and Implementation

As pointed out above, although applying computational stor-
age to support table scan pushdown is a very simple concept
and has been well discussed in the open literature, its real-
world implementation and deployment has remained missing.
Our first-hand experience of implementing this concept for
POLARDRB reveals that transferring this simple idea into real
product faces the following two major challenges:

USENIX Association

18th USENIX Conference on File and Storage Technologies 31

1. Support table scan pushdown across the entire software
hierarchy: Table scan pushdown is initiated by the user-
space POLARDB storage engine that accesses data by
specifying the offsets in files, while table scan is physi-
cally served by computational storage drive that operates
as a raw block device and manages data with LBA (log-
ical block address). The entire storage I/O stack sits
in between POLARDB storage engine and computa-
tional storage drive. Hence, we have to cohesively en-
hance/modify the entire software/driver stack in order to
create a path in support of table scan pushdown.

2. Implement low-cost computational storage drive: As dis-
cussed above in Section 2.3, although the FPGA-based
design approach can significantly reduce the develop-
ment cost, FPGA tends to be expensive. Moreover, since
FPGA typically operates at only 200~300MHz (in con-
trast to 2~4GHz CPU clock frequency), we have to em-
ploy a large degree of circuit-level implementation paral-
lelism (hence more silicon resource) in order to achieve
sufficiently high performance. Therefore, we must de-
velop solutions to enable the use of low-cost FPGA chip
in our implementation.

The remainder of this section presents a set of design tech-

niques across the software and hardware stacks that can ad-
dress the above two major challenges.

3.1 Support Table Scan Pushdown Across the
Entire Software Stack

To tackle the first challenge, we developed techniques to sup-
port the table scan pushdown across the entire software stack,
as illustrated in Fig. 3. POLARDB database nodes incorporate
a front-end analytical processing engine called POLARDB
MPP. Being compatible with the MySQL protocol, this an-
alytical processing engine can parse, optimize and rewrite
SQL using the AST (abstract syntax tree) and a number of
embedded optimization rules. It transforms each SQL query
into a DAG (directed acyclic graph) execution plan consist-
ing of operators and data flow topology. This analytical pro-
cessing engine natively supports table scan pushdown to the
underlying storage engine. Hence, we can keep the analytical
processing engine intact in this work.

As illustrated in Fig. 3, in order to enable table scan push-
down, we have to appropriately enhance the entire storage
stack underneath the analytical processing engine, including
POLARDB storage engine, PolarFS (a distributed filesystem
under POLARDB), and computational storage driver. In the
following, we will elaborate on the implemented enhance-
ments across these three layers.

3.1.1 Enhancement to POLARDB Storage Engine

POLARDB database storage engine follows the design prin-
ciple of LSM-tree (log-structured merge-tree) [20]. Data in

SELECT I_linestatus, sum(l_quantity)
SQL FROM lineitem
WHERE [_shipdate <= date “1998-09-04"

POLARDB MPP

Table Scan
Unchanged -
v
Enhanced e o
Schema (e.g., lineitem table: int,int,int,int,...)
POLARDB Predicate (e.g., col 11 <= date “1998-09-04")

Storage Engine Data blocks (block_offsets in data file)

Table scan request conversion

!

Data blocks (LBA on storage drive)
Table scan request conversion

]

Data blocks (PBA on flash memory)
Table scan request conversion, partition,

and scheduling
Computational

Computational
storage drive storage drive

PolarFS

Computational
Storage Driver

Figure 3: Illustration of the overall software stack.

each table are organized into many files (typical file size is
few tens of MBs), and each file contains a large number of
blocks (typical block size ranges from 4KB to 32KB). In its
original implementation, POLARDB storage engine serves
the table scan requests using the CPUs on storage nodes.
Hence, the underlying storage I/O stack is oblivious to the
table scan pushdown. Since this work aims to utilize computa-
tional storage drives to process table scan, we have enhanced
POLARDB storage engine so that it can pass table scan re-
quests to the underlying filesystem PolarFS. As illustrated in
Fig. 3, storage engine accesses data blocks in terms of offsets
in files. Each table scan request contains: (1) the location
(i.e., offsets in files) of the to-be-scanned data, (2) the schema
of the table onto which the table scan is applied, and (3) the
table scan conditions to be evaluated. Meanwhile, POLARDB
storage engine allocates a memory buffer for storing data re-
turned from computational storage drives, and each table scan
request contains the location of this memory buffer.

As discussed later, the implemented computational storage
drives do not support all the possible scan conditions (e.g.,
LIKFE is not supported in current implementation). Hence,
upon receiving table scan pushdown from the analytical pro-
cessing engine, the enhanced storage engine first analyzes
the scan conditions, and if necessary it extracts and passes a
subset of the scan conditions that can be served by the compu-
tational storage drives. After receiving the data returned from
the computational storage drives, the storage engine always
checks the data against the complete table scan conditions.
Moreover, to improve the overall system efficiency, we should

32 18th USENIX Conference on File and Storage Technologies

USENIX Association

exploit the computational parallelism across multiple compu-
tational storage drives within each storage node. Therefore,
POLARDB storage engine is able to issue multiple table scan
requests concurrently to the underlying computational storage
devices through PolarFS.

3.1.2 Enhancement to PolarFS

As described in [9], POLARDB is deployed on the distributed
filesystem PolarFS that manages the data storage across all
the storage nodes. Each computational storage drive can only
perform table scan on its own data and meanwhile data are
scanned in the unit of storage engine data blocks. Meanwhile,
due to the use of block-level compression, variable-length
compressed blocks are contiguously packed in each file (i.e.,
each compressed block is not 4KB-aligned). Therefore, Po-
larFS employs a coarse-grained data striping (4MB stripe
size) across the computational storage drives in order to en-
sure most data blocks entirely reside on one computational
storage drive. In the rare case of one compressed block locates
across two drives, the system will use storage node CPU to
handle the corresponding scan operation.

As discussed in Section 3.1.1, POLARDB storage engine
specifies the location of to-be-scanned data in the form of
offsets in files. The to-be-scanned data may span over mul-
tiple files and hence multiple computational storage drives.
Meanwhile, computational storage drives can only locate data
in the form of LBAs. Therefore, upon receiving each table
scan request from POLARDB storage engine, PolarFS must
appropriately convert this request before forwarding it to the
computational storage driver. Accordingly, we have enhanced
PolarFS from the following aspects: (1) Suppose the to-be-
scanned data span over m computational drives, the enhanced
PolarFS decomposes this request into m scan requests, each
of which scans the data on one computational storage drive.
(2) For each scan request, it converts the data location in-
formation into offsets in LBAs. As illustrated in Fig. 3, the
enhanced PolarFS subsequently passes the m scan requests
with converted LBA-based location information to the under-
lying computational storage driver.

3.1.3 Enhancement to Computational Storage Driver

As discussed above in Section 2.3, our computational storage
drive is fully managed by a host-side driver in the kernel
space. The driver exposes each computational storage drive
as a block device. Upon receiving each table scan request from
PolarFS§, the driver carries out the following operations. It first
analyzes the scan conditions, and if necessary re-arranges the
scan conditions in order to better streamline the hardware-
based scan processing and hence improve the throughput. For
example, suppose the table contains 16 fields (i.e., fi, f2, -+,
f16), and the scan condition involves two comparisons, where
the first one compares fjo and a constant, and the second

one compares f and fs. Since hardware can pipeline the
table record parsing, field selection, and comparison, if we
re-arrange the scan condition by interchanging the position of
the two comparisons, we can improve the hardware utilization
efficiency and hence achieve higher processing throughput.
The driver further converts the location information of the
to-be-scanned data from the LBA domain into the physical
block address (PBA) domain, where each PBA associates
with a fixed location in NAND flash memory.

Moreover, the driver internally partitions each scan request
into a number of (much) smaller scan sub-tasks, which can
serve for two purposes: (1) A large scan task may occupy the
flash memory bandwidth for a long time, which can cause
other normal I/O request suffer from a longer latency. This
problem can be mitigated by partitioning a large scan task
into small sub-tasks and cohesively scheduling them with
normal I/O requests. (2) By partitioning a large scan task
into small sub-tasks, it helps to reduce the hardware resource
usage for internal buffering and improve flash memory access
parallelism. Moreover, storage device background operations,
in particular garbage collection (GC), can severely interfere
with table scan and hence cause significant latency penalty.
Since all the flash management functions are handled by the
host-side driver, we enhanced the driver so that it can cohe-
sively schedule GC and table scan in order to minimize the
GC-induced interference. In particular, in the case of heavy
and bursty analytical processing workloads, the driver will
adaptively reduce or even suspend the GC operation.

3.2 Reduce Hardware Implementation Cost

In order to tackle the challenge of computational storage drive
implementation cost, the key is to maximize the FPGA hard-
ware resource utilization efficiency. To achieve this objective,
we further developed the following techniques across the soft-
ware and hardware layers.

3.2.1 Hardware-Friendly Data Block Format

We first modified POLARDB storage engine data block for-
mat in order to facilitate the FPGA implementation of table
scan. Table scan mainly involves various data comparison
operations (e.g., =, >, <). In spite of the FPGA circuit-level
programmability, it is difficult for FPGA to implement com-
parators that can efficiently support multiple different data
types. In this work, we modified POLARDB storage engine
so that it stores all the table data in the memory-comparable
format, i.e., data can be compared using the function mem-
cmp(). As a result, computational storage drives only need to
implement a single type of comparator that can carry out the
memcmp() function, regardless of the specific data types in
different fields of a table. By enabling the implementation of
type-oblivious comparators in FPGA, this can largely reduce
the usage of FPGA resources for implementing table scan.

USENIX Association

18th USENIX Conference on File and Storage Technologies 33

We further modified the storage engine data block struc-
ture in order to improve the hardware utilization efficiency.
Fig. 4(a) illustrates the data block format being used in the
original storage engine: One data block contains a number
of sorted table entries, and ends with meta information (i.e.,
1-byte data compression type and 4-byte CRC). Although
such a block format can be easily handled by CPUs, it is not
friendly to the hardware-based table scan in computational
storage drives. We modified the data block format as illus-
trated in Fig. 4(b), where we add an additional block header
including 1-byte block compression type, 4-byte number of
key-value pairs, and 4-byte number of restart keys (note that
restart key is used to facilitate key search in the presence
of prefix compression). This modified block format is much
more friendly to hardware-based table scan because: (1) Com-
putational storage drive can decompress each block and check
CRC without demanding POLARDB storage engine to pass
the size information of each block. (2) By adding the “# of
keys” and “# of restarts” fields at the beginning of each block,
the hardware can more conveniently handle the restarts within
each block and detect the end of each block. This is well suited
to the sequential data processing flow of the hardware, and
hence simplifies the FPGA-based hardware implementation.

Type: 1-byte
of keys: 4-byte
of restarts: 4-byte

Type: 1-byte Type: 1-byte

CRC: 4-byte

(a) (b)

CRC: 4-byte

Figure 4: (a) Block structure in conventional practice, and (b)
modified block structure to simplify hardware implementation
of data scan.

3.2.2 FPGA Implementation

Fig. 5 shows the parallel and pipelined architecture of our
FPGA implementation. To reduce the cost, we use a single
mid-range FPGA chip for both flash memory control and table
scan. The FPGA incorporates a powerful soft-decision LDPC
(low-density parity-check) coding engine. This enables the
use of low-cost 3D TLC (and QLC in the future) NAND flash
memory, which helps to reduce the overall computational
storage drive cost. We use a parallel and pipelined hardware
architecture to improve the table scan processing throughput.
As shown in Fig. 5, it contains two parallel data decompres-
sion engines and four data scan engines. Current implementa-

tion supports the Snappy decompression and following scan
conditions: =, #, >, >, <, <, NULL, and INULL.

Middle-range Xilinx KU15P 16nm FPGA

PCle

Gen3>§

(soft LDPC)

Figure 5: Parallel and pipelined FPGA implementation.

To further improve the hardware resource utilization effi-
ciency, we applied a simple design technique described as
follows. As pointed out above, all the fields are stored in the
memory-comparable form, hence we only need to implement
type-oblivious memcmp modules to evaluate each condition.
Since the number of scan conditions varies among different
table scan tasks, each scan engine employs a recursive archi-
tecture in order to maximize the FPGA resource utilization.
Each scan engine contains one memcmp module and one RE
(result evaluation) module. Let P =Y/, (H;fizl ci,j) denote
the overall scan task, where each c; ; is one individual condi-
tion on one field. The symbols } and [] represent the logic
OR and AND operation, respectively. Using a single memcmp
and RE module, we recursively evaluate the predicate with
one condition ¢; ; at a time. The RE module checks whether
the previous memcmp output (i.e., all the ¢; ;’s that have been
evaluated so far) is sufficient to determine the value of the
result P. Once the value of P (i.e., either 1 or 0) can be deter-
mined, the scan engine can immediately finish the evaluation
on current row, and start to work on another row. This recur-
sive architecture can handle any arbitrary predicate with the
optimal FPGA hardware resource utilization.

4 Evaluation

This section presents evaluation results to demonstrate the
effectiveness of this deployed solution. The remainder of
this section is organized as follows: Section 4.1 summa-
rizes the experimental environment and basic storage per-
formance of the computational storage drives. Section 4.2
evaluates and compares the table scan performance when
using CPUs or computational storage devices to realize ta-
ble scan. Section 4.3 presents the TPC-H evaluation results
on a POLARDB instance in Alibaba Cloud, and Section 4.4
provides further concluding remarks.

4.1 Experimental Setup

In order to become practically viable products, besides provid-
ing in-storage computing capability, computational storage
drives must have top-notch storage I/O performance (at least
comparable with leading-edge commodity NVMe SSDs). The

34 18th USENIX Conference on File and Storage Technologies

USENIX Association

storage performance of our computational storage drives is
summarized as follows. Each drive uses 64-layer 3D TLC
NAND flash memory chips. With PCIe Gen3 x4 interface,
each drive can sustain 2.2GB/s and 3.0GB/s sequential write
and read throughput. Under 100% address span and fully trig-
gered GC, each drive can achieve 160K and 590K random
4KB write and read IOPS, which are on par with the latest
enterprise-grade NVMe SSDs. Each computational storage
drive hosts a single mid-range Xilinx UltraScale+ KU15p
FPGA chip that handles both flash memory control and com-
putation. To maximize the error correction strength, each drive
supports soft-decision LDPC code decoding with beyond-
3GB/s decoding throughput. The performance evaluation is
carried out on a POLARDB instance (with seven database
nodes and three storage nodes) in Alibaba Cloud.

4.2 Table Scan Performance Evaluation

The FPGA inside each computational storage drive incorpo-
rates two Snappy decompression engines and four data scan
engines. The decompression throughput varies with the data
compressibility. Under compression ratio of 60% and 30%,
the two decompression engines total can achieve 2.3GB/s and
2.8GB/s decompression throughput, respectively. The data
scan engines also have variable throughput that depend on
several runtime parameters, e.g., the size of each row in the
table, table schema, and scan conditions.

We uses the LINEITEM table defined in TPC-H benchmark
as a test vehicle to evaluate the effectiveness of moving table
scan to computational storage drives. The LINEITEM table
contains total 16 columns mixed with data types of identifier,
integer, decimal, fixed-length and variable-length strings. To
cover a wide range of processing complexity, we chose the
following six table scan tasks (extracted from different TPC-H
queries) to carry out evaluations on one storage node:

TS-1: Select L_PARTKEY, L_EXTENDEDPRICE,
L_DISCOUNT
from LINEITEM
where L_SHIPDATE > “1994-06-01” and

L_SHIPDATE < “1994-07-01"

TS-2: Select L_PARTKEY, L_SUPPKEY, L_QUANTITY
from LINEITEM
where L_SHIPDATE > “1993-01-01” and
L_SHIPDATE < “1994-01-01”

TS-3: Select L_ORDERKEY, L_SUPPKEY,
L_EXTENDEDPRICE, L_DISCOUNT, L_SHIPDATE
from LINEITEM

where L_SHIPDATE > “1995-01-01" and
L_SHIPDATE < “1996-12-31”

TS-4: Select L_ORDERKEY, L_EXTENDEDPRICE,
L_DISCOUNT
from LINEITEM
where L_SHIPDATE < “1995-03-12”

TS-5: Select L_ORDERKEY

from LINEITEM

where L_COMMITDATE < L_RECEIPTDATE
TS-6: Select L_PARTKEY, L_SUPPKEY, L_QUANTITY

from LINEITEM

For the above six scan tasks, the data selectivity in terms
of table entries is 1.25%, 15.17%, 30.34%, 54.04%, 63.22%,
and 100.00%, respectively. We set the raw data compression
ratio as 0.5 when generating the LINEITEM table, and use the
Snappy compression library to compress each data block. For
each table scan task, we measured the scan latency and PCle
data traffic when turning on and off the table scan pushdown.
When we turn off the table scan pushdown, storage node treats
each computational storage drive as a normal SSD and relies
on CPU to carry out the table scan processing.

Fig. 6 shows the measured scan latency and CPU utilization,
where each data point is obtained by averaging the results of
10 independent runs. As discussed above, each computational
storage drive contains four hardware data scan engines. Hence,
the storage node runs the scan tasks under two hardware con-
figurations: (a) one computational storage drive with 4 CPU
threads, and (b) two computational storage drives with 8 CPU
threads. The notation CPU-based Scan and CSD-based Scan
correspond to the cases when storage nodes use its CPU and
computational storage drives to carry out table scan process-
ing, respectively. As shown in Fig. 6, under each hardware
configuration, we studied four cases: (1) CPU-based scan
without data compression, (2) CSD-based scan without data
compression, (3) CPU-based scan with Snappy compression,
and (4) CSD-based scan with Snappy compression.

The results clearly show that, compared with CPU-based
scan, its CSD-based counterpart can simultaneously reduce
the scan latency and CPU utilization. For example, when we
run the scan task TS-1 (with Snappy compression) on two
drives with 8 threads, CSD-based scan can reduce the latency
from 55s to 39s and meanwhile reduce the CPU utilization
from 514% to 140%. Compared with other scan tasks, TS-
6 can least benefit from CSD-based scan because its very
simple scan condition largely under-utilizes the hardware re-
source in computational storage drives. Even for TS-6 (with
Snappy compression), when using two drives with 8 threads,
CSD-based scan can reduce the latency from 65s to 53s and
meanwhile reduce the CPU utilization from 558% to 374%.
Fig. 6 also shows that, although the CPU utilization of CPU-
based scan remain relatively constant across all the six scan
tasks, the CPU utilization of CSD-based scan noticeably in-
creases as the data selectivity becomes larger. For example,
TS-1 (with the selectivity of 1.25%) and TS-2 (with the se-
lectivity of 15.17%) have less CPU utilization than others.
This can be explained as follows: In the case of CSD-based
scan, the CPU workload is proportional to the data selectivity.
The smaller the data selectivity is, the less amount of data are
transferred to and processed by the host CPU. In contrast, in
the case of CPU-based scan, regardless of the data selectivity,
host CPU has to fetch and process all the data from drives. The

USENIX Association

18th USENIX Conference on File and Storage Technologies 35

‘-CPU-based Scan (no compression) [l CSD-based Scan (no compression) [] CPU-based Scan (Snappy) [l CSD-based Scan (Snappy) ‘

N
o
o

-

o

o
T

Scan Latency (second)
o
o

o

TS TS-2 TS-3 TS-4 TS-5 TS-6
(b) Two computational storage drives & 8 threads

o]
o

[o2]
o
T

N
o
T

Scan Latency (second)
ey
o

o

TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

(a) One computational storage drive & 4 threads

00%

200%

100%

CPU Utilization

0%
TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

600%

400%

200%

CPU Utilization

0%

TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

Figure 6: Measured scan latency and CPU utilization when the storage node runs the scan tasks on (a) one computational storage
drive with 4 CPU threads, and (b) two computational storage drives with 8 CPU threads.

results also show that the effectiveness of CSD-based scan
can readily scale with the number of computational storage
drives. Finally, the results reveal that light-weight compres-
sion (i.e., Snappy in this study) can noticeably improve the
performance of CPU-based scan at the cost of CPU utiliza-
tion. In comparison, CSD-based scan is relatively insensitive
to the use of compression.

To further reveal the benefit of using computational storage
table scan pushdown to reduce data movement across the
storage and memory hierarchy, Fig. 7(a) shows the measured
volume of data being transferred from computational storage
drives to host DRAM, and Fig. 7(b) shows the measured total
host memory data transfer volume. The results show that

Il CPU-based Scan (no compression) [[] CPU-based Scan (Snappy)
I CSD-based Scan (no compression) Il CSD-based Scan (Snappy)

(a)

IS
o
T

W
o
T

o
T

PCle Data Traffic (GB)
n
o

o

TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

o
o

o
<]
T

o
=]

Memory Data Traffic (GB)

o

TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

Figure 7: (a) PCle data traffic and (b) memory data traffic
inside the storage node.

CSD-based scan can significantly reduce the data transfer

volume across the storage and memory hierarchy. The benefit
improves as the data selectivity becomes smaller. For example,
in the case of scan task TS-1 (with the selectivity of 1.25%) ,
CSD-based scan can almost eliminate the PCle data transfer
traffic, and reduce the host memory data traffic by 5x (without
compression) and 3x (with compression). The results also
show that compression can very effectively reduce data traffic
volume across the storage and memory hierarchy.

4.3 System-level Evaluation

We further ran TPC-H analytical workload benchmark on a
POLARDB cloud instance with 32 SQL-engine containers
distributed on 7 database nodes and 3 back-end storage nodes.
Each storage node hosts 12 computational storage drives,
and each drive has a capacity of 3.7TB. We considered the
following three different scenarios:

1. No pushdown: In this baseline scenario, database nodes
do not push the table scan down to storage nodes. As
a result, storage nodes have to transfer all the data to
database nodes for table scan.

2. CPU-based pushdown: We enable the table scan push-
down from database nodes to storage nodes, and the
CPUs on the storage nodes are responsible for carrying
out table scan.

3. CSD-based pushdown: We enable the table scan push-
down from database nodes to storage nodes, and the
computational storage drives on the storage nodes are
responsible for carrying out table scan.

For each one out of the total 22 TPC-H queries, we mea-
sured the POLARDB performance by splitting data into parti-
tions and submitting n scan requests in parallel to the back-
end storage cluster. In this study, we considered three different

36 18th USENIX Conference on File and Storage Technologies

USENIX Association

I No Pushdown (no compression) [CICSD-based Pushdown (no compression) [CPU-based Pushdown (Snappy)
I CPU-based Pushdown (no compression) [l No Pushdown (Snappy) [csD-based Pushdown (Shappy)
200 | i | i) i \ \ \ \ I
:g 100 —
o
o
o Ll]
E 0 s I I I I A I I] I [l
H Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Qi1
400 - I I I I I I I I I I I]
a
2
5
S
O 200 -
0
Q2 Q13 Q4 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
Figure 8: Measured TPC-H query latency under 32 parallel requests.
I No Pushdown (no compression) []CSD-based Pushdown (no compression) [l CPU-based Pushdown (Snappy)
I CPU-based Pushdown (no compression) [l No Pushdown (Snappy) []CSD-based Pushdown (Snappy)
150 T T | T T T T T T T |
100 =
T
5
S 50 R
@
L
> 0
g 200 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
2 I I I I I I I I I \ |
4
ol
S
& 100 .
0
Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
Figure 9: Measured TPC-H query latency under 64 parallel requests.
I No Pushdown (no compression) []CSD-based Pushdown (no compression) [CPU-based Pushdown (Snappy)
I CPU-based Pushdown (no compression) [l No Pushdown (Snappy) [1CSD-based Pushdown (Snappy)
100 T T T T T T T T T T T
B 50 —
S
o
* b
= N Kolee ADnMin Alin HOROR Buchie HNcMia MACHAD M ke
8
100
el
&
&
50
0

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Figure 10: Measured TPC-H query latency under 128 parallel requests.

USENIX Association 18th USENIX Conference on File and Storage Technologies 37

PCle Data Traffic (GB)

Network Traffic (GB)

—_
()
o

100
80
60
40
20

(@)

[[
(| Il CPU-based Pushdown (no compression)
| | CSD-based Pushdown (no compression)
[1CPU-based Pushdown (Snappy)
I CSD-based Pushdown (Snappy)

Q1

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

(b)

T T T T T T T T T
I No Pushdown (no compression)
I Pushdown (no compression)
[1No Pushdown (Snappy)

I Pushdown (Snappy)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q@8

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Figure 11: (a) PCle data traffic inside storage nodes and (b) network data traffic in the POLARDB cluster.

values of n: 32, 64, and 128. Fig. 8, Fig. 9, and Fig. 10 show
the measured latency of all the 22 TPC-H queries under 32, 64,
and 128 parallel requests, respectively. Each evaluation point
is obtained by averaging the results of 5 independent runs.
The results clearly show the significant benefit of migrating
table scan operations from database nodes to storage nodes,
which can be intuitively justified given the compute-storage
decoupled architecture of POLARDB. The results show that,
as the number of requests increases, CSD-based pushdown
on average can more noticeably outperform CPU-based push-
down in terms of scan latency. For example, in the case of 32
parallel requests (with Snappy compression), when switching
from CPU-based pushdown to CSD-based pushdown, only
4 queries experience more than 30% latency reduction. In
contrast, in the case of 128 parallel requests (with Snappy
compression), when switching from CPU-based pushdown to
CSD-based pushdown, 11 queries experience more than 30%
latency reduction, where the maximum latency reduction is
50% for Q7. This is because, as the number of parallel re-
quests increases, storage nodes will have more parallel table
scan tasks to better utilize the hardware resource in the com-
putational storage drives. Moreover, the results show that the
benefit of CSD-based pushdown tends to improve when table
data are compressed by Snappy. This can be explained as fol-
lows: When table data are compressed, CPU-based pushdown
will consume more CPU resource in order to handle both data
decompression and query processing. Hence a larger num-
ber of parallel requests will more likely make CPU-based
pushdown CPU-bound. In contrast, CSD-based pushdown
can readily leverage the hardware decompression engines in
computational storage drives.

The results also show that CPU-based pushdown may even
slightly outperform CSD-based pushdown in few cases under
32 or 64 requests (e.g., Q10 with 32 requests). This is most
likely caused by the sub-optimal behavior of table scan push-
down scheduling, which leads to significant under-utilization
of the hardware resource in the computational storage drives.
Our future work will focus on improving the quality of ta-
ble scan pushdown scheduling in order to avoid significant
hardware resource under-utilization. Finally, Fig. 11 shows
the measured total volume of PCle data traffic inside stor-
age nodes and total volume of network data traffic between
database nodes and storage nodes. When switching from CPU-
based pushdown to CSD-based pushdown, 7 TPC-H queries
(with Snappy compression) experience more than 50% reduc-
tion on the PCle data traffic volume, where the maximum
PCle data traffic volume reduction is 97% for Q6 followed by
94% for Q14. By moving table scan from database nodes to
storage nodes, 12 TPC-H queries (with Snappy compression)
experience more than 70% reduction on the total network
data traffic volume. The above results clearly demonstrate the
significant reduction in data traffic and scan latency of table
scan pushdown in cloud-native database.

4.4 Summary

In-storage computing is a very simple concept and has been
well discussed in the research community. Nevertheless, its
practical implementation and deployment in real systems has
remained elusive. Meanwhile, it is not uncommon that signif-
icant gain at the component level does not translate to notice-
able benefit at the system level. Hence, commercializing the

38 18th USENIX Conference on File and Storage Technologies

USENIX Association

simple idea of in-storage computing goes far beyond imple-
menting a storage device that can do certain computation, and
demands cohesive innovations across software and hardware
hierarchy. Targeting at bringing in-storage table scan to cloud-
native database systems, we have developed holistic solutions
across the storage engine, filesystem, driver, and hardware
stack. The component-level evaluation results in Section 4.2
show that our implemented computational storage drive can
achieve high-throughput in-storage table scan, leading to sig-
nificant reduction on host CPU usage and storage-to-memory
data movement. The system-level evaluation results in Sec-
tion 4.3 show that our holistic solution indeed can carry the
component-level gain to the system level. The system-level
evaluation also confirms the critical importance of realizing
table scan pushdown from database nodes to storage nodes.

5 Related Work

Prior work has well studied the promise of accelerating
databases using special-purpose hardware (in particular
FPGA and GPU) to complement with CPUs. Many prior
efforts focused on off-loading the table scan in analytical
processing to dedicated accelerators (typically in the form of
PCle cards) built with either FPGA [24,26,29] or GPU [7,25].
Beyond table scan, prior work also investigated the poten-
tial of off-loading more complicated query processing ker-
nels [12, 19, 30]. Nevertheless, in spite of extensive prior
efforts and impressive performance benefits being demon-
strated over the years, IBM/Netezza [24] appears to be the
only known commercially successful product on mainstream
markets. It off-loads data compression and table scan into
dedicated FPGA-based PCle cards in IBM PureData Systems.
Beyond using stand-alone accelerators to complement CPUs,
Oracle even integrated special-purpose analytics acceleration
units into its own SPARC CPU [6], which however appar-
ently suffers from a very high development cost and has been
discontinued by Oracle.

The emerging computational storage enables new oppor-
tunities to implement heterogeneous computing platforms
for databases. The authors of [13] studied the design of
computational storage drives that support key-value store.
Prior work [11, 14] focused on leveraging computational stor-
age drives to realize in-storage table scan. Although prior
work [11, 14] share the same basic concept as this work,
there are several distinct differences: (1) This work presents
a holistic system solution in the context of cloud-native re-
lational database, and demonstrates its effectiveness in real
production environment. In comparison, prior work [11] ran
synthetic queries inside one computational storage drive with-
out integration with databases and system I/O stack. Prior
work [14] implemented a prototype based on a modified
MySQL running on a single server. It did not consider the
integration with a database system with compute-storage de-
coupled architecture, and did not consider the use of multiple

computational storage drives in one server. (2) The basic stor-
age 1/0 performance metrics (i.e., sequential throughput and
IOPS) of the computational storage drives being used in prior
work are much worse than that of leading-edge commodity
NVMe SSDs. As a result, the systems in prior work tend
to be much more I/O-bound and hence more easily benefit
from in-storage table scan. The benefits shown in prior work
may largely diminish when being compared with systems
that deploy leading-edge commodity NVMe SSDs. (3) Both
prior work [11, 14] use embedded processors within SSD
controllers to carry out the data processing, which however
cannot match the multi-GB/s intra-SSD NAND flash memory
access bandwidth and hence cannot achieve high-throughput
predicate evaluation. (4) Data compression is widely used in
databases to reduce the storage bit cost. As a result, compu-
tational storage drives must carry out data decompression in
order to support predicate evaluation on the data read path.
However, prior work [11, 14] did not consider the implemen-
tation of data decompression.

6 Conclusions

This paper reports a cohesive cross-software/hardware im-
plementation that enabled Alibaba cloud-native relational
database POLARDB to effectively support analytical work-
loads. The basic design concept is to dispatch the costly table
scan operations in analytical processing from CPU into com-
putational storage drives. Being well aligned with current
industrial trend towards heterogeneous computing, the key
idea is very simple and can trace back to over two decades
ago. Nevertheless, it is non-trivial to practically materialize
this simple idea with justifiable benefit vs. cost trade-off in the
real world. Under the framework of Alibaba POLARDB, this
work developed a set of design solutions across the entire soft-
ware and hardware stacks to practically implement this simple
idea in production cloud database environment. Experimen-
tal results on a POLARDB cloud instance over 7 database
nodes and 3 storage nodes show that our implementation can
achieve more than 30% latency reduction for 12 out of the
total 22 TPC-H queries. Meanwhile, our implementation can
reduce more than 50% storage-to-memory data movement
volume for 12 TPC-H queries. It is our hope that this work
will inspire much more research and development efforts to
investigate how future cloud infrastructure can leverage the
emerging computational storage drives.

References

[1] SNIA Technical Work Group on Computational Storage.
https://www.snia.org/computational.

[2] D.J. Abadi, S. R. Madden, and N. Hachem. Column-
stores vs. Row-stores: How different are they really? In

USENIX Association

18th USENIX Conference on File and Storage Technologies 39

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Proceedings of the International Conference on Man-
agement of Data (SIGMOD), pages 967-980, 2008.

A. Acharya, M. Uysal, and J. Saltz. Active disks: Pro-
gramming model, algorithms and evaluation. In Proc. of
the International Conference on Architectural Support
for Programming Languages and Operating Systems

(ASPLOS), pages 81-91, 1998.

M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
pages 159-174, 2007.

A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page
layouts for relational databases on deep memory hierar-
chies. The VLDB Journal, 11(3):198-215, Nov. 2002.

K. Aingaran, S. Jairath, and D. Lutz. Software in silicon
in the Oracle SPARC M7 processor. In IEEE Hot Chips
Symposium (HCS), pages 1-31, 2016.

P. Bakkum and K. Skadron. Accelerating SQL database
operations on a GPU with CUDA. In Proceedings of the
Workshop on General-Purpose Computation on Graph-
ics Processing Units, pages 94—-103, 2010.

M. T. Bohr and I. A. Young. CMOS scaling trends and
beyond. IEEE Micro, 37(6):20-29, November 2017.

W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng,
Y. Wang, and G. Ma. PolarFS: An ultra-low latency and
failure resilient distributed file system for shared storage
cloud database. Proc. VLDB Endow., 11(12):1849-1862,
Aug. 2018.

S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger.
Active disk meets flash: A case for intelligent SSDs. In
Proc. of the International ACM Conference on Super-
computing, pages 91-102, 2013.

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J.
DeWitt. Query processing on smart SSDs: Opportuni-
ties and challenges. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data
(SIGMOD), pages 1221-1230, 2013.

R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J.
Tsotras. FPGA-based multithreading for in-memory
hash joins. In Proc. of Conference on Innovative Data
Systems Research (CIDR), 2015.

Z. Istvan, D. Sidler, and G. Alonso. Caribou: Intelligent
distributed storage. Proc. VLDB Endow., 10(11):1202—
1213, Aug. 2017.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

I.Jo,D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D.D. G.
Lee, and J. Jeong. YourSQL: A high-performance
database system leveraging in-storage computing. Proc.
VLDB Endow., 9(12):924-935, Aug. 2016.

S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King,
S. Xu, and Arvind. BlueDBM: An appliance for big
data analytics. In Proc. of the International Symposium
on Computer Architecture (ISCA), pages 1-13, 2015.

Y. Kang, Y.-S. Kee, E. Miller, and C. Park. Enabling
cost-effective data processing with smart SSD. In Proc.
of IEEE Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1-12, May 2013.

J.J. Levandoski, D. B. Lomet, S. Sengupta, R. Stutsman,
and R. Wang. High performance transactions in
deuteronomy. In Proceedings of Biennial Conference
on Innovative Data Systems Research (CIDR), 2015.

D. Li, F. Wu, Y. Weng, Q. Yang, and C. Xie. HODS:
Hardware object deserialization inside SSD storage. In
Proc. of IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pages 157-164, 2018.

M. Najafi, M. Sadoghi, and H.-A. Jacobsen. Flexi-
ble query processor on FPGAs. Proc. VLDB Endow.,
6(12):1310-1313, Aug. 2013.

P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351-385, 1996.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick.
A case for intelligent RAM. IEEE Micro, 17(2):34-44,
Mar 1997.

E. Riedel, G. A. Gibson, and C. Faloutsos. Active stor-
age for large-scale data mining and multimedia. In Proc.
of the International Conference on Very Large Data
Bases (VLDB), pages 62-73, 1998.

S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker,
A.De, Y. Jin, Y. Liu, and S. Swanson. Willow: A user-
programmable SSD. In Proc. of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 67-80, 2014.

M. Singh and B. Leonhardi. Introduction to the IBM
Netezza warehouse appliance. In Proceedings of the
Conference of the Center for Advanced Studies on Col-
laborative Research (CASCON), pages 385-386, 2011.

E. A. Sitaridi and K. A. Ross. Optimizing select con-
ditions on GPUs. In Proceedings of the Ninth Interna-
tional Workshop on Data Management on New Hard-
ware (DaMoN), pages 4:1-4:8, 2013.

40

18th USENIX Conference on File and Storage Technologies

USENIX Association

[26]

[27]

(28]

B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer,
B. Brezzo, D. Dillenberger, and S. Asaad. Database
analytics acceleration using FPGAs. In Proceedings of
the International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 411-420,
2012.

D. Tiwari, S. S. Vazhkudai, Y. Kim, X. Ma, S. Boboila,
and P. J. Desnoyers. Reducing data movement costs us-
ing energy efficient, active computation on ssd. In Proc.
of the USENIX Conference on Power-Aware Computing
and Systems (HotPower), 2012.

A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon aurora: Design

[29]

(30]

considerations for high throughput cloud-native rela-
tional databases. In Proceedings of the ACM Interna-
tional Conference on Management of Data (SIGMOD),
pages 1041-1052, 2017.

L. Woods, Z. Istvan, and G. Alonso. Ibex: An intel-
ligent storage engine with support for advanced SQL
offloading. Proc. VLDB Endow., 7(11):963-974, July
2014.

H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili.
Kernel weaver: Automatically fusing database primi-
tives for efficient GPU computation. In proc. of Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 107-118, 2012.

USENIX Association

18th USENIX Conference on File and Storage Technologies 41

Carver: Finding Important Parameters for Storage System Tuning
Zhen Cao,! Geoff Kuenning,? and Erez Zadok!

LStony Brook University

Abstract

Storage systems usually have many parameters that affect
their behavior. Tuning those parameters can provide sig-
nificant gains in performance. Alas, both manual and au-
tomatic tuning methods struggle due to the large number
of parameters and exponential number of possible configu-
rations. Since previous research has shown that some pa-
rameters have greater performance impact than others, fo-
cusing on a smaller number of more important parameters
can speed up auto-tuning systems because they would have
a smaller state space to explore. In this paper, we propose
Carver, which uses (1) a variance-based metric to quantify
storage parameters’ importance, (2) Latin Hypercube Sam-
pling to sample huge parameter spaces; and (3) a greedy but
efficient parameter-selection algorithm that can identify im-
portant parameters. We evaluated Carver on datasets con-
sisting of more than 500,000 experiments on 7 file systems,
under 4 representative workloads. Carver successfully iden-
tified important parameters for all file systems and showed
that importance varies with different workloads. We demon-
strated that Carver was able to identify a near-optimal set of
important parameters in our datasets. We showed Carver’s
efficiency by testing it with a small fraction of our dataset;
it was able to identify the same set of important parameters
with as little as 0.4% of the whole dataset.

1 Introduction

Storage systems are critical components of modern com-
puter systems that have significant impact on application per-
formance and efficiency. Most storage systems have many
configurable parameters that control and affect their overall
behavior. For example, Linux’s Ext4 [22] offers about 60
parameters, representing over 1037 potential configuration
states. The default settings are often sub-optimal; previous
research has shown that tuning storage parameters can im-
prove system performance by a factor of as much as 9x [59].

To cope with the vast number of possible configurations,
system administrators usually focus on using their domain
expertise to tune a few frequently used and well-studied pa-
rameters that are believed to significantly impact system per-
formance. However, this manual-tuning approach does not
scale well in the face of increasing complexity. Modern stor-
age systems use different file system types [21, 37, 56, 65],
new hardware (SSDs [26,46], SMR [1, 2], NVM [33,73]),
multi-tier and hybrid storage, and multiple virtualization lay-
ers (e.g., LVM, RAID). Storage systems range from one or
a few identical nodes to hundreds of highly heterogeneous

and

2Harvey Mudd College

configurations [23,57]. Worse, tuning results depend heav-
ily on hardware and the running workloads [10, 11, 70].

Recently, several optimization methods have been used to
auto-tune storage systems, achieving good performance im-
provements within reasonable time frames [11,40]. These
auto-tuning techniques model the storage system as a black
box, iteratively trying different configurations, measuring an
objective function’s value, and—based on previously learned
information—selecting new configurations to try. However,
many black-box auto-tuning techniques have difficulty scal-
ing to high dimensions and can take a long time to converge
on good solutions [61]. Therefore, the problem of dealing
with the vast number of storage-parameter configurations re-
mains largely unsolved.

In machine learning and information theory, dimensional-
ity reduction is often applied to explosively sized datasets [,
48]. We believe it can also be applied to storage-parameter
selection. Previous research has reported that certain stor-
age parameters have greater impact on performance than
others [11]. By eliminating the less important parameters,
and ordering parameters by importance, the parameter search
space—and thus the number of configurations that need to be
considered by either humans or algorithms—can be reduced
significantly [28].

Evaluating a single storage configuration is time consum-
ing, and a thorough analysis requires many configurations to
be explored; these evaluations can span days or even months.
One purpose of a storage parameter-selection algorithm is to
be able to pick important parameters by evaluating only a
small number of configurations, yet still select the important
parameters with high accuracy.

In this paper, we propose Carver, which efficiently selects
a subset of important storage parameters. Carver consists
of three components: 1) a variance-based metric to quantify
the importance of a storage parameter; 2) a sampling method
to intelligently pick a small number of configurations rep-
resenting the whole parameter space; and 3) a greedy al-
gorithm to select important parameters. Carver outputs a
set of selected important parameters; these can be used as
pre-selected parameters for auto-tuning algorithms, as well
as helping human experts better understand the behaviors of
targeted storage systems. As shown in Section 5, the afore-
mentioned three components give Carver the ability to select
a near-optimal subset of important parameters by exploring
relatively few configurations. With this efficiency, Carver
could complete its parameter selection in a relatively short
period of time in a real deployment.

Carver was thoroughly evaluated on (publicly available)

USENIX Association

18th USENIX Conference on File and Storage Technologies 43

experimental data collected from our previous work [11],
in which we conducted benchmarks on 7 file systems un-
der 4 workloads over a time span of around four years. In
that work, for each file system we picked 8-10 frequently
tuned parameters and evaluated all possible storage configu-
rations resulting from changing the values of these selected
parameters. We collected I/O throughput and latency data
throughout the evaluation. The data set consists of more than
500,000 benchmark runs (data points) in total. One advan-
tage of having collected the datasets from the whole configu-
ration space is that they can be used as the ground truth when
testing Carver with only a small subset of configurations.

With the collected datasets, we first confirmed that cer-
tain parameters have more impact on system throughput or
latency than other parameters, using Carver’s proposed im-
portance metric. We found that in all datasets there is always
a small set of parameters that have significantly more impact
on throughput than all the others. For example, under a File-
server workload, the two most important parameters for Ext4
were Journal Option and I/O Scheduler. We also observed
that the set of important parameters varies with different
workloads. In the same Ext4 example, the two most impor-
tant parameters became Block Size and Inode Size when the
workload changed to Dbserver. We also demonstrated that
our variance-based metric can always find a near-optimal set
of important parameters in these datasets.

We then demonstrated Carver’s efficiency in identifying
important parameters by applying it to different measure-
ments, such as I/O throughput and latency. Carver can easily
be extended and applied equally well to other quantifiable
objectives such as energy consumption, and even compos-
ite cost functions [41]. In our evaluation, Carver uses Latin
Hypercube Sampling (LHS) as the sampling method. LHS
allows Carver to identify the set of important parameters us-
ing a small number of experimental runs that explore only a
fraction of all configurations. For instance, among all 1,000
repeated runs, Carver was able to find the two most impor-
tant parameters for Ext4 using only 0.4% of the evaluation
results. We believe Carver’s efficiency in finding the most
important parameters quickly and accurately is critical and
promising, since (1) it can be applied to new storage systems
or environments, and (2) the parameters it identifies can then
be used by storage administrators or auto-tuning algorithms
to further optimize the system.

The three key contributions of this paper are:

1. We provide a thorough quantitative analysis of the ef-
fects of storage parameters on system performance, for
7 different file systems across 4 representative work-
loads.

2. We propose Carver, which uses a variance-based metric
of storage-parameter importance and Latin Hypercube
Sampling to drive a greedy algorithm that can identify

the most important parameters using only a small num-
ber of experimental runs.

3. We thoroughly evaluated Carver’s ability to identify
important parameters in terms of I/O throughput and
latency. We demonstrated that Carver successfully
chose a near-optimal set of important parameters for all
datasets used.

2 Motivation

In this paper, we define a storage system as the entire storage
stack from file systems to physical devices, including all in-
termediate layers. Storage systems have many configurable
options that affect their performance [10, 66], energy con-
sumption [59], reliability [63], etc. We define a parameter
as one configurable option, and a configuration as a com-
bination of parameter values. For example, Ext4’s Journal
Option parameter can take three values: data=writeback,
data=ordered, and data=journal. Based on this, [jour-
nal=“data=writeback”, block_size=4K, inode_size=4K] is
one configuration with three specific parameter values (Jour-
nal Option, Block Size, and Inode Size). The list of all possi-
ble (legal) configurations forms a parameter space.

Storage systems usually come with many configurable pa-
rameters that control and affect their overall behavior. An
earlier study [59] showed that tuning even a tiny set of pa-
rameters could improve performance and energy efficiency
by as much as 9x. However, tuning storage systems is not
an easy task; we believe its challenges arise from at least the
following four aspects:

1. Large parameter spaces. Storage systems are com-
plex, incorporating numerous file system types [21,37,
56, 65], devices [1, 2, 26, 33,46, 73], and intermediate
layers [52,54]. They often span large networks and
distributed environments [6, 23, 30, 57]. Modern stor-
age systems have hundreds or even thousands of tun-
able parameters—and networks are also parameterized.
Worse, evaluating a single configuration can take many
minutes or even hours, making experimental tuning un-
usually time-consuming.

2. Nontransferable tuning results. Evaluation results de-
pend on the specific environment, including the hard-
ware, software, and workload [10,11,59]. A good con-
figuration for one setup might perform poorly when the
environment changes even slightly [60].

3. Nonlinear parameters. A system is nonlinear when
the output is not directly proportional to the input.
Many computer systems are nonlinear [16], including
storage systems [66]. This makes traditional regression-
based analysis more challenging [50, 58].

4. Discrete and non-numeric (categorical) parameters.
Some storage parameters are continuous, but many are

44 18th USENIX Conference on File and Storage Technologies

USENIX Association

discrete and take only a limited set of values. Worse,
some are categorical (e.g., the I/O scheduler name or
file system type). Many optimization techniques per-
form poorly on discrete values, and often cannot ad-
dress categorical values efficiently or at all [24,49].

Given these challenges, manually tuning storage systems
becomes nearly impossible, and automatic tuning can be
computationally infeasible. Recent efforts have used black-
box optimization techniques to auto-tune storage configura-
tions [11,40], addressing several of the above challenges and
achieving useful performance improvements. However, we
believe that the challenge of tuning storage systems is far
from being solved. It has been shown that several of these
black-box optimization techniques have scalability problems
in high-dimensional spaces [61]. Therefore, directly apply-
ing them to tuning systems with hundreds or thousands of
parameters would be difficult.

In machine learning and information theory, dimensional-
ity reduction is a common technique for coping with large-
sized datasets [5,48]. If it can be applied in storage systems,
it will significantly reduce the search space [28], making it
easier for humans or algorithms to tune storage systems.

Previous work has reported that not all storage parameters
have an equally important performance impact: a few have
much greater effect than others [11]. We observed similar
trends from our collected datasets. Figure 1 demonstrates
the impact of the parameters Block Size and I/O Scheduler
on the throughput of an Ext4 file systems under a typical
file server workload. Each boxplot in the figure represents a
median and range of throughput that any Ext4 configuration
can produce after fixing the value of one parameter (shown
on the X axis). We see that setting the I/O Scheduler to dif-
ferent values (blue bars) makes little difference, resulting in
nearly equal medians and ranges of throughput. However,
setting the value of Block Size has a greater impact on both
the median and the throughput range; specifically, to reach
the maximum throughput, Block Size must be set to 4K. Al-
though choosing a large Block Size is a decision that may
be obvious to an expert, we have made similar observations
in other storage systems and with different workloads. This
naturally led us to investigate how we can quantify the im-
pact or importance of each storage parameter, and how we
can select important parameters efficiently.

3 Dimensionality Reduction in a Nutshell

In this section we briefly discuss some commonly applied
approaches to dimensionality reduction, and argue that some
metrics are not suitable for quantifying storage parameters’
importance. Note that different disciplines might use some-
what different terminology than storage systems. For exam-
ple, parameters are analogous to features in machine learn-
ing, independent variables in regression analysis, and dimen-
sions in mathematics; optimization objectives can be called
dependent variables or target variables. When discussing

‘ge0HHR

! ! ! ! ! !

Throughput (Kops/sec)

SO N B~ N ®
T
L

bs=lk bs=2k bs=4k io=noop io=cfq io=deadline
Figure 1: Range of throughput after fixing the value of one param-
eter. Red bars represent setting the block size to 1K, 2K, or 4K,
respectively, while blue bars represent setting the 1/0 scheduler to
noop, cfq, or deadline.

different techniques (Section 3), we use the field-appropriate
terms.

Many approaches have been proposed to address the curse
of dimensionality, which refers to the fact that data be-
come sparse in high-dimensional spaces and thus make al-
gorithms designed for low-dimensional spaces less effective.
Dimensionality-reduction approaches can be generally sum-
marized into two categories: feature extraction and feature
selection [25,39].

Feature extraction refers to projecting high-dimensional
data into low-dimensional spaces; the newly constructed fea-
tures are usually linear or nonlinear combinations of the orig-
inals. Common feature-extraction methods include Princi-
pal Component Analysis (PCA) [62], Independent Compo-
nent Analysis [29], and Linear Discriminant Analysis [47].
One major drawback of feature extraction is that the physical
meaning of each feature is lost by the projection and the non-
linear combination of many dimensions into fewer ones [39].
Common feature-extraction techniques thus conflict with our
goal in this paper, which is to select a few original storage
parameters that can be understood and interpreted.

Conversely, feature selection directly selects a subset of
features from the original ones, with the intention of find-
ing only those that are important. Feature-selection methods
can be classified as supervised or unsupervised [39]. Unsu-
pervised feature selection, such as Principle Feature Anal-
ysis [43], chooses a subset that contains most of the essen-
tial information based on relationships among features. It
does not consider the impact of features on optimization ob-
jectives during the selection phase. In contrast, supervised
feature selection chooses a subset that can discriminate be-
tween or approximate the target variables. Examples include
Lasso [68] and decision-tree based algorithms [31]. Since
we are interested in finding parameters that have significant
impact on our optimization objectives, such as I/O through-
put, supervised feature selection best fits our needs.

Several intrinsic properties of our project also limit our
choice of feature-selection methods. Many storage parame-
ters are discrete or categorical (see Sections 2 and 5.1). The

USENIX Association

18th USENIX Conference on File and Storage Technologies 45

performance of storage systems is usually presented as I/O
throughput or latency, which are continuous. Therefore, an
ideal feature-selection method should work with categori-
cal features and continuous targets. Although there are dis-
cretization techniques that can break continuous target vari-
ables into discrete sections, feature-selection results depend
heavily on the quality of discretization [39]. One common
approach for dealing with categorical features is to trans-
form each of them into dummy binary parameters that take
values of 0 or 1. For instance, io_scheduler with three pos-
sible values (noop, deadline, and cfg) can be converted into
three binary features: “io_scheduler = noop”, “io_scheduler
= deadline”, and “io_scheduler = cfq”. All the binary fea-
tures can take on values O or 1. This approach is unsatisfac-
tory because it selects the individual binary features instead
of the original categorical ones. Moreover, converting a cat-
egorical parameter with N values into N separate binary pa-
rameters would expand the parameter space exponentially.
For this reason, we feel that Lasso [68] is not suitable for
our problem, even though it has been successfully applied
to selecting important knobs in databases [70]. Although
Group Lasso has been proposed to partially address this defi-
ciency [14,34,74], the computational cost of the Lasso-based
methods is still high [39].

Another popular category of feature-selection methods
has been built upon information theory [8,20,31,39]. These
approaches usually define a metric for the homogeneity of the
target variable within certain subsets. Commonly used met-
rics include Gini impurity [39] and Entropy [5] for discrete
target variables, and Variance [7] for continuous variables.
In this paper we propose Carver, which applies a variance-
based metric for parameter importance, as described in Sec-
tion 4.1.

4 Design of Carver

In this section we detail the design of Carver. Carver con-
sists of three components: 1) a variance-based metric for
measuring storage parameters’ importance (Section 4.1), 2) a
sampling method to select a small number of configurations
from huge parameter spaces—in this paper using Latin Hy-
percube Sampling (Section 4.2), and 3) a greedy algorithm
for finding important parameters (Section 4.3). A good sam-
pling method allows Carver to select a near-optimal subset
of important parameters while having to evaluate relatively
few configurations. In this section we use throughput as an
example of the target (objective) variable, but Carver is also
applicable to many other metrics.

4.1 Measuring Parameter Importance

Carver uses a variance-based metric to quantify storage-
parameter importance. The variance of a set S’ of storage

configurations is defined as usual:

Var(S) = ‘—; z:(yZ —)2, (1)

where y; is the throughput of the i-th configuration; is
number of configurations in .S; and y is the average through-
put within S. Inspired by CART (Classification and Regres-
sion Trees) [7], we use the reduction in variance to measure
parameter importance. We extend CART’s original defini-
tion to support categorical parameters taking an arbitrary but
finite number of values, as compared with only two in CART.

We define the parameter importance PI of a parame-
ter P that can take a finite number of categorical values,

{pla "-apn}7n > 1, as:

PI(P) = Var(S ar(Sp=p,) (2

Z |SP pl

|5
Here S is the original set of configurations, and Sp—,, is
the subset of configurations with the parameter P taking the
value p;. Intuitively, an important parameter P divides a set
S of configurations into multiple subsets, and the weighted
sum of variances within each subset should be much smaller
than the variance of .S. Thus, a high PI indicates a parameter
that has a significant effect on performance.

The variance-based metric defined in Carver uses a greedy
approach, where the next important parameter will be picked
by calculating its importance when fixing the values of previ-
ously selected parameters. Therefore, for parameter) with
a total of m possible categorical values {q1, ..., ¢m},m > 1,
we define the conditional parameter importance for @, given
P =pas:

CPI(QIP = p) =

So=q; P=
Var(Sp=p) — Z |C|QSZJ’PP Var(Sg—q, 1 p=p))
j=1 =P

where Sg—,, p=p denotes the set of configurations with pa-
rameters P and () taking values p and g;, respectively. Sim-
ilar to Equation 2, given P = p, the next most important
parameter () divides Sp—,, into multiple subsets, and if @
is important then the weighted sum of variances within each
subset will be much smaller than variance of Sp—,. To re-
move the restriction to a given value p, we define CPI(Q|P)
as the maximum of CPI(Q|P = p;) over all possible values
p; € {p1,...,pn} that parameter P can take:

CPI(Q|P) = max CPI(Qlp = p:))

Note that in this paper we use only variance-based metrics
to measure parameter importance and select the most criti-
cal subset. We leave storage-performance prediction, which
requires a large amount of training data [71], for future work.

46 18th USENIX Conference on File and Storage Technologies

USENIX Association

4.2 Sampling

Given the large parameter space and the time needed to eval-
uate a single storage configuration, we must limit the num-
ber of experimental runs required to select important pa-
rameters. Therefore, Carver needs an exploratory method
that can cover the space uniformly and comprehensively, yet
sparsely. In this work, we chose Latin Hypercube Sampling
(LHS) [45].

LHS is a stratified sampling method [13]. In two dimen-
sions, a square grid containing samples is a Latin Square iff
there is only one sample in each row and each column. A
Latin Hypercube is the generalization of a Latin Square to
higher dimensions, where each sample is the only one in each
axis-aligned hyperplane containing it [36]. LHS has been
shown to be more effective in exploring parameter spaces
than random sampling [45] and Monte Carlo sampling [15].
It has been successfully applied in sampling configurations
of storage [27] and cloud systems [42].

Previous work has also applied Plackett-Burman (P&B)
Design [53] to evaluate the impact of parameters in storage
benchmarks [51] and databases [18]. However, P&B design
requires each parameter to have only two possible values,
and the target variable must be a monotonic function of the
input parameters. Neither requirement holds in our problem.

We demonstrated that LHS enables Carver to pick impor-
tant storage parameters with only a small number of evalua-
tions; see Section 5.4.

4.3 Parameter-Selection Algorithm

Based on our proposed measurements of parameter impor-
tance and on Latin Hypercube Sampling (LHS), the pseudo-
code for Carver’s parameter-selection algorithm is as fol-
lows:
Algorithm 1 Parameter Selection
Input: P: set of parameters, S initial set of configurations;
stop(S, selected): user-defined stopping function.
selected + {}
S* + LHS(S)
repeat
p* « argmax CPI(p|selected),p € P
selected.insert(p*)
P.remove(p*)
until stop(S, selected) is true or P is empty
Output: selected

In this algorithm, Carver takes a set of initial parameters
and configurations. It first uses LHS to pick a small number
of configurations and evaluates them. Carver then greedily
selects the current most important parameters based on the
evaluation results for the selected configurations. The most-
important parameter is selected based on the highest param-
eter importance value. Carver fixes the value of the most
important parameter and calculates the conditional param-
eter importance (CPI) values for the remaining parameters;

the parameter with the highest CPI is selected as the second-
most important. Carver continues evaluating important pa-
rameters by fixing the values of previously selected parame-
ters, until the stop function returns true. A naive stop func-
tion could be sizeof(selected) > N, which would select
the N most important parameters. An alternative variance-
based stopping function might stop when the variances of
subsets of configurations (given the current selected parame-
ters) are below a certain threshold «J. This stopping condition
indicates that by setting the values of the selected parame-
ters, the system throughput already falls into a small enough
range that there is little potential gain from additional tun-
ing. In our experiments, we applied this idea and used the
Relative Standard Deviation (RSD) [13], or Coefficient of
Variation, to define our stopping condition. The RSD of a
set S of configurations is defined as:

1 [Var(S)
RSD(S) = Vo1

&)

where NNV is the number of configurations and p is the mean
throughput of configurations within S. We chose RSD be-
cause it is normalized to the mean throughput and is repre-
sented as a percentage; that way the same threshold can be
used across different datasets. We used a threshold of 2% in
our experiments; as seen in Section 5, parameters selected
by this criterion gave us near-optimal and stable throughput.

5 Evaluation

In this section we detail our evaluation of Carver. We
first cover the experimental settings we used for collecting
datasets in Section 5.1. Section 5.2 provides an overview
of storage-parameter importance using our variance-based
metric. Section 5.3 demonstrates that the subset of impor-
tant parameters selected by Carver’s importance metric is
near-optimal. We show the efficiency of Carver’s parameter-
selection algorithm in Section 5.4, from multiple perspec-
tives.

5.1 Experiment Settings

To thoroughly study the problem of storage parameter se-
lection and evaluate Carver, we used datasets originally col-
lected for our previous work [11]. The whole dataset con-
sists of more than half a million benchmark results on typical
storage systems. We describe the experimental settings and
collected datasets in this section.

Hardware. We performed experiments using several Dell
PE R710 servers, each with two Intel Xeon quad-core
2.4GHz CPUs, 24GB RAM, and four storage devices: two
SAS HDDs, one SATA HDD, and one SSD. Ubuntu 14.04
was installed on all machines with Linux kernel 3.13. We
denote this configuration as S1. We also collected several
datasets on a slightly different configuration, S2, where we
used the GRUB boot loader to limit the available memory to

USENIX Association

18th USENIX Conference on File and Storage Technologies 47

4GB. We explain the reasons for this change below. We also
upgraded the system to Ubuntu 16.04 with kernel 4.15. Ex-
periments on S2 were only conducted on the SSD, given the
increasing use of SSDs in production systems.

Workload. We benchmarked storage configurations with
four common macro-workloads generated by Filebench [3,
67]:

1. Mailserver mimics the I/O workload of a multi-
threaded email server;

2. Fileserver emulates a server hosting users’ home direc-
tories;

3. Webserver emulates a typical static Web server with a
high percentage of reads; and

4. Dbserver mimics the behavior of an Online Transaction
Processing (OLTP) database.

Before each experimental run, we formatted and mounted
the storage devices with the selected configuration. In set-
ting S we chose Filebench’s default workload profiles, lim-
iting the working-set size so we could evaluate more config-
urations within a practical time period. We call those pro-
files Mailserver-default, Fileserver-default, etc. Our previ-
ous study’s goal, which applies to this work as well, was
to allow us to explore a large set of parameters and values
quickly. By evaluating each configuration once, saving the
results, and later looking them up in our database, we could
test Carver in seconds instead of waiting for several hours to
run the benchmarks selected by Algorithm 1. Clearly, a real-
world deployment would not have such a database available
and a search for the most important parameters would require
running actual benchmark tests, each of which would take
significant time. However, as shown in Section 5.4, Carver
tests few enough configurations that even these experiments
can be completed in a short time, ranging from a few hours
to a few days. An additional benefit of the full database
is that we were able to compare configurations found by
Carver with the true best configuration found by our com-
plete datasets.

Because we wanted our database to record results of as
many experiments as possible, we decided to trade off a
smaller working set size in favor of increasing the number
of configurations we could explore in a practical time pe-
riod. Our experiments demonstrated a wide range of perfor-
mance numbers and are suitable for the purpose of studying
storage-parameter importance. As shown in Table 2, storage
parameters do have a wide range of importance under these
workloads. We first ran each workload for up to 2 hours
to observe its behavior, and then chose a running time long
enough for the cumulative throughput to stabilize; we found
100 seconds sufficient for this purpose. In setting S2, we in-
creased the working-set size to 10GB and the running time

to 300 seconds, but used relatively fewer total configura-
tions, which we denote Mailserver-10GB, Fileserver-10GB,
etc. The RAM size was set to 4GB in S2 so that the bench-
mark working set could not fit into memory completely, thus
forcing more I/Os.

Parameter space. To evaluate our parameter-selection al-
gorithm, we ideally want our parameter spaces to be large
and complex. Considering that evaluating storage systems
takes a long time, we decided to experiment with a reason-
ably sized set of frequently studied and tuned storage pa-
rameters. We selected them in close collaboration with sev-
eral storage experts who have either contributed to storage-
stack designs or have spent years tuning storage systems in
the field. We chose seven Linux file systems that span a
wide range of designs and features: Ext2 [12], Ext3 [69],
Ext4 [21], XFS [65], Btrfs [56], Nilfs2 [35], and Reiserfs [55].
We experimented with various types of parameters, includ-
ing file-system formatting and mounting options and some
Linux kernel parameters. Table 1 lists all our file systems,
their (abbreviated) parameters, and the number of possible
values that each parameter can take. Note that under S7 we
conducted benchmarks on four storage devices, and we treat
the device as one of the parameters. Under S2 we focused
on Ext4 and XFS experiments with an SSD, but evaluated a
wider variety of parameters. Cells with “~” mean that the pa-
rameters are inapplicable for the given file system. Cells with
“dfit” mean we used the default value for that parameter, and
so that parameter was not considered during the parameter-
selection phase. Note that the total number of configurations
for each file system does not necessarily equal the product
of the number of parameter values, because some parameter
combinations are invalid (e.g., in Ext4 the inode size cannot
exceed the block size). The total number of configurations
across all datasets is 29,544. We ran all configurations in
each parameter space under four workloads. We repeated
each experiment at least three times to get a stable and rep-
resentative measurement of performance. Over a time span
of more than two years, we collected data from more than
500,000 experimental runs.

Although we have been collecting benchmarking data over
a time span of 4 years, we focused on one dataset at a time,
where we benchmarked one file system on the same hard-
ware under the same workload. Each dataset’s collection
took 1-2 months. Therefore, there may be minor hardware
wear-out effects. We repeated each experiment for at least 3
runs, and made sure the variation among the results of these
repeated runs were acceptable [10]. We used the average
throughput and latency numbers among repeated runs when
evaluating Carver.

5.2 Parameter Importance: an Overview

We have collected experimental data from 9 different param-
eter spaces (Table 1) under 4 representative workload types.
Having the complete datasets allowed us to accurately cal-

48 18th USENIX Conference on File and Storage Technologies

USENIX Association

Set-| File |BIk|Inode|Block|Jour-|Flex|Read-| XY > |Alle|LogiLog| N de|Spec| Atime| 170 | P | Drty
ting | System |Size| Size | Grp | nal |Grp |ahead Sctr| Grp| Buf | Buf Size| Size | Opt | Opt |Schd Bg Ratio Dev | Total
Size | Cnt | Cnt |Size Ratio

S1| Ext2 | 3 7 6 - - - - -1 =-1-=-1- - - 2 3 | dfit | dfit | 4 |2,208
S1| Ext3 | 3 7 6 3 - - - -1 =-1=-1= - - 2 3 | dfit | dfit | 4 |6,624
S1 | Ext4 3 7 6 3 dfit | dfit - - - - - - - 2 3 dfit | dfit 4 16,624
S1| XFS | 3 5 - - - — | dfit| 9 |dfit|dfit|dfit| - - 2 3 | dfit | dfit | 4 {2,592
S1| Btrfs | — 5 - - - - S T I 3 4 2 3 | dfit | dfit | 4 288
S1 | Nilfs2 | 3 9 2 - - - - - - - - - 2 3 dfit | dfit 4 1,944
S1 |Reiserfs| dfit | - - 3 - - - - -1 -1 - - 2 2 3 dfit | dfit | 4 192
S2| Ext4 | 3 3 dfit 3 3 3 S T I - - | dfit 3 2 3 |SSD|3,888
S2 | XFS 3 2 - - - - 3 4 2 2 2 - - dfit 3 2 3 [SSD|5,184

Table 1: Details of parameter spaces.

Each cell gives the number of settings we tested for the given parameter and file system; empty cells

represent parameters that are inapplicable to the given file system and “dflt” represents those that were left at their default setting. We
evaluated 29,544 configurations in total under four workloads, and each experiment was repeated 3+ times.

culate and evaluate the importance of different storage pa-
rameters, which serves as the ground truth when evaluating
Carver’s parameter-selection algorithm, whose goal is to ex-
plore only a small fraction of the parameter space yet find the
same subset of important parameters as if we had explored
it all. In this section, we first provide an overview of the
importance of storage parameters.

3%10’
PI
=
0
4%10° -
CPI (X | journal)
=
@)
0
5¢10° . ,
CPI (X | journal, device)
=
@]

0 Block Inode Dev.

Size Size

Block Atime Journal Special I/O
Group Option Option Option Schd.

Figure 2: Top 3 most important Ext4 parameters under S1,
Fileserver-default. The most important parameter is measured by
its PI; the second and third parameters are evaluated by their CPI
given higher-ranked parameters. The Y-axis scales in the three sub-
figures are different.

Figure 2 shows the three most important parameters for
Ext4 under SI, Fileserver-default. The parameter with the
highest importance was evaluated and selected by its Pa-
rameter Importance (PI), as defined in Section 4.1. The
second most important parameter was chosen by its Con-
ditional Parameter Importance (CPI) given the most impor-
tant one, in this case CPI(X |journal). Similarly, the 3
most important parameter was evaluated by comparing its
CPI(X |journal, device). Note that the Y-axis scales in the
three sub-figures are different (but higher is always better).
The X axis shows the Ext4 parameters that we experimented
with. As shown in the top subfigure in Figure 2, Journal Op-
tion turns out to be the most important parameter for Ext4
under S/, Fileserver-default. It has the highest variance re-

duction, 2.7x107. In comparison, the PI of Device is around
106, while all other parameters are under 5 X 104. Similarly,
the second and third most important parameters are Device
and Block Size, respectively, both with a much higher CPI
value than other parameters.

We discovered that parameter importance depends heavily
on file system types and on the running workload. Table 2
lists the top 4 important parameters for Ext4, XFS, and Btrfs
under various workload types; the column header #N identi-
fies the N™ most important parameter. We also applied the
stopping criterion described in Section 4.3. Cells marked as
“~" here indicate that no parameter gave a large reduction in
variance, and thus no parameter was considered important.
To avoid cluttering the paper, we only list 3 file systems un-
der 4 workloads here, and we show only the top 4 ranked
parameters under each case.

As we can see in Table 2, the important parameters are
quite diverse and depend significantly on the file system
types and workloads. For Ext4 under S2 and Dbserver-
10GB, the top 4 ranked parameters are Block Size, Inode
Size, I/O Scheduler, and Journal Option. When the work-
load changes to Webserver-10GB, the top 4 parameters be-
come Inode Size, Flex BG, Block Size, and Journal Option.
For Fileserver-10GB under Ext4, we found only three im-
portant parameters, indicating that fixing the values of these
three parameters already resulted in quite stable throughputs;
we discuss this observation in more detail in Section 5.3. We
found similar results on XFS: the values and number of im-
portant parameters depended heavily on the workloads. In-
terestingly, for Btrfs under S1, Webserver-default, we did
not find any important parameters. That is because the
Webserver-default workload consists primarily of read op-
erations, and the default working-set size used by Filebench
is small. All Btrfs configurations actually produce quite sim-
ilar throughput under Webserver-default. For this reason, we
also collected datasets from workloads with a much larger
working-set size (10GB), denoted as S2.

USENIX Association

18th USENIX Conference on File and Storage Technologies 49

Setting Workload File System | Parameter #1 | Parameter #2 Parameter #3 Parameter #4
S2 Fileserver-10GB Ext4 Journal Option | I/O Scheduler Inode Size -
S2 Dbserver-10GB Ext4 Block Size Inode Size I/0O Scheduler Journal Option
S2 Mailserver-10GB Ext4 I/0 Scheduler Inode Size Journal Option Block Size
S2 Webserver-10GB Ext4 Inode Size | Flex Block Group Block Size Journal Option
S2 Fileserver-10GB XFS I/0 Scheduler Inode Size Allocation Group Count -
S2 Dbserver-10GB XFS Block Size Log Bufter Size Dirty Ratio Alloc Group Count
S2 Mailserver-10GB XFS Inode Size I/0 Scheduler Log Buffer Size Allocation Size
S1 Fileserver-default Btrfs Special Option Inode Size Device -
S1 Mailserver-default Btrfs Inode Size Device - -
S1 Webserver-default Btrfs - - - -

Table 2: Top-ranked important parameters for various file systems. The column header #N identifies the N most important parameter.

5.3 Evaluating The Greedy Algorithm

In Section 5.2 we used Carver’s variance-based metric to
pick a set of important parameters for our datasets. However,
we must also establish that the selection results are good, i.e.,
whether there exists another set of parameters, with equal
or smaller size, that can lead to an even narrower range of
throughput. We demonstrate the effectiveness of Carver’s
variance-based metric in this section.

100% T
N=1 @
N=2 e

80% i
g J
g %
>
j5)
A 60% B
k=t
5 ™Y
g M
% 40% - 1
>
£]
L5}
4

20% i

[] [‘
° ° ° ..
0% 1 1 \“
0 5 10 15 20

Average Throughput (kop/s)

Figure 3: Impact of parameters on performance and stability (Ext4,
S1, Fileserver-default). Each dot represents a set of configurations
created by fixing N parameters, where different dot sizes and colors
are used for different values of N. Performance is measured by the
average throughput (X axis) of all possible configurations within
each set; stability is measured by the relative standard deviation (Y
axis; lower is better) of the throughput within each set.

Figure 3 shows the results for Ext4 under S/, Fileserver-
default, where each point represents a set of configurations
that fixes the values of NV parameters. For N = 1, we have
28 points, which equals the sum of possible value counts for
each parameter, as shown in Table 1. There are 374 points
for N = 2. We use different point colors and sizes for differ-
ent numbers of parameters. We only plot up to N = 2 here;
we extend to N = 4 in Figure 4. Larger points are used for
smaller IV values, since fixing fewer parameter values would
result in a larger number of usable configurations. For exam-
ple, fixing journal_option = ordered in our datasets leads to a

10% T

= N=1 @
2 gl N=2 @ |
g~ ° (ordered) N=3 o
8 . N=4 °
T 6% | (writeback) Carver 4 |
_5.2
< | -
S 4%
E (ordered, ssd)
s 2% (ordered, ssd, 32)
= (ordered, sas, ‘./ (ordered, ssd,

0% 32,512)\, o~ 32.512)

14 15 16 Max

Average Throughput (kop/s)

Figure 4: A zoom into the bottom-right part of Figure 3 (the “best”
quadrant), with points for N = 3,4 added. Plotted points show
either the highest average throughput or the lowest relative stan-
dard deviation among all configurations gotten by fixing the values
of N parameters. The labels around the dots show the correspond-
ing fixed parameter values. The parameter values are ordered by
(Journal Option, Device, Block Group, and Inode Size). The tri-
angle marks the point achieved by fixing the values of parameters
selected by Carver.

set of 2,208 configurations; fixing journal_option = ordered,
device=ssd reduces that number to 552.

In Figure 3, performance is measured by the average
throughput within each set of configurations, as presented on
the X axis. The Y axis shows the stability of each set, mea-
sured by the Relative Standard Deviation (RSD) of through-
put within the set. We chose to use the RSD rather than
variance because the figure shows sets of varying numbers
of configurations; RSD is normalized by the configuration
count and the average throughput, and thus is easier to com-
pare. If a set of parameters is important, it should ideally
lead to a larger average throughput and lower RSD; therefore
the best points should cluster in the bottom-right quadrant of
Figure 3. As we can see from that figure, fixing just one
parameter value (purple dots) causes the mean throughput
to range from 2.5Kops/s to around 15Kops/s, and the RSD
ranges from around 7% to 76%. The upper-left purple point
(2,500, 76%) represents the configurations achieved by set-
ting Journal Option to journal. The other two points, repre-
senting Journal Options of ordered and writeback, turn out
to be the best among all purple points. Both are seen near
the bottom right with mean throughput of around 15K and

50

18th USENIX Conference on File and Storage Technologies

USENIX Association

Running Time (min)

10 20 40 80 160 320 640

(&} T T T T

100

£ 80}

&

5 60

(]

50 40+

= #l ——
8 201 # —
5 #3 ——
Q—{ () L I I

0.1 02 04 08 1.6 32 64
Percentage of Dataset (%)

(a) Ext4, Fileserver-default

Running Time (min)

20 40 80

S T T T

100 F -
g 80| 1
[

S 60| ;
(]

& 40} .
£ —
8 20 #2 N
s 0 ‘ ‘ #3
Yy 8 16 32

Percentage of Dataset (%)
(b) Btrfs, Fileserver-default

Figure 5: Carver’s ability to correctly find the top 3 important parameters within small portions of the dataset. The X1 (bottom) axis (loga
scale) shows the percentage of the dataset that was used; for each percentage we ran Carver 1,000 times on different, random LHS-compatible
subsets of that size. The X2 (top) axis (log2) shows the running time that would be needed to benchmark the selected configurations. We
used the PI calculated from the whole dataset as ground truth. The Y axis shows the percentage of runs that were able to correctly find the
important parameters. The solid, dashed, and dotted lines show the results for finding the parameters ranked 1%, 2" and 37, respectively.
Note that although Btrfs required a larger percentage of the dataset, the absolute numbers are similar in both figures, and the running times

for Btrfs are shorter (see text).

an RSD value of 7%. Clearly, the Journal Option parame-
ter has the highest impact on performance; setting it to an
improper value could lead to low throughput and high RSD,
while setting it correctly provides significant benefits. The
points with N = 2 form several clusters. All points with
mean throughput less than 9K result from setting Journal
Option to journal (and with another parameter set to various
valid values). Conversely, all points with mean throughput
larger than 14K result from a Journal Option of ordered or
writeback. Journal Option is actually the most important pa-
rameter selected by Carver (as seen in Table 2).

To probe this question further, we zoomed into the bottom-
right part of Figure 3 and added points for N = 3 and
N = 4, as shown in Figure 4. The X and Y axes are similar
but with narrower ranges (and the X axis starts at 14K). The
label “Max” on the X axis, with a small tick mark, shows
the global maximum throughput of all Ext4 configurations
within the parameter space. For each N, we plotted only
the point(s) with the highest average throughput or lowest
RSD. The labels around each point show the associated pa-
rameter values, ordered by (Journal Option, Device, Block
Group, and Inode Size). The black triangle marks the point
with highest mean throughput, gotten by fixing the values of
the three most important parameters selected by Carver. For
N =1, the best two points resulted from setting Journal Op-
tion to either ordered or writeback. These two points overlap
with each other in this figure, as they share nearly identical
mean throughput and RSD values. Only one point is plot-
ted for N = 2, since the point (journal_option=ordered, de-
vice=ssd) shows both the highest throughput and the lowest
RSD among all N = 2 points; the same is true for N = 3.
For N = 4, the left red point shows the lowest RSD value
while the right red point shows the highest average through-
put. In Figure 4, the top three parameters selected by Carver
are Journal Option, Device, and Block Size. By setting the

values of these three parameters, the best average throughput
(denoted as a triangle in Figure 4) is quite close to the global
best average throughput achieved by fixing 3 parameter val-
ues (blue point). By comparing the two sets of parameters,
we can see that Carver successfully identified the top 2 im-
portant parameters; the final average throughput and relative
standard deviation achieved by the selected top 3 parameters
are quite close to the global optimum. We believe the differ-
ence in the 3™ selection is due to two reasons:

1. In Carver, the definition of parameter importance fo-
cuses on measuring the impact of the parameter on
performance, which can be either positive or negative.
When discussing “optimality” in Figure 4, we only con-
sidered positive impacts.

2. Carver stops after selecting 3 parameters, as the RSD
has already dropped below our 2% threshold at that
point. If we removed the stopping criterion, the 4" pa-
rameter that Carver would select would be Block Group,
which aligns with the globally optimal set of top 4 pa-
rameters, denoted as red dots in Figure 4.

5.4 Carver: Evaluation

All evaluations and analysis in Section 5.2 and 5.3 were con-
ducted on the complete dataset of all possible parameter con-
figurations. However, collecting such datasets for storage
parameters is usually impractical, given the challenges dis-
cussed in Section 2. One design goal of Carver is to select
important parameters while evaluating only a small fraction
of configurations. Carver does so by utilizing Latin Hyper-
cube Sampling (LHS), which has been effective in exploring
system parameter spaces [27,42]. We demonstrate the ef-
fectiveness of Carver’s parameter-selection algorithm from
the following two perspectives: selecting important parame-
ters for I/O throughput (see Section 5.4.1) and latency (see

USENIX Association

18th USENIX Conference on File and Storage Technologies 51

Section 5.4.2).

5.4.1 Selecting Important Parameters for
Throughput

A critical question is whether Carver can reliably find the im-
portant parameters of a system, and how many experimental
runs are necessary to do so. To answer this question, we used
our entire dataset of experimental runs on Ext4, Fileserver-
default and Btrfs, Fileserver-default to represent the “ground
truth” of which parameters matter. For Ext4, Fileserver-
default, the top 3 important parameters are Journal Option,
Device, and Block Size. For Btrfs, Fileserver-default, they
are Special Option, Node Size, and Device.

We then tested Carver by repeatedly choosing a random
subset of the full dataset, simulating a real-world environ-
ment in which an experimenter would use LHS to choose
configurations to test, and then using the results of those tests
to identify important parameters. In all cases we constrained
the random subset to be compatible with Latin Hypercube
Sampling (LHS), as our hypothetical investigator would do,
and tested whether Carver correctly located the first, second,
and third most important parameters. We varied the size of
the subsets as a percentage of the entire dataset and ran 1,000
iterations of each trial (with different random subsets).

Figure 5 presents the results of running these experiments.
The X1 (bottom) axis shows the percentage of the whole
dataset that was used by Carver, and is in log, scale. The
X2 (top) axis shows the actual running time for benchmark-
ing the selected configurations, and is also in log, scale. The
Y axis shows the fraction of runs that successfully found the
same important parameters as the ground truth. The solid,
dashed, and dotted lines show the results of finding the 1%,
2" and 3" most important parameters, respectively.

Figure 5(a) shows that even with only 0.1% of the dataset
(7 configurations), Carver has a 60% probability of correctly
identifying the most important parameter. When using 0.4%
(26), Carver was able to find the 1% and 2" ranked parameter
in 100% and 99.8% of the 1,000 runs, respectively. Setting
the values of the most important two parameters would al-
ready produce high average throughput (97% of the global
optimum) with high stability (2% of RSD), as shown in Fig-
ure 4. The chance of correctly selecting the third most impor-
tant parameter increases with the percentage of the dataset
used by Carver. With 1% (67) of the dataset, the probability
of correctly finding the 3™ parameter is around 50%, while
sampling 5% (331) successfully identifies the 3™ parameter
in all 1,000 runs.

For Btrfs, shown in Figure 5(b), Carver needed a larger
fraction of the dataset to make correct selections. This is
because Btrfs has only 288 configurations, compared with
6,624 for Ext4. Yet by evaluating only 16% (45) of all con-
figurations, Carver found the 1% and 2" parameters with
greater than 80% probability. Carver identified the 3 pa-
rameter in more than 80% of runs with 31% (90) sampled.

Running Time (min)
10 20 40 80 160 280 5600

o~

—
(e}
(e}
T
L

[ele]
(e}
T

40 + R
#l ——
20 + #2 — |
#3 ——

01 02 04 08 15 25 5
Percentage of Dataset (%)

Percentage of Runs (%)
oy
S

o

Figure 6: Carver’s ability to correctly find the top 3 important pa-
rameters for the latency metric within small portions of the dataset.
Experimental settings, graph axes, and legends are the same as in
Figure 5.

5.4.2 Selecting Important Parameters for La-
tency

To further evaluate Carver’s effectiveness in selecting impor-
tant parameters, we collected datasets with latency metrics.
The experimental settings were the same as described in Sec-
tion 5.1. We ran the Fileserver workload on the Ext4 config-
uration with S2 settings (see Table 1). Instead of using the
average 1/0O throughput reported by Filebench, we now used
the average latency. Due to a limitation in Filebench’s cur-
rent implementation, it is difficult to collect and calculate
accurate tail latency numbers, such as the 9gth percentile, so
we leave parameter selection for tail latency as future work.

Figure 6 shows the evaluation results of selecting impor-
tant parameters using the latency metric. The X axis, Y axis,
and legends remain the same as in Figure 5. As shown by
the red line, with barely 0.2% of all configurations evaluated,
Carver was still able to identify the most important param-
eters in more than 800 out of 1,000 runs. With 1.5% (58
configurations) evaluated, Carver was able to correctly pick
the top 2 parameters in almost all the 1,000 runs. Selecting
the third most important parameter required a few more eval-
uation; using 2.5% of the dataset (97 configurations), Carver
successfully identified it in 998 runs.

In sum, Carver is effective in selecting parameters using
only a few evaluations. In our experiments, Carver found the
top 2 important parameters with higher than 80% probability
by evaluating fewer than 50 configurations. Fixing the values
of the most important two parameters can already result in
high and stable system throughput, as shown in Section 5.3.
Carver can find the 3™ parameter with about 50% probability
using only about 50 evaluations. Furthermore, the total run-
ning time for these evaluations is tractable: the worst case,
in Figure 6, is under 4 days. Moreover, auto-tuning a stor-
age system with an optimization algorithms often requires
an initialization phase to explore the whole space [11, 42].
Carver can use the data collected during the initialization
phase to select parameters; in this case, no extra evaluation
needs to be conducted. Integrating Carver with auto-tuning

52 18th USENIX Conference on File and Storage Technologies

USENIX Association

algorithms is part of our future work.

6 Related Work

Parameter selection for computer systems. There have
been several attempts to select important parameters for var-
ious types of software systems. Aken er al. [70] applied
Lasso to choose important knobs for databases. They con-
verted categorical parameters into binary dummy features
and included polynomial features to deal with parameter
interactions. As discussed in Section 3, Lasso does not
scale well when the system has many categorical parame-
ters. Plackett-Burman (P&B) design of experiments [53] has
been applied to evaluating the impact of parameters in stor-
age benchmarks [51] and databases [18]. However, P&B
assumes that each parameter has only two possible values
and that the target variable is a monotonic function of the
input parameters; neither assumption holds for storage pa-
rameter spaces. Adaptive Sampling [19] and Probabilistic
Reasoning [64] have been applied to evaluating the impact
of database knobs. They either only work for continuous
parameters, or have scalability issues in high-dimensional
spaces. In comparison, Carver applies variance-based met-
rics for storage-parameter importance. To the best of our
knowledge, we have conducted the first thorough quanti-
tative study of storage-parameter importance by evaluating
Carver on datasets collected from a variety of file systems
and workloads. Carver also provides insights into the inter-
actions between parameters.

Auto-tuning storage systems. Several researchers have
built systems to automate storage-system tuning. Strunk
et al. [63] applied Genetic Algorithms (GAs) to auto-
mate storage-system provisioning. Babak et al. [4] used
GAs to optimize the I/O performance of HDF5 applica-
tions. GAs have also been applied to storage-recovery prob-
lems [32]. Deep Q-Networks have been successfully ap-
plied in optimizing performance for Lustre [40]. More re-
cently, Madireddy et al. applied a Gaussian process-based
machine learning algorithm to model Lustre’s I/O perfor-
mance and its variability [44]. Our own previous work [11]
provided a comparative study of applying multiple opti-
mization algorithms to auto-tune storage systems. However,
many auto-tuning algorithms have scalability issues in high-
dimensional spaces [61], which is one of the motivations for
Carver. Selecting the important subset of parameters could
reduce the search space dramatically, which would then ben-
efit either auto-tuning algorithms or manual tuning by ex-
perts.

General feature selection. Many feature-selection tech-
niques have been proposed in various disciplines. Li et
al. [39] provide a thorough summary and comparison for
most state-of-the-art feature-selection algorithms. Based on
our arguments in Section 3, we chose to use variance-based
metrics for storage-parameter selection.

7 Conclusions

Modern storage systems come with many parameters that af-
fect their behavior. Tuning parameter settings can bring sig-
nificant performance gains, but both manual tuning by ex-
perts and automated tuning have difficulty dealing with large
numbers of parameters and configurations. In this paper, we
propose Carver, which addresses this problem with the fol-
lowing three contributions:

1. Carver uses a variance-based metric for quantifying
storage parameter importance, and proposes a greedy
yet efficient parameter-selection algorithm.

2. To the best of our knowledge, we provide the first thor-
ough study of storage-parameter importance. We evalu-
ated Carver across multiple datasets (chosen from more
than 500,000 experimental runs) and showed that there
is always a small subset of parameters that have the
most impact on performance—but that the set of impor-
tant parameters changes with different workloads, and
that there are interactions between parameters.

3. We demonstrated Carver’s efficiency by testing it on
small fractions of the configuration space. This effi-
ciency gives Carver the potential to be easily applied to
new systems and environments and to identify impor-
tant parameters in a short time, with a small number of
configuration evaluations.

In the future, we plan to extend Carver to support other
parameter-selection techniques, such as Group Lasso [14,34,
74] and ANOVA [9,13,38,72]. We will evaluate and improve
Carver with more optimization objectives (e.g., reliability),
and even larger storage-parameter spaces. Currently Carver
can only measure storage importance for one objective at
a time (e.g., throughput, latency). We plan to investigate
how to extend Carver’s parameter selection algorithm into
the problem of multi-objective optimization [17]. We also
plan to integrate Carver with auto-tuning algorithms [11].

Acknowledgments

We thank the anonymous FAST reviewers and our shep-
herd, Bill Bolosky, for their valuable comments. This work
was made possible in part thanks to Dell-EMC, NetApp,
and IBM support; and NSF awards CCF-1918225, CNS-
1900706, CNS-1729939, and CNS-1730726.

References

[1] Abutalib Aghayev, Mansour Shafaei, and Peter
Desnoyers. Skylight—a window on shingled disk oper-
ation. Trans. Storage, 11(4):16:1-16:28, October 2015.

[2] Abutalib Aghayev, Theodore Ts o, Garth Gibson, and
Peter Desnoyers. Evolving ext4 for shingled disks.
In Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST), pages 105-120,

USENIX Association

18th USENIX Conference on File and Storage Technologies 53

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Santa Clara, CA, February-March 2017. USENIX As-
sociation.

George Amvrosiadis and Vasily Tarasov. Filebench
github repository, 2016. https://github.com/filebench/
filebench/wiki.

Babak Behzad, Huong Vu Thanh Luu, Joseph
Huchette, Surendra Byna, Prabhat, Ruth Aydt, Quincey
Koziol, and Marc Snir. Taming parallel /O complex-
ity with auto-tuning. In Proceedings of the Interna-
tional Conference on High Performance Computing,
Networking, Storage and Analysis, SC *13, pages 68:1—
68:12, New York, NY, USA, 2013. ACM.

Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning, volume 1. Springer New York, 2006.

Dhruba Borthakur et al. HDFS architecture guide.
Hadoop Apache Project, 53, 2008.

Leo Breiman, Jerome Friedman, Charles J. Stone, and
Richard A. Olshen. Classification and regression trees.
CRC press, 1984.

Gavin Brown, Adam Pocock, Ming-Jie Zhao, and
Mikel Lujan. Conditional likelihood maximisation:
A unifying framework for information theoretic fea-
ture selection. Journal of Machine Learning Research,
13(Jan):27-66, 2012.

Morton B. Brown and Alan B. Forsythe. Robust tests
for the equality of variances. Journal of the American
Statistical Association, 69(346):364-367, 1974.

Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hilde-
brand, and Erez Zadok. On the performance variation
in modern storage stacks. In Proceedings of the 15th
USENIX Conference on File and Storage Technologies
(FAST), pages 329-343, Santa Clara, CA, February-
March 2017. USENIX Association.

Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez
Zadok. Towards better understanding of black-box
auto-tuning: A comparative analysis for storage sys-
tems. In Proceedings of the Annual USENIX Tech-
nical Conference, Boston, MA, July 2018. USENIX
Association. Data set at http://download.filesystems.org/
auto-tune/ ATC-2018-auto-tune-data.sql.gz.

R. Card, T. Ts’0, and S. Tweedie. Design and imple-
mentation of the second extended filesystem. In Pro-
ceedings to the First Dutch International Symposium
on Linux, Amsterdam, Netherlands, December 1994.

George Casella and Roger L. Berger. Statistical Infer-
ence, volume 2. Duxbury Pacific Grove, CA, 2002.

Christophe Chesneau and Mohamed Hebiri. Some the-
oretical results on the grouped variables Lasso. Mathe-
matical Methods of Statistics, 17(4):317-326, 2008.

[15]

[16]

(17]

(18]

[19]

(20]

(21]
(22]

(23]

[24]

[25]

[26]

(27]

Liu Chu, Eduardo Souza De Cursi, Abdelkhalak
El Hami, and Mohamed Eid. Reliability based opti-
mization with metaheuristic algorithms and Latin hy-
percube sampling based surrogate models. Applied and
Computational Mathematics, 4(6):462—468, 2015.

Yvonne Coady, Russ Cox, John DeTreville, Peter Dr-
uschel, Joseph Hellerstein, Andrew Hume, Kimberly
Keeton, Thu Nguyen, Christopher Small, Lex Stein,
and Andrew Warfield. Falling off the cliff: When sys-
tems go nonlinear. In Proceedings of the 10th Confer-
ence on Hot Topics in Operating Systems (HOTOS °05),
2005.

Kalyanmoy Deb. Multi-objective optimization using
evolutionary algorithms, volume 16. John Wiley &
Sons, 2001.

Biplob K. Debnath, David J. Lilja, and Mohamed F.
Mokbel. SARD: A statistical approach for ranking
database tuning parameters. In IEEE 24th International
Conference on Data Engineering Workshop (IDEW),
pages 11-18, 2008.

Songyun Duan, Vamsidhar Thummala, and Shivnath
Babu. Tuning database configuration parameters with
iTuned. Proc. VLDB Endow., 2(1):1246-1257, August
2009.

Pablo A. Estévez, Michel Tesmer, Claudio A. Perez,
and Jacek M. Zurada. Normalized mutual information
feature selection. IEEE Transactions on Neural Net-
works, 20(2):189-201, 2009.

Ext4. http://extd.wiki.kernel.org/.

Ext4 documentation.
Documentation/filesystems/ext4.txt.

S. Ghemawat, H. Gobioff, and S. T. Leung. The
Google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP
'03), pages 29-43, Bolton Landing, NY, October 2003.
ACM SIGOPS.

Gradient descent. https://en.wikipedia.org/wiki/Gradient
descent.

https://www.kernel.org/doc/

Isabelle Guyon and André Elisseeff. An introduction
to variable and feature selection. Journal of Machine
Learning Research, 3(Mar):1157-1182, 2003.

Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and
Haryadi S. Gunawi. The tail at store: A revelation
from millions of hours of disk and SSD deployments.
In I14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 263-276, 2016.

Jun He, Duy Nguyen, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Reducing file system tail
latencies with Chopper. In Proceedings of the 13th

54

18th USENIX Conference on File and Storage Technologies

USENIX Association

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

USENIX Conference on File and Storage Technologies,
FAST’ 15, pages 119-133, Berkeley, CA, USA, 2015.
USENIX Association.

J. H. Holland. Adaptation in natural and artificial sys-
tems: An introductory analysis with applications to bi-
ology, control, and artificial intelligence. U. Michigan
Press, 1975.

Aapo Hyvirinen and Erkki Oja. Independent compo-
nent analysis: Algorithms and applications. Neural
Networks, 13(4-5):411-430, 2000.

M. Kaminsky, G. Savvides, D. Mazieres, and M. F.
Kaashoek. Decentralized user authentication in a
global file system. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP ’03), Bolton Landing, NY, October 2003. ACM
SIGOPS.

Jalil Kazemitabar, Arash Amini, Adam Bloniarz, and
Ameet S Talwalkar. Variable importance using decision
trees. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Sys-
tems 30, pages 426—435. Curran Associates, Inc., 2017.

Kimberly Keeton, Dirk Beyer, Ernesto Brau, Arif Mer-
chant, Cipriano Santos, and Alex Zhang. On the road to
recovery: Restoring data after disasters. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems, pages 235-248, New York, NY,
USA, 2006. ACM.

H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evalu-
ating phase change memory for enterprise storage sys-
tems: A study of caching and tiering approaches. In
Proceedings of the 12th USENIX Conference on File
and Storage Technologies, pages 3345, Berkeley, CA,
2014. USENIX.

Seyoung Kim and Eric P. Xing. Tree-guided group
Lasso for multi-task regression with structured sparsity.
In ICML, pages 543-550, 2010.

Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi
Hifumi, Seiji Kihara, and Satoshi Moriai. The Linux
implementation of a log-structured file system. ACM
SIGOPS Operating Systems Review, 40(3):102-107,
2006.

Latin hypercube sampling. https://en.wikipedia.org/ wiki/
Latin_hypercube _sampling.

Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies (FAST), pages 273-286,
Santa Clara, CA, February 2015. USENIX Association.

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Howard Levene. Robust tests for equality of variances.
Contributions to Probability and Statistics. Essays in
Honor of Harold Hotelling, pages 279-292, 1961.

Jundong Li, Kewei Cheng, Suhang Wang, Fred
Morstatter, Robert P Trevino, Jiliang Tang, and Huan
Liu. Feature selection: A data perspective. ACM Com-
puting Surveys (CSUR), 50(6):94, 2017.

Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller,
and Darrell D. E. Long. Capes: Unsupervised system
performance tuning using neural network-based deep
reinforcement learning. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC 17, 2017.

Z. Li, A. Mukker, and E. Zadok. On the importance of
evaluating storage systems’ $costs. In Proceedings of
the 6th USENIX Conference on Hot Topics in Storage
and File Systems, HotStorage’ 14, 2014.

Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He,
Lianjie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong
Sun. Metis: robustly optimizing tail latencies of cloud
systems. In Proceedings of the 2018 USENIX Con-
ference on Usenix Annual Technical Conference, pages
981-992. USENIX Association, 2018.

Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian.
Feature selection using principal feature analysis. In
Proceedings of the 15th ACM international conference
on Multimedia, pages 301-304. ACM, 2007.

Sandeep Madireddy, Prasanna Balaprakash, Philip
Carns, Robert Latham, Robert Ross, Shane Snyder, and
Stefan M Wild. Machine learning based parallel i/o
predictive modeling: A case study on lustre file sys-
tems. In International Conference on High Perfor-
mance Computing, pages 184-204. Springer, 2018.

M. D. McKay, R. J. Beckman, and W. J. Conover. A
comparison of three methods for selecting values of in-
put variables in the analysis of output from a computer
code. Technometrics, 21(2):239-245, 1979.

Justin Meza, Qiang Wu, Sanjev Kumar, and Onur
Mutlu. A large-scale study of flash memory failures
in the field. In Proceedings of the 2015 ACM Inter-
national Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS 2015), pages 177—
190, Portland, OR, June 2015. ACM.

Sebastian Mika, Gunnar Ratsch, Jason Weston, Bern-
hard Scholkopf, and Klaus-Robert Mullers. Fisher dis-
criminant analysis with kernels. In Proceedings of the
IEEE Signal Processing Society Workshop on Neural
Networks for Signal Processing, pages 41-48. IEEE,
1999.

Kevin P. Murphy. Machine Learning: A Probabilistic
Perspective. MIT press, 2012.

USENIX Association

18th USENIX Conference on File and Storage Technologies 55

[49] John A. Nelder and Roger Mead. A simplex method
for function minimization. The Computer Journal,
7(4):308-313, 1965.

[50] John Neter, Michael H. Kutner, Christopher J. Nacht-
sheim, and William Wasserman. Applied Linear Statis-
tical Models, volume 4. Irwin Chicago, 1996.

[51] Nohhyun Park, Weijun Xiao, Kyubaik Choi, and
David J. Lilja. A statistical evaluation of the im-
pact of parameter selection on storage system bench-
marks. In Proceedings of the 7th IEEE International
Workshop on Storage Network Architecture and Paral-
lel I/Os (SNAPI), volume 6, 2011.

[52] D. Patterson, G. Gibson, and R. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In Proceed-
ings of the ACM SIGMOD, pages 109-116, Chicago,
IL, June 1988. ACM Press.

[53] Robin L. Plackett and J. Peter Burman. The design
of optimum multifactorial experiments. Biometrika,
pages 305-325, 1946.

[54] LVM2 resource page. http://sources.redhat.com/lvm2/.

[55] H. Reiser. ReiserFS v.3 whitepaper. http://web.archive.
org/web/20031015041320/ http://namesys.com/ .

[56] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-tree filesystem. Trans. Storage, 9(3):9:1-
9:32, August 2013.

[57] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proceedings
of the First USENIX Conference on File and Storage
Technologies (FAST ’02), pages 231-244, Monterey,
CA, January 2002. USENIX Association.

[58] George A.F. Seber and Alan J. Lee. Linear Regression
Analysis, volume 329. John Wiley & Sons, 2012.

[59] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluat-
ing performance and energy in file system server work-
loads. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages 253-266,
San Jose, CA, February 2010. USENIX Association.

[60] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Op-
timizing energy and performance for server-class file
system workloads. ACM Transactions on Storage
(TOS), 6(3), September 2010.

[61] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando de Freitas. Taking the human out
of the loop: A review of Bayesian optimization. Pro-
ceedings of the IEEE, 104(1):148-175, 2016.

[62] Jonathon Shlens. A tutorial on principal component
analysis. arXiv preprint arXiv:1404.1100, 2014.

[63] John D. Strunk, Eno Thereska, Christos Faloutsos, and
Gregory R. Ganger. Using utility to provision stor-
age systems. In Proceedings of the 6th USENIX Con-

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

ference on File and Storage Technologies, FAST 08,
pages 313-328, Berkeley, CA, USA, 2008. USENIX
Association.

David G. Sullivan, Margo I. Seltzer, and Avi Pfef-
fer. Using probabilistic reasoning to automate software
tuning, volume 32. ACM, 2004.

A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck. Scalability in the XFS file
system. In Proceedings of the Annual USENIX Tech-
nical Conference, pages 1-14, San Diego, CA, January
1996.

Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and
Margo Seltzer. Benchmarking file system benchmark-
ing: It *IS* rocket science. In Proceedings of HotOS
XIII:The 13th USENIX Workshop on Hot Topics in Op-
erating Systems, Napa, CA, May 2011.

Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. ;login: The USENIX Magazine, 41(1):6-12,
March 2016.

Robert Tibshirani. Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), pages 267-288, 1996.

Stephen Tweedie. Ext3, journaling filesys-
tem. In Ottawa Linux Symposium, July 2000.
http://olstrans.sourceforge.net/release/ OLS2000-ext3/
OLS2000-ext3.html.

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,
and Bohan Zhang. Automatic database management
system tuning through large-scale machine learning. In
Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD ’17, pages
1009-1024, 2017.

Mengzhi Wang, Kinman Au, Anastassia Ailamaki, An-
thony Brockwell, Christos Faloutsos, and Gregory R.
Ganger. Storage device performance prediction with
CART models. In The IEEE Computer Society’s 12th
Annual International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunica-
tions Systems. (MASCOTS), pages 588-595, 2004.

Bernard Lewis Welch. On the comparison of several
mean values: An alternative approach. Biometrika,
38(3/4):330-336, 1951.

H.-S. Philip Wong, Simone Raoux, SangBum Kim,
Jiale Liang, John P. Reifenberg, Bipin Rajen-
dran, Mehdi Asheghi, and Kenneth E. Goodson.
Phase change memory. Proceedings of the IEEE,
98(12):2201-2227, Dec 2010.

Ming Yuan and Yi Lin. Model selection and estimation
in regression with grouped variables. Journal of the

56 18th USENIX Conference on File and Storage Technologies

USENIX Association

Royal Statistical Society: Series B (Statistical Method-
ology), 68(1):49-67, 2006.

USENIX Association 18th USENIX Conference on File and Storage Technologies 57

Read as Needed: Building WiSER, a Flash-Optimized Search Engine

Jun He, Kan Wu, Sudarsun Kannan', Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin—-Madison
TDepartment of Computer Science, Rutgers University

Abstract

We describe WiSER, a clean-slate search engine designed
to exploit high-performance SSDs with the philosophy "read
as needed". WiSER utilizes many techniques to deliver high
throughput and low latency with a relatively small amount
of main memory; the techniques include an optimized data
layout, a novel two-way cost-aware Bloom filter, adaptive
prefetching, and space-time trade-offs. In a system with mem-
ory that is significantly smaller than the working set, these
techniques increase storage space usage (up to 50%), but re-
duce read amplification by up to 3x, increase query throughput
by up to 2.7x, and reduce latency by 16x when compared to
the state-of-the-art Elasticsearch. We believe that the philoso-
phy of "read as needed" can be applied to more applications
as the read performance of storage devices keeps improving.

1 Introduction

Modern solid-state storage devices (SSDs) [19,20] provide
much higher throughput and lower latency than traditional
persistent storage such as hard disk drives (HDDs). Currently,
flash-based SSDs [19,20] are readily available; in the near
future, even higher performance NVRAM-based systems may
supplant flash [4], boosting performance even further.

SSDs exhibit vastly different characteristics from
HDDs [24,36]; as we shift from HDDs to SSDs, the software
on top of the storage stack must evolve to harvest the
high performance of the SSDs. Thus far, optimization for
SSDs has taken place within many important pieces of the
storage stack. For example, RocksDB [16], Wisckey [38]
and other work [23, 34, 42] have made key-value stores
more SSD-friendly; FlashGraph [59], Mosaic [43] and
other work [48,49, 60] optimize graphs for SSDs; SFS [45],
F2FS [39] and other work [30, 37] have made systems
software more SSD-friendly.

In this evolution, an important category of application has
been overlooked: full-text search engines. Search engines
are widely used in many industrial and scientific settings to-
day, including popular open-source offerings such as Elastic-
search [7] and Solr [3]. As of the time of this writing, Elastic-
search is ranked 7th among all database engines, higher than
well-known systems such as Redis, Cassandra, and SQLite [6].
Elasticsearch is used in important applications, such as at
Wikipedia and Github to power text (edited contents or source

code) search [7,22]. They are also widely used for data ana-
lytics [7]; for example, Uber uses Elasticsearch to generate
dynamic prices in real time based on users’ locations.

Furthermore, the challenges in search engines are unique,
interesting, and different from the ones in key-value stores,
graphs, and system software. The key data structure in a
search engine is an inverted index, which maps individual
terms (i.e., words) to lists of documents that contain the terms.
On top of the inverted index, multiple auxiliary data struc-
tures (e.g., posting lists) and technologies (e.g., compression)
also play important roles to implement an efficient search
engine. In addition to compelling data structures, the unique
workloads of search engines also provoke new thoughts on
SSD-based optimizations. For example, phrase queries (e.g.,
“United States”) stress multiple data structures in the engine
and require careful design.

Search engines pose great challenges to storage systems.
First, search engines demand low latency as users often inter-
face with them interactively. Second, search engines demand
high data throughput because they retrieve information from a
large volume of data. Third, search engines demand high scal-
ability because data grows quickly. Due to these challenges,
many search engines eschew using secondary storage, putting
most/all data directly into memory instead [13,15].

However, we believe the advent of faster storage suggests
a reexamination of modern search engine design. Given that
using RAM for large datasets can be cost prohibitive, can
one instead rebuild a search engine to better utilize SSDs to
achieve the necessary performance goals with main memory
that is significantly smaller than the dataset?

We believe the answer is yes, if we re-design the system
with the principle read as needed. Emerging fast storage de-
vices [14, 18,29, 36,57] offer high bandwidth; for example,
inexpensive (i.e., $0.17/GB) SSDs currently offer 3.5 GB/s
read bandwidth [17], and even higher performance can be
provided with multiple devices (e.g., RAID). These high-
performance storage devices allow applications to read data
as needed, which means that main memory can be used as
a staging buffer, instead of a cache; thus, large working sets
can be kept within secondary storage and less main memory
is required. To read as needed, applications must optimize the
efficiency of the data stream flowing from the storage device,
through the small buffer (memory), to CPU.

USENIX Association

18th USENIX Conference on File and Storage Technologies 59

In this paper, we present the design, implementation, and
evaluation of WiSER, a flash-optimized high-1/O search en-
gine that reads data as needed. WiSER reorganizes tradi-
tional search data structures to create and improve the read
stream, thus exploiting the bandwidth that modern SSDs pro-
vide. First, we propose a technique called cross-stage group-
ing, which produces locality-oriented data layout and signif-
icantly reduces read amplification for queries. Second, we
propose a novel two-way cost-aware Bloom filter to reduce
I/O for phrase queries. Third, we use adaptive prefetch to
reduce latency and improve I/O efficiency. Fourth, we enable
a space-time trade-off, increasing space utilization on flash
for fewer 1/Os; for example, we compress documents indi-
vidually, which consumes more space than compression in
groups, but allows us to retrieve documents with less 1/0.

We built WiSER! from ground up with 11,000 lines of C++
code, for the following reasons. First, an implementation in
C++ allows us to interact with the operating system more
closely than the state of the art engine, Elasticsearch, which
is written in Java; for example, it allows us to readily prefetch
data using OS hints. Second, a fresh implementation allows
us to reexamine the limitations of current search engines. For
example, by comparing with WiSER, we found that the net-
work implementation in Elasticsearch significantly limits its
performance and could be improved. Overall, our clean slate
implementation produces highly efficient code, which allows
us to apply various flash-optimized techniques to achieve
high performance. For some (but not all) workloads, WiSER
with limited memory performs better than Elasticsearch with
memory that holds the entire working set.

We believe that this paper makes the following contribu-
tions. First, we propose a design philosophy, read as needed,
and follow the philosophy to build a flash-optimized search en-
gine with several novel techniques. For example, we find that
plain Bloom filters employed elsewhere [11, 16,42] surpris-
ingly increase I/O traffic; consequently, we propose two-way
cost-aware Bloom filters, which exploit unique properties of
search engine data structures. Second, WiSER significantly
reduces the need for vast amounts of memory by exploiting
high-bandwidth SSDs to achieve high performance at low
cost. Third, we have built a highly efficient search engine:
thanks to our proposed techniques and efficient implementa-
tion, WiSER delivers higher query throughput (up to 2.7x)
and lower latencies (up to 16x) than a state-of-the-art search
engine (Elasticsearch) in a low-memory system that we use
to stress the engine.

The paper is organized as follows. We introduce the back-
ground of search engines in Section 2. We propose techniques
for building a flash-optimized search engine in Section 3.
We evaluate our flash-optimized engine in Section 4, discuss
related work in Section 5, and conclude in Section 6.

I'WiSER is available at http://research.cs.wisc.edu/adsl/Software/wisety.

ID | Text
1 I thought about naming the engine CHEESE, but |

could not explain CHEE.
2 Fried cheese curds, cheddar cheese sale.
3 Tofu, also known as bean curd, may not pair well

with cheese.

Table 1: An Example of Documents An indexer parses the
documents to build an inverted index; a document store will
keep the original text.

Term Map

ID TF POS OFF
/ 11 7 (34,39)
cheese 2 2 25 (6,11),(28,33)

31 12 (52,57)

Postings Lists

curd

IDTF POS OFF
21 3 (13,17)| A Posting
31 6 (25,28)

Figure 1: An Example of Inverted Index This figure shows
the general contents of inverted index without specific layout
information. Term Map allows one to look up the location of
the postings list of a term.

2 Search Engine Background

Search engines play a crucial role in retrieving information
from large data collections. Although search engines are de-
signed for text search, they are increasingly being used for
data analytics because search engines do not need fixed data
schemes and allow flexible data exploration. Popular modern
search engines, which share similar features, include Elas-
ticsearch, Solr, and Splunk [6]. Elasticsearch and Solr are
open-source projects based on Lucene [1], an information
retrieval library. Elasticsearch and Solr wrap Lucene by im-
plementing practical features such as sharding, replication,
and network capability. We use Elasticsearch as our baseline
as it is the most popular [6] and well-maintained project. Al-
though we only study Elasticsearch, our results also apply to
other engines, which share the same underlying library (i.e.,
Lucene) or key data structures.

2.1 Elasticsearch Data Structures

Search engines allow users to quickly find documents (e.g.,
text files, web pages) that contain desired information. Docu-
ments must be indexed to allow fast searches; the core index
structure in popular engines is the inverted index, which stores
a mapping from a term (e.g., a word) to all the documents
that contain the term.

An indexer builds the inverted index. Table 1 shows an
example of documents to be indexed. First, the indexer splits
a document into tokens by separators such as space and punc-
tuation marks. Second, the indexer transforms the tokens. A
common transformation is stemming, which unifies tokens
(e.g., curds) to their roots (e.g., curd). The transformed tokens
are usually referred to as terms. Finally, the location informa-

60 18th USENIX Conference on File and Storage Technologies

USENIX Association

Term Index
e Term Dictionary

Skiplist
ooo0::
©ros @ orrF

Figure 2: Inverted Index in Elasticsearch Term Index maps
a term to an entry in Term Dictionary. A Term Dictionary
entry contains metadata about a term (e.g., doc frequency)
and multiple pointers pointing to files that contain document
IDs and Term Frequencies (ID-TF), positions (POS), and byte
offsets (OFF). The number in the figure indicates a typical
data access sequence to serve a query. No.3, 4, and 5 indicate
the access of skip lists, document ID and Term Frequencies.
For Wikipedia, the sizes of each component are Term Index: 4
MB, Term Dictionary: 200 MB, Skiplist.ID.TF: 2.7 GB, POS:
4.8 GB, OFF: 2.8 GB.

tion of the term is inserted to a list, called a postings list. The
resulting inverted index is shown in Figure 1.

A posting contains the location information of a term in
a particular document (Figure 1). Such information often in-
cludes a document ID, positions, and byte offsets of the term
in the document. For example, a position records that term
“cheese” is the 2-th and 5-th token in document 2. Positions en-
able the processing of phrase queries: given a phrase such as
“cheese curd”, we know that a document contains the phrase if
the first term, “cheese”, is the x-th token and the second term
“curd” is the x 4 1-th one. An offset pair records the start and
end byte address of a term in the original document. Offsets
enable quick highlighting; the engine presents the most rele-
vant parts (with the queried terms highlighted) of a document
to the user. A posting also contains information such as term
frequency for ranking the corresponding document.

Query processing includes multiple stages: document
matching, ranking, phrase matching, highlighting; different
types of queries go through different stages. For queries with
a single term, an engine executes the following stages: it-
erating document IDs in a term’s postings list (document
matching); calculating the relevance score of each document,
which usually uses term frequencies, and finding the top doc-
uments (ranking); and highlighting queried terms in the top
documents (highlighting). For AND queries such as “cheese
AND curd”, which look for documents containing multiple
terms, document matching includes intersecting the document
IDs in multiple postings lists. For the example in Figure 1,
intersecting {1,2,3} and {2,3} produces {2,3}, which are
the IDs of documents that contain both “cheese” and “curd”.
For phrase queries, a search engine needs to use positions to
perform phrase matching after document matching.

Figure 2 shows the data structures of Elasticsearch. To
serve a query with a single term, Elasticsearch follows these
steps. First, Elasticsearch locates a postings list by Term In-

@ es es_no_pref wiser
100

101

Read Traffic (GB)

ideally-needed

in-mem 16 8 4 2 1 05

memory size(GB)
Figure 3: Read Traffic of Search Engines This figure shows
read I/O traffic of various search engines as the size of mem-
ory decreases. es: Elasticsearch, es_no_pref: Elasticsearch
without prefetch. Note that serving queries leads to only read
traffic. The ideally-needed traffic assumes a byte-addressable
storage device.

dex (1) and a Term Dictionary (2). The Term Index and Term
Dictionary contain location information of the skip lists, doc-
ument IDs, positions, and offsets (details below). Second, the
engine will load the skip list, which contains more informa-
tion for navigating document IDs, term frequencies, positions,
and offsets. Third, it will iterate through the document IDs and
use the corresponding term frequencies to rank documents.
Fourth, after finding the documents with top scores, it will
read offsets and document text to generate snippets.

2.2 Elasticsearch Performance Problems

Elasticsearch cannot achieve the highest possible performance
from the storage system due in part to read amplification.
Elasticsearch groups data of different stages into multiple
locations and arranges data such that data items in the early
stages are smaller. The intention is that data in early stages,
which is accessed more frequently than data in later stages, is
cached. However, grouping data by stage also could lead to
large read amplification.

Figure 3 shows the I/O traffic of a real query workload
over Wikipedia; as the amount of memory is decreased, the
I/0 traffic incurred by Elasticsearch increases significantly.
In contrast, the amount of read traffic in WiSER remains
relatively low regardless of the amount of memory available.

3 WISER: A Flash-Optimized Search Engine

Given that SSDs offer high bandwidth, applications that "read
data as needed" may be able to run effectively on systems that
do not contain enough main memory to cache the entire work-
ing set. However, since device bandwidth is not unlimited,
applications must carefully control how data is organized and
accessed to match the performance characteristics of modern
SSD storage [36].

At the highest level, the less I/O an application must per-
form, the faster that application will complete; since search
engine queries involve only read operations, we should reduce
read amplification as much as possible. Second, retrieving
data from SSDs instead of RAM can incur relatively long
latency; therefore, applications should hide /O latency as

USENIX Association

18th USENIX Conference on File and Storage Technologies 61

Term Map

term zone size location

term zone size location

term zone size location

3 ... [ma[skipiist] 1Ds | s [BFs [Poss | oFfs .. §

Prefetch Zone

Figure 4: Structure of WiSER’s Inverted Index Contents
of each postings list are placed together. Within each postings
list, IDs, TFs and so on are also placed together to maximize
compression ratio, which is the same as Elasticsearch.

much as possible with prefetching or by overlapping compu-
tation with I/O. Third, SSDs deliver higher data bandwidth
for larger requests; therefore, an application should organize
and structure its data to enable large requests.

We introduce techniques that allow WiSER to reduce read
amplification, hide I/O latency, and issue large requests. First,
cross-stage data grouping groups data of different stages and
stores it compactly during indexing (reducing read implication
and enabling large requests). Second, two-way cost-aware fil-
tering employs special Bloom filters to prune paths early and
reduce I/O for positions in the inverted index; our Bloom
filters are novel in that they are tightly integrated with the
query processing pipeline and exploit unique properties of
search engines (again reducing read amplification). Third, we
adaptively prefetch data to reduce query latency; unlike the
prefetch employed by Elasticsearch (i.e., OS readahead), our
prefetch dynamically adjusts the prefetch size to avoid read-
ing unnecessary data (hiding I/O latency and enabling large
requests without increasing read amplification). Fourth, we
take advantage of the inexpensive and ample space of SSDs
by trading disk space for I/O speed; for example, WiSER
compresses documents independently and aligns compressed
documents to file system blocks to prevent data from cross-
ing multiple blocks (reducing read amplification). We now
describe these techniques in more detail.

In discussing our design, we will draw on examples from
the English Wikipedia, which is a representative text data
set [33,35,44,50,53,54,56]. Its word frequency follows the
same distribution (zipf’s law) as many other corpuses [41,50],
such as Twitter [47].

3.1 Technique 1: Cross-Stage Data Grouping

One key to building a flash-optimized high-1/O search engine
is to reduce read amplification. We propose cross-stage group-
ing to reduce read amplification for posting lists of small or
medium sizes. The processing of such postings lists is critical
because most of the postings lists fall into this category. For
example, 99% of the postings lists in Wikipedia are small or
medium (less than 10,000 documents are in the postings list).
Also, search engines often shard large postings lists into such
smaller ones to reduce processing latency.

Cross-stage data grouping puts data needed for different
stages of a query into continuous and compact blocks on the

storage device, which increases block utilization when trans-
ferring data for a query. Figure 4 shows the resulting data
structures after group; data needed for a query is located in
one place and in the order that it will be accessed. Essentially,
the grouped data becomes a stream of data, in which each
piece of data is expected to be used at most once. Such ex-
pectation matches the query processing in a search engine, in
which multiple iterators iterate over lists of data. Such streams
can flow through a small buffer efficiently with high block
utilization and low read amplification.

Grouped data introduces significantly less read amplifica-
tion than Elasticsearch for small and medium postings lists.
Due to highly efficient compression, the space consumed
by each postings list is often small; however, due to Elastic-
search’s layout, the data required to serve a query is spread
across multiple distant locations (Term Dictionary, ID-TF,
POS, and OFF) as shown in Figure 2. Elasticsearch’s layout
increases the I/O traffic and also the number of I/O operations.
On the other hand, as shown in Figure 4, the grouped data
can often be stored in the one block (e.g., 99% of the terms in
Wikipedia can be stored in a block), incurring only one I/O.

3.2 Technique 2: Two-way Cost-aware Filters

Phrase queries are pervasive and are often used to improve
search precision [31]. Unfortunately, phrase queries put great
pressure on a search engine’s storage system, as they require
retrieving a large amount of positions data (as described in
Section 2). To build a flash-optimized search engine, we must
reduce the I/O traffic of phrase queries.

Bloom filters, which can test if an element is a member of
a set, are often used to reduce I/0O; however, we have found
that plain Bloom filters, which are often directly used in data
stores [11,42,46], increase 1/O traffic for phrase queries be-
cause individual positions data is relatively small due to com-
pression and, therefore, the corresponding Bloom filter can
be larger than the positions data.

As a result, we propose special two-way cost-aware Bloom
filters by exploiting unique properties of search engines to
reduce I/O. The design is based on the observation that the
postings list sizes of two (or more) terms in a phrase query are
often different. Therefore, we construct Bloom filters during
indexing to allow us to pick the smaller Bloom filter to filter
out a larger amount of positions data during querying. In
addition, we design a special bitmap-based structure to store
Bloom filters to further reduce I/O. This section gives more
details on our Bloom filters.

3.2.1 Problems of plain Bloom filters

A plain Bloom filter set contains terms that are after a par-
ticular term; for example, the set.after of term “cheese” in
document 2 of Table 1 contains “curd” and “sale”. To test the
existence of a phrase “cheese curd”, an engine can simply
test if “curd” is in set.after of “cheese”, without reading any
positions. If the test result is negative, we stop and conse-
quently avoid reading the corresponding positions. If the test

62 18th USENIX Conference on File and Storage Technologies

USENIX Association

termi| @ &r |

term2 BF.

Figure 5: Phrase Processing With Bloom Filters WiSER
uses one of the Bloom filters to test the existence of a phrase
(1) and then read positions for positive tests to confirm (2).

ros@ |

result is positive, we must confirm the existence of the phrase
by checking positions because false positives are possible in
Bloom filters; also, we may have to use positions to locate
the phrase within a document for highlighting.

However, we must satisfy the following two conditions to
reduce I/O. First, the percentage of negative tests must be
high because this is the case where we only read the Bloom
filters and avoid other I/O. If the test is positive (a phrase
may exist), we have to read both Bloom filters and positions,
which increases I/0O. Empirically, the percentage of positive
results is low for real phrase queries to Wikipedia [21]: only
12% of the tests are positive. Intuitively, the probability for
two random terms to form a phrase in a document is also low
due to a large number of terms in a regular document. The
second condition is that the I/O traffic to the Bloom filters
must be smaller than the traffic to positions needed to identify
a phrase; otherwise, we would just use the positions.

Meeting the second condition is challenging because the
sizes of plain Bloom filters are too large in our case, although
they are considered space-efficient in other uses [11, 42].
Bloom filters can be larger than their corresponding posi-
tions because positions are already space efficient after com-
pression (delta encoding and bit packing [2]). In addition,
Bloom filters are configured to be relatively large because
their false positive ratios must be low. The first reason to
reduce false positive is to increase negative test results, as
mentioned above. The second reason is to avoid reading un-
necessary file system blocks. Note that a 4-KB file system
block contains positions of hundreds of postings. If any of the
positions are requested due to false positive tests, the whole
4-KB block must be read; however, none of the data in the
block is useful.

3.2.2 Two-way and cost-aware filtering

We now show how we can reduce I/O traffic to both Bloom fil-
ters and positions with cost-aware pruning and a bitmap-based
store. To realize it, first we estimate I/0 cost and use Bloom
filters conditionally (i.e., cost-aware): we only use Bloom
filters when the I/O cost of reading Bloom filters is much
smaller than the cost of reading positions if Bloom filters are
not used. For example, in Figure 5, we will not use Bloom
filters for query “term1 term2” as the I/O cost of reading the
Bloom filters is too large. We estimate the relative I/O costs
of Bloom filter and positions among different terms by term
frequencies (available before positions are needed), which is
proportional to the sizes of Bloom filters and positions.
Second, we build two Bloom filters for each term to al-

Skip List|:|:|:|...

| Bitmap | Filter Array | Bitmap | Filter Array | Bitmapl Filter Array |

Figure 6: Bloom Filter Store The sizes of the arrays may
vary because some Bloom filters contain no entries and thus
are not stored in the array.

low filtering in either direction (i.e., two-way): a set for all
following terms and another set for all preceding terms of
each term. This design is based on the observation that the
positions (and other parts) sizes of the terms in a query are
often vastly different. With these two Bloom filters, we can
apply filters forward or backward, whichever can reduce 1/O.
For example, in Figure 5, instead of using Bloom filters of
term1 to test if term2 is after term1, we can now use Bloom
filters of term?2 to test if term1 is before term2. Because the
Bloom filters of term?2 are much smaller, we can apply it to
significantly reduce I/O.

To further reduce the size of Bloom filters, we employ a
bitmap-based data layout to store Bloom filters. Figure 6
shows the data layout. Bloom filters are separated into groups,
each of which contains a fixed number of filters (e.g., 128);
the groups are indexed by a skip list to allow skipping reading
large chunks of filters. In each group, we use a bitmap to
mark the empty filters and only store non-empty filters in the
array; thus, empty Bloom filters only take one bit of space
(in the bitmap). Reducing the space usage of empty filters
can significantly reduce overall space usage of Bloom filters
because empty filters are common. For instance, about one-
third of the filters for Wikipedia are empty. Empty filters of
a term come from surrounding punctuation marks and stop
words (e.g., “a”, “is”, “the”), which are not added to filters.

Empirically, we find that expecting five insertions and a
false positive probability of 0.0009 in the Bloom filter [12]
(each filter is 9-byte) offers a balanced trade-off between
space and test accuracy for English Wikipedia; these param-
eters should be tuned for other data sets. We use the same
parameters for all Bloom filters in WiSER because storing
parameters would require extra space and steps before testing
each filter; one could improve the space overhead and accu-
racy by limiting the number of parameter sets for the engine
and selecting the optimal ones for specific filters from the
available sets.

3.3 Technique 3: Adaptive Prefetching

Although the latency of SSDs is low, it is still much higher
than that of memory. The relatively high latency of SSDs
adds to query processing time, especially the processing of
long postings lists which demands a large amount of I/O. If
we load one page at a time as needed, query processing will
frequently stop and wait for data, which also increases system
overhead. In addition, the I/O efficiency will be low due to
small request sizes [36].

USENIX Association

18th USENIX Conference on File and Storage Technologies 63

To mitigate the impact of high I/O latency and improve the
I/0 efficiency, we propose adaptive prefetching. Prefetching, a
commonly used technique, can reduce I/O stall time, increase
the size of I/O requests, and reduce the number of requests,
which boosts the efficiency of flash devices and reduces sys-
tem overhead. However, naive prefetching, such as the Linux
readahead [10], used by Elasticsearch, suffers from signif-
icant read amplification. Linux unconditionally prefetches
data of a fixed size (default: 128 KB), which causes high read
amplification due to the diverse data sizes needed.

For the best performance, prefetching should adapt to the
queries and the structures of persistent data. Among all data
in the inverted index, the most commonly accessed data in-
cludes metadata, skip lists, document IDs, and term frequen-
cies, which are often accessed together and sequentially; thus
we place them together in an area called the prefetch zone. Our
adaptive approach prefetches data when doing so can bring
significant benefits. We prefetch when all prefetch zones in-
volved in a query are larger than a threshold (e.g., 128 KB);
we divide the prefetch zone into small prefetch segments to
avoid accessing too much data at a time.

To enable adaptive prefetch, WiSER employs prefetch-
friendly data structures, as shown in Figure 4. A search engine
should know the size of the prefetch zone before reading the
posting list (so the prefetch size can be adapted). To enable
such prefetching, we hide the size of the prefetch zone in the
highest 16 bits of the offset in WiSER’s Term Map (the 48 bits
left is more than enough to address large files). In addition, the
structure in the prefetch zone is also prefetch-friendly. Data
in the prefetch zone is placed in the order it is used, which
avoid jumping ahead and waiting for data that has not been
prefetched. Finally, compressed data is naturally prefetch-
friendly. Even if there are data “holes” in the prefetch zone
that are unnecessary for some queries, prefetching data with
such holes is still beneficial because these holes are usually
small due to compression and the improved I/O efficiency can
well offset the cost of such small read amplification.

WiSER prefetches by dynamically calling madvise () with
the MADV_SEQUENTIAL hint to readahead in the prefetch zone.
We could further improve prefetching with more precise mem-
ory management; for example, we could isolate the buffers
used for different queries and avoid interference between
queries. In addition, Linux prefetches in fixed sizes; we could
allow variable sizes to avoid wasting 1/O.

3.4 Technique 4: Trade Disk Space for I/0

With a small increase in disk space, WiSER is able to perform
less I/O to its document store. We compress each document
individually in WiSER, which often increases space usage but
avoids reading and decompressing unnecessary documents.
Compression algorithms, such as LZ4, achieve better com-
pression when more data is compressed together. As a result,
when compressing documents, engines like Elasticsearch put
documents into a buffer (default size: 16 KB) and compresses

all data in the buffer together. Unfortunately, decompressing a
document requires reading and decompressing all documents
compressed before the document, leading to more I/O and
computation. In WiSER, we trade space for less I/O by using
more space but reducing the I/O while processing queries.
In addition, WiSER aligns compressed documents to the
boundaries of file system blocks if the unaligned data would
incur more I/O. A document may suffer from the block-
crossing problem, where a document is unnecessarily placed
across two (or more) file system blocks and requires reading
two blocks during decompression. For example, a 3-KB data
chunk has a 75% chance of spanning across two 4-KB file sys-
tem blocks. To avoid this problem, WiSER aligns compressed
document if doing so could reduce the block span.

3.5 Impact on Indexing

Our techniques focus on optimizing query processing instead
of index creation since query processing is performed far more
frequently. Overall, we believe the overhead introduced to
indexing is more than justified by the significant performance
improvements on query processing. Cross-stage data group-
ing does not add overhead to indexing since the same data
is simply placed in different locations. Adaptive prefetching
employs existing information and does not add any overhead
during indexing. Trading space for less I/O adds moderate I/O
overhead for the indexing phase (25% for Wikipedia) because
the document store takes more space.

Building two-way cost-aware Bloom filters requires addi-
tional computation: the indexer in WiSER builds two Bloom
filters, set.before and set.after, for each term in each document.
Although a fixed number of hashing calls are required to add
an entry to a filter and some filters are empty, the accumula-
tive cost can be high. Currently, we have not optimized the
building of Bloom filters. One way to speed up the building
is to parallelize it, which also speeds up writing the filters to
SSDs. Another way is to cache the hash values of popular
terms to avoid hashing the same term frequently; popular
terms appear hundreds of thousands times but would only
need to be hashed once.

3.6 Implementation

We have implemented WiSER with 11,000 lines of C++ code,
which allows us to interact with the OS more directly than
higher-level languages. Data files are mapped by mmap () to
avoid complex buffer management. We rigorously conducted
hundreds of unit tests to ensure the correctness of our code.
The major implementation differences between WiSER
and Elasticsearch are the programming languages and net-
work libraries. From our experimentation, we found that C++
does not bring significant advantage to WiSER over Elastic-
search. In fact, to make the starting performance of WiSER
similar to that of Elasticsearch we had to implement a number
of optimizations: we switched from class virtualization to
templates; we manually inlined frequently-called functions;
we used case-specific functions to allow special optimizations

64 18th USENIX Conference on File and Storage Technologies

USENIX Association

for the case; and, we avoided frequent memory allocations
(e.g., by reusing preallocated std::vector).

4 Evaluation

In this section, we evaluate WiSER with WSBench, a bench-
mark suite we built, which includes synthetic and realistic
search workloads. The impact of a particular technique can
be demonstrated by comparisons between two versions of
WIiSER (i.e., with and without the technique). For example,
we demonstrate the effect of two-way cost-aware Bloom fil-
ters by comparing WiSER with and without them.

At the beginning of this section, we analyze in detail how
each of the proposed techniques in WiSER is able to improve
performance by significantly reducing read amplification. We
show that: cross-stage data grouping reduces I/O traffic by 2.9
times; two-way cost-aware Bloom filters reduce 1/O traffic
by 3.2 times; adaptive prefetching prefetches only necessary
data; and, trading disk space for less I/O reduces I/O traffic
by 1.7 times.

Later in this section, we show that our techniques improve
end-to-end performance. For example, we compare WiSER
(with Bloom filters) and WiSER (without Bloom filters) to
show that our Bloom filters increase query throughput up to
2.6x. We also show that WiSER delivers higher end-to-end
performance than Elasticsearch, which indicates that WiSER
is well implemented and its techniques can be applied to
modern search engines.

We strive to conduct a fair comparison between Elastic-
search and WiSER. We pre-process the dataset using Elastic-
search and input the same pre-processed data to both WiSER
and Elasticsearch. The pre-processor produces tokens, posi-
tions, and offsets. We implement the exact same relevance
calculation (BM25 [7]) in WiSER as is used in Elasticsearch.
The pre-processing and the implementation ensure that both
WIiSER and Elasticsearch will produce query results with the
same quality. Despite our efforts, WiSER and FElasticsearch
still have many differences (e.g., network implementation,
where Elasticsearch performs poorly, and program languages).
However, by comparing time-independent metrics such as
read traffic size, we can see how WiSER reduces amplifica-
tion, which in turn improves end-to-end performance.

We conduct experiments on machines with 16 CPU cores,
64-GB RAM and a 256-GB NVMe SSD (peak read bandwidth
is 2.0 GB/s; peak IOPS is 200,000) [5]. We use Ubuntu with
Linux 4.4.0. We optimize the configuration of Elasticsearch
by following the best practices and tune parameters such as
the number of threads, heap size and stack size.

To evaluate how well each search engine can scale up to
large data sets that do not fit in main memory, our experiments
focus on environments with a small ratio of main memory to
working set size. The total size of English Wikipedia dataset is
18 GB, and from our experiments, we infer that the working
sets are generally a few GBs. Therefore, we configure the
search engine processes to use only 512 MB of memory (using

a Linux container); this limits the engine’s page cache to a
small size (i.e., tens of MBs). Such a configuration allows us
to demonstrate that our proposed techniques are effective at
reducing read amplification, hiding I/O latency and increasing
I/O efficiency, which are essential challenges at larger scale.

4.1 WSBench

We had to create our own benchmark to evaluate WiSER and
Elasticsearch because existing benchmarks are not sufficient.
To evaluate its engine, the Elasticsearch team uses Wikipedia
[33,44,54] and scientific papers from PubMed Central (PMC);
unfortunately, the Wikipedia benchmarks do not include real
queries and the PMC dataset is very small (only 574,199
documents and 5.5 GB when compressed) with only a few
hand-picked queries [8,9].

We create WSBench, a benchmark based on the Wikipedia
corpus, to evaluate WiSER and Elasticsearch. The corpus
is from English Wikipedia in May 2018, which includes 6
million documents and 6 million unique terms (excluding stop
words). WSBench contains 24 synthetic workloads varying
the number of terms, the type of queries, and the popularity
level of the queried terms (also known as document frequency:
the number of documents in which a term appears). A high
popularity level indicates a long postings list and large data
size per query. These variables allow us to cover a wide range
of query types and stress the system. WSBench also includes a
realistic query workload extracted from production Wikipedia
servers [21], and three workloads with different query types
derived from the original realistic workload.

4.2 Impact of Proposed Techniques

We evaluate the proposed techniques in WiSER for three
types of synthetic workloads: single-term queries, two-term
queries, and phrase queries. Such evaluations allow us to in-
vestigate how the proposed techniques impact various aspects
of the system as different techniques have different impacts
on workloads. We investigate low-level metrics such as traffic
size to precisely show why the proposed techniques improve
end-to-end performance.

4.2.1 Cross-stage Data Grouping

Cross-stage grouping can reduce the read amplification for all
types of queries. Here we show its impact on single-term and
two-term queries where grouping plays the most important
role; phrase queries are dominated by positions data where
two-way cost-aware Bloom filters play a more important role
(as we will soon show).

Figure 7 shows the decomposed read traffic for single-term
queries. The figure shows that WiSER can significantly re-
duce read amplification (indicated by lower waste than Elas-
ticsearch); the reduction is up to 2.9x. The reduction is more
when the popularity level is lower because the block utiliza-
tion is lower. To process queries with low-popularity terms, a
search engine only needs a small amount of data; for exam-
ple, an engine only needs approximately 30 bytes of data to

USENIX Association

18th USENIX Conference on File and Storage Technologies 65

10 100 1000 10000 100000

. es_no_pref wiser

©

o

<)

o

g 6

Y

=

. I I

0 N - LI RS- II___ I _I_ - —

QOEES QTEES QOoEES QTEES QOEES
B0 $B®O FBO Fgo ~ Hgo
®© O ®© O ®© O © O © O
2T] ERC]] Bl

Figure 7: Decomposed Traffic of Single-Term Queries
waste represents the data that is unnecessarily read; docid,
off, skiplist, tf, and ti represents the ideally needed
data of document ID, offset, skip list, term frequency, term
index/dictionary. Positions is not needed in match queries
and thus not shown. This figure only shows the traffic from
inverted index, which relates to cross-stage data grouping;
we investigate the rest of the traffic (document store) later.

. es es_no_pref wiser

L

5

"__ 3 [2) [t} ;i

v | B 8 g 5

o 2 [

[v4 2 © X 5 © e

° < o 2 5 I S ~ o NN
o1 & i " [-~
N o ©

©

Y - : - : :

S 10 100 1000 10000 100000

Two Terms Workloads (Popularity Level)

Figure 8: I/O Traffic of Two-term Match Queries The size
(GB) is normalized to the traffic size of Elasticsearch without
prefetching.

process the term “tugman” (popularity=_8). To retrieve such
small data, read amplification is inevitable as the minimal I/O
request size is 4 KB. However, we can (and should) mini-
mize the read amplification. Elasticsearch, which groups data
by stages, often needs three separate I/O requests for such
queries: one to term index, one to document IDs/term fre-
quency, and one to offsets. In contrast, WiSER only needs
one I/O request because the data is grouped to one block.

For high popularity levels (popularity=100,000), the traf-
fic reduction is inconspicuous because queries with popular
terms require a large amount of data for each stage (KBs or
even MBs). In that case, the waste from grouping data by
stages in Elasticsearch is negligible.

Figure 8 shows the aggregated I/O traffic for two-term
queries, which read two postings lists. Similar to Figure 7, we
can see that WiSER (wiser) incurs significantly less traffic
than Elasticsearch. In this figure, we show two configura-
tions of Elasticsearch: one with prefetch (es) and one without
prefetch (es_no_pref). Prefetch is a common technique to
boost performance in systems with ample memory; however,
as shown in Figure 8, naive prefetch in Elasticsearch (es)
can increase read amplification significantly. Such a dilemma
motivates our adaptive prefetch.

o es

2 20 M e

S 15 wiser

E 10 I wiser_bfl
E 5

o

S5l | i

1000 5000 10000 50000 100000

Figure 9: I/0 Traffic of Phrase Queries Results of Elastic-
search with prefetch is not shown as it is always much worse
than Elasticsearch without prefetch.

1000 5000 10000 50000 100000
. .esfnoipref
8 wiser
o 5 wiser_bf
i
ol
=
) | | |
0 " I I I I I I
ED2E EDQE EDAE EDEE EDLE
g8 8% 28% gsg® 38°

Figure 10: Decomposed Traffic Analysis of Phrase
Queries The bars show the ideal traffic sizes for each engine,
assuming the storage device is byte-addressable. The sizes
were obtained by adding counters to engine code.

4.2.2 Two-Way Cost-Aware Bloom Filters

Two-way cost-aware Bloom filters only affect phrase queries
as filters are only used to avoid positions data, which is used
for phrase queries. In Figure 9, we show that WiSER without
our Bloom filters demands a similar amount of data as Elas-
ticsearch; WiSER with our Bloom filters incurs much less I/0
traffic than WiSER without them and Elasticsearch.

Figure 10 shows the read amplification by the decomposed
traffic in Elasticsearch, WiSER without Bloom filters, and
WIiSER with Bloom filters. The bars labeled with data type
names show the data needed ideally, assuming the storage de-
vice is byte-addressable. First, we can see that applying filters
significantly reduce the data needed ideally which is shown
by the reduced aggregated size of all the bars. As shown in
the figure, both Elasticsearch (es) and WiSER without filters
(wiser) demand a large amount of position data; in contrast,
WIiSER with our two-way cost-aware filters (wiser_bf) sig-
nificantly reduces positions needed in all workloads. Surpris-
ingly, we find that our filters also significantly reduce the
traffic from term frequencies (t £), which is used to iterate
positions (an engine needs to know the number of positions in
each document in order to iterate to the positions of the desti-
nation document). The traffic to term frequencies is reduced
because the engine no longer need to iterate many positions.

Note that the introduction of our Bloom filters only adds a
small amount of traffic to the Bloom filters (Figure 10), thanks
to our two-way cost-aware design and the bitmap-based data
layout of Bloom filters. The two-way cost-aware design al-
lows us to prune by the smaller Bloom filter between the two
Bloom filters of the two terms in the query. The bitmap-based

66 18th USENIX Conference on File and Storage Technologies

USENIX Association

naivej |

bitmap

0 5 10
Bloom Filter Footprint (GB)
Figure 11: Bloom Filter Footprint Our bitmap-based layout
reduces footprint by 29%.

wiser - waste
es{ [N M doc
0 1 2 3 4 5
10 Traffic (GB)

Figure 12: Document Store Traffic doc indicates ideal traf-
fic size. The relative quantity between Elasticsearch and
WISER is the same across different workloads; therefore, we
show the result of one workload here for brevity (single-term
queries with the popularity level = 10).

layout, which uses only one bit to store an empty Bloom fil-
ter, significantly compresses Bloom filters, reducing traffic.
We observe that 32% of the Bloom filters for Wikipedia are
empty, which motivates the bitmap-based layout. Figure 11
shows that using bitmap-based layout reduces the Bloom filter
footprint by 29%.

4.2.3 Adaptive Prefetching

Adaptive prefetching aims to avoid frequent wait for I/O and
reduce read amplification by prefetching only the data needed
for the current queries. As shown in Figure 7 and Figure 8§,
WiSER incurs less traffic than Elasticsearch with and without
prefetching. As expected, by taking advantage of the informa-
tion embedded in the in-memory data structure (Section 3.3),
WiSER only prefetches the necessary data. Later in this sec-
tion, we show that adaptive prefetching is able to avoid wait-
ing for I/O and improve end-to-end performance.

4.2.4 Trade Disk Space for Less I/0

The process of highlighting, which is the last step of all com-
mon queries, reads documents from the document store and
produces snippets. Figure 12 show that WiSER’s highlighting
incurs significantly less I/O traffic (42%) to the document
store than Elasticsearch because in WiSER documents are
decompressed individually and are aligned, whereas Elastic-
search may have to decompress irrelevant documents and read
more I/O blocks due to misalignment. The size of WiSER’s
document store (9.5 GB) is 25% larger than that of Elastic-
search (7.6 GB); however, we argue that this space amplifica-
tion is well justified by the 42% 1/O traffic reduction. WiSER
still wastes some traffic because the compressed documents
in Wikipedia are small (average: 1.44 KB) but WiSER must
read at least 4 KB (the file system block size).

4.3 End-to-end Performance

We examine various types of workloads in this section, in-
cluding match queries (single-term and multi-term), phrase
queries, and real workloads. For match queries, WiSER
achieves 2.5 times higher throughput than Elasticsearch. For

301
254
201
154

3 o
10 2 g
8 &

. es es_no_pref wiser

90508
66433

Normalized Throughput
36887

‘4735

10 100 1000 10000 100000
Single Term Workloads (Popularity Level)

Figure 13: Single Term Matching Throughput The through-
put (QPS) is normalized to the performance of Elasticsearch
with prefetch (the default 128 KB).

3.01 .es = 3.01 .es
& es_no_pref £ es_no_pref
g 251 . > 2.5 .
- wiser o wiser
© c N
- o i) 3
c 2.01 & % 2.01 8
@ - 2
3 R
% 1.51 © T'C_- 1.54
& n — cc_
B oiols oz 5 cshEls o le F & el
R R RO ER R
g < N o M
: = o W2
5 0.57 . 1 g 0.518 o
— 2 iR ~ P
z ™ Ik 5 2
0.01 Z 0.0
o o o o o © o o © o
- O O O Oo - O O O O
- © © © - © © ©
- O O - O O
-~ O - &
- ~—
Workloads Workloads

(Popularity Level) (Popularity Level)
Figure 14: Single Term Matching Latency The latency (ms)
is normalized to the median latency of Elasticsearch with
default prefetching.

phrase queries, WiSER achieves 2.7 times higher through-
put than Elasticsearch. WiSER achieves consistently higher
performance than Elasticsearch for real-world queries. The
end-to-end evaluation shows that WiSER is overall more effi-
cient than Elasticsearch, thanks to our proposed techniques
and efficient implementation.

4.3.1 Match Queries

We now describe the results for the single-term and multi-
term queries. Because queries that match more than two terms
share similar characteristics with two-terms queries, we only
present the results of two-term queries here.

Figure 13 presents the single-term match QPS (Queries
Per Second) of WiSER. The default Elasticsearch is much
worse than other engines when the popular levels are low
because Elasticsearch incurs significant read amplification:
Elasticsearch reads 128 KB of data when only a much
smaller amount is needed (e.g., dozens of bytes). Elastic-
search without prefetch (es_no_pref) performs much better
than es_default, thanks to much less read amplification.

WiSER achieves higher throughput than Elasticsearch with-
out prefetch (es_no_pref) for low/medium popularity levels,
which accounts for a large portion of the postings lists; the
speedup is up to 2.5 times. When popularity level is 100,000,

USENIX Association

18th USENIX Conference on File and Storage Technologies 67

5 307

% 254 § g . es es_no_pref wiser

8 20- 8 &

£

E 15; © +

[% ~ 3

N 101 o © 8 fﬁ

g 50 ¢ o ma © & - o g

E 515 g 2 ® K g g g e

2 o} e — - — - e SR CR
10 100 1000 10000 100000

Two Terms Workloads (Popularity Level)

Figure 15: Two Terms Intersecting Performance Through-
put (QPS) is normalized to the performance of Elasticsearch.

the query throughput of WiSER is 14% worse than Elastic-
search with default prefetching. We found that the difference
is related to WiSER’s less efficient score calculation, which
is not directly linked to I/O.

The query throughput improvement largely comes from
the reduced I/O traffic as queries with low popularity levels
are I/O intensive and I/O is the system bottleneck. Indeed, we
see that the query throughput improvement is highly corre-
lated with the I/O reduction. For example, WiSER’s query
throughput for popularity level 10 is 2.6 times higher than
Elasticsearch’s; WiSER’s 1/O traffic for the same workload is
2.9 times lower than Elasticsearch’s.

WIiSER achieves better median latency and tail latency than
Elasticsearch, thanks to adaptive prefetch and cross-stage data
grouping. Figure 14 shows that WiSER achieves up to 16x and
11x lower median latency than Elasticsearch, for median and
tail latency respectively. The latency of Elasticsearch is longer
due to similar reasons for its low query throughput. Elastic-
search’s data layout incurs more I/O requests than WiSER;
the time of waiting for page faults adds to the query latency.
In contrast, WiSER’s more compact data layout and adaptive
prefetch incur minimal I/O requests, eliminating unnecessary
I/O wait.

Grouped data layout also benefits two-term match queries.
Figure 15 presents results for two-term match queries, which
are similar to single-term ones. As we have shown in Figure 8
that WiSER reduces by 17% to 51% of /O traffic for work-
loads with popularity levels no more than 1,000. As a result,
WIiSER achieves 1.5x to 2.6x higher query throughput com-
pared with Elasticsearch. When a workload includes popular
terms, WiSER'’s traffic reduction becomes negligible since
data grouping has little effects.

4.3.2 Phrase Queries

In this section, we show that our two-way cost-aware Bloom
filters make fast phrase query processing possible. Specif-
ically, WiSER can achieve up to 2.7 times higher query
throughput and up to 8 times lower latency, relative to Elas-
ticsearch. To support early pruning, WiSER needs to store 9
GB of Bloom filters (the overall index size increases from 18
GB to 27 GB, a 50% increase). We believe such space ampli-
fication is reasonable because flash is an order of magnitude
cheaper than RAM.

. es . es_no_pref wiser wiser_bf
2
S 5 o
s © ~ g o
< 2
- 4 © g _— - <+

[3Y]

= “lomi. .. S gl 3% 8 S5 8.5,
INE DEN O Ol i
§ 1000 5000 10000 50000 100000

Phrase Queries Workloads (Popularity Level)

Figure 16: Phrase Query QPS The throughput (QPS) is nor-
malized to the performance of Elasticsearch.

M s

Hes

4 . es_no_pref 41 . es_no_pref
wiser wiser
wiser_bf wiser_bf

3 31 PRI

e Qo B

Normalized Median Latency
N
.5
1.9

Normalized 95th% Latency

o —_
9.7
4.6
9
2
7.8
o - N
441
36.3
_43.5
36.9
_1091
231.8
140.2
162.2
300.5

o o o o o O O o o o
o o o o o o o o o o
o o o o o o o o o o
-~ [Tl o o o ~— Yo o o o
~ Te) o ~ w o
- -

Workloads Workloads

(Popularity Level) (Popularity Level)
Figure 17: Phrase Queries Latency The latency (ms) is nor-
malized to the corresponding latency of Elasticsearch with
default prefetching.

WSBench produces the phrase query workloads by varying
the probability that the two terms in a phrase query become
a phrase. WSBench chooses one term from popular terms
(popularity level is larger than 10,000); it then varies the
popularity level of another term from low to high. As the
popularity increases, the two terms are more likely to co-exist
in the same document and also more likely to appear as a
phrase in the document.

Figure 16 presents the phrase queries results among work-
loads in Elasticsearch (es and es_no_pref), WiSER (wiser),
and WiSER with two-way cost-aware pruning (wiser_bf).
The QPS of the basic WiSER (wiser and Elasticsearch with
no prefetch (es_no_pref) are similar because our techniques
in the basic WiSER (cross-stage data grouping, adaptive
prefetch, trading space for less 1/O) have little effect for
phrase query. WiSER with two-way cost-aware Bloom fil-
ters achieves from 1.3x to 2.7x higher query throughput than
that of basic WiSER, thanks to significantly lower read ampli-
fication brought by the filters.

Figure 17 shows that Bloom filters can significantly reduce
latency (wiser vs. wiser_bf); also WiSER reduces median
and tail latency by up to 3.2x and 8.7x respectively, com-
pared to Elasticsearch. The reduction is more evident when

68 18th USENIX Conference on File and Storage Technologies

USENIX Association

. wiser wiser_al wiser_al_bf
=]
Q.
=2 s g & 8 & &
8 2.5 I o =) s})) 3 B &
= = ® & o ro}
c 2.0 s — — — 8
[© ~
3 1.5 R R
8 101- -0 - -
T 05
E 00
3 N T T T T
2 overall single_term multi_terms phrases

Derived Worklads

Figure 18: Throughput of Derived Workloads The through-
put (QPS) is normalized to the throughput of Elasticsearch
without Prefetching

the probability of forming a phrase is lower (low popular-
ity level) because the Bloom filters are smaller in that case.
Interestingly, Elasticsearch with OS prefetch (es) achieves
the lowest latency when the probability of forming phrases is
higher. The latency is lower because the OS prefetches 128
KB of positions data and avoids waiting for many page faults,
although the large prefetch increases read amplification. In
contrast, Elasticsearch without prefetch (es_no_pref) and
WiSER do not prefetch; thus they may have to frequently stop
query processing to wait for data (WiSER’s adaptive prefetch
does not prefetch position data due to fragments of unneces-
sary data.). However, the reduction of latency comes at a cost:
although the latency of individual queries is lower, the query
throughput is also lower due to the read amplification caused
by prefetch (Figure 16).

Interestingly, we find our Bloom filters also speed up the
computation of phrase queries. WiSER checks if a phrase
exists by Bloom filters, which is essentially O(1) hashing. In
the common case that the Bloom filter is empty, WiSER can
even check faster because an empty Bloom filter is marked
as 0 in the bitmap and we only need to check this bit. As a
result, in addition to avoiding reading positions, Bloom filters
also allow us to avoid intersecting the positions.

4.3.3 Real Workload

WSBench also includes realistic workloads. We compare Elas-
ticsearch and WiSER’s query throughput on the real query
log; we also split the query log into different types of query
workloads to examine the performance closely.

WiSER performs significantly better than Elasticsearch as
shown in Figure 18. For example, for single-term queries,
WIiSER achieves as high as 2.2x throughput compared to Elas-
ticsearch. We observe that around 60% queries in the real
workload are of popularity less than 10,000, which benefits
from our cross-stage data grouping. For multi-term match
queries, grouped data layout also helps to increase throughput
by more than 60%. For phrase queries extracted from the real-
istic workload, WiSER with Bloom filters increases through-
put by more than 60% compared to Elasticsearch. Note that
WiSER cannot achieve 2.7x higher throughout as shown in
our synthetic phrase queries because, in this real workload,
many phrases are the names of people, brand, or events and

so on. Among these names, many terms are unpopular terms
that are not I/O intensive, where pruning has limited effect.
Finally, the overall performance of WiSER is similar to that of
real single-term query log because single-term queries occupy
half of the overall query log.

4.4 Scaling with Memory

Our previous experiments showed that WiSER performs sig-
nificantly better than Elasticsearch for a single small memory
size of 512 MB. This small memory size was chosen to stress
the I/O performance of each search engine. For our final ex-
periments, we show that we have rebuilt a search engine that
can rely less on expensive memory and more on cheaper flash.
Over a broader range of memory sizes, WiSER’s techniques
continue to improve I/O and end-to-end performance. In ad-
dition, it shows that WiSER works well with a low memory
size / working set size ratio, which may allow WiSER
to scale to large dataset without increasing much memory.

Figure 19 compares the query throughput, 50-th% query
latency, bandwidth, and amount of traffic for Elasticsearch
(es), WiSER with only cross-stage grouping (wiser_base),
and fully-optimized WiSER (wiser_final). For our two end-
to-end metrics, both versions of WiSER have much higher
query throughput and much lower query latency than Elastic-
search across all workloads and memory sizes. As expected,
query throughput is higher, and latency is lower, when more
memory is available. For workload twoterm, single.high,
and single. low, our highly efficient implementation allows
WiSER with limited memory (e.g., 128 MB) to perform bet-
ter than Elasticsearch with memory that can hold the entire
working set (e.g., 8 GB).

The significant difference in end-to-end performance be-
tween WiSER and Elasticsearch for workload twoterm,
single.high, and single.low at large memory sizes (Fig-
ure 19a and Figure 19b) is attributed to the network issue of
Elasticsearch (we have carefully setup tests in Elasticsearch
and compared it with similar applications to confirm the is-
sue); with this memory size, I/O is not a bottleneck and our
techniques should not make big differences. For the same
workloads, we can identify the effects of our techniques in
Figure 19d as we reduce the memory sizes, where 1I/O oper-
ations increase due to reduced cache. We can see that when
the memory size is big, the traffic sizes between Elasticsearch
and WIiSER are similar, but WiSER’s traffic sizes increase
much slower than Elasticsearch’s as we reduce memory sizes,
thanks to data grouping, adaptive prefetching and trading disk
space for I/O. Note that wiser_final has more read traf-
fic than wiser_base because adaptive prefetch is turned on,
which increases the read bandwidth (Figure 19¢) and helps
with end-to-end performance.

The effect of two-way cost-aware Bloom filters is evident
in Figure 19a by comparing wiser_base (no Bloom filters)
and wiser_final. The improvement is up to 1.4x (memory
size = 256 MB, note that the improvement here is less than

USENIX Association

18th USENIX Conference on File and Storage Technologies 69

600 1 1,250
1,000

4001 x % Egg _/:
200 g 3001
0- 2 0!
12,000+ € 60y

4,000 3 L
2 0- 3 o
a 0 2]
2,000-\ 28 %

1,000 e 0 R —_———
' 0- === \iser_base %é 0
60,000 { & wiser_final 23 B3]
40,000'\ % 191

20,0001 5 91 —
0- s 0l

nm 0 MMmMMOmMMmMM N M MMM @MmMMm

OO0 00Sss s O000Ss s s

O < N v« N © o W < N v« N © ©

— 1 N ~ O N

v N - O N -

(@) (b)
Figure 19: Performance over a range of memory sizes.

ybiysjbuis wJisjom} aseuyd

Read Bandwidth (MB/s)

mo|a|buls

401
4oo-f . B .
2001 g 29 B
0- 0-
600 ~
400-ﬁ z m 151 g
2 G 10 :
200 3 o 51 3
0- g 0
] o = o
100 g 18' g
608-/\ [[
400+ a 407 a
2007 % 20-/_ .‘03
0- = 04 s
M o o m@om @D o M m 0 m @D m m
O 000 =3 = O 000 == =
W < N «~ N © © O < N «~ N © ©
- 0 «N ~— n N
nu N - nu N -
© (d)

Elasticsearch fails to run at some low memory sizes and thus some of

its data points are missing. Elasticsearch’s default prefetch is turned off here because we have found that it hurts performance.
Note that we place smaller memory sizes on the right side of the X axes to emphasize the effect of reducing memory sizes.

the max in Figure 16 because we have queries with mixed
popularity levels here). Figure 19d shows the wiser final,
the engine with two-way cost-aware Bloom filters, incurs
much less I/O than wiser_base and es when memory is
reduced; the reduction is also up to 1.4x (wiser_base vs
wiser_final, memory size =256 MB). As we can see, when
1/0 is the bottleneck, the reduction of traffic correlates well
with improvement of end-to-end performance.

5 Related Work

Much work has gone into building flash-optimized key-value
stores that utilize high-performance SSDs [23, 34, 38, 42].
For example, Wisckey [38] separates keys and values to re-
duce I/O amplification on SSDs. FAWN-KV [23] is a power-
efficient key-value store with wimpy CPUs, small RAM and
some flash. Facebook [34] proposes yet another SSD-based
key-value store to reduce the consumption of DRAM by small
block sizes, aligning blocks and adaptive polling.

Graph applications are also often optimized for SSDs.
FlashGraph [59] speeds up graph processing by storing ver-
tices in memory and edges in SSDs. MOSAIC [43] uses
locality-optimizing, space-efficient graph representation on
a single machine with NVMe SSDs. Many other work also
facilitate high performance SSDs [48,49, 60].

Search engines have different data manipulation and data
structures from regular key-value stores and graphs. Among
the limited literature, Wang et al. [55] and Tong et al. [52] stud-
ied studied search engine cache policies for SSDs; Rui et al.
proposes to only cache metadata of snippets in memory and
leave the data on SSDs because the I/O cost is reduced [58]. In
this paper, we systematically redesign and implement many
key data structures and processing algorithms to optimize
search engines for SSDs. Such study exposes new opportuni-
ties and insights; for example, although using Bloom filters
is straightforward in a key-value store, using them in search

engines requires understanding the search engine pipeline,
which leads us to the novel two-way cost-aware Bloom filter.

Many proposed techniques for search engines seek to re-
duce the overhead/cost of query processing [25-28,32,40,51].
These techniques may be adopted in WiSER to further im-
prove its performance.

6 Conclusions

We have built a new search engine, WiSER, that efficiently
utilizes high-performance SSDs with smaller amounts of sys-
tem main memory. WiSER employs multiple techniques, in-
cluding optimized data layout, a novel Bloom filter, adaptive
prefetching, and space-time trade-offs. While some of the
techniques could increase space usage, these techniques col-
lectively reduce read amplification by up to 3x, increase query
throughput by up to 2.7x, and reduce latency by 16x when
compared to the state-of-the-art Elasticsearch. We believe
that the design principle behind WiSER, "read as needed",
can be applied to optimize a broad range of data-intensive
applications on high performance storage devices.

Acknowledgments

We thank Suparna Bhattacharya (our shepherd), the anony-
mous reviewers and the members of ADSL for their valuable
input. This material was supported by funding from NSF
CNS-1838733, CNS-1763810 and Microsoft Gray Systems
Laboratory. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and may not reflect the views of NSF or any other institutions.

References
[1] Apache Lucene. https://lucene.apache.org/.

[2] Apache Lucene Index File Formats. https://lucene.
apache.org/core/6_0_0/index.html/.

[3] Apache Solr. lucene.apache.org/solr/.

70

18th USENIX Conference on File and Storage Technologies

USENIX Association

[4] Breakthrough Nonvolatile = Memory Technol-
ogy. https://www.micron.com/products/
advanced-solutions/3d-xpoint-technology.

[5] CloudLab. http://www.cloudlab.us.

[6] DB-Engines Ranking.
en/ranking/.

https://db-engines.com/

[7] Elasticsearch. https://www.elastic.co/.

[8] Elasticsearch Adhoc Benchmark. https:
//elasticsearch-benchmarks.elastic.co/
no-omit/pmc/index.html.

[9] Full Text Benchmark With Academic Papers from PMC.
https://github.com/elastic/rally-tracks/
blob/master/pmc/.

[10] Improving Readahead. https://lwn.net/Articles/
372384/.

[11] LevelDB. https://github.com/google/leveldb.

[12] Libbloom.
libbloom.

https://github.com/jvirkki/

[13] Lucene Memory Index.
org/core/4_0_0/memory/org/apache/lucene/
index/memory/MemoryIndex.html.

[14] Micron NAND Flash Datasheets.
micron.com/products/nand-flash.

[15] RediSearch. redisearch.io/.
[16] RocksDB. https://rocksdb.org.

[17] Samsung 970 EVO SSD.
com/Samsung-970-EVO-1TB-Mz-V7E1TOBW/dp/
B0O7BN217QG/.

[18] Samsung K9XXGO8UXA Flash Datasheet. http://
Www.samsung.com/semiconductor/.

[19] Samsung Semiconductor. http://www.samsung.com/
semiconductor/.

[20] Toshiba Semiconductor. https://toshiba.
semicon-storage.com/ap-en/top.html.

[21] WikiBench. http://www.wikibench.eu/.

[22] Wikimedia Moving to Elasticsearch.
//blog.wikimedia.orqg/2014/01/06/
wikimedia-moving-to-elasticsearch/.

[23] David Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
FAWN: A Fast Array of Wimpy Nodes. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP °09), pages 1-14, Big Sky, Montana,
October 2009.

https:

https://lucene.apache.

https://www.

https://www.amazon.

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 1.00 edition, August 2018.

Nima Asadi and Jimmy Lin. Fast Candidate Genera-
tion for Two-phase Document Ranking: Postings List
Intersection with Bloom Filters. In Proceedings of the
21st ACM international conference on Information and
knowledge management, pages 2419-2422, Maui, HI,
2012. ACM.

Nima Asadi and Jimmy Lin. Effectiveness/efficiency
Tradeoffs for Candidate Generation in Multi-stage Re-
trieval Architectures. In Proceedings of the 36th in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 997-1000,
Dublin, Ireland, 2013. ACM.

Nima Asadi and Jimmy Lin. Fast Candidate Gener-
ation for Real-time Tweet Search with Bloom Filter
Chains. ACM Transactions on Information Systems
(TOIS), 31(3):13, 2013.

Aruna Balasubramanian, Niranjan Balasubramanian,
Samuel J Huston, Donald Metzler, and David J] Wether-
all. FindAll: a Local Search engine for Mobile Phones.
In Proceedings of the 8th international conference on
Emerging networking experiments and technologies,
pages 277-288. ACM, 2012.

Matias Bjgrling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), pages 359-374,
Santa Clara, California, February 2017.

Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System Im-
plications of Flash Memory Based Solid State Drives. In
Proceedings of the 2009 Joint International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS/Performance ’09), pages 181-192, Seat-
tle, Washington, June 2009.

G. G. Chowdhury. Introduction to Modern Information
Retrieval. Neal-Schuman, 2003.

Austin T Clements, Dan RK Ports, and David R Karger.
Arpeggio: Metadata Searching and Content Sharing with
Chord. In International Workshop on Peer-To-Peer Sys-
tems, pages 58—68. Springer, 2005.

Ludovic Denoyer and Patrick Gallinari. The Wikipedia
XML Corpus. In International Workshop of the Initia-
tive for the Evaluation of XML Retrieval, pages 12-19.
Springer, 2006.

USENIX Association

18th USENIX Conference on File and Storage Technologies 71

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM
Footprint with NVM in Facebook. In Proceedings of
the EuroSys Conference (EuroSys ’18), page 42, Porto,
Portugal, April 2018. ACM.

Evgeniy Gabrilovich and Shaul Markovitch. Computing
Semantic Relatedness Using Wikipedia-based Explicit
Semantic Analysis. In IJcAl, volume 7, pages 1606—
1611, 2007.

Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. The Unwritten Contract
of Solid State Drives. In Proceedings of the EuroSys
Conference (EuroSys '17), pages 127-144, Belgrade
Serbia, April 2017. ACM.

Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu.
Revisiting Storage for Smartphones. ACM Transactions
on Storage, 8(4):14, 2012.

Lanyue Lu and Thanumalayan Sankaranarayana Pillai
and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST ’16), pages 133-148, Santa Clara, California,
February 2016.

Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (FAST ’15), pages 273—
286, Santa Clara, California, February 2015.

Jinyang Li, Boon Thau Loo, Joseph M Hellerstein,
M Frans Kaashoek, David R Karger, and Robert Mor-
ris. On the Feasibility of Peer-to-peer Web Indexing
and Search. In International Workshop on Peer-to-Peer
Systems, pages 207-215. Springer, 2003.

Wentian Li. Random Texts Exhibit Zipf’s-law-like Word
Frequency Distribution. /IEEE Transactions on informa-
tion theory, 38(6):1842—-1845, 1992.

Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. SILT: A Memory-efficient, High-
performance Key-value Store. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(SOSP ’11), Cascais, Portugal, October 2011.

Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim. Mo-
saic: Processing a Trillion-edge Graph on a Single Ma-
chine. In Proceedings of the EuroSys Conference (Eu-
roSys '17), pages 527-543, Belgrade Serbia, April 2017.
ACM.

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

David Milne and Ian H Witten. Learning to Link with
Wikipedia. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 509—
518. ACM, 2008.

Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: Random Write
Considered Harmful in Solid State Drives. In Proceed-
ings of the 10th USENIX Symposium on File and Storage
Technologies (FAST ’12), San Jose, California, February
2012.

James K. Mullin. Optimal Semijoins for Distributed
Database Systems. [EEE Transactions on Software
Engineering, (5):558-560, 1990.

Alexander Pak and Patrick Paroubek. Twitter as a Cor-
pus for Sentiment Analysis and Opinion Mining. In
LREc, volume 10, pages 1320-1326, 2010.

Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-
vic, and Willy Zwaenepoel. Chaos: Scale-out Graph
Processing from Secondary Storage. In Proceedings of
the 25th ACM Symposium on Operating Systems Princi-
ples (SOSP ’15), Monterey, California, October 2015.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-Stream: Edge-centric Graph Processing Using
Streaming Partitions. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP
'13), pages 472-488, Nemacolin Woodlands Resort,
Farmington, Pennsylvania, October 2013.

Bin Tan and Fuchun Peng. Unsupervised Query Seg-
mentation Using Generative Language Models and
Wikipedia. In Proceedings of the 17th international
conference on World Wide Web, pages 347-356. ACM,
2008.

Nicola Tonellotto, Craig Macdonald, and Iadh Ounis.
Efficient and Effective Retrieval Using Selective Prun-
ing. In Proceedings of the sixth ACM international con-

ference on Web search and data mining, pages 63—72.
ACM, 2013.

Jiancong Tong, Gang Wang, and Xiaoguang Liu.
Latency-aware Strategy for Static List Caching in Flash-
based Web Search Engines. In Proceedings of the 22nd
ACM international conference on Information & Knowl-
edge Management, pages 1209-1212. ACM, 2013.

Max Volkel, Markus Krotzsch, Denny Vrandecic, Heiko
Haller, and Rudi Studer. Semantic Wikipedia. In Pro-
ceedings of the 15th international conference on World
Wide Web, pages 585-594, 2006.

Jakob VoB3. Measuring Wikipedia. Proceedings of ISSI
2005: 10th International Conference of the International
Society for Scientometrics and Informetrics, 1, 01 2005.

72

18th USENIX Conference on File and Storage Technologies

USENIX Association

[55]

[56]

[57]

[58]

Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong,
Gang Wang, and Xiaoguang Liu. The Impact of Solid
State Drive on Search Engine Cache Management. In
Proceedings of the 36th international ACM SIGIR con-
ference on Research and development in information
retrieval, pages 693-702. ACM, 2013.

Fei Wu and Daniel S Weld. Autonomously Semantify-
ing Wikipedia. In Proceedings of the sixteenth ACM
conference on Conference on information and knowl-
edge management, pages 41-50, 2007.

Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Towards an Unwritten Contract of Intel Op-
tane SSD. In I1th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage ’19), Renton,
WA, July 2019.

Rui Zhang, Pengyu Sun, Jiancong Tong, Rebecca Jane
Stones, Gang Wang, and Xiaoguang Liu. Compact Snip-

[59]

[60]

pet Caching for Flash-based Search Engines. In Proceed-
ings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 1015-1018. ACM, 2015.

Da Zheng, Disa Mhembere, Randal Burns, Joshua Vo-
gelstein, Carey E Priebe, and Alexander S Szalay. Flash-
graph: Processing billion-node graphs on an array of
commodity ssds. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST
’15), pages 45-58, Santa Clara, California, February
2015.

Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale Graph Processing on a Single ma-
chine Using 2-Level Hierarchical Partitioning. In Pro-
ceedings of the USENIX Annual Technical Conference
(USENIX ’15), pages 375-386, Santa Clara, California,

July 2015.

USENIX Association

18th USENIX Conference on File and Storage Technologies 73

How to Copy Files

Yang Zhan
UNC Chapel Hill and Huawei

Michael A. Bender
Stony Brook Uniyv.

Rob Johnson
VMware Research

lan Groombridge
Pace Univ.

Abstract

Making logical copies, or clones, of files and directories
is critical to many real-world applications and workflows,
including backups, virtual machines, and containers. An ideal
clone implementation meets the following performance goals:
(1) creating the clone has low latency; (2) reads are fast in
all versions (i.e., spatial locality is always maintained, even
after modifications); (3) writes are fast in all versions; (4)
the overall system is space efficient. Implementing a clone
operation that realizes all four properties, which we call a
nimble clone, is a long-standing open problem.

This paper describes nimble clones in BetrFS, an open-
source, full-path-indexed, and write-optimized file system.
The key observation behind our work is that standard copy-
on-write heuristics can be too coarse to be space efficient, or
too fine-grained to preserve locality. On the other hand, a
write-optimized key-value store, as used in BetrFS or an LSM-
tree, can decouple the logical application of updates from the
granularity at which data is physically copied. In our write-
optimized clone implementation, data sharing among clones
is only broken when a clone has changed enough to warrant
making a copy, a policy we call copy-on-abundant-write.

We demonstrate that the algorithmic work needed to batch
and amortize the cost of BetrFS clone operations does not
erode the performance advantages of baseline BetrFS; BetrFS
performance even improves in a few cases. BetrFS cloning
is efficient; for example, when using the clone operation for
container creation, BetrFS outperforms a simple recursive
copy by up to two orders-of-magnitude and outperforms file
systems that have specialized LXC backends by 3—4x.

1 Introduction

Many real-world workflows rely on logically copying files and
directories. Backup and snapshot utilities logically copy the
entire file system on a regular schedule [36]. Virtual-machine
servers create new virtual machine images by copying a pris-
tine disk image. More recently, container infrastructures like

Alex Conway
Rutgers Univ.

Martin Farach-Colton

Donald E. Porter
UNC Chapel Hill

Nirjhar Mukherjee
UNC Chapel Hill

Yizheng Jiao
UNC Chapel Hill

William Jannen

Rutgers Univ. Williams College

Jun Yuan
Pace Univ.

Docker make heavy use of logical copies to package and
deploy applications [34, 35, 37,44], and new container cre-
ation typically begins by making a logical copy of a reference
directory tree.

Duplicating large objects is so prevalent that many file sys-
tems support logical copies of directory trees without making
full physical copies. Physically copying a large file or direc-
tory is expensive—both in time and space. A classic optimiza-
tion, frequently used for volume snapshots, is to implement
copy-on-write (CoW). Many logical volume managers sup-
port block-level CoW snapshots [24], and some file systems
support CoW file or directory copies [29] via cp --reflink
or other implementation-specific interfaces. Marking a direc-
tory as CoW is quick, especially when the file system can
mark the top-level directory as CoW and lazily propagate the
changes down the directory tree. Initially, this approach is
also space efficient because blocks or files need not be rewrit-
ten until they are modified. However, standard CoW presents
a subtle tradeoff between write amplification and locality.

The main CoW knob to tune is the copy granularity. If
the copy granularity is large, such as in file-level CoW, the
cost of small changes is amplified; the first write to any CoW
unit is high, drastically increasing update latency, and space
is wasted because sharing is broken for al/ data. If the copy
granularity is small, updates are fast but fragmented; sequen-
tially reading the copy becomes expensive. Locality is crucial:
poor locality can impose a persistent tax on the performance
of all file accesses and directory traversals until the file is
completely rewritten or the system defragmented [8—10].

Nimble clones. An ideal logical copy—or clone—

implementation will have strong performance along

several dimensions. In particular, clones should:

e Dbe fast to create;

e have excellent read locality, so that logically related files
can be read at near disk bandwidth, even after modification;

e have fast writes, both to the original and the clone; and

e conserve space, in that the write amplification and disk
footprint are as small as possible, even after updates to the
original or to the clone.

USENIX Association

18th USENIX Conference on File and Storage Technologies 75

12 T E—
—e— Btrfs
10 |-| —&— Btrfs-svol
XFS
gl |+ ZFS

Grep Time (sec)
[=)}

|
1 5

10 15
Clone Number

Figure 1: Grep Time for a logically copied 256MiB directory,
as a function of the number of prior copies with small edits.
(Lower is better.) Btrfs-svol is a volume snapshot, Btrfs and
XFS use cp --reflink. Full experiment details are in §5.1.

We call a clone with this constellation of features nimble.
Existing CoW clone implementations are not nimble.

Figure | illustrates how performance can degrade using
standard CoW techniques in two file systems with copy opti-
mizations. We start by creating a two-level directory hierarchy
with 64 4-MiB files (256MiB total), and the experiment pro-
ceeds for several rounds. Each round does a volume snapshot
or a reflink copy (depending on what the file system supports)
and then performs a small, 16-byte edit to each file. We report
the time to do a recursive, cold-cache grep over the entire
directory at the end of each round. The experiment is detailed
further in §5.1.

After each copy and modification, read performance de-
grades. In the case of XFS and ZFS, we see a factor of 3—4 x
after only 16 rounds. Btrfs degrades more gradually, about
50% over the same period. In both cases, however, the degra-
dation appears monotonic.

The critical issue here is the need to decouple the granular-
ity of writes to a clone from the granularity of copies of the
shared data. It makes perfect sense to copy a large file that is
effectively overwritten. But, for very small changes, it is more
IO efficient to keep a “delta” in scratch space until enough
changes accrue to justify the cost of a substantial rewrite. In
other words, the CoW copy size should be tuned to preserve
locality (e.g., set to an efficient transfer size for the device),
not to whatever granularity a single workload happens to use.
Contributions. In this paper, we present a logical copy spec-
ification, which we call a clone, and a set of performance
criteria that a nimble clone must satisfy. We present the de-
sign for a file system and nimble clone implementation that
meets all of these criteria.

One key insight into our solution is that the write-optimized
message-batching model used in systems such as BetrFS is
well suited to decouple writes from copies. There is already
a mechanism in place to buffer and apply small changes,
although implement the semantics of cloning requires sub-

stantial, additional data-structural work.

We extend BetrFS 0.4, an open-source, full-path-indexed,
write-optimized file system. BetrFS performance matches or
exceeds other local Linux file systems on a range of applica-
tions [8, 17,39,42], but BetrFS 0.4 does not support cloning.
BetrFS 0.5’s clone implements a policy we call Copy-on-
Abundant-Write, or CAW, by buffering small changes to a
cloned file or directory in messages until enough changes
accrue to warrant the cost of unsharing the cloned data.

This paper also contributes several data-structural tech-
niques to write-optimized dictionaries, in order to implement
nimble clones in BetrFS. First, we enable different traver-
sal paths to re-use the same physical data by transforming
BetrFS’s Bé-tree [3, 6] data structure into a BE-DAG (di-
rected acyclic graph). Second, in order to realize very fast
logical copies, we develop new techniques that apply write-
optimization, which has previously been used to accelerate
changes to data stored in the key-value store, towards batch-
ing changes to the topology of the data structure itself, i.e.,
its pivots and internal pointers. An essential limitation of the
state of the art, including BetrFS, is that renames, which mod-
ify the tree structure, cannot be batched; rather, renames must
be completed immediately, including applying all pending
changes to the relevant portions of the file system namespace.
We introduce a GOTO message, which can rapidly persist a
logical copy into the message buffer, and is as fast as any
small write. With GOTOs, BE-DAG-internal housekeeping
work is piggy-backed onto any writes to the logically copied
region. Third, we introduce a translation prefix abstraction
that can—at rest—logically correct stale keys in shared data,
facilitating both deferred copies and correct queries of par-
tially shared data. As a result of these techniques, BetrFS
can rapidly persist large logical copies much faster than the
current state of the art (33%—6.8x), without eroding read,
write, or space efficiency.

The contributions of this paper are as follows:

e A design and implementation of a BE-DAG data structure,
which supports nimble CAW clones. The B&-DAG extends
the Bé-tree buffered-message substrate to store and logi-
cally apply small changes to a clone, until enough changes
accrue to warrant the cost of rewriting a clone.

e A write-optimized clone design, wherein one can persist a
clone by simply writing a message into the root of the DAG.
The work of the clone is batched with other operations and
amortized across other modifications.

e An asymptotic analysis, indicating that adding cloning does
not harm other operations, and that cloning itself has a cost
that is logarithmic in the size of the BE-DAG.

o A thorough evaluation of BetrFS, which demonstrates that
it meets the nimble performance goals, does not erode the
advantages of baseline BetrFS on unrelated workloads, and
can improve performance of real-world applications. For
instance, we wrote an LXC (Linux Container) backend
that uses cloning to create containers, and BetrFS is 3—4 x

76 18th USENIX Conference on File and Storage Technologies

USENIX Association

faster than other file systems with cloning support, and up
to 2 orders of magnitude faster than those without.

2 BetrFS Background

This section presents Bé-tree and BetrFS background that is
necessary to understand the cloning implementation presented
in the rest of the paper.

BetrFS [17,18,39,40,42,43] is an in-kernel, local file sys-
tem built on a key-value store (KV-store) substrate. A BetrFS
instance keeps two KV-stores. The metadata KV-store maps
full paths (relative to the mountpoint, e.g., /foo/bar/baz)
to struct stat structures, and the data KV-store maps {full
path + block number} keys to 4KiB blocks.

The Bé-tree. BetrFS is named for its KV-store data structure,
the BE-tree [3,6]. A B®-tree is a write-optimized KV-store
in the same family of data structures as an LSM-tree [25] or
COLA [2]. Like B-tree variants, Bé-trees store key-value pairs
in leaves. A key feature of the B®-tree is that interior nodes
buffer pending mutations to the leaf contents, encoded as
messages. Messages are inserted into the root of the tree, and,
when an interior node’s buffer fills with messages, messages
are flushed in large batches to one or more children’s buffers.
Eventually, messages reach the leaves and the updates are
applied. As a consequence, random updates are inexpensive—
the BE-tree effectively logs updates at each node. And since
updates move down the tree in batches, the 10 savings grow
with the batch size.

A key BE-tree invariant is that all pending messages for a
given key-value pair are located on the root-to-leaf traversal
path that is defined by its key. So a point query needs to read
and apply all applicable buffered messages on the traversal
path to construct a correct response. Messages have a logical
timestamp, and one can think of the contents of these buffered
messages as a history of mutations since the last time the leaf
was written.

Range operations. BetrFS includes optimizations for con-
tiguous ranges of keys. These are designed to optimize opera-
tions on subtrees of the file system namespace (e.g., mv).

Importantly, because BetrFS uses full-path keys, the con-
tents of a directory are encoded using keys that have a com-
mon prefix and thus are stored nearly contiguously in the
BE-tree, in roughly depth-first order. One can read a file or
recursively search a directory with a range query over all
keys that start with the common directory or file prefix. As
a result, BetrFS can use a range delete message to delete an
entire file or recursively (and logically) delete a directory tree
with a single message. The range delete is lazily applied to
physically delete and recover the space.

Full-path indexing and renaming. Efficient rename opera-
tions pose a significant challenge for full-path-indexed file
systems. BetrFS has a range rename operation, which can
synchronously change the prefix of a contiguous range of keys

in the B-tree [42]. In a nutshell, this approach slices out the
source and destination subtrees, such that there is a single
pointer at the same BE-tree level to the source and destination
subtrees. The range rename then does a “pointer swing”, and
the tree is “healed” in the background to ensure balance and
that nodes are within the expected branching factor. Some
important performance intuition about this approach is that
the slicing work is logarithmic in the size of the renamed data
(i.e., the slicing work is only needed on the right and left edge
of each subtree).

BetrFS ensures that range rename leaves most of the on-
disk subtree untouched by lifting out common key prefixes.
Consider a subtree T whose range is defined at 7"’s parent by
pivots p; and p;. Then the longest common prefix of p; and
P2, denoted lep(py, p2), must be a prefix of all the keys in
T. A lifted B®-tree omits lcp(p1, p2) from all keys in 7. We
say that lep(p1, p2) has been lifted out of T, and that lcp-T
is lifted. The lifted Bé-tree maintains the lifting invariant, i.e.
that every subtree is lifted at all times. Maintaining the lifting
invariant does not increase the 1O cost of insertions, queries,
flushes, node splits or merges, or any other B®-tree operations.

With the combination of tree surgery and lifting, BetrFS
renames are competitive with inode-based file systems [42].

Crash consistency. BetrFS’s BE-tree nodes are copy-on-
write. Nodes are identified using a logical node number, and a
node translation table maps logical node numbers to on-disk
locations. The node translation table also maintains a bitmap
of free and allocated disk space. Node writeback involves
allocating a new physical location on disk and updating the
node translation table. This approach removes the need to
modify a parent when a child is rewritten.

All Bé-tree modifications are logged in a logical redo log.
The BE-tree is checkpointed to disk every 60 seconds; a check-
point writes all dirty nodes and the node translation table to
disk and then truncates the redo log. After a crash, one need
only replay the redo log since the last checkpoint.

Physical space is reclaimed as part of the checkpointing
process with the invariant that one can only reuse space that
is not reachable from the last stable checkpoint (otherwise,
one might not recover from a crash that happens before the
next checkpoint). As a result, node reclamation is relatively
straightforward: when a node is overwritten, the node transla-
tion table tracks the pending free, and then applies that free
at the next checkpoint. We note that range delete of a subtree
must identify all of the nodes in the subtree and mark them
free as part of flushing the range delete message; the node
translation table does not store the tree structure.

3 Cloning in BetrFS 0.5

This section describes how we augment BetrFS to support
cloning. We begin by defining clone semantics, then describe
how to extend the lifted B&-tree data structure to a lifted B®-

USENIX Association

18th USENIX Conference on File and Storage Technologies 77

DAG (directed acyclic graph), and finally describe how to
perform mutations on this new data structure. The section
concludes with a brief asymptotic analysis of the BE-DAG.

When considering the design, it helps to differentiate the
three layers of the system: the file system directory hierarchy,
the KV-store keyspace, and the internal B2-tree structure. We
first define the clone operation semantics in terms of their
effect on file system directory tree. However, because all
file system directories and their descendants are mapped onto
contiguous KV-store keys based on their full paths, we then
focus the BetrFS clone discussion on the KV-store keyspace
and the internal B®-tree structure implementation.

CLONE operation semantics. A CLONE operation takes as
input two paths: (1) a source path—either a file or directory
tree root—and (2) a destination path. The file system directory
tree is changed so that a logically identical copy of the source
object exists at the location specified by the destination path.
If a file or directory was present at the destination before the
clone, that file or directory is unlinked from the directory tree.
The clone operation is atomic.

In the KV-store keyspace, clone(s,d) copies all keys with
prefix s to new keys with prefix s replaced with prefix d. It
also removes any prior key-value pairs with prefix d.

3.1 Lifted B:-DAGs

Our goal in making a lifted B&-DAG is to share, along multi-
ple graph traversal paths, a large amount of cloned data, and
to do so without immediately rewriting any child nodes. Intu-
itively, we should be able to immediately add one edge to the
graph, and then tolerate and lazily repair any inconsistencies
that appear in traversals across that newly added edge. As
illustrated in Figure 2, we construct the lifted BE-DAG by
extending the lifted BE-tree in three ways.

First, we maintain reference counts for every node so that
nodes can be shared among multiple B®-DAG search paths.
Reference counts are decoupled from the node itself and
stored in the node translation table. Thus, updating a node’s
reference does not require modifying any node. Whenever
a node’s reference count reaches zero, we decrement all of
its children’s reference counts, and then we reclaim the node.
Section 4 describes node reclamation.

A significant challenge for sharing nodes in a B®-tree or
BE-DAG is that nodes are large (target node sizes are large
enough to yield efficient transfers with respect to the under-
lying device, typically 2-4MiB) and packed with many key-
value pairs, so a given node may contain key-value pairs that
belong to unrelated logical objects. Thus, sharing a BE-DAG
node may share more than just the target data.

For example, in Figure 2, the lower node is the common
ancestor of all keys beginning with s, but the subtree rooted
at the node also contains keys from g to v. We would like to
be able to clone, say, s to p by simply inserting a new edge,
with pivots p and pz, pointing to the common ancestor of all

(query: pw)

buffer

pivots P le] pz

(query: w)

———
(query: sw)
N bt A A

buffer

pivots| g [#]s [o] sm [«] sz [«]v

Figure 2: Query processing example in a lifted BE-DAG. Ini-
tially, the query pw arrives at the parent node. Since the target
child’s pointer is bracketed by pivots that share the common
prefix p (pivots p and pw bracket the pointer to the child), the
lifted B®-DAG lifts (i.e., removes) the common prefix p from
the query term used for searching in the child, transforming
the query from pw to w. Next, the query w reaches an edge
with translation prefix s. The lifted BE-DAG prepends the
translation prefix s to the query before continuing to the child.
Thus, the query that finally arrives at the child is sw: the com-
mon prefix p was lifted out, and the translation prefix s was
prepended. The query process proceeds recursively until a
terminal node is reached.

s keys but, as the example illustrates, this could have the side
effect of cloning some additional keys as well.

Thus, our second major change is to alter the behavior of
pivot keys so that they can exclude undesirable keys from
traversals. This filtering lets us tolerate unrelated data in
a subgraph. A baseline B®-tree has an invariant that two
pivot keys in a parent node must bound all key-value pairs
in their child node (and sub-tree). In the BE-DAG, we must
relax this invariant to permit node sharing, and we change
the graph traversal behavior to simply ignore any key-value
pair, message, or pivot that lies outside of the parent pivot
keys’ range. This partially addresses the issue of sharing a
subgraph with extraneous data at its fringe.

The third, related change is to augment each edge with an
optional translation prefix that alters the behavior of traver-
sals that cross the edge. When cloning a source range of keys
to a destination, part of the source key may not be lifted. A
translation prefix on an edge specifies any remaining part of
the source prefix that was not lifted at the time of cloning.
As Figure 2 shows, whenever a query crosses an edge with
translation prefix s, we prepend s to the query term before
continuing to the child, so that the appropriate key-value pairs
are found. Once completed, a query removes the transla-
tion prefix from any results, before the lifted destination key

78 18th USENIX Conference on File and Storage Technologies

USENIX Association

buffer 00t0
p_lelpz |
pivots|_a oh g ez
&
LCAof s

Figure 3: Creating a clone by inserting a GOTO message. Note
that the GOTO message’s bracketing pivots are (p, pz), and its
child pointer contains translation prefix s. The GOTO message
supersedes the node’s other pivots during a traversal.

along the search path is added back. In the common case, the
translation prefix will be NULL.

With these changes—reference counting, filtering pivots,
and translation prefixes—a BE-DAG can efficiently represent
clones and share cloned data among different search paths.

3.2 Creating clones with GOTO messages

To clone all keys (and associated data) with prefix s to new
keys with prefix p, we first find the lowest-common ancestor
(LCA) of all s keys in the BE&-DAG, as shown in Figure 3.
Intuitively, the LCA is the root of the lowest sub-graph that
includes all source keys. We will call the LCA of all s keys
node L;. We then flush to Ly any pending messages for s keys,
so that all information about s keys can be found within the
sub-DAG rooted at node L;. We also insert into the root’s
buffer a GOTO message (described below) for all p keys with
target node L;. We finally increment the reference count of
L;. This completes the cloning process.

GOTO messages. A GOTO message behaves like a pair of
bracketing pivots and an associated child pointer. Each GOTO
message specifies a range of keys, (a,b); a target height; and
anode, U. Whenever a query for some key x reaches a node
with a GOTO message, if x falls in the range (a,b), then the
query continues directly to node U; said differently, a node’s
GOTO message supersedes the node’s other pivots during a
traversal. Like regular pivots, if the two pivots in a GOTO
message share a common prefix, then that prefix is removed
(lifted) from the query before continuing. Furthermore, like
regular child pointers, the pointer in a GOTO message can spec-
ify a translation prefix that gets prepended to queries before
they continue. Figure 3 illustrates a simple GOTO example,
where s is cloned to p. There is a normal child pointer associ-
ated with node pivots that bracket prefix s, as well as a GOTO
message that redirects queries for p to the LCA of s. In this
example, we assume s has not been lifted from the LCA, and,
thus, s is used as a translation prefix on the GOTO message.

Flushing GOTO messages. Unlike a regular pair of pivots that

bracket a child pointer, a GOTO message can be flushed from
one node to another, just like any other message. Encoding
DAG structure inside a message is an incredibly powerful fea-
ture: we can quickly persist a logical clone and later batch any
post-cloning clean-up work with subsequent writes. When
subsequent traversals process buffered messages in logical
order, a GOTO takes precedence over all older messages per-
taining to the destination keys; in other words, a GOTO implic-
itly deletes all key-value pairs for the destination range, and
redirects subsequent queries to the source sub-graph.

For performance, we ensure that all root-to-leaf BE-DAG
paths have the same length. Maintaining this invariant is
important because, together with the BE-DAG’s fanout bounds,
it guarantees that the maximum B#-DAG path has logarithmic
length, which means that all queries have logarithmic 10
complexity. Thus, we must ensure that paths created by GOTO
messages are not longer than “normal” root-to-leaf paths.

This length invariant constrains the minimum height of
a GOTO message to be one level above the message’s target
node, U. At the time we flush to the LCA and create the
GOTO message, we know the height of U; as long as the GOTO
message is not flushed to the same level as U (or deeper), the
maximum query path will not be lengthened.

So, for example, if the root node in Figure 3 is at height
7 and the LCA of s is at height 3, then the GOTO message
will get lazily flushed down the tree until it resides in the
buffer of some node at height 4. At that point the GOTO will
be converted to a regular bracketing pair of node pivots and a
child pointer, as shown in Figure 4.

In flushing a GOTO above the target height, the only addi-
tional work is possibly deleting obviated internal nodes. In
the simple case, where a GOTO covers the same key range as
one child, flushing simply moves the message down the DAG
one level, possibly lifting some of the destination key. One
may also delete messages obviated by the GOTO as part of
flushing. The more difficult case is when a GOTO message
covers more than one child pointer in a node. In this case, we
retain only the leftmost and rightmost nodes. We flush the
GOTO to the leftmost child and adjust the pivot keys to include
both the left “fringe” and the GOTO message’s key range. We
similarly adjust the rightmost pivot’s keys to exclude any keys
covered by the GOTO message (logically deleting these keys,
but deferring clean-up). Any additional child pointers and
pivots between the left and rightmost children covered by the
GOTO are removed and the reference counts on those nodes
are reduced by one, effectively deleting those paths.

Converting a GOTO message into node pivots and a child
pointer is conceptually similar to flushing a GOTO. As with
flushing, a GOTO message takes precedence over any older
messages or pre-existing node pivots and child pointers that
it overlaps. This means that any messages for a child that
are obviated by the GOTO may be dropped before the GOTO is
applied.

The simplest case is where a single child is exactly covered

USENIX Association

18th USENIX Conference on File and Storage Technologies 79

buffer buffer
goto

[pablelr]

pivots| pa e[pg [e[r [a[w pivots["pa e[pable[7 Ta[w

2 &,
Yo X ¢

< D%

Figure 4: Converting a GOTO message (left) into a pair of
bracketing pivots and a child pointer (right). Note that the
GOTO message’s pivots pab and ¢t completely cover the range
specified by the pre-existing node pivots pz and r, so the
GOTO’s pivots replace those pivots in the new node (right).
Additionally, the translation prefix s is changed to as,. This
is because, in the original node (left), the prefix p is lifted by
pivots pa and pz, but in the new node (right), new prefix pa
is lifted by pivots pa and pab; a must therefore be prepended
to the translation prefix in order to maintain traversal equiva-
lence. (Not shown: the reference counts of covered children
are dropped.)

by the GOTO; here, we just replace the pointer and decrement
the original child’s reference count. For example, in Figure 4,
the GOTO message’s range (pab,t) completely covers the old
pivot range (pz,r). Thus, when converting the GOTO message
into regular pivots, we drop the node pointer with translation
prefix s3, and we decrement the reference count of the node
to which it pointed.

Partial overlap with a pivot range is handled by a combi-
nation of adjusting pivots and adding new pointers. In Fig-
ure 4, the GOTO message partially overlaps the old pivot ranges
(pa, pz) and (r,w), and there is live data on the “left” fringe
of this child (keys between pa and pab are not covered by this
GOTO). We modify the original pivot keys so that subsequent
traversals through their child pointers only consider live data,
but we leave the child nodes untouched and defer physically
deleting their data and relifting their keys. Note that in this ex-
ample, the subtree between updated pivots pa and pb should
lift pa instead of just p, so we add a to the translation prefix
until the next time this child is actually flushed and re-lifted.
We finally replace the covered pivots with new pivot keys and
a child pointer for the GOTO’s target (the pointer between pab
and ¢ in the right portion Figure 4). In the case where a GOTO
message overlaps a single child with live data on the left and
right fringe (not illustrated), we would create a third pointer
back to the original child and increment its reference count
accordingly, with appropriate translation prefixes and pivots
to only access the live data on the “right” side.

Finally, as with flushing a GOTO, if a GOTO covers multiple
children, we remove all of the references to the “interior’
children, and replace them with a single child pointer to the
GOTO target. We note that this can temporarily violate our
target fanout; we allow the splitting and merging process,
described next, to restore the target fanout in the background.

>

3.3 Flushes, splits, and merges

We now explain how node flushes, splits, and merges interact
with reference counting, node sharing, translation prefixes,
and GOTO messages.

At a high level, we break flushing, splitting, and merging
into two steps: (1) convert all involved children into simple
children (defined below), then (2) apply the standard lifted
Bé-tree flushing, splitting, or merging algorithm.

A child is simple if it has reference count 1 and the edge
pointing to the child has no translation prefix. When a child
is simple, the BE-DAG locally looks like a lifted B®-tree, so
we can use the lifted B%-tree flushing, splitting, and merging
algorithms, since they all make only local modifications to
the tree.

The BE-DAG has an invariant that one may only flush into
a simple child. Thus, one of two conditions that will cause a
node to be made simple is the accumulation of enough mes-
sages in the parent of a node—i.e., a copy-on-abundant-write.
The second condition that can cause a node to become simple
is the need to split or merge the node by the background, heal-
ing thread; this can be triggered by healing a node that has
temporarily violated the target fanout, or any other condition
in the baseline B&-tree that would cause a split or merge.

We present the process for converting a child into a simple
child as a separate step for clarity only. In our implementation,
the work of making a child simple is integrated with the
flushing, splitting and merging algorithms. Furthermore, all
the transformations described are performed on in-memory
copies of the node, and the nodes are written out to disk only
once the process is completed. Thus simplifying children
does not change the 10 costs of flushes, splits, or merges.

The first step in simplifying a child is to make a private
copy of the child, as shown in Figure 5. When we make a
private copy of the child, we have to increment the reference
counts of all of the child’s children.

Once we have a private copy of the child, we can discard
any data in the child that is not live, as shown in the first two
diagrams of Figure 6. For example, if the edge to the child
has translation prefix sy, then all queries that reach the child
will have s; as a prefix, so we can discard any messages in the
child that don’t have this prefix, because no query can ever
see them. Similarly, we can drop any children of the child
that are outside of the range of s; keys, and we can update
pivots to be entirely in the range of s; keys. When we adjust
pivots in the child, we may have to adjust some of the child’s
outgoing translation prefixes, similar to when we converted
GOTO messages to regular pivots.

Finally, we can relift the child to “cancel out” the trans-
lation prefix on the edge pointing to the child and all the s
prefixes inside the child. Concretely, we can delete the s
translation prefix on the child’s incoming edge and delete the
s1 prefix on all keys in the child.

A consequence of this restriction is that translation prefixes

80 18th USENIX Conference on File and Storage Technologies

USENIX Association

buffer

Before

refcount: r,

After

X refcount: 7,
buffer

pivots [o] pivots [o]
— 1
D
/ : refcount: r, — 1 refcount: 1
buffer refeount; 12 buffer buffer
pivots| [o] [a] pivots| [o] [a] pivots [o] [o]

buffer

R
refcount: r

pivots

buffer’

pivots|

refcount: ry

buffer

pivots

<

s

refcount: r3 41

: i — 5
s
,/refcm:m: ra+1

buffer

pivots

Figure 5: Creating a private copy of a shared child. The original node’s contents are copied, and its reference count is decremented.
Since the private copy points to all of the original node’s children, those children have their reference count increased by one.

(Pivot keys are omitted for clarity; they remain unchanged.)

refcount: ry refcount: r; refcount: r;
buffer buffer buffer
pivots (o] pivots [o] pivots [o]
refcount: 1 refcount: 1 refcount: 1
buffer[insert insert buffer buffer
(pc_] td] . X
ZHED 1nsen) insert insert
(sym) (sym |- 1)
pivots| p (o] s1b [«] 51z [«] p’ pivots| sy [p[515 [«] 512 pivots| e [p[b [e] z
>] N &
\ p p

Figure 6: Eliminating a child’s translation prefix. The original child node (left) is a private copy with reference count one. First,
nodes with unreachable keys are deleted and reclaimed (center). Then the translation prefix s; is removed from the incident edge
and logically applied to all pivot keys and all keys in buffered messages (right).

should always be NULL after a flush. Intuitively, one only
needs a translation prefix to compensate for the effect on
lifting of logically deleted data still in a node; after a flush, this
data is physically deleted and the node is re-lifted, obviating
the need for a translation prefix.

As described, these steps slightly modify the amortized

and background work to “heal” irregularities in the BE-DAG.

This work is primarily driven by subsequent writes to the
affected range; a shared node that is not modified on any path
can remain shared indefinitely. In our current prototype, we
do track shared nodes with very little live data, and mark
them for flushing either in the background or under space
pressure to reclaim space. The key feature of this design is
the flexibility to rewrite nodes only when it is to the advantage
of the system—either to reclaim space or recover locality for
future queries.

3.4 Putting it all together

The remaining lifted B&-tree operations are unchanged in a
BE-DAG. Inserts, deletes, and clones just add messages to the
root node’s buffer. When an internal node’s buffer becomes
full, we flush to one of its children (after making the child
simple, if necessary). When a leaf becomes too large or too
small, we split or merge it (after making the leaf simple).
When an internal node has too many or too few children, we
split or merge it (again after making it simple).

3.5 Asymptotic Analysis

This subsection shows that adding cloning does not affect the
asymptotics of other operations, and that the cost of a clone
is logarithmic in the size of the tree.

Insert, query, and clone complexity all depend on the B2-
DAG height, which is bounded by the height of a lifted Bé-tree
with the same logical state. To see why, consider the following
straightforward transformation of a BE-DAG to a BE-tree: first

USENIX Association

18th USENIX Conference on File and Storage Technologies 81

flush all GOTO messages until they become regular pivots, then
break the CoW sharing of all nodes. Since this conversion
can only increase the height of the data structure, a logically
equivalent lifted BE-tree is at least as tall as a BE-DAG.

The height of a B:-tree is O(logz N), where N is the total
number of items that have been inserted into the tree. Hence
the height of a BE-DAG is O(loggz N), where N is the number
of keys that have been created, either through insertion or
cloning, in the B:-DAG.

Queries. Since the height of the BE-DAG is O(logg N), the
IO cost of a query is always O(logg N).

Insertions. The BE-DAG insertion IO cost is the same as in
a Be-tree, i.e., O(k}’ﬁﬁ?’). This is because the IO cost of an
insertion is & x ¢/b, where h is the height of the BE-DAG, ¢
is the 10 cost of performing a flush, and b is the minimum
number of items moved to child during a flush. Flushes cost
O(1) I0s in a BE-DAG, just as in a B®-tree, and flushes move
at least Q(B/B'~¢) items, since the buffer in each node has
size Q(B), and the fanout of each node is O(B%).

Clones. The cost to create a clone can be broken into the
online cost, i.e,. the costs of all tasks that must be completed
before the clone is logically in place, and the offline costs,
i.e., the additional work that is performed in the background
as the GOTO message is flushed down the tree and eventually
converted to regular pivots.

The online cost of cloning s to d is merely the cost to push
all s messages to s’s LCA and insert the GOTO message. The
cost of pushing all the messages to the LCA is O(logz N) 10s.
Inserting the new GOTO message costs less than 1 IO, so the
total cost of creating a clone is O(logg N) IOs.

The background cost is incurred by the background thread
that converts all edges with a translation prefix into simple
edges. We bound the 10 cost of this work as follows. A clone
from s to d can result in edges with translation prefixes only
along four root-to-leaf paths in the BE-DAG: the left and right
fringes of the sub-dag of all s keys, and the left and right
fringes of the sub-dag of all d keys. Thus the total IO cost of
the background work is O(logg N).

4 Implementation and Optimizations

In this section, we describe two optimizations that reduce the
total cost of clones. Although they do not alter the asymp-
totics, we leverage the file system namespace and BetrFS
design to save both background and foreground IO.

Preferential splitting. Most background cloning work in-
volves removing unrelated keys and unlifted prefix data from
fringe nodes, i.e., nodes that contain both cloned and non-
cloned data. Thus, we could save work by reducing the num-
ber of fringe nodes.

Baseline BetrFS picks the middle key when splits a leaf
node. With preferential splitting, we select the key that max-
imizes the common prefix of the leaf, subject to the constraint

that both new leaves should be at least 1/4 full. Since data in
the same file share the same prefix (as do files in the same di-
rectory), preferential splitting reduces the likelihood of having
fringe nodes in a clone.

A naive approach would compare the central half of all leaf
keys and pick the two adjacent keys with the shortest common
prefix. However, this scan can be costly. We can implement
preferential splitting and only read two keys: because the
shortest common prefix among adjacent keys is the same as
the common prefix of the smallest and the largest candidate
keys (the keys at 1/4 and 3/4 of the leaf), we can construct a
good parent pivot from these two keys.

Node reclamation. We run a thread in the background that
reclaims any node whose reference count reaches 0. As part
of the node reclamation process, we decrement each child
node’s reference count, including nodes pointed to by GOTO
messages. Node reclamation proceeds recursively on children
whose reference counts reach zero, as well.

This thread also checks any node with a translation prefix.
In an extreme case, a node with no reachable data may have a
positive reference count due to translation prefixes. For ex-
ample, if the only incident edge to a sub-DAG has translation
prefix s, but no key in the entire sub-DAG has s as a prefix,
then all data in the sub-DAG is reclaimable. As part of space
reclamation, BetrFS finds and reclaims nodes with no live
data, or possibly unshares and merges nodes with relatively
little live data.

Concurrency. B-tree concurrency is a classic problem, since
queries and inserts proceed down the tree, but splits and
merges proceed up the tree, making hand-over-hand locking
tricky. BE-trees have similar issues, since they also perform
node splits and merges, and many of the B-tree-based solu-
tions, such as preemptive splitting and merging [28] or sibling
links [20], apply to B®-trees, as well.

We note here that our cloning mechanism is entirely top-
down. Messages get pushed down to the LCA, GOTO mes-
sages get flushed down the tree, and non-simple edges get
converted to simple edges in a top-to-bottom manner. Thus
cloning imposes no new concurrency issues within the tree.

Background cleaning. BetrFS includes a background pro-
cess that flushes messages for frequently queried items down
the tree. The intention of this optimization is to improve
range and point query performance on frequently queried
data: once messages are applied to key-value pairs in B-tree
leaves, future queries need not reprocess those messages.

We found that, in the presence of clones, this background
task increased BetrFS 0.5’°s space consumption because, by
flushing small changes, the cleaner would break B:-DAG
nodes’ copy-on-write sharing.

Thus we modified the cleaner to never flush messages into
any node with a reference count greater than 1; such messages
instead wait to be flushed in normal write-optimized batches
once enough work has accrued to warrant rewriting the node.

82 18th USENIX Conference on File and Storage Technologies

USENIX Association

T T T 1.5

—e— Blrfs —o— Btrfs-svol
XFS ——ZFS
[| —e— BetrFS 0.5 —— BetrFS 0.5 (no cleaning)

%

Grep Time (sec)
IS o
\
I |

o
T

=
T

Latency (sec)
‘Write Time (sec)

o
n
T

o

%
T
I

I

Clone Number

(a) Time to clone a directory.

=N
o
ol
'S
N
©

Clone Number

(b) Small write latency.

Clone Number

(c) Grep Time.

Figure 7: Latency to clone, write, and read as a function of the number of times a directory tree has been cloned. Lower is better

for all measures.

5 Evaluation

This section evaluates BetrFS 0.5 performance. The evalua-

tion centers around the following questions:

e Do BetrFS 0.5 clones meet the performance goals of si-
multaneously achieving (1) low latency clone creation, (2)
reads with good spatial locality, even after modifications,
(3) fast writes, and (4) space efficiency? (§5.1)

e Does the introduction of cloning harm the performance of
unrelated operations? (§5.2)

e How can cloning improve the performance of a real-world
application? (§5.3)

All experimental results were collected on a Dell Optiplex
790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4GiB RAM,
and a 500GB, 7200 RPM SATA disk, with a 4096-byte block
size. We boot from a USB stick with the root file system,
isolating the file system under test to only the workload. The
system runs 64-bit Ubuntu 14.04.5.

We compare BetrFS 0.5 to baseline BetrFS, ext4, Btrfs,
XFS, ZFS, and NILFS2. We used BetrFS version 0.4
from github.com/oscarlab/betrfs, ZFS 0.6.5.11 from
zfsonlinux.org and kernel default versions of the other file
systems. Unless noted, each experiment was run a minimum
of 5 times. We present the mean and display bars that indicate
the minimum and maximum times over all runs. Similarly, 4
terms bound the minimum and maximum values over all runs.
Unless noted, all benchmarks are cold-cache tests.

BetrFS only works on a modified 3.11.10 kernel, so we run
BetrFS on that kernel; all other file systems run on 4.9.142.
We note that we ran experiments on both kernel versions, and
performance was generally better on the newer kernel; we
present the numbers for the newer kernel.

5.1 Cloning Performance

To evaluate the performance of cloning (and similar copy-
on-write optimizations in other file systems), we wrote a
microbenchmark that begins by creating a directory hierarchy
with eight directories, each containing eight 4MiB-files. The

microbenchmark then proceeds in rounds. In each round, we
create a new clone of the original directory hierarchy and
measure the clone operation’s latency (Figure 7a). We next
write 16 bytes to a 4KiB-aligned offset in each newly cloned
file—followed by a sync—in order to measure the impact of
copy-on-write (Figure 7b) on writes. We then clear the file
system caches and grep the newly copied directory to measure
cloning’s impact on read time (Figure 7c). Finally, we record
the change in space consumption for the whole file system at
each step (Table 1). We call this workload Dookubench.

We compare directory-level clone in BetrFS 0.5 to 3 Linux
file systems that either support volume snapshots (Btrfs and
ZFS) or reflink copies of files (Btrfs and XFS). We compare
in both modes; the label Btrfs-svol is in volume-snapshot
mode. For the file systems that support only file-level clones
(XFS and Btrfs without svol), the benchmark makes a copy
of the directory structure and clones the files.

For BetrFS 0.5, we present data in two modes. In “no
cleaner” mode, we disable the background process in BetrFS
0.5 that flushes data down the tree (Section 4). We found that
this background work created a lot of noise in our space exper-
iments, so we disabled it to get more precise measurements.
We also run the benchmark in BetrFS 0.5’s default mode
(with the cleaner enabled). As reported below, the cleaner
made essentially no difference on any benchmark, except to
increase the noise in the space measurements.

Figure 7a shows that BetrFS 0.5’s cloning time is around
60ms, which is 33% faster than the closest data point from
another file system (the first clone on XFS), 58% faster than a
volume clone on Btrfs, and an order of magnitude faster than
the worst case for the competition. Furthermore, BetrFS 0.5°s
clone performance is essentially flat throughout the experi-
ment. Thus we have achieved our objective of cheap clones.
Btrfs and ZFS also have flat volume-cloning performance,
but worse than in BetrFS 0.5. Both Btrfs and XFS file-level
clone latencies, on the other hand, degrade as a function of
the number of prior clones; after 8 iterations, clone latency is
roughly doubled.

In terms of write costs, the cost to write to a cloned file or

USENIX Association

18th USENIX Conference on File and Storage Technologies 83

github.com/oscarlab/betrfs
zfsonlinux.org

FS A KiB/round c

Btrfs 176 £112 56.7

Btrfs-svol 32 £ 0 0

XFS 326 £ 954 50.9

ZFS 250 £750 462.9

BetrFS 0.5 (no cleaning) 31.3 £+ 29.8 19.9

BetrFS 0.5 16.3 +950.8 460.8
Table 1: Average change in space usage after each

Dookubench round (a directory clone followed by small,
4KiB-aligned modifications to each newly cloned file).

volume is flat for all file systems, although BetrFS 0.5 can
ingest writes 8—10x faster. Thus we have not sacrificed the
excellent small-write performance of BetrFS.

Figure 7c shows that scans in BetrFS 0.5 are competitive
with the best grep times from other file systems in our bench-
marks. Furthermore, grep times in BetrFS 0.5 do not degrade
during the experiment. XFS and ZFS degrade severely—after
six clones, the grep time is nearly doubled. For XFS, there ap-
pears to be some work that temporarily improves locality, but
the degradation trend resumes after more iterations. Btrfs de-
grades by about 20% for file-level clones and 10% for volume
level clones after eight clones. This trend continues: after 17
iterations (not presented for brevity), Btrfs read performance
degrades by 50% with no indication of leveling off.

Table | shows the change in file system space usage after
each microbenchmark round. BetrFS 0.5 uses an average of
16KiB per round, which is half the space of the next best file
system, Btrfs in volume mode. BetrFS 0.5’s space usage is
very noisy due to its cleaner—unsurprisingly, space usage is
less after some microbenchmark rounds complete, decreasing
by up to 693KiB. When the cleaner is completely disabled,
space usage is very consistent around 32KiB. Thus enabling
the cleaner reduces average space consumption but introduces
substantial variation. Overall, these results show that BetrFS
0.5 supports space-efficient clones.

In total, these results indicate that BetrFS 0.5 supports a
seemingly paradoxical combination of performance features:
clones are fast and space-efficient, and random writes are
fast, yet preserve good locality for sequential reads. No other
file system in our benchmarks demonstrated this combination
of performance strengths, and some also showed significant
performance declines with each additional clone.

5.2 General Filesystem Performance

This section evaluates whether adding cloning erodes the
performance advantages of write-optimization in BetrFS. Our
overarching goal is to build a file system that performs well
on all operations, not just clones; thus, we measure a wide
range of of microbenchmarks and application benchmarks.

Sequential 10. We measure the time to sequentially write a

read write

140

120

100

80

Bandwidth (MB/sec)

60 = =
Figure 8: Bandwidth to sequentially read and write a 10 GiB
file (higher is better).

50k ‘ :
—a— ext4 —e— NILFS2
40k —e— Btrfs BetrFS ||
fg XFS —e— BetrFS 0.5
3
E
=
2.
=
on
=
2
<=
E

Files created
Figure 9: Cumulative file creation throughput during the
Tokubench benchmark (higher is better).

10GiB file to disk (the benchmarking machine has only 4GiB
of RAM, so this is more than double the available RAM),
and then sequentially re-read the data from disk. Figure 8
shows the throughput of both operations. All the filesystems
perform sequential IO relatively well. BetrFS 0.5 performs
sequential reads at comparable throughput to BetrFS, ZFS,
and NILFS2, which is only about 19% less than ext4, Btrfs
and XFS. Sequential writes in BetrFS 0.5 are within 6% to
the fastest file system (Btrfs). We attribute this improvement
to preferential splitting, which creates a pivot matching the
maximum file data key at the beginning of the workload,
avoiding expensive leaf relifting in subsequent node splits.

Random IO. We measure random write performance with a
microbenchmark that issues 256K 4-byte overwrites at ran-
dom offsets within a 10GiB file, followed by an fsync. This
number of overwrites was chosen to run for at least several
seconds on the fastest filesystem. Similarly, we measure
random read performance by issuing 256K 4-byte reads at
random offsets within an existing 10GiB file.

Table 2 shows the execution time of the random write and
random read microbenchmarks. BetrFS 0.5 performs these
random writes 39—67 x faster than conventional filesystems
and 8.5% slower than BetrFS. BetrFS 0.5 performs random
reads 12% slower than the fastest file system.

Tokubench. We evaluate file creation using the Tokubench
benchmark [13]. Tokubench creates three million 200-byte
files in a balanced directory tree (no directory is allowed to

84 18th USENIX Conference on File and Storage Technologies

USENIX Association

FS random write (s) random read (s) FS find (s) grep (s) delete (s)

ext4 2770.6 + 21.3 19479 4+ 5.9 ext4 222 £0.0 37.71 £ 7.1 3.38 £2.2
Btrfs 2069.1 + 14.6 19075 + 6.4 Btrfs 1.03 £0.0 8.88 + 0.3 2.88 £0.0
XFS 2863.4 £+ 14.1 2023.3 4+ 27.8 XFS 6.81 £0.2 57.79 £104 1033 +£14
ZFS 3410.6 +9374 21639 +112.2 ZFS 10.50 £ 0.2 38.64 + 04 9.18 +£0.1
NILFS2 2022.0 + 4.8 1931.1 £+ 26.6 NILFS2 6.72 £0.1 875 + 0.2 941 £04
BetrFS 47 £+ 02 2201.1 + 2.9 BetrFS 0.23 £0.0 3.71 + 0.1 322 £04
BetrFS 0.5 55 +£ 0.1 2129.8 + 6.8 BetrFS 0.5 021 £0.0 3.87 + 0.0 3.37 £ 0.1

Table 2: Time to perform 256K 4-byte random writes/reads
(1 MiB total 10, lower is better).

Back-end FS Ixc-clone (s)
ext4 19.514 + 1.214
Btrfs 14.822 4+ 0.076
ZFS 16.194 + 0.538
Dir XFS 55.104 £+ 1.033
NILFS2 26.622 + 0.396
BetrFS 0.5 8.818 + 1.073
ZFS ZFS 0478 + 0.019
Btrfs Btrfs 0.396 + 0.036
BetrFS 0.5 BetrFS 0.5-clone 0.118 = 0.010

Table 4: Latency of cloning a container.

have more than 128 children). BetrFS 0.5 matches BetrFS
throughput, which is strictly higher than any other file system,
(except for one point at the end where NILFS2 is 8.7% higher),
and as much as 95 x higher throughput than ext4.

Directory Operations. Table 3 lists the execution time of
three common directory operations—grep, find or delete—on
the Linux 3.11.10 kernel source tree.

BetrFS 0.5 is comparable to the baseline BetrFS on all
of these operations, with some marginal (4-5%) overhead
on grep and delete from adding cloning. We also note that
we observed a degradation for BetrFS on larger directory
deletions; the degradation is unrelated to cloning and we
leave investigation of this for future work. Overall, BetrFS
0.5 maintains the order-of-magnitude improvement over the
other file systems on find and grep.

Application Benchmarks. Figure 10 reports performance
of the following application benchmarks. We measure two
BetrFS 0.5 variants: one with no clones in the file system
(labeled BetrFS 0.5), and one executing in a cloned Linux-
3.11.10 source directory (labeled BetrFS 0.5-clone).

The git clone workload reports the time to clone a
local Linux source code repository, which is cloned from
github.com/torvalds/linux, and git diff reports the
time to diff between the v4.14 and v4.7 tags. The tar work-
load measures the time to tar or un-tar the Linux-3.11.10
source. The rsync workload copies the Linux-3.11.10 source
tree from a source to a destination directory within the same
partition and file system. With the -~in-place option, rsync
writes data directly to the destination file rather than creating
a temporary file and updating via atomic rename. The IMAP

Table 3: Time to perform recursive grep, find and delete of
the Linux 3.11.10 source tree (lower is better)

server workload initializes a Dovecot 2.2.13 mailserver with
10 folders, each containing 2500 messages, then measures
throughput of 4 threads, each performing 1000 operations
with 50% reads and 50% updates (marks, moves, or deletes).
In most of these application benchmarks, BetrFS 0.5 is the
highest performing file system, and generally matches the
other file systems in the worst cases. In a few cases, where
the application is write-intensive, such as git clone and rsync,
BetrFS 0.5-clone degrades relative to BetrFS 0.5, attributable
to the extra work of unsharing nodes, but the performance is
still competitive with, or better than, the baseline file systems.
These application benchmarks demonstrate that extending
write-optimization to include clones does not harm—and can
improve—application-level performance.

5.3 Cloning Containers

Linux Containers (LXC) is one of several popular container
infrastructures that has adopted a number of storage back-
ends in order to optimize container creation. The default
backend (dir) does a rsync of the component directories into
a single, chroot-style working directory. The ZFS and Btrfs
back-ends use subvolumes and clones to optimize this process.
We wrote a BetrFS 0.5 backend using directory cloning.

Table 4 shows the latency of cloning a default Ubuntu 14.04
container using each backend. Interestingly, BetrFS 0.5 using
clones is 3—4 x faster than the other cloning backends, and up
to two orders of magnitude faster than the others.

6 Related work

File systems with snapshots. Many file systems implement
a snapshot mechanism to make logical copies at whole-
file-system-granularity [27]. Tree-based file systems, like
WAFL [15], ZFS [41], and Btrfs [29], implement fast snap-
shots by copying the root. WAFL FlexVols [12] add a level
of indirection between the file system and disks, supporting
writable snapshots and multiple active file system instances.

FFS [21] implements read-only file system views by cre-
ating snapshot inode with a pointer to each disk block; the
first time a block is modified, FFS copies the block to a new
address and updates the block pointer in the snapshot inode.

USENIX Association

18th USENIX Conference on File and Storage Technologies 85

github.com/torvalds/linux

clone diff tar untar

®©
S

2

100

Time (sec)
Time (sec)
IS
S5

50

w2
S

)
ext4
Btrfs
ext4
Btrfs
XFS
ZFS

=

XFS
ZFS
ext4
Btrfs
XFS
ZFS

BetrFS

BetrFS 0.5
BetrFS

BetrFS 0.5

NILFS2
BetrFS 0.5-clone

BetrFS 0.5

BetrFS 0.5
BetrFS 0.5-clone

BetrFS 0.5-clone
BetrFS 0.5-clone

(a) Git latency.
Lower is better.

(b) Tar latency.
Lower is better.

-in-place rename

60

40

Bandwidth (MB/sec)

ext4
Btrfs
XFS
ZFS

NILFS2
XFS
ZFS

BetrFS
BetrFS 0.5
ext4

Btrfs

BetrFS 0.5-clone
BetrFS

BetrFS 0.5

NILFS2
BetrFS 0.5-clone

(c) Rsync throughput.
Higher is better.

200

150

=)
3

Throughput (op/s)

w
S

o
ext4
XFS
ZFS

Btrfs
NILFS2

BetrFS

BetrFS 0.5

BetrFS 0.5-clone

(d) IMAP server throughput.

Higher is better.

Figure 10: Application benchmarks.

NILFES [19] is a log-structured file system that writes B-
tree checkpoints as part of each logical segment. NILFS can
create a snapshot by making a checkpoint block permanent.

GCTree [11] implements snapshots on top of ext4 by cre-
ating chains of metadata block versions. Each pointer in
the metadata block has a “borrowed bit” to indicate whether
the target block was inherited from the previous version.
Ext3cow [26] snapshots are defined by an epoch. Ext3cow
can render any epoch’s file-system view by fetching entries
alive at that epoch. NOVA-Fortis [38] supports snapshots by
adding private logs to each inode.

File or directory clones. AFS [16] introduced the idea of
volumes as a granularity for cloning and backup in a large, dis-
tributed file system; volumes isolate performance disruption
from cloning one user’s data from other users. Episode [7]
can create immutable fileset clones by copying all the fileset’s
anodes (inodes) and marking all block pointers copy-on-write.
Btrfs [29] can create file clones by sharing a file’s extents.
Windows® 2000 Single Instance Storage (SIS) [5] uses dedu-
plication techniques to implement a new type of link that has
copy semantics. Creating the first SIS link requires a complete
data copy to a shared store. Writes are implemented copy-
on-close: once all open references to an SIS link are closed,
sharing is broken at whole-file granularity. Copy-on-close
optimizes for the case of complete overwrites.

Versioning file systems. Versioning files is an old idea, dating
back to at least TENEX system [4]. Versioning file systems
have appeared in a number of OSes [1,22,31], but often with
limitations such as a fixed number of versions per file and
no directory versioning. The Elephant File System [30] auto-
matically versions all files and directories, creating/finalizing
a new file version when the file is opened/closed. Each file
has an inode log that tracks all versions. CVFES [32] suggests
journal-based metadata and multi-version B-trees as two ways
to save space in versioning file systems. Versionfs [23] is a
stackable versioning file system where all file versions are
maintained as different files in the underlying file system.

Exo-clones [33] were recently proposed as a file format for
efficiently serializing, deserializing, and transporting volume

clones over a network. Exo-clones build upon an underly-
ing file system’s mechanism for implementing snapshots or
versions. Nimble clones in BetrFS 0.5 have the potential
to make exo-clones faster and smaller than on a traditional
copy-on-write snapshotting system.

Database indexes for dynamic hierarchical data. The clos-
est work to ours in databases is the BO-tree [14], a B-tree
indexing scheme for hierarchical keys that supports mov-
ing key subtrees from one place to another in the hierarchy.
They even support moving internal nodes of the key hierarchy,
which we do not. However, they do not support clones—only
moves—and their indexes are not write optimized.

7 Conclusion

This paper demonstrates how to use write-optimization to
decouple writes from copies, rendering a cloning implementa-
tion with the nimble performance properties: efficient clones,
efficient reads, efficient writes, and space efficiency. This tech-
nique does not harm performance of unrelated operations, and
can unlock improvements for real applications. For instance,
we demonstrate from 3-4x improvement in LXC container
cloning time compared to optimized back-ends. The tech-
nique of applying batched updates to the data structure itself
likely generalize. Moreover, our cloning implementation in
the BE-DAG could be applied to any application built on a
key-value store, not just a file system.

Acknowledgments

We thank the anonymous reviewers and our shepherd Chang-
woo Min for their insightful comments on earlier drafts of
the work. This research was supported in part by NSF grants
CCF-17157717, CCF-1724745, CCF-1725543, CSR-1763680,
CCF-1716252, CCF-1617618, CCF-1712716, CNS-1938709,
and CNS-1938180. The work was also supported by VMware,
by EMC, and by NetApp Faculty Fellowships.

86

18th USENIX Conference on File and Storage Technologies

USENIX Association

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Vax/VMS System Software Handbook, 1985.

Michael A. Bender, Martin Farach-Colton, Jeremy T.
Fineman, Yonatan R. Fogel, Bradley C. Kuszmaul, and
Jelani Nelson. Cache-oblivious streaming B-trees. In
Proc. 19th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 81-92, 2007.

Michael A. Bender, Martin Farach-Colton, William
Jannen, Rob Johnson, Bradley C. Kuszmaul, Donald E.
Porter, Jun Yuan, and Yang Zhan. An introduction
to BE-trees and write-optimization. :login; Magazine,
40(5):22-28, Oct 2015.

Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Mur-
phy, and Raymond S. Tomlinson. Tenex, a paged
time sharing system for the pdp - 10. Commun. ACM,
15(3):135-143, March 1972.

Bill Bolosky, Scott Corbin, David Goebel, and John (JD)
Douceur. Single instance storage in windows 2000. In
Proceedings of 4th USENIX Windows Systems Sympo-
sium. USENIX, January 2000.

Gerth Stolting Brodal and Rolf Fagerberg. Lower
bounds for external memory dictionaries. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 546-554, 2003.

Sailesh Chutani, Owen T Anderson, Michael L Kazar,
Bruce W Leverett, W Anthony Mason, Robert N Side-
botham, et al. The episode file system. In Proceedings
of the USENIX Winter 1992 Technical Conference, pages
43-60, 1992.

Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,
Michael A. Bender, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,
and Martin Farach-Colton. File systems fated for senes-
cence? nonsense, says science! In Proceedings of the
15th Usenix Conference on File and Storage Technolo-
gies, pages 45-58, 2017.

Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,
Michael A. Bender, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,
and Martin Farach-Colton. How to fragment your file
system. :login; Magazine, 42(2):22-28, Summer 2017.

Alex Conway, Eric Knorr, Yizheng Jiao, Michael A.
Bender, William Jannen, Rob Johnson, Donald Porter,
and Martin Farach-Colton. Filesystem aging: It’s more
usage than fullness. In /1th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 19),
Renton, WA, July 2019. USENIX Association.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

Chris Dragga and Douglas J. Santry. Gcetrees: Garbage
collecting snapshots. ACM Transactions on Storage,
12(1):4:1-4:32, 2016.

John K. Edwards, Daniel Ellard, Craig Everhart, Robert
Fair, Eric Hamilton, Andy Kahn, Arkady Kanevsky,
James Lentini, Ashish Prakash, Keith A. Smith, and
Edward Zayas. Flexvol: Flexible, efficient file vol-
ume virtualization in wafl. In Proceedings of the 2008
USENIX Annual Technical Conference, pages 129—142,
2008.

John Esmet, Michael A Bender, Martin Farach-Colton,
and Bradley C Kuszmaul. The tokufs streaming file
system. In Proceedings of the 4th USENIX Workshop
on Hot Topics in Storage and File Systems, 2012.

Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neu-
mann, Norman May, and Franz Faerber. Indexing highly
dynamic hierarchical data. In VLDB, 2015.

Dave Hitz, James Lau, and Michael Malcolm. File sys-
tem design for an nfs file server appliance. In Proceed-
ings of the USENIX Winter 1994 Technical Conference,
pages 19-19, 1994.

John H. Howard, Michael L. Kazar, Sherri G. Me-
nees, David A. Nichols, M. Satyanarayanan, Robert N.
Sidebotham, and Michael J. West. Scale and perfor-
mance in a distributed file system. ACM Transactions
on Computer Systems, 6(1):51-81, 1988.

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: A right-
optimized write-optimized file system. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies, pages 301-315, 2015.

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael A.
Bender, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: Write-
optimization in a kernel file system. ACM Transactions
on Storage, 11(4):18:1-18:29, 2015.

Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi
Hifumi, Seiji Kihara, and Satoshi Moriai. The linux
implementation of a log-structured file system. SIGOPS
Operating Systems Review, 40(3):102—-107, 2006.

Philip L. Lehman and s. Bing Yao. Efficient locking for
concurrent operations on b-trees. ACM Transactions on
Database Systems, 6(4), December 1981.

USENIX Association

18th USENIX Conference on File and Storage Technologies 87

[21] Marshall Kirk McKusick and Gregory R. Ganger. Soft
updates: A technique for eliminating most synchronous
writes in the fast filesystem. In Proceedings of the
1999 USENIX Annual Technical Conference, pages 1—
17, 1999.

[22] Lisa Moses. TOPS-20 User’s manual.

[23] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright,
Andrew Himmer, and Erez Zadok. A versatile and
user-oriented versioning file system. In Proceedings
of the 3rd USENIX Conference on File and Storage
Technologies, pages 115-128, 2004.

[24] Prashanth Nayak and Robert Ricci. Detailed study on
linux logical volume manager. Flux Research Group
University of Utah, 2013.

[25] Patrick O’Neil, Edward Cheng, Dieter Gawlic, and Eliz-
abeth O’Neil. The log-structured merge-tree (LSM-
tree). Acta Informatica, 33(4):351-385, 1996.

[26] Zachary Peterson and Randal Burns. Ext3cow: A time-
shifting file system for regulatory compliance. ACM
Transactions on Storage, 1(2):190-212, 2005.

[27] Rob Pike, Dave Presotto, Ken Thompson, and Howard
Trickey. Plan 9 from Bell Labs. In In Proceedings
of the Summer 1990 UKUUG Conference, pages 1-9,
1990.

[28] Ohad Rodeh. B-trees, shadowing, and clones. ACM
Transactions on Storage, 3(4):2:1-2:27, 2008.

[29] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage,
9(3):9:1-9:32, 2013.

[30] Douglas S. Santry, Michael J. Feeley, Norman C.
Hutchinson, Alistair C. Veitch, Ross W. Carton, and
Jacob Ofir. Deciding when to forget in the elephant file
system. In Proceedings of the Seventeenth ACM Sympo-
sium on Operating Systems Principles, pages 110-123,
1999.

[31] Mike Schroeder, David K. Gifford, and Roger M. Need-
ham. A caching file system for a programmer’s work-
station. In Proceedings of the 10th ACM Symposium on
Opeating Systems Principles. Association for Comput-
ing Machinery, Inc., November 1985.

[32] Craig A. N. Soules, Garth R. Goodson, John D. Strunk,
and Gregory R. Ganger. Metadata efficiency in version-
ing file systems. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, pages
43-58, 2003.

(33]

(34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

Richard P. Spillane, Wenguang Wang, Luke Lu,
Maxime Austruy, Rawlinson Rivera, and Christos Kara-
manolis. Exo-clones: Better container runtime im-
age management across the clouds. In 8th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), Denver, CO, June 2016. USENIX
Association.

Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Wenji Li, Raju Rangaswami, and Ming Zhao. Eval-
uating docker storage performance: from workloads to
graph drivers. Cluster Computing, pages 1-14, 2019.

Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Amit Warke, Dean Hildebrand, Mohamed Mohamed,
Nagapramod Mandagere, Wenji Li, Raju Rangaswami,
and Ming Zhao. In search of the ideal storage con-
figuration for docker containers. In 2017 IEEE 2nd
International Workshops on Foundations and Applica-
tions of Self* Systems (FAS* W), pages 199-206. IEEE,
2017.

Veritas. Veritas system recovery. https://www.
veritas.com/product/backup-and-recovery/
system-recovery, 2019.

Xingbo Wu, Wenguang Wang, and Song Jiang. To-
talcow: Unleash the power of copy-on-write for thin-
provisioned containers. In Proceedings of the 6th Asia-
Pacific Workshop on Systems, page 15. ACM, 2015.

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pages 478—496, 2017.

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Optimizing every operation in a
write-optimized file system. In Proceedings of the 14th
Usenix Conference on File and Storage Technologies,
pages 1-14, 2016.

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Writes wrought right, and other
adventures in file system optimization. ACM Transac-
tions on Storage, 13(1):3:1-3:26, 2017.

ZFS. http://zfsonlinux.org/. Accessed: 2018-07-
05.

88 18th USENIX Conference on File and Storage Technologies

USENIX Association

https://www.veritas.com/product/backup-and-recovery/system-recovery
https://www.veritas.com/product/backup-and-recovery/system-recovery
https://www.veritas.com/product/backup-and-recovery/system-recovery
http://zfsonlinux.org/

[42] Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr, der, Jun Yuan, William Jannen, and Rob Johnson. Effi-

Michael A. Bender, Martin Farach-Colton, William cient directory mutations in a full-path-indexed file sys-
Jannen, Rob Johnson, Donald E. Porter, and Jun Yuan. tem. ACM Transactions on Storage, 14(3):22:1-22:27,
The full path to full-path indexing. In Proceedings 2018.

of the 16th USENIX Conference on File and Storage

Technologies, pages 123—138, 2018.)))
[44] Frank Zhao, Kevin Xu, and Randy Shain. Improving

[43] Yang Zhan, Yizheng Jiao, Donald E. Porter, Alex Con- copy-on-write performance in container storage drivers.
way, Eric Knorr, Martin Farach-Colton, Michael A. Ben- Storage Developer’s Conference, 2016.

USENIX Association 18th USENIX Conference on File and Storage Technologies 89

Uncovering Access, Reuse, and Sharing Characteristics of I/O-Intensive
Files on Large-Scale Production HPC Systems

Tirthak Patel
Northeastern University

Philip Carns, Robert Ross

Argonne National Laboratory

Abstract

Large-scale high-performance computing (HPC) applications
running on supercomputers produce large amounts of data
routinely and store it in files on multi-PB shared parallel stor-
age systems. Unfortunately, storage community has a limited
understanding of the access and reuse patterns of these files.
This paper investigates the access and reuse patterns of I/O-
intensive files on a production-scale supercomputer.

1 Introduction

High-performance computing (HPC) applications running
on large-scale facilities routinely perform TBs of I/O. Conse-
quently, significant efforts have been made to study the I/O be-
havior of HPC systems and workloads in the recent past. Pre-
vious studies have attempted to characterize the I/O of work-
loads based on application-level traces [10,11,17,39], present
experimental analysis of factors affecting I/O [35,56-58], and
provide guidance for I/O storage systems [29,32-34,54,59].
However, there is limited understanding about how different
files produced by HPC systems are re-accessed and re-used,
from the same application and across applications. This is
primarily because it is fundamentally challenging to measure
and collect file-based I/O information across multiple execu-
tions as it requires tracing all executions of an application and
the affected files which imposes high overhead and hence, is
unsuitable for production HPC systems. The benefits of such
a study are multi-fold, including understanding the nature of
file-specific I/O, uncovering file reuse patterns, studying the
effect of I/O variability on I/O performance, and optimizing
file placement decisions. However, the costs of conducting
such a study are prohibitively high for production systems
[4,8,44]. This is one of the major reasons why the community
has lacked such an understanding so far.

To the best of our knowledge, this is the first work to per-
form in-depth characterization and analysis of access, reuse,
and sharing characteristics of I/O-intensive files. In particular,
this is the first work to characterize (1) whether HPC files are
ready-heavy, write-heavy, or both; (2) inter-arrival times for
re-access and type of re-access across runs; (3) sharing of a
file across multiple applications. Furthermore, our file-based
I/0 timing analysis also reveals key sources of inefficiencies
that cause I/O variability within and across runs.

Suren Byna, Glenn K. Lockwood, Nicholas J. Wright
Lawrence Berkeley National Laboratory

Devesh Tiwari
Northeastern University

Compute Nodes Blade =2 x Burst Buffer Node (2x SSD)
{—‘—\ / 1/0 Node (2x InfiniBand HCA)
N }cu CN -|CN -CN - BB 335
Lustre OSSs/OSTs
CN N N N N ; ——
. %

CN [CN CN [CN CN BB cop
Storage Servers

CN -|CN -GN -GN -|CN - BB 3D

|
& e el e e BYE—

SSD

o lon o ov on e

L) J
Y Y

InfiniBand Fabric

Storage Fabric (InfiniBand)

Aries High-Speed Network

Figure 1: Architecture of the Cori supercomputer [7].

This study was carried out using a lightweight Darshan I/O
monitoring tool to trace application I/O on Cori, a leading
top 500 supercomputer, for a period spanning four months
(Oct’17-Jan’18) during production - covering <36 million
node-hours of operational system time.

Next, we briefly describe Cori and our methodology.

2 Background and Methodology

Brief Overview of the System. This study is based on a Cray
XC40 supercomputer, Cori, ranked at #13 in the Top-500 su-
percomputers list. Cori achieves the peak computational per-
formance of ~27 Pflop/s. Cori contains 9,688 Intel Xeon Phi
and 2,388 Intel Haswell processors. Fig. | shows Cori’s net-
work and storage structure. Cori features a disk-based Lustre
file system which is composed of ~10,000 disks organized
as 248 Lustre Object Storage Targets (OST). Each OST is
configured with GridRAID and has a corresponding Object
Storage Server (OSS) for handling I/O requests. The total size
of the file system is ~30 PB with a peak I/O bandwidth of 744
GB/s. During the data collection period of this study, the file
system was shared with Edison, an older Cray XC30 system
which was near the end of its lifetime (retired in May’19). Edi-
son was comparatively much smaller system (only 2 Pflop/s
of peak performance) and generated much lesser I/O traffic
compared to Cori as it was also near the end of its lifetime.
As Edison was recently decommissioned, we only focus on
Darshan logs collected on the Cori system. Cori also has
a SSD-based Cray DataWarp burst-buffer storage layer. We
note this study does not focus on burst-buffer I/O activities as
they are limited (5-15%) and the shared file system observes
almost all of the I/O traffic as per Darshan data.

USENIX Association

18th USENIX Conference on File and Storage Technologies 91

=< 10° Files

10° < #Files < 10*
10' < #Files < 102
102 < #Files < 103
103 < #Files < 10*
10* < #Files =< 10°
10° < #Files < 10°
10° < #Files < 107
107 < #Files < 108

=
o olv

(=]

IS

Number of Runs

N

=100 500 =1000
Amount of Data (GB)

Figure 2: Over 99% of ~52 million files transferred < 1 GB
data and were accessed only once during the study period.

100

& 10° = 10° Files
[CAETE 10° < #Files < 100 @ 80
s | 10! < #Files =107 & o
(V) .
g 10 B 107 < #Files < 10° 5
S 107 BN 10° < #Files < 10* £ 40
s
81073 Z 20
a
-5
10 00 0.2 04 06 038 1.0
1073 100 10° |Data Read — Data Written|

Data Read (GB) Data Read + Data Written

(@ (b)

Figure 3: (a) Files can be divided into groups: read-heavy
(RH), write-heavy (WH), or both, read- and write- heavy
(RW). (b) Difference in data read and written per run shows
>82% of runs either perform only read I/O or only write I/O.

Data Collection. We use Darshan, a light-weight I/O moni-
toring tool which provides application-level I/O tracing capa-
bility [11] to collect file I/O access patterns. Darshan V3.10
was enabled by default on Cori for all users during the study
period. Darshan reports key information including user id,
job id, application (executable) id, start timestamp, end times-
tamp, and number of processes (ranks). Darshan also traces
key statistical metrics for each file at the I/O-software-stack-
level for different types of I/O interfaces including POSIX
(Portable Operating System Interface) I/O, MPI (Message
Passing Interface) I/O, and STD (Standard) I/O. These met-
rics include amount of read/write data, aggregate time for
read/write/meta operations, rank id of I/O performing rank(s),
and variance of I/O size and time among different application
ranks. Lastly, Darshan also collects Lustre-file-system-level
metrics such as stripe width and OST IDs over which a file
is striped. However, Darshan does not report actual file sizes,
only the size of the data transferred. Over the period of this
study, ~84 million logs (one per execution) were collected
with information spanning ~52 million unique files, 8489
applications, 651 users, and 12.8 PB of data transfer (6.9 PB
read data and 5.9 PB write data).

Explanation of Analysis Figures. We now briefly describe
the format of the analysis figures used for our study.
Heatmaps. These plots are used to show the significance of
a specific relationship between two metrics. The intensity of a
heatmap box color indicates the number of files which exhibit
the corresponding relationship between the two metrics.
CMF Plots. We use CMF (Cumulative Mass Function) plots
to show the cumulative distribution of a metric. A vertical
dotted blue line is used to indicate the mean of the distribution.

Some CMF plots show the distribution of the CoV (Coeffi-
cient of Variation (%) = standard deviation 100 of a metric to
highlight the normalized variability observed by the metric.

Violin Plots. These plots are used to show the density (in
terms of the number of files) for different values of a metric
in a vertical format. A horizontal solid blue line is used to
indicate the mean of the density distribution.

Next we describe how we select I/O-intensive files, classify
these files, and classify the runs which access them.

2.1 Selecting I/O-Intensive Files

As mentioned previously, Cori’s Darshan logs contain in-
formation about ~52 million files. However, our analysis
shows that a large majority of these files perform very little
I/O during the study period. Fig. 2 shows a heatmap of the
aggregate amount of data transferred to/from a file vs. the
number of runs during which a file is accessed. Most of the
files experience less than 100 GB of I/O during the study
period and are accessed by only one run. In fact, over 99%
of these files transfer less than 1 GB data. Note that this does
not mean that the actual file size is less than 1 GB; but the
data transfer to/from the file amounts to less than 1 GB.

Therefore, a majority of such files may not be helpful in
establishing representative characteristics related to dominant
I/O patterns of HPC applications. These files include user
notes, scripts, executables, non-I/O-intensive-application out-
puts, and error logs. Therefore, our study focuses on a class
of “I/O-intensive” files which individually experience data
transfer of at least 100 GB during the study period and are
accessed by at least 2 runs - to capture the most dominant
and representative I/O patterns. From here on, we refer to
these 1/O-intensive files as “files” simply. This methodol-
ogy streamlines our analysis to useful Darshan logs spanning
~400k runs, 791 applications, 149 users, 8.5k files, and 7.8
PB of data transfer (4.7 PB read data and 3.1 PB write data).
We ensured that our analysis is not skewed by only a handful
of users performing most of the I/O to these files. In fact, over
70% of selected users perform I/O to more than 2 files, with
each user performing I/O to 57 files on average.

2.2 File Classification

Next, we classify I/O-intensive files in terms of the type of
I/O they perform. This helps us derive type-specific insights
for different types of files in Sec. 3. We study the aggregate
amount of read and write data transferred per file. Fig. 3(a)
shows a heatmap of the amount of read data transfer vs. the
amount of write data transfer. We observe that files can be
classified into three distinct clusters. The lower right cluster
consists of 22% of the files which transferred mostly read data
during the four months. We refer to these as read-heavy or RH
files. The upper left cluster consists of 7% of the files which
transferred only write data (write-heavy or WH files). Lastly,
the cluster in the top right corner with the largest percentage
of files (71%), consists of files which are both, read- and write-
heavy (referred to as RW files).

92 18th USENIX Conference on File and Storage Technologies

USENIX Association

Number of Consecutive

Write Runs _;
3

1 2

Number of Consecutive

Read Runs _;
1 2 3 4
Fie nccees) () (60 (@ (@80 (w) @D
—

Inter-Arrival Time
of Write Runs

Inter-Arrival Time
of Read Runs

Figure 4: Visual representation of inter-arrival times and num-
ber of consecutive runs for both read (R) and write (W) runs.

Finding 1. HPC files can be classified as read-heavy (RH),
write-heavy (WH), or read- and write- heavy (RW). For the
first time, we quantify that a significant fraction of the files
are read-heavy (22%) and 7% of files are write-heavy - these
7% files are constantly written to but not read, which may
indicate unread checkpoint/analysis data. 71% of HPC files
are RW files (i.e., both read- and write- heavy). These files
may include checkpoint/analysis files which do get read. Such
a file classification can be used for file placement decisions
in a multi-tier storage system including burst buffers, where
each tier is suitable for different kind of I/O operations.

2.3 Run Classification

While the files can be cleanly classified into three clusters,
they can be accessed by multiple “application runs” (simply,
referred to as “runs”) and can perform both read and write
I/O. A run refers to a job running on multiple compute nodes
and consisting of multiple MPI processes/ranks and possibly
shared-memory threads within a node. We found that a vast
majority of runs perform either mostly-read or mostly-write
1/0. To demonstrate this, we calculate the difference in the
amount of read and write data for each run using the formula:

ldata read_data wilten] The value of this formula ranges from 0
to 1: 1 indicates that all of the data transacted by the run is
either exclusively read or exclusively write and O indicates
equal amount of read and write data transfer. Fig. 3(b) shows
that over 82% of all runs have a value very close to 1, i.e.,
they are either read-intensive or write-intensive. In the context
of I/0, we refer to read-intensive runs as simply “read runs’
and write-intensive runs as “write runs”. We found that 69%
of all runs are read runs and 31% are write runs. RH files
are mostly read by read runs, WH files are mostly written by
write runs, and both read and writes runs operate on RW files.
This classification helps us establish a producer-consumer
relationship among runs in Sec. 3.1.

Finding 2. Somewhat surprisingly, modern HPC applica-
tions largely tend to perform only one type of I/O dur-
ing a single run: either read or write. This is in con-
trast to the commonly-held assumption that HPC applica-
tions have both read and write I/O phases during the same
run [16,20, 21, 28, 36,46, 49, 60]. This finding indicates the
potential rise of scientific workflows instead of traditional
monolithic scientific applications [6,40,45]. The presence
of non-monolithic applications provides the opportunity to
better schedule different components of a large workflow to
avoid I/O contention among different workflows.

s

0 r —

0 20 40 60 80 O
Inter-Arrival Time
of Read Runs (hr)

(a)

20 40 60 80
Inter-Arrival Time
of Write Runs (hr)

100

o
o o

N
o o

CMF (% of Files)
D
o

1 6 11 161 6 11 16
Number of Number of
Conseq. Read Runs Conseq. Write Runs

(d)

Figure 5: (a) Most of the read and write runs have inter-arrival
times of 50-55 hours per file (file re-access interval). (b) The
mean number of consecutive read runs in 13 and the mean
number of consecutive write runs is 3.

3 Result Discussion and Analysis

In this section, we explore HPC file behavior concerning
multi-run reuse and multi-application sharing (Sec. 3.1), and
we study I/O data characteristics pertaining to load imbalance
and intra- and inter- run I/O variability (Sec. 3.2).

3.1 File Reuse Characteristics

Run Inter-Arrival Times. In Sec. 2.3, we showed that a run
can be classified as either read run or write run, and found that
the total number of read runs are more than 2x the number
of write runs. Now, we study the inter-arrival times of these
different runs to understand the avgerage time taken to reuse
the same file (inter-arrival time is defined as shown in Fig. 4).
Fig. 5(a) shows that the mean inter-arrival time of read runs
experienced by a file is 47 hours, while that of write runs is 55
hours. But, on an average, 80% of files are re-accessed only
after 50-55 hours for both read and write runs. We note that
the average inter-arrival time is much longer than the average
runtime of jobs on Cori (e.g., >80% of HPC jobs on these
systems finish in less than 2 hours) [3,43].

Finding 3. Read and write runs have similar inter-arrival
times of over 2 days for 80% of the files. For the first time
we find that most files get re-accessed after a relatively long
period (>50 hours) - much longer than the runtime of jobs.
This enables opportunity for data compression [18] of files
which are expected to remain inactive for some time and also
leverage transparent burst-buffer prefetching and caching [9,
47] for files expected to be accessed in a short while.

Consecutive Runs of the Same I/O Type. Read and write
runs having similar inter-arrival times motivates us to test

USENIX Association

18th USENIX Conference on File and Storage Technologies 93

=
o
o

0 %100
< o
i 80 2 80
5 60 s 60
X 40 £ 40
E 20 : L 20 :
S O0 . . . S 0 . . .
0 25 5 7.5 10© 0 20 40 60 80
Number of Apps. Inter-Arrival Time
Accessing the File of Apps. (hr)
(@ (b)
‘2 100
z 80 r
%5 60
X 40
w 20
5 0 | | :’ | | | | ’:
0 6 12 18 24 300 6 12 18 24 30

Amount of I/0 Data
Per Read Run (GB)

(©)

Figure 6: (a) Over 65% of files are accessed by at least 2 appli-
cations. (b) The average inter-arrival time of each application
to perform I/O to a specific file is 31 hours. (c) On average,
read runs transfer 17 GB of data per run, while write runs
transfer 25 GB of data per run.

Amount of I/O Data
Per Write Run (GB)

if read and write runs are scheduled back to back, and if so,
how long do these sequences last. We calculate the average
number of consecutive read runs and write runs for each file
(as shown in Fig. 4) and plot the distribution in Fig. 5(b). Over
80% of files experience 2 or more consecutive read runs and
over 65% of files experience 2 or more consecutive write runs.
A majority of files experience 2 consecutive read runs (65%)
and 2 consecutive write runs (50%). This suggests that files
get accessed in alternating phases of multiple read runs and
multiple write runs - consistent with our observation that RW
files dominate the population (71%). However, there are many
files which experience a large number of consecutive read
runs (due to RH files). In fact, the mean number of consecutive
read runs experienced by a file is over 14, while the mean
number of consecutive write runs is < 4. There are only 2.2x
as many read runs as write runs (Sec. 2.3), but mean number
of consecutive read runs is 4.3 x the number consecutive write
runs. This indicates that data is produced a few times, and
then consumed many times over, true for most RW files. This
observation suggests that scientific simulations often produce
data during certain runs, which is then used as a driver input
by several subsequent runs to explore different potential paths
or analyze a simulated phenomena in detail. We note that
consecutive write runs does not imply that all the previously
written data is rewritten/lost. Some scientific workflows could
append a file over two consecutive write runs and then, read a
part of the file in the subsequent run.

Finding 4. HPC files experience a few consecutive write
runs and a long string of consecutive read runs on average.
This insight can help leverage MPI “hints” [38] to guide the
system about the type of I/O about to be executed. Partitioning

—— 1/O Data Transferred === Num. Files
3 Num. Applications Num. Users
g 100 —
S L% IO USRI S
R 50
S 251
@
g % 50 100 150 200
b

OST ID (sorted)

Figure 7: The amount of I/O data transferred by each OST is
largely unequal, even though the number of files, applications,
and users are more balanced due to capacity balancing.

of I/0 servers [25] to separately serve RH files (which perform
many consecutive reads) and RW files (for read and write
runs) can boost I/0 performance.

Multi-Application File Sharing. Taking the producer-
consumer relationship one step further, it would be interest-
ing to understand if the producer and the consumer are the
same application or if they are different applications. From
a methodological point of view, we note that all applications
which access a file are run by the same user. So for any file,
both producer and consumer applications belong to the same
user. Also, a file is not considered to be shared by default
among multiple users due to permission issues. Fig. 6(a)
shows the CMF of the number of applications which access
a file. Over 67% of files are accessed by at least 2 applica-
tions, thus indicating that files are often shared by multiple
applications. Fig. 6(b) shows the CMF of the inter-arrival
time of each application which performs I/O to a file. The
mean inter-arrival time of each application is 31 hours, which
is much lower than the mean inter-arrival time of individual
read and write runs (>50 hours). Thus, for most files, 2 or
more applications serve as the producer and the consumer,
as opposed to a single application performing I/O to the file.
This is consistent with our finding that a majority (86%) of
files accessed by multiple applications are RW files (only 12%
of these shared files are RH files and only 2% are WH files).
Finding 5. HPC files are shared by multiple applications and
each application performs both read and write 1/0 serving
as both, the producer and the consumer. Inter-arrival times
of these runs also indicate that the producer and the con-
sumer are launched significantly apart in time - limiting the
effectiveness of potential caching across applications.

3.2 Characteristics of I/0 Data Accesses

Per Run I/0 Data Transfer. In Sec. 3.1, we studied how
files get used over multiple runs. We now investigate how the
data transaction characteristics change over these multiple
runs. Fig. 6(c) shows a CMF of the amount of data transferred
per run by read runs and write runs. We observe that on
average, read runs transfer 17 GB of data per run, while write
runs transfer 25 GB of data per run. In fact, 50% of read runs
transfer less than 1 GB of data.

94 18th USENIX Conference on File and Storage Technologies

USENIX Association

~
o
S
w
o
w
v
o

=
S

N

o
w
o
S

=3
S

250

N
=

o
o

g

o

=R N

o u o

S o o

Amount of I/0 Data (GB)
o
o
1
1

(averaged across runs)
= N w B vl [«
5
3
(averaged across runs)

o
wn

Ao [A
POSIX MPI STD POSIX MPI STD POSIX MPI STD

(a) (b (©)
Figure 8: (a) POSIX and MPI /O interfaces are used to trans-
fer the most amount of data. (b) The variability in I/O size
among different ranks of the same application is very small.
(c) But, the variability in I/O time of individual ranks is large.

o
=]
wu
o

Std. Dev. of Rank I/O Size (GB)
(averaged across runs)
&
Std. Dev. of Rank 1/0 Time (s)

o
o
o
o

Finding 6. While reads runs are more abundant than write
runs and transfer more data in total, surprisingly, write runs
transfer more amount of data than read runs per run. On
average, write runs perform 1.4x the I/O of read runs per run.
This finding can be exploited to manage I/O contention better
at the system-level by limiting the number of concurrently
executing write runs. Recall that our earlier finding indicates
that HPC applications largely tend to perform only one type
of I/O during one run and hence, “write runs” can easily be
detected and classified.

Spatial Load Imbalance. Now that we have found that differ-
ent runs transfer different amount of data, the next question to
investigate is how this difference affects the back-end OSTs.
Fig. 7 shows the normalized I/O data transferred to/from each
of the OSTs during the study period. Interestingly, there is
a large spread in how much data is transferred by each OST.
The least “active” OST is only 13% as active as the most
active OST. On the other hand, when we look at the number
of files on each OST, number of applications which use these
files, and number of users which generate the files, we see
that the spread is much lower.

Finding 7. For the Lustre-based system studied in this work,
OSTs are capacity-balanced to ensure approximately equal
utilization at the file creation time, but that does not guarantee
dynamic load-balance. Consequently, there is large inequality
in terms of the amount of load (data transfer) which each
OST observes over time - emphasizing the need for dynamic
file migration (currently lacking in the Lustre file system),
replication of read-only data, and caching.

Intra-Run I/O Variability. Next, we look at how varying
OST contention can affect the I/O time of concurrently run-
ning ranks (processes) within a run as these ranks could be
performing I/O to different OSTs in parallel. For this analysis,
we individually analyze the three different I/O interfaces used
at Cori: POSIX I/0, MPI 1/O, and STD I/O. First, we look at
the amount of data transferred using each interface. Fig. 8(a)
shows that POSIX is the most commonly used I/O interface
transferring about 260 GB of data per run per file on average.
Thereafter, MPI interface is used to transfer about 190 GB of

o
©
o

-
%
o
o

o ©

=]

o

—
o
o
o

u

=3

o
NB
o o
N OB O
o o

Total I/O Data (TB)
Max. Run 1/0 Time)

CoV of I/0 Time
Across Runs (%)

Run 1/0 Time (% of

F 0 T T T T 0+ T y T u

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Run Start Time (hr) Run Start Time (hr) Run Start Time (hr)
(local time) (local time) (local time)

() (d) (©

Figure 9: (a) A large amount of I/O data is transferred dur-
ing 3am-5am local time. (b) Due to this, runs take the most
amount of time to complete their I/O during the correspond-
ing hours. (c) Also, variability in I/O time is lower when I/O
time is higher and higher when I/O time is lower.

data per run per file on average. STD is the least commonly
used interface, as is expected for parallel HPC applications.
Fig. 8(b) shows the standard deviation of the amount of
data transferred across each rank performing I/O per run per
file. On average, this standard deviation is very small across
all three interfaces. For example, the average standard de-
viation of the amount of data transferred across POSIX I/O
performing ranks is less than 1.5 GB, which is negligible com-
pared to the average amount of data transferred using POSIX
(260 GB). On the other hand, Fig. 8(c) shows the standard
deviation of the I/O time across each rank performing I/O per
run per file. This standard deviation is especially high for I/O
performed using POSIX interface. This is because, typically
when using the POSIX interface, each rank performs I/O to
its own file, while when using the MPI I/O interface, all ranks
perform I/O to a shared file. Because the default stripe width
on the Cori supercomputer is 1, over 99% files are striped
across only 1 OST. Therefore, if an application performs I/O
to multiple files in parallel, they tend to perform I/O to multi-
ple OSTs in parallel, as the files could be mapped to different
OSTs. Thus, varying levels of resource contention at these
OSTs can dramatically affect the I/O time of the individual
ranks when using POSIX I/O.
Finding 8. OST load imbalance leads to a high degree of
variability in I/0 time of ranks which are concurrently per-
forming /O, especially if the ranks are performing I/0 to
different OSTs, which is largely the case with POSIX I/0.
This leads to the faster ranks having to wait for the slower
ranks to finish I/O before they can resume computation, thus
wasting precious compute cycles on the HPC system.

Temporal Load Imbalance. Previously, we discovered that
OST I/O imbalance and contention causes intra-run variabil-
ity in I/O time. So the next step is to explore the temporal
characteristics of I/O load. Fig. 9(a) shows the total amount
of data which is transferred at different hours of the day. We
observe that the largest amount of I/O activity is performed by
runs which start between 3am and 5am local time. Note that
Cori has users across the globe, so the specific local time (i.e.,
early morning) is not an indicator of when the local users are
the most active. We plot the amount of data with respect to the

USENIX Association

18th USENIX Conference on File and Storage Technologies 95

start time of the run which is sufficient for our analysis. We
note that our following analysis does not necessarily establish
a causal relationship between different factors, but instead
attempts to explain the observed trends. In Fig. 9(b), we plot
the I/O time of runs across different hours of the day. The
I/O time of a run is plotted as percentage of the maximum
I/O time among all runs which perform I/O to the same file
to normalize it across files. However, we observe that runs
started during 3am-5am and a few hours post 5am have the
highest runtime due to the high I/O activity during this time.
This is in spite of the fact that runs performing I/O to the same
file have low variability in terms of the amount of data they
transfer (as we will discuss later).

Interestingly, Fig. 9(c) shows that while the variability
in I/O time is generally significantly high across all times
(>20%), it is the lowest for runs which start during peak I/O
activity periods. The CoV is calculated among runs belong-
ing to the same file which start during the same hour of the
day. The CoV of I/O time plot has a near opposite trend as
that of the I/O time plot (Fig. 9(b)). In fact, the I/O time and
CoV of I/0 time have a Spearman Correlation Index of -0.94,
which points to strong negative correlation. This indicates
that when the I/O activity is highest, the variability in I/O
time that the user can expect is slightly lower, i.e., if user A
starts the same run every day during a high I/O activity period,
they can expect less variability in the runs’ I/O times (and
therefore, runtimes) than user B who starts the same run every
day during a low I/O activity period. Of course, the trade-off
is that user A observes a higher I/O time on average than
user B. This happens because when the I/O activity is high,
the OSTs are heavily contended which may slow down all
I/0. Hence, the effect of any variation in I/O time is small.
However, when OSTs are not contended and 1/0 is faster, the
effects of variation are more pronounced and noticeable.
Finding 9. Temporal load imbalance causes I/0O time of the
same run to be different during different times of the day.
Moreover, variability in I/0 time is strongly negatively cor-
related with the 1/O time during the time of the day. HPC
systems need new techniques to mitigate the intra-run vari-
ability (i.e., ranks of the same application finishing at different
times) which continues to have a considerable presence since
the I/0 variability is significant at all times (>20%).

Inter-Run I/O Variability. The next question we address is
that if there is temporal imbalance in storage system load,
does it cause I/O time variability from one run to another?
Note that the variability we addressed in Finding 9 was among
runs starting during the same hour. Now we look at all runs
accessing the same file regardless of their start times. First, we
explore how much the amount of data transferred to/from the
same file changes from one run to another. Fig. 10(a) shows
the CMF of the CoV of the amount of I/O data transferred
across runs for each file. Overall, more than 80% of files
have a CoV of less than 5% which indicates a negligible

o
o
o

60
40
20

so,_%—/_——

CMF (% of Files)

0 : :
0 10 20 30 40 50 60 70 80 O 10 20 30 40 50 60 70 80
CoV of 1/0 Size Across Runs (%) CoV of I/0 Time Across Runs (%)
(@) (b)

Figure 10: The change in the amount of data transferred across
runs to read-only files is the smallest, but these files experi-
ence the highest variability across runs in terms of I/O time.
Overall, the change in the amount of data is very small (mean
CoV is 12%); however, the change in the amount of time it
takes to transfer the data is much greater (mean CoV is 39%).

change in the amount of I/O data transferred from one run to
another. This is especially true for RH files, and even true for
RW files, which experience both, read runs and write runs,
thus indicating that similar amount of data gets produced and
consumed in a vast majority of cases. WH files exhibit the
highest variability in the amount of data transferred (mostly
write data in the case of WH files) with a mean CoV of 35%
(results for different types of files are not shown for brevity).

Fig. 10(b) shows the CoV of I/O time for different runs for
each file. Across all files, even though the amount of data does
not change significantly from one run to another, the amount
of time it takes to transfer this data experiences significant
variability: the mean CoV of the I/O time across runs is 39%.
RH files experience the most change in I/O time from one
run to another with a mean CoV of 68%, even though they
have the least change in the amount of data transferred. This
is due to the fact that the OSTs experience different levels of
contention at different times due to temporal load imbalance.
In fact, because read runs transfer less amount of data on
average than write runs (as we discussed in Finding 6), the
effect of this load imbalance is especially prominent on their
I/0O time, which in turn has the largest impact on RH files.
Finding 10. HPC files tend to experience similar amount of
data transfer from one run to another, but they do experience
a large variability in terms of the amount of time taken to
transfer the data. This is especially true for ready-heavy files
which have the least variability in I/O data, but the most vari-
ability in I/0 time - indicating the need for special attention
to RH files when mitigating I/O variability challenge.

4 Scope of the Findings

While we have ensured that our results and insights are
statistically significant, certain aspects of our study may limit
the applicability and generalization ability of our analysis.
User Opt-Out. Cori users had the option to opt out of Dar-
shan logging. However, the Darshan library is enabled by
default for all users. Therefore, a large majority of users, espe-
cially the ones running I/O intensive applications, run Darshan
during execution to understand their I/O behavior.
Time Period of Data Collection. Our study uses four months
of data logs for analysis and is unable to detect trends longer

96 18th USENIX Conference on File and Storage Technologies

USENIX Association

than four months. However, four months is a long period
and all of the insightful findings such as read and write runs
inter-arrival times, multiple application inter-arrival times, and
temporal load imbalance are in the order of hours. We also
note that the jobs on the Cori supercomputer do not exhibit
significant seasonal behavior. That is, the I/O traffic remains
relatively similar throughout the year, as also confirmed by
previous studies [42]. Therefore, we do not expect our analysis
and findings to be affected by the time period of the study.

Unavailable Information. Our study is restricted by the type
of information traced by Darshan. Therefore, we are unable to
study file size, file amendments/overwrites, number of nodes
involved in I/O, and batch job I/O behavior. Information about
random vs. sequential I/O type is available for POSIX I/O, but
does not yield interesting results as we found that almost all
of the I/0 is sequential as is expected for HPC applications.

“What if?” Analysis. Our post-event analysis also bars us
from posing “what if” questions such as what if a particular
run is removed from analysis? How would it affect the I/O
trends? Such questions are not possible to study retroactively
in a parallel storage system as all concurrently running ap-
plications affect each other’s I/O behavior in complex ways
which cannot be decoupled easily.

Impact of Cori-specific environment and workloads. As
expected, our findings are influenced by the nature of work-
loads which are executed at National Energy Research Sci-
entific Computing Center (NERSC) and the NERSC system
environment where Cori is hosted. Consequently, we caution
that our findings cannot be generalized to other HPC systems
as-is, but this work provides a methodological framework to
conduct a study of this nature at other centers to confirm and
refute the presented findings.

However, we also note that similarities between NERSC
and other centers are likely since HPC users often tend to
run workloads with similar characteristics [34]. Workloads
running at NERSC are diverse in nature and correspond to a
wide variety of scientific domains such as material science,
cosmology, combustion, fluid dynamics, climate science, and
quantum simulations. Prior studies have covered various as-
pects of these workloads [5,31,34,53].

Increase in data analytics workloads may be the reason for
read-heavy file I/O. Wide increase of such workloads on lead-
ing HPC centers has been observed in recent years [1, 12, 13].
NERSC has observed a rise in data analytics workloads
in NERSC Exascale Science Applications Program (NE-
SAP) [14]. Data and learning applications such as BD-CATS
which run at NERSC are quite I/O-intensive. Interestingly,
we also observed that some applications that generate large
amounts of read data (QCD and quantum modeling of materi-
als) do not necessarily come from the data analytics domain
and have run at NERSC for many years. Finally, we note that
the scope of this study is limited to only the NERSC system
where the instrumentation was performed.

5 Related Work
In this section, we discuss and contrast some related work.

I/0 Characterization Software. As HPC I/O has become
more unstable and a bigger performance bottleneck over the
last few years, much effort is geared toward developing I/O
characterization tools for individual applications [10, 11,22,
50, 55] and for the entire system [2,23,24,51,58]. Recent
works focus on developing software for end-to-end character-
ization of I/O [15,30,31,41,48,58]. These works deal with
tool development and do not provide detailed analysis of I/O
behavior, especially in terms of file access and reuse.

I/0 Behavior Analysis. Most analysis works study the I/O
behavior of individual applications and/or runs such as I/O pe-
riodicity, bandwidth characteristics, and inter/intra application
execution I/O variability [19, 26,29,32-34,37,54,56,57,59].
Variability and I/O characterization studies performed by
some of these previous works are restricted to analyzing a
few benchmarks as they do not have access to a system-level
view of hundreds of concurrently running HPC applications.
Apart from analyzing application-level I/O logs, works by Liu
et al. and Madireddy et al. [27,28,35] also examine storage
server logs to assess application I/O characteristics. In fact,
many studies focus extensively on the storage system’s I/O
behavior [17,21,39,51,52] by exploring optimal file-system
configurations or identifying system-level topology bottle-
necks. Above works do not consider multi-fold interactions
related to HPC files such as file re-access, multi-application
file sharing, run classification and inter-arrival, spatial- and
temporal- load imbalance, and intra- and inter- run variability.

6 Conclusion

Overall, our analysis of Darshan I/O logs on the Cori
supercomputer reveals many previously unexplored and
unexpected insights. We found that files which contribute the
most to HPC I/O are not only re-accessed in more ways than
one but are also shared across applications. They follow a
producer-consumer relationship with runs which extensively
write to the files and runs which extensively read them. We
explored why and how these files have large intra- and inter-
run variability not in terms of I/O size, but in terms of I/O time.

Acknowledgement. We are thankful to our shepherd, Avani
Wildani, and anonymous reviewers for their constructive feed-
back. This work is supported in part by NSF Awards 1910601
and 1753840, Northeastern University, and Massachusetts
Green High Performance Computing Center (MGHPCC).
It is also supported by the Director, Office of Science, Of-
fice of Advanced Scientific Computing Research, of the U.S.
Department of Energy under contract numbers DE-AC02-
05CH11231 and DE-AC02-06CH11357. This work also used
resources of the National Energy Research Scientific Comput-
ing Center, a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy.

USENIX Association

18th USENIX Conference on File and Storage Technologies 97

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

NERSC 2017 Annual Report. https://www.nersc.
gov/assets/Uploads/2017NERSC-AnnualReport.
pdf, 2017.

Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul
Cassella, Jeremy Enos, Joshi Fullop, Ann Gentile, Steve
Monk, Nichamon Naksinehaboon, Jeff Ogden, et al. The
Lightweight Distributed Metric Service: A Scalable In-
frastructure for Continuous Monitoring of Large Scale
Computing Systems and Applications. In SC’14, pages
154-165. IEEE, 2014.

Gonzalo Pedro Rodrigo Alvarez, Per-Olov Ostberg, Erik
Elmroth, Katie Antypas, Richard Gerber, and Lavanya
Ramakrishnan. Towards Understanding Job Hetero-
geneity in HPC: A NERSC Case Study. In 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pages 521-526. IEEE,
2016.

George Amvrosiadis, Ali R Butt, Vasily Tarasov, Erez
Zadok, and Ming Zhao. Data Storage Research Vision
2025 Report. Technical Report, 2019.

Brian Austin, Tina Butler, Richard Gerber, Cary Whit-
ney, Nicholas Wright, Woo-Sun Yang, and Zhengji Zhao.
Hopper Workload Analysis. Technical report, Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United
States), 2014.

Fayssal Benkhaldoun, Christophe Cérin, Imad Kissami,
and Walid Saad. Challenges of Translating HPC Codes
to Workflows for Heterogeneous and Dynamic Envi-
ronments. In 2017 International Conference on High
Performance Computing & Simulation (HPCS), pages
858-863. IEEE, 2017.

Wahid Bhimji, Deborah Bard, David Paul, Melissa Ro-
manus, et al. Accelerating science with the NERSC
Burst Buffer Early User Program. In Cray User Group
(CUG), 2016.

A Brinkmann, K Mohror, and W Yu. Challenges and
Opportunities of User-Level File Systemsfor HPC. Tech-
nical report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2017.

Surendra Byna, Yong Chen, Xian-He Sun, Rajeev
Thakur, and William Gropp. Parallel I/O Prefetching
using MPI File Caching and I/O Signatures. In Proceed-
ings of the 2008 ACM/IEEE conference on Supercom-
puting, page 44. IEEE Press, 2008.

Philip Carns, Kevin Harms, William Allcock, Charles
Bacon, Samuel Lang, Robert Latham, and Robert Ross.
Understanding and Improving Computational Science

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

Storage Access through Continuous Characterization.
ACM Transactions on Storage (TOS), 7(3):8, 2011.

Philip Carns, Robert Latham, Robert Ross, Kamil Iskra,
Samuel Lang, and Katherine Riley. 24/7 Characteriza-
tion of Petascale I/O Workloads. In 2009 IEEE Inter-
national Conference on Cluster Computing and Work-
shops, pages 1-10. IEEE, 2009.

Steven WD Chien, Stefano Markidis, Vyacheslav Ol-
shevsky, Yaroslav Bulatov, Erwin Laure, and Jeffrey S
Vetter. TensorFlow Doing HPC. arXiv preprint
arXiv:1903.04364, 2019.

Steven WD Chien, Stefano Markidis, Chai-
tanya Prasad Sishtla, Luis Santos, Pawel Herman, Sai
Narasimhamurthy, and Erwin Laure. Characterizing
Deep-Learning I/O Workloads in TensorFlow. In 2018
IEEE/ACM 3rd International Workshop on Parallel
Data Storage & Data Intensive Scalable Computing
Systems (PDSW-DISCS), pages 54-63. IEEE, 2018.

Jack Deslippe, Doug Doerfler, Brian Friesen, Yun He-
len He, Tuomas Koskela, Mathieu Lobet, Tareq Malas,
Leonid Oliker, Andrey Ovsyannikov, Samuel Williams,
et al. Analyzing Performance of Selected NESAP Ap-
plications on the Cori HPC System. In High Perfor-
mance Computing: ISC High Performance 2017 Inter-
national Workshops, DRBSD, ExaComm, HCPM, HPC-
I0DC, IWOPH, IXPUG, P"3MA, VHPC, Visualization
at Scale, WOPSSS, Frankfurt, Germany, June 18-22,
2017, Revised Selected Papers, volume 10524, page 334.
Springer, 2017.

Sheng Di, Rinku Gupta, Marc Snir, Eric Pershey, and
Franck Cappello. Logaider: A Tool for Mining Potential
Correlations of HPC Log Events.

Hassan Eslami, Anthony Kougkas, Maria Kotsifakou,
Theodoros Kasampalis, Kun Feng, Yin Lu, William
Gropp, Xian-He Sun, Yong Chen, and Rajeev Thakur.
Efficient disk-to-disk sorting: A case study in the de-
coupled execution paradigm. In Proceedings of the
2015 International Workshop on Data-Intensive Scal-
able Computing Systems, page 2. ACM, 2015.

Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller,
Feiyi Wang, and Dustin Leverman. Comparative /O
Workload Characterization of Two Leadership Class
Storage Clusters. In Proceedings of the 10th Parallel
Data Storage Workshop, pages 31-36. ACM, 2015.

Jun He, John Bent, Aaron Torres, Gary Grider, Garth
Gibson, Carlos Maltzahn, and Xian-He Sun. /O Accel-
eration with Pattern Detection. In Proceedings of the
22nd international symposium on High-performance
parallel and distributed computing, pages 25-36. ACM,
2013.

98

18th USENIX Conference on File and Storage Technologies

USENIX Association

https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf
https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf
https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Dan Huang, Qing Liu, Jong Choi, Norbert Podhorszki,
Scott Klasky, Jeremy Logan, George Ostrouchov, Xubin
He, and Matthew Wolf. Can I/O Variability Be Reduced
on QoS-Less HPC Storage Systems? IEEE Transactions
on Computers, 68(5):631-645, 2018.

Ye Jin, Xiaosong Ma, Mingliang Liu, Qing Liu, Jeremy
Logan, Norbert Podhorszki, Jong Youl Choi, and Scott
Klasky. Combining Phase Identification and Statistic
Modeling for Automated Parallel Benchmark Gener-
ation. ACM SIGMETRICS Performance Evaluation
Review, 43(1):309-320, 2015.

Youngjae Kim and Raghul Gunasekaran. Understanding
I/O Workload Characteristics of a Peta-scale Storage
System. The Journal of Supercomputing, 71(3):761-
780, 2015.

Michelle Koo, Wucherl Yoo, and Alex Sim. I/O Perfor-
mance Analysis Framework on Measurement Data from
Scientific Clusters. 2015.

Julian M Kunkel, Michaela Zimmer, Nathanael Hiibbe,
Alvaro Aguilera, Holger Mickler, Xuan Wang, Andriy
Chut, Thomas Bonisch, Jakob Liittgau, Roman Michel,
et al. The SIOX Architecture-Coupling Automatic Mon-
itoring and Optimization of Parallel I/O. In International
Supercomputing Conference, pages 245-260. Springer,
2014.

Julian Martin Kunkel, Eugen Betke, Matt Bryson, Philip
Carns, Rosemary Francis, Wolfgang Frings, Roland
Laifer, and Sandra Mendez. Tools for Analyzing Parallel
I/0. In International Conference on High Performance
Computing, pages 49-70. Springer, 2018.

Chih-Song Kuo, Aamer Shah, Akihiro Nomura, Satoshi
Matsuoka, and Felix Wolf. How File Access Patterns
Influence Interference Among Cluster Applications. In
2014 IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 185-193. IEEE, 2014.

Qing Liu, Norbert Podhorszki, Jeremy Logan, and Scott
Klasky. Runtime I/O Re-Routing+ Throttling on {HPC}
Storage. In Presented as part of the 5th {USENIX}
Workshop on Hot Topics in Storage and File Systems,
2013.

Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Automatic Identification of Ap-
plication I/O Signatures from Noisy Server-Side Traces.
In FAST, volume 14, pages 213-228, 2014.

Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Server-Side Log Data Analytics
for I/O Workload Characterization and Coordination on
Large Shared Storage Systems. In High Performance

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

Computing, Networking, Storage and Analysis, SC16: In-
ternational Conference for, pages 819-829. IEEE, 2016.

Glenn K Lockwood, Shane Snyder, Teng Wang, Suren
Byna, Philip Carns, and Nicholas J Wright. A Year
in the Life of a Parallel File System. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, page 74.
IEEE Press, 2018.

Glenn K Lockwood, Nicholas J Wright, Shane Snyder,
Philip Carns, George Brown, and Kevin Harms. TOKIO
on ClusterStor: Connecting Standard Tools to Enable
Holistic I/O Performance Analysis. 2018.

Glenn K Lockwood, Wucherl Yoo, Suren Byna,
Nicholas J Wright, Shane Snyder, Kevin Harms, Zachary
Nault, and Philip Carns. UMAMI: A Recipe for Gener-
ating Meaningful Metrics through Holistic I/O Perfor-
mance Analysis. In Proceedings of the 2nd Joint Inter-
national Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems, pages 55-60.
ACM, 2017.

Uri Lublin and Dror G Feitelson. The Workload on
Parallel Supercomputers: Modeling the Characteristics
of Rigid Jobs. Journal of Parallel and Distributed Com-
puting, 63(11):1105-1122, 2003.

Jakob Liittgau, Shane Snyder, Philip Carns, Justin M
Wozniak, Julian Kunkel, and Thomas Ludwig. Toward
Understanding I/0O Behavior in HPC Workflows. In
Proc. of Workshop in conjunction with ACM/IEEE Su-
percomputing Conference, Dallas, TX, USA, 2018.

Huong Luu, Marianne Winslett, William Gropp, Robert
Ross, Philip Carns, Kevin Harms, Mr Prabhat, Suren
Byna, and Yushu Yao. A Multiplatform Study of I/O Be-
havior on Petascale Supercomputers. In Proceedings of
the 24th International Symposium on High-Performance
Farallel and Distributed Computing, pages 33—-44. ACM,
2015.

Sandeep Madireddy, Prasanna Balaprakash, Philip
Carns, Robert Latham, Robert Ross, Shane Snyder, and
Stefan M Wild. Analysis and Correlation of Applica-
tion I/O Performance and System-Wide /O Activity.
In Networking, Architecture, and Storage (NAS), 2017
International Conference on, pages 1-10. IEEE, 2017.

Anirban Mandal, Paul Ruth, Ilya Baldin, Yufeng Xin,
Claris Castillo, Mats Rynge, and Ewa Deelman. Evalu-
ating i/o aware network management for scientific work-
flows on networked clouds. In Proceedings of the Third

International Workshop on Network-Aware Data Man-
agement, page 2. ACM, 2013.

USENIX Association

18th USENIX Conference on File and Storage Technologies 99

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.
Taming performance variability. In 73th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18), pages 409-425, 2018.

John M May. Parallel I/0 for High Performance Com-
puting. Morgan Kaufmann, 2001.

S. Oral et al. Best Practices and Lessons Learned from
Deploying and Operating Large-Scale Data-Centric Par-
allel File Systems. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 217-228. IEEE, 2014.

Suraj Pandey, Karan Vahi, Rafael Ferreira da Silva, Ewa
Deelman, Ming Jiang, Cyrus Harrison, Al Chu, and
Henri Casanova. Event-Based Triggering and Manage-
ment of Scientific Workflow Ensembles. In HPC Asia,
2018.

Byung H Park, Saurabh Hukerikar, Ryan Adamson, and
Christian Engelmann. Big Data Meets HPC Log An-
alytics: Scalable Approach to Understanding Systems
at Extreme Scale. In 2017 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pages 758-765.
IEEE, 2017.

Tirthak Patel, Suren Byna, Glenn K Lockwood, and De-
vesh Tiwari. Revisiting I/O Behavior in Large-Scale
Storage Systems: The Expected and the Unexpected. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, page 65. ACM, 2019.

Gonzalo P Rodrigo, P-O Ostberg, Erik Elmroth, Katie
Antypas, Richard Gerber, and Lavanya Ramakrishnan.
Towards Understanding HPC Users and Systems: A
NERSC Case Study. Journal of Parallel and Distributed
Computing, 111:206-221, 2018.

Robert Ross, Lee Ward, Philip Carns, Gary Grider, Scott
Klasky, Quincey Koziol, Glenn K Lockwood, Kathryn
Mohror, Bradley Settlemyer, and Matthew Wolf. Storage
Systems and I/O: Organizing, Storing, and Accessing
Data for Scientific Discovery. Technical report, USDOE
Office of Science (SC)(United States), 2019.

Mats Rynge, Scott Callaghan, Ewa Deelman, Gideon
Juve, Gaurang Mehta, Karan Vahi, and Philip J] Maech-
ling. Enabling Large-Scale Scientific Workflows on
Petascale Resources using MPI Master/Worker. In Pro-
ceedings of the 1st Conference of the Extreme Science
and Engineering Discovery Environment: Bridging from
the eXtreme to the campus and beyond, page 49. ACM,
2012.

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Peter Scheuermann, Gerhard Weikum, and Peter Zab-
back. Adaptive load balancing in disk arrays. In Interna-
tional Conference on Foundations of Data Organization
and Algorithms, pages 345-360. Springer, 1993.

Seetharami Seelam, I-Hsin Chung, John Bauer, and Hui-
Fang Wen. Masking I/O Latency using Application
Level I/O Caching and Prefetching on Blue Gene sys-
tems. In 2010 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS), pages 1-12.
IEEE, 2010.

Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-
Scale Distributed Systems Tracing Infrastructure. 2010.

Evgenia Smirni and Daniel A. Reed. Lessons From
Characterizing the Input/Output Behavior of Parallel Sci-
entific Applications. Performance Evaluation, 33(1):27—
44, 1998.

Shane Snyder, Philip Carns, Kevin Harms, Robert Ross,
Glenn K Lockwood, and Nicholas J Wright. Modular
HPC I/O Characterization with Darshan. In 2016 5th
Workshop on Extreme-Scale Programming Tools (ESPT),
pages 9-17. IEEE, 2016.

Sudharshan S Vazhkudai, Ross Miller, Devesh Tiwari,
Christopher Zimmer, Feiyi Wang, Sarp Oral, Raghul
Gunasekaran, and Deryl Steinert. GUIDE: A Scalable
Information Directory Service to Collect, Federate, and
Analyze Logs for Operational Insights into a Leadership
HPC Facility. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, page 45. ACM, 2017.

Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari,
and Sudharshan S Vazhkudai. Improving Large-Scale
Storage System Performance via Topology-Aware and
Balanced Data Placement. In 2014 20th IEEE Interna-
tional Conference on Parallel and Distributed Systems
(ICPADS), pages 656-663. IEEE, 2014.

Teng Wang, Suren Byna, Glenn K Lockwood, Shane
Snyder, Philip Carns, Sunggon Kim, and Nicholas J
Wright. A Zoom-in Analysis of I/O Logs to Detect
Root Causes of I/0O Performance Bottlenecks. In 2079
19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pages 102-111,
2019.

Teng Wang, Shane Snyder, Glenn Lockwood, Philip
Carns, Nicholas Wright, and Suren Byna. IOMiner:
Large-Scale Analytics Framework for Gaining Knowl-
edge from I/O Logs. In 2018 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pages 466—476.
IEEE, 2018.

100

18th USENIX Conference on File and Storage Technologies

USENIX Association

[55]

[56]

[57]

Steven A Wright, Simon D Hammond, Simon J
Pennycook, Robert F Bird, JA Herdman, Ian Miller,
A Vadgama, Abhir Bhalerao, and Stephen A Jarvis. Par-
allel File System Analysis through Application I/O Trac-
ing. The Computer Journal, 56(2):141-155, 2012.

Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin,
Scott Klasky, Sarp Oral, and Norbert Podhorszki. Char-
acterizing Output Bottlenecks in a Supercomputer. In
SC’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis, pages 1-11. IEEE, 2012.

Bing Xie, Yezhou Huang, Jeffrey S Chase, Jong Youl
Choi, Scott Klasky, Jay Lofstead, and Sarp Oral. Predict-
ing Output Performance of a Petascale Supercomputer.
In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing,
pages 181-192. ACM, 2017.

(58]

[59]

(60]

Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu
Zhang, Xiupeng Zhu, Nosayba El-Sayed, Haidong Lan,
Yibo Yang, Jidong Zhai, et al. End-to-End I/O Monitor-
ing on a Leading Supercomputer. In 16th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19), pages 379-394, 2019.

Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross,
and Gabriel Antoniu. On the Root Causes of Cross-
Application I/O Interference in HPC Storage Systems.
In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 750-759. 1EEE,
2016.

Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei
Tang, Jia Wang, and Zhiling Lan. 1/O-Aware Batch
Scheduling for Petascale Computing Systems. In Clus-
ter Computing (CLUSTER), 2015 IEEE International

Conference on, pages 254-263. IEEE, 2015.

USENIX Association

18th USENIX Conference on File and Storage Technologies

101

GIFT: A Coupon Based Throttle-and-Reward Mechanism
for Fair and Efficient I/O Bandwidth Management on Parallel Storage Systems

Tirthak Patel
Northeastern University

Abstract

Large-scale parallel applications are highly data-intensive
and perform terabytes of I/O routinely. Unfortunately, on a
large-scale system where multiple applications run concur-
rently, I/O contention negatively affects system efficiency and
causes unfair bandwidth allocation among applications. To
address these challenges, this paper introduces GIFT, a princi-
pled dynamic approach to achieve fairness among competing
applications and improve system efficiency.

1 Introduction

Problem Space and Gaps in Existing Approaches. In-
crease in computing power has enabled scientists to expedite
the scientific discovery process, but scientific applications pro-
duce more and more analysis and checkpoint data, worsening
their I/0O bottleneck [7,45]. Many applications spend 15-40%
of their execution time performing I/O, which is expected
to increase for exascale systems [12,15,22,31,53,55]. Un-
fortunately, multiple concurrent applications on a large-scale
system lead to severe I/O contention, limiting the usability of
future HPC systems [11,45].

Recognizing the importance of the problem, there have
been numerous efforts to mitigate I/O contention from both
I/O throughput and fairness perspectives [13, 14,17,25,37,
42,75,76,78, 88, 89]. Unfortunately, ensuring fairness and
maximizing throughput are conflicting objectives, and it is
challenging to strike a balance between them under 1/O
contention. For parallel HPC applications, the side-effect of
I/O contention is further amplified because of the need for
synchronous 1/0 progress. HPC applications are inherently
tightly synchronized; during an I/O phase, MPI processes
of an HPC application must wait for all processes to finish
their I/O before resuming computation (i.e., synchronous I/O
progress among MPI processes is required) [28,31,39,57,90].

MPI processes of an HPC application perform parallel I/O
access to multiple back-end storage targets (e.g., an array
of disks) concurrently. These back-end storage targets are
shared among concurrently running applications and have
different degree of sharing over time and hence, a varying
level of contention. A varying level of I/O contention at
the shared back-end parallel storage system makes differ-
ent MPI processes progress at different rates and hence, leads

Rohan Garg
Nutanix

Devesh Tiwari
Northeastern University

to non-synchronous I/O progress. In Sec. 2, we quantify non-
synchronous I/O progress as a key source of inefficiency in
shared parallel storage systems. It results in (1) wastage of
compute cycles on compute nodes, and (2) reduction in effec-
tive system I/O bandwidth (i.e., the bandwidth that contributes
toward synchronous I/O progress), since full bandwidth is not
utilized toward synchronous I/O progress.

Recent works have noted that non-synchronous I/O
progress degrades application and system performances on
modern supercomputers like Mira, Edison, Cori, and Ti-
tan [9,31,32,39,69, 83]. Thus, there is an emerging interest
in improving the quality-of-service (QoS) of parallel stor-
age systems [24, 80, 86]. Previous works have proposed rule-
based or ad-hoc bandwidth allocation strategies for HPC stor-
age [14,17,23,36,42, 88, 89]. However, existing approaches
do not systematically implement synchronous I/O progress to
balance the competing objectives: improving effective system
I/0 bandwidth and improving fairness.

To bridge this solution gap, this paper describes GIFT, a
coupon-based bandwidth allocation approach to ensure syn-
chronous I/0 progress of HPC applications while maximizing
I/0 bandwidth utilization and ensuring fairness among con-
current applications on parallel storage systems.

Summary of the GIFT Approach. GIFT introduces two
key ideas: (1) Relaxing the fairness window: GIFT breaks
away from the traditional concept of instantaneous fairness
at each I/0O request, and instead, ensures fairness over multi-
ple I/O phases and runs of an application. This opportunity
is enabled by exploiting the observation that HPC applica-
tions have multiple I/O phases during a run and are highly
repetitive, often exhibiting similar behavior across runs; and
(2) Throttle-and-reward approach for I/0 bandwidth alloca-
tion: GIFT opportunistically throttles the I/O bandwidth of
certain applications at times in an attempt to improve the
overall effective system I/O bandwidth (i.e., it minimizes the
wasted I/0O bandwidth that does not contribute toward syn-
chronous I/O progress). GIFT’s throttle-and-reward approach
intelligently exploits instantaneous opportunities to improve
effective system I/O bandwidth. Further, relaxing the fairness
window enables GIFT to reward the “throttled” application at
a later point to ensure fairness.

USENIX Association

18th USENIX Conference on File and Storage Technologies 103

C MDSes MDTs

Nodes a D
(0sCs) (= T g TN o
e s =000 0

J
0SSes OSTs

SION
F] o[-0000
ner | HBA e »>EEEE

=
e) : on |—+f{crmia+~EEE0
NeT N s T e [)

EEEEE

Figure 1: Overview of HPC storage system architecture.

First, GIFT allocates I/0 bandwidth to all competing appli-
cations in a fair manner and ensures synchronous I/O progress
among all processes of the same application at all times - this
fundamental design principle eliminates the key source of
parallel storage system inefficiencies (Sec. 3.1). This allows
GIFT to estimate the amount of wasted I/O bandwidth (i.e.,
bandwidth which does not contribute toward the synchronous
I/O progress). Then, GIFT exploits the “opportunity” to re-
duce the bandwidth waste by identifying and throttling the
I/O bandwidth share of some applications and expanding the
I/0 bandwidth share of other applications (Sec. 3.2). To mini-
mize the I/0O bandwidth waste, GIFT uses constraint-based,
linear programming to optimally allocate bandwidths to ap-
plications (Sec. 3.4). GIFT issues “coupons’ to the throttled
applications — the worth of these coupons is proportional to
the degree of throttling. At a later point, GIFT “redeems” the
previously issued coupons to throttled applications to ensure
fairness (Sec. 3.3). In cases where GIFT cannot redeem issued
coupons for an application, it rewards the application with
proportional compute node-hours (credited from a bounded
“system regret budget”). This system regret budget acts as
a credit bank of compute node-hours, which GIFT uses to
achieve fairness when coupons cannot be redeemed.

The contributions of GIFT include:

Design and Implementation. GIFT designs and develops
an efficient and practical coupon-based management sys-
tem for I/O bandwidth allocation among competing appli-
cations on shared parallel storage systems. GIFT develops
new lightweight and effective techniques to identify throttle-
friendly applications, determine the degree of throttling and
expansion of I/O bandwidth share of competing applica-
tions, and redeem coupons to ensure fairness. GIFT shows
that the usage of the “system regret budget” upon failure
to redeem coupons is minimal, and that the compute node-
hours required for the system regret budget are much less
than compared to the increase in system throughput due to
faster I/O. GIFT implements all the core ideas in a real-
system prototype based on the FUSE file system, demon-
strating that GIFT’s’ ideas can be realized in practice, open
to the community for reproducibility, and do not require
heroic optimization efforts or system-specific parameter tun-
ings to realize the performance gains. GIFT is available at
https://github.com/GoodwillComputingLab/GIFT.

Evaluation of GIFT. Our evaluation confirms that GIFT re-
duces the “bandwidth waste” caused by I/O contention on a
HPC storage system, and thereby, improves the I/O bandwidth
utilization toward synchronous I/O progress, application per-
formance and fairness, and system job throughput. Our evalu-
ation is based on extensive real system experimental results,
guided by real-world, large-scale HPC system and applica-
tion parameters, and supported by simulation results. GIFT is
shown to improve the mean effective system I/O bandwidth
by 17% and the mean application I/O time by 10%, compared
to multiple competing schemes. GIFT is also shown to be
effective under various scenarios including high contention
levels and different application characteristics.

2 Background and Motivation

HPC Storage Systems. This section describes the key com-
ponents of storage systems attached to large-scale HPC sys-
tems, such as Mira, Edison, Titan, Cori, and Stampede2 [1,22,
54,73]. HPC systems use parallel file systems, such as Lustre,
Ceph, GPFS, and PVFS, to perform parallel I/O [58-60, 79].
For simplicity, this works targets widely-used Lustre-like HPC
storage system. A Lustre-like architecture consists of mul-
tiple building blocks (Fig. 1). The most basic of these is an
Object Storage Target (OST), a RAID array of disks. A file
is typically distributed across multiple OSTs for parallelism
and can be accessed in parallel from multiple MPI processes.
The OSTs serve the Object Storage Servers (OSS), which
are connected to the front-end compute nodes via an I/O net-
work. Applications running on compute nodes communicate
with the OSSes via file system clients. The Meta Data Server
(MDS) is the starting point for all file metadata operations.
MDS consults with the Meta Data Targets (MDT), which
maintain the metadata of all I/O requests.

Day in the Life of an I/O Request in a HPC System. Large-
scale applications run on multiple nodes and spawn multiple
(MPI) processes. These processes periodically write (or read)
analysis output and checkpoint data to (or from) the storage
system — referred to as an I/O phase. Processes from the same
application may perform I/O on separate files or stripe a single
file across multiple OSTs for concurrent access [8].

We refer to an I/O operation (read/write) accessing one
OST from an MPI process of an application as an I/O re-
quest. First, the file system client on the compute node issues
a remote procedure call (RPC) to the MDS, which returns
information about the file stripe and OST mappings. For a
new file creation request, the MDS first assigns OSTs in a
capacity-balanced manner. For existing files, the MDS returns
previously assigned OST information to the file system client.
Then, the file system client issues an I/O request over the
network to the OSS corresponding to the target OST [81].
In practice, during the I/O phase, an HPC application issues
multiple I/O requests from different MPI processes.

104 18th USENIX Conference on File and Storage Technologies

USENIX Association

Table 1: I/O characteristics of large-scale HPC applications.

< 1 min 1-15 mins > 15 mins
/0 HACC [63], HIMMER [63], PTF [32], VPIC [9],
Phase Chombo-Crunch | Chombo-Crunch [52] | Plasma Based
Length [52] WREF [48], Accelerators [19]
S3D [30,33]
< 5 min 5-30 mins 30 mins - 3hr
1/0 GTC [33], WREF [48], S3D, VPIC [9],

Interval | Titan Apps [39], | Chombo-Crunch [52], | CHIMERA [33],

GYRO [33] Titan Apps [39] Chombo-Crunch [52],
VULCAN [33]
< 100 GB 100 GB-1 TB >1TB
1/0 GTC [33], WREF [48], VPIC [9],
Output | POP [33], VULCAN [33], XGC1 [57],
Size GYRO [33] Titan Apps [39], HIMMER [63],
HACC [63] S3D [30,33]
100, % 100, — 100
7 80 . =1 S s/ 3 B0
2 6004 ” g s0f. 2 60 Total Reads
B 407,/ st.ampedeZ 2 40 i 2 40 Total Writes|
& === Mira B ‘ = Mira 5 - Seq. Reads
o 20 = Theta s 20 = Theta o 20 - Seq. Writes
o

00 200 400 600 800 0 50 100 150 200 0O 20 40 60 80 100
Number of Appearances Inter Arrival Time (hours) Std. Dev. (% of Mean)

(a) (®) (©

Figure 2: CDF of the (a) number of times that applications make
appearances, (b) inter arrival times between each appearance, and
(c) variation of I/O characteristics between two appearances.

I/0 Phases of HPC Applications. HPC applications are
typically long-running and perform I/O at regular inter-
vals [28,31, 39, 57,90]. Their execution time ranges from
a few hours to a few weeks [4,5,33,57,62,83], and the com-
pute period between two I/O phases can be from minutes to
hours [9,33,39,48,52]. The I/O phases typically produce large
amounts of data (up to hundreds of GBs) in the form of check-
points and post-simulation results [8,9,33,39,48,57,62,63].
Table 1 highlights the I/O characteristics of some popular
HPC applications collected from multiple supercomputers. It
shows that I/O phases can be as long as 30 min and the I/O
interval (compute period) can be between 5 min and 3 h. Also,
large amounts of data (100 GB - 5 TB) are transferred during
each I/O phase. Next, we discuss some HPC I/O observations.

Observation 1. HPC applications are highly repetitive in
nature — that is, HPC applications typically run repeatedly
and exhibit similar I/O behavior across their execution in-
stances, though different applications have different 1/0 be-
havior. Previous studies have shown that many HPC applica-
tions execute multiple times with similar execution charac-
teristics [4,5,12,22,62,63]. This is because scientific appli-
cations often model and simulate physical phenomena. This
is an iterative process and requires repeated simulations for
model refinement. Analysis of job scheduler logs for the last
five years, two years, and one year from the leading supercom-
puters (Mira, Theta, and Stampede2) shows strong repetition
(Fig. 2). More than 40% of the applications appear more than
200 times and about 15% of the applications appear more
than 1000 times. Only less than 20% of the applications are
run less than 5 times. Interestingly, we also found that the
inter-arrival times between re-occurrences of HPC applica-
tions is relatively short on Mira and Theta (inter-arrival times

Stampede 2 ’

gGufﬂer %l
g%%%% %é%%
0

2x4 4x4 8x4 16x4 32x4 2x4 4x4 8x4 16x4 32x4
MPI Processes # MPI Processes
(# Nodes x # Procs/Node) (# Nodes x # Procs/Node)

1/0 Time per
MPI Process (s)

R NNN
N OO S ®

1/0 Time per
MPI Process (s)

Figure 3: I/O variability among 1/O performing processes of an HPC
application on two HPC systems.

for Stampede2 were unavailable) (Fig. 2(b)). In fact, 80% of
repetitions occur within 24 hours of each other.

Furthermore, Fig. 2(c) shows that applications exhibit only
a small variation in their I/O characteristics across repeti-
tions. This data was obtained by instrumenting HPC applica-
tions with Darshan on the Mira supercomputer [63, 83]. More
than 80% of the applications that repeat more than five times
show less than 5% standard deviation (as % of mean) in total
amount of data read and written. We observe similar trends
for different types of I/O requests (sequential and random).

Unfortunately, a shared storage back-end with no con-
tention mitigation strategies results in severe contention
among competing HPC applications [10, 28, 34,47, 81, 85].
The I/O contention issue is further exacerbated by the need
for synchronous I/O progress in HPC applications — an
MPI process of an HPC application, exiting from an I/O
phase, must wait for the slower processes to also finish their
1/0 [28,31,39,57,90]. Previous studies have noted that OSTs
are the most contended resource on the I/O storage path (i.e.,
compute node, I/O routers, and OSSes) [10, 34,47, 81, 85],
since they have the lowest bandwidth among the different re-
sources. We note that the Meta Data Server (MDS) attempts to
capacity-balance the OSTs by mapping files uniformly across
OSTs, but since the MDS has no knowledge of future access
patterns, its decisions cannot avoid runtime 1/O contention
on OSTs caused due to access patterns. Next, we provide
experimental evidence to demonstrate the impact of I/O con-
tention and how it affects synchronous I/O progress of HPC
applications.

Observation 2. MPI processes from the same application
experience significantly different 1/0O progress during an I/O
phase — resulting in non-synchronous I/O progress across pro-
cesses. This problem cannot be solved by simply identifying
and speeding up a straggler process. To demonstrate the ef-
fects of non-synchronous I/O progress, we performed a set of
IOR benchmark [41] experiments on a local, production HPC
system, Engaging. Engaging consists of over 100 compute
nodes, and runs a production Lustre parallel file system with
44 OSTs, 44 OSSes, and 1 MDS. We ran IOR with different
number of MPI processes, with each MPI process writing
to a different OST. Other concurrently running applications
were not controlled. We performed these experiments mul-
tiple times and from different compute nodes to eliminate
transient and spatial biases. From Fig. 3, we observe that the

USENIX Association

18th USENIX Conference on File and Storage Technologies 105

I/O time of different MPI processes can vary significantly (up
to 4x) across runs and the number of nodes (2-32 nodes, with 4
MPI processes per node). This non-synchronous I/O progress
is attributed to the difference in degrees of contention encoun-
tered by different MPI processes on their respective OSTs.
Similar experiments on Stampede2 showed up to 83% varia-
tion in I/O time. Previous studies have reported similar results
on non-synchronous I/O progress of MPI processes on other
large-scale supercomputers including Cori, Mira, Edison, and
Hopper [9, 40, 63, 83]. On further analysis, we discovered
that often different processes finish at very different speeds
(covering a large spectrum), and the ordering of processes in
terms of their completion time changes significantly across
different runs, because the I/O contention at different OSTs
changes over time. This shows that the non-synchronous 1/0
progress problem is not the same as the traditional straggler
problem — and hence, cannot be solved by simply identifying
and speeding up a straggler MPI process or OST.

Observation 3. Non-synchronous progress among MPI pro-
cesses is caused due to unmanaged, varying I/O contention
at the OSTs in the HPC storage back-end. Naive strategies
to ensure synchronous 1/0 progress cannot find the right bal-
ance between competing objectives: maximizing effective I/O
bandwidth and fairness among applications. To further ana-
lyze the I/O contention behavior, we ran another set of IOR
experiments on Engaging, measuring the observed I/O band-
width at each OST. Each experiment consists of writing to
a particular OST from one process. Fig. 4 shows the con-
tention (defined as the inverse of bandwidth) faced on a few
OSTs (other OSTs show similar trends). Results of this sim-
ple experiment show that the degree of contention is different
on each OST and varies over time. Unfortunately, allocating
I/O bandwidth among competing applications to achieve con-
flicting objectives (fairness, effective system I/O bandwidth,
synchronous I/O progress) is non-trivial. To achieve fairness,
POFS (Per-OST Fair Share) scheme allocates I/O bandwidth
to all competing applications equally on each individual OST
(as shown in Fig. 5). But, this fair scheme may generate non-
synchronous I/O progress and lead to lower effective system
1/0 bandwidth (i.e., sum of all bandwidths that contribute
toward synchronous I/O progress). For example, under POFS,
a part of the bandwidth assigned to all applications on OST3
and a part of the bandwidth assigned to A on OST1 are wasted.
This is because additionally allocated bandwidths do not con-
tribute toward synchronous I/O progress.

To ensure synchronous I/O progress, one can allocate band-
width on each OST determined by the fair allocation on the
bottlenecked OST. In Fig. 5, BSIP (Basic Synchronous I/0
Progress) scheme performs such an allocation. Essentially,
BSIP scheme allocates the I/0 bandwidth to an application
as determined by its most contended OST (e.g., A’s alloca-
tions on other OSTs is determined by its bottlenecked or
the most-contended OST (i.e.,OST2)). Unfortunately, this

=N W
o o o
N W
o o
N W
o o

-
o
—
o

gy

200 400 600
Time (minutes)

| jw\‘ﬁ“ AL

0 200 400 600
Time (minutes)

Contention (s/GiB)

Contention (s/GiB)

Contention (s/GiB)

0

o

0 200 400 600
Time (minutes)

Figure 4: I/O contention on 3 of the 44 OSTs on Engaging (blue line
indicates the mean contention level).

POFS BSIP B/W
E { E 100%
D
D D D 5%
50%
A A A A A A A A A 25%
0ST1 OST2 0ST3 OST1 0ST2 OST3 OST1 OST2 OST3 0%

Figure 5: Bandwidth allocation among five applications spanning on
three OSTs with (1) Per-OST Fair Share (POFS), (2) Basic Synchro-
nized I/O Progress (BSIP), and (3) Minimum Bandwidth Wastage
(MBW) schemes. Checkered boxes indicate bandwidth waste (not
contributing toward synchronous 1/O progress).

scheme also creates bandwidth gaps on less contended OSTs
and lowers effective system I/O bandwidth because the band-
width share is limited by the most-contended OST. On the
other hand, a greedy approach to minimize bandwidth gaps
by preferentially allocating bandwidth to applications that
maximize effective system I/O bandwidth, while still ensur-
ing synchronous I/O progress results in unfair allocations.
Fig. 5 illustrates such a scheme, referred as MBW (Minimum
Bandwidth Wastage), which minimize bandwidth gaps by al-
locating more bandwidth to certain applications and unfairly
hurting other applications (e.g., it reduces the bandwidth share
of application E to zero in Fig. 5). In summary, allocating I/O
bandwidth among competing applications presents challeng-
ing trade-offs and GIFT strikes a balance between them as
described in the next section.

3 GIFT: Design and Implementation

3.1 Overview of GIFT

First, GIFT enforces synchronous I/O progress among pro-
cesses of an application by allocating bandwidth using the
BSIP scheme (Fig. 5). BSIP determines the bandwidth alloca-
tion to an application according to its most contended OST.
As shown in Fig. 5, BSIP scheme can create bandwidth gaps
on OSTs, GIFT attempts to “fill”” these bandwidth gaps by
carefully throttling the bandwidth share of some applications
and expanding the bandwidth share of some other applica-
tions, such that a net gain in the overall effective system I/O
bandwidth is achieved. This requires identifying which appli-
cations to throttle, when to throttle, whom to expand, and how
to compensate throttled applications for fairness. GIFT uses
a simple and low-overhead approach to dynamically identify
“throttle-friendly applications”: applications which GIFT can
throttle with high confidence of rewarding the stolen band-

106 18th USENIX Conference on File and Storage Technologies

USENIX Association

width at a later point. The later point could be during the
same I/O phase, a later I/O phase during the same run, or a
future run of the same application (Sec. 3.2). GIFT issues
“coupons” to throttled application which can be redeemed at
later points. At regular intervals (also referred as “decision
instance”), GIFT considers all throttle-friendly applications
(i.e., applications which can redeem a high fraction of is-
sued coupons - “high redemption rates’’) and solves a linear
programming (LP) based optimization problem to maximize
the effective I/O bandwidth (Sec. 3.4). This step determines
which applications are throttled, which ones are expanded,
and by how much. Expanded applications (which can also
include throttle-friendly applications) get more than their fair
share of the bandwidth, which reduces the bandwidth wastage.
Finally, GIFT bounds the unfairness toward throttle-
friendly applications by using a dynamic limiting strategy
(Sec. 3.2). GIFT periodically assess its fairness and compen-
sates for the unfair treatment in the form of compute time
(i.e., node-hours on the HPC system). GIFT also bounds the
node-hours given out to a maximum specified “system regret
budget” of compute node-hours. Algorithm 1 outlines the
steps that GIFT takes at the start of every decision instance.

Algorithm 1 GIFT Decision Algorithm.

1: X < All apps performing I/O

2: Vi € X, Determine fair share of bandwidth as per b; i),
3: Redeem previously issued coupons if possible (Sec. 3.3)
4: 1 Redemption rate of apps with redeemed coupons
5: Determine the set of throttle-friendly apps Y (Sec. 3.2)
6: Allocate bandwidth using LP optimization (Sec. 3.4)

7: Issue coupons to throttled apps C Y

8 J Redemption rate of apps with issued coupons

3.2 Identifying Throttle-friendly Applications

To identify throttle-friendly applications, GIFT throttles, is-
sues coupons, and observes the coupon redemption rate of
throttled applications. Redemption rate can be estimated with
high accuracy if the whole system state (e.g., information
about all concurrently running applications, their OST map-
ping, I/O phase length, etc.) is stored with every coupon is-
suance and redemption event. However, this can impose a
high storage and access overhead. Also, note that, some ap-
plication’s OST-level I/O behavior might change over a long
period (e.g., the number of OSTs, and OST mappings), caus-
ing the application’s throttle-friendly status to change.
Therefore, GIFT uses the concept of receding window at
the application-level that captures the recent history of an
application’s coupon redemption behavior (Sec. 3.5 and 4
show it is both lightweight and effective). The recent coupon
redemption behavior of an application is estimated at the start
of every decision instance by taking the ratio of the coupons
redeemed to the last N coupons issued, where N denotes the

Table 2: GIFT model parameters.

N Length of the receding window of applications (unit:
number of coupons issued)
T Minimum redemption rate required for an applica-

tion to be eligible for throttling and for the system
to throttle applications (unit: ratio)

Binres | Upper threshold of the factor by which each appli-
cation’s I/0 request can be throttled

length of the receding window (Table 2). For fairness and sim-
plicity, length of the receding window (X) is kept the same
for all applications, although each application may take a
different amount of time to accumulate N coupons depend-
ing upon its OST mappings, I/O phase length, and system
1/O contention level, etc. At the start of decision instance, k,
the coupon redemption rate of an application i is expressed
as ¢;j(k) = n;(k)/N, where n;(k) is the number of coupons
redeemed (out of N) by application i. GIFT considers an ap-
plication throttle-friendly, if its redemption rate is greater than
a set threshold t: Y (k) = {i € X (k), if ¢;(k) > 1}, where X (k)
is the set of all applications performing I/O and Y (k) is the
set of throttle-friendly applications. As the receding window
moves forward, more coupons are issued only until ¢;(k) > 7.
Once the redemption rate breaches the T limit, GIFT avoids
issuing more coupons to the application until it redeems its
existing coupons and its redemption rate goes above T. Using
this method, GIFT ensures that unfairness is bounded for each
application in case the application’s redemption rate cannot
go over the threshold. GIFT gives out compute node-hours
as regret for unfairly treated applications periodically - this
period is referred as “regret assessment period” and, as Sec. 4
shows, it can be much larger to allow applications sufficient
time for redeeming the coupons.

Throttling applications based on threshold-based redemp-
tion rate at the application-level helps constrain the “regret”
the system experiences from giving out node-hours (out of
the system’s regret budget) for unfair treatment toward one
single application. But, in a system with multiple applica-
tions, the system’s “cumulative” regret in terms of compute
node-hours given to all applications can still grow sufficiently
large. To address this challenge, GIFT employs a receding
window at the system-level too, where it tracks the aggregate
redemption rate of coupons issued by the system to all the
applications, in order to minimize the “system regret bud-
get” level. GIFT makes sure that the system only hands out
coupons until its redemption rate is above T (same threshold
as the one used for the applications). However, unlike applica-
tions’ redemption rates, GIFT resets the system’s redemption
rate at the end of each regret assessment period. This prevents
the system’s redemption rate from being saturated at T be-
cause of non-throttle-friendly applications which never get
redeemed, which can cause GIFT to miss the opportunity of
throttling even throttle-friendly applications. Our evaluation
(Sec. 4) shows that GIFT’s approach of using 7T at the system-
and application- level helps keep the outstanding node-hours

USENIX Association

18th USENIX Conference on File and Storage Technologies 107

(“system regret budget”) to a reasonably low level (e.g., less
than 7% of the total gain in compute node-hours obtained
via system throughput improvement due to GIFT). We also
observed that keeping the same 7T for applications and system
is simple and effective; a higher 7 at the system-level does not
yield additional improvements.

Finally, we note that GIFT carefully chooses the length
of receding window (N) to balance competing trade-offs:
bound on unfairness toward applications vs. stability of ap-
plication’s status (throttle-friendly or non-throttle-friendly).
If N is too large, it increases the upper bound on unfairness
toward individual applications (i.e., possibility of higher num-
ber of coupons that cannot be redeemed). If N is small, an
application’s redemption rate c;(k) can vary erratically as the
window glides, and the application’s status can toggle fre-
quently between throttle-friendly and non-throttle-friendly.
GIFT achieves stable behavior by maintaining the variance of
the mean redemption rate of the receding window to be small.
For samples within a given receding window, the maximum
variance occurs when half of the coupons can be successfully
redeemed, and the other half cannot be redeemed. Hence,
the maximum possible variance is v> = 0.25 (independent
of N). The variance of the mean redemption rate is defined
as 62 = %, which is bounded by ol < %. Statistically, ¢
less than 0.001 can achieve reasonable stability [49]. GIFT’s
choice of receding window length is guided by this principle.
In fact, GIFT’s evaluation demonstrates that its improvements
are not sensitive to the choice of parameters N (receding win-
dow size) and T (redemption rate threshold), and that GIFT
performs effectively well without the need to fine-tune.

3.3 Coupon Redemption Policy

Recall that redeeming previously issued coupons is critical to
ensuring fairness. GIFT does not simply attempt to redeem an
application’s coupons the very next I/O phase after they were
issued. This is because if redeeming a coupon requires throt-
tling another application, then it would lead to a zero-sum
result in terms of improvements in efficiency (e.g., effective
system bandwidth). Thus, GIFT redeems coupons only when
it does not require throttling applications. Before perform-
ing optimal bandwidth allocation and picking applications to
throttle, GIFT first attempts to redeem coupons of previously
throttled applications (Algorithm 1 line 3).

Coupons are redeemed when GIFT finds gaps on the OSTs
on which a coupon-bearing application is running. After mak-
ing the basic fair synchronous-1/O progress (BSIP) bandwidth
allocation, GIFT searches through the coupon database of
active applications. If all of the OSTs on which the coupon-
bearing application is performing I/O have a bandwidth gap,
then the coupon is redeemed either partially (if the gap is
less than the coupon value) or fully or multiple coupons can
also be redeemed (if the gap is large enough). By redeeming
coupons in this manner, GIFT avoids throttling other appli-

Issue coupon worth 15%
b/w on one OST to app. A

Redeem app. A’s coupon
with 9% b/w on one OST

Redeem app. A’s coupon
with 6% b/w on one OST

B/W
5 100%
E (25%) E (25%) %
C (33% C (36%) 50%
B(65%) || B65%) ©3%) || b5%) D)
B (25%) B (25%) B (25%) B (25%) 25%
OST 1 0ST 2 0ST1 0ST 2 OST 1 oST2 0%

Instance k1 Instance k2 Instance k3

Figure 6: GIFT redeems coupons in a manner which is fair and
efficient, without throttling other applications.

cations. Also, GIFT, by design, allows coupons to be issued
and redeemed on different OSTs for any given application.

GIFT intelligently allocates spare bandwidth toward
redeeming coupons to maintain fairness and efficiency.
We note that redeeming coupons without throttling other ap-
plications requires availability of “spare I/O bandwidth”. One
may reason that since spare I/O bandwidth is available, ap-
plications would have naturally been allocated higher I/O
bandwidth allocation, irrespective of GIFT’s I/O bandwidth
allocation policies. Consequently, why should GIFT refer to
this additional allocated I/O bandwidth as “coupon redemp-
tion” and claim this as a mechanism to achieve fairness? Be-
low, we discuss a simple example to illustrate the wide range
of choices to allocate spare I/O bandwidth. But, GIFT care-
fully allocates this spare bandwidth such that (1) it redeems
previously issued coupons (i.e., maintains fairness over longer
term), but (2) without throttling any application at the current
decision instance, otherwise it would cause more unfairness
and lead to a zero-sum result in terms of efficiency.

As shown in Fig. 6, let us consider a simple example: two
OSTs and bandwidth allocation decisions at three decision
instances (k1, k2 and k3). At instance k1, OST1 is shared
by two applications (A and B), but OST2 is only serving
application B. The fair share of application A is 50% on
OSTI. But, if A was given its fair share on OST1, then half
of the bandwidth on OST2 would be wasted since it would
have not contributed toward synchronous I/O progress even
if it was allocated to application B. Therefore, GIFT decides
to throttle application A to reduce the overall I/O bandwidth
waste. Application A’s share on OST1 is reduced to 35%
and a corresponding coupon is issued, and application B’s
share on both OSTs is increased to 65% which results in 15%
reduction in I/O bandwidth waste on OST?2.

At instance k2, OST1 is shared by three applications (A,
B, and C), and OST2 is now shared by four applications (B,
D, E and F). Note that application B’s bandwidth share is de-
cided by its bottlenecked OST (OST2). Application B’s share
on OST1 and OST2 is 25% - this ensures synchronous I/O
progress and is not unfair to application B and other applica-
tions on OST1 or OST2. Due to application B’s bottleneck on
OST2, 9% of spare bandwidth is available on OST1. The fair
share for application A and C on OST1 is 33% each. A GIFT-
less approach that does not issue coupons to maintain fairness
over longer time windows, would equally divide this spare

108 18th USENIX Conference on File and Storage Technologies

USENIX Association

bandwidth on OST1 (9%) to both application A and C. How-
ever, GIFT decides to allocate this spare bandwidth fully to
application A (increases its share to 42%, partially redeeming
a coupon issued to application A at instance k1). Application
C is still treated fairly even though it is not allocated any part
of the spare bandwidth. Application C’s fair share was 33%
and it still receives it. At instance k3 (same OST sharing sce-
nario as instance k2), application A receives 6% of the spare
bandwidth (completely redeeming the coupon issued at k1)
and the remaining 3% bandwidth can be allocated in any way
(it is allocated to application C in this case).

In summary, application A was throttled in the past to in-
crease the effective system I/O bandwidth utilization. Applica-
tion A was kind then, and is later picked to receive the reward
(larger share in the available spare bandwidth), without being
unfair to C or throttling any other application below its fair
share. This way, GIFT’s decision to throttle A in the past
proves to be useful. Using a throttle-and-reward approach,
GIFT reduces the overall bandwidth utilization over these
three time steps, while ensuring fairness to other applications
and maintaining synchronous I/O progress. A GIFT-less BSIP
approach (instantaneous fairness and synchronous I/O ensur-
ing allocation at each decision instance but without throttle-
and-reward approach) would have been fair but incurred 50%
bandwidth waste on OST2 at instance k1; in comparison GIFT
incurs only 35% bandwidth waste, while remaining fair over
multiple decision instances. These are the kind of opportuni-
ties that GIFT detects and exploits. Such situations are not
deterministic or predictable, which is why GIFT learns using
the concepts of redemption rate and system regret budget.

Lastly, we note that GIFT can track coupon issuance and
redemption at the user-level if the same application is be-
ing shared across multiple users and maintaining fairness at
the user-level is deemed more appropriate. This will simply
require including and tracking different types of identifiers
per 1/O request. GIFT can be extended to support different
variations of “fair share” instead of being limited to treating
all applications equally important. This can be achieved via
encoding and tracking relative priority levels, or weights.

3.4 Optimal Bandwidth Allocation

Once a set of throttle-friendly applications is determined and
coupons are redeemed, GIFT proceeds to make the bandwidth
allocations to maximize the effective bandwidth. Inputs to
this step include the set of throttle-friendly applications, the
set of all applications concurrently performing I/O, and the
set of OSTs being used by each application.

First, GIFT calculates the fair share of each application
on the OSTs it is performing I/O on, to ensure synchronous
I/O progress. These allocations are the same as in the BSIP
scheme (Fig. 5). Next, GIFT maximizes the effective 1/O
bandwidth by adjusting the bandwidth of all applications sub-
ject to multiple constraints: (1) only throttle-friendly appli-

cations are allowed a lower bandwidth assignment than their
fair share, (2) the total effective bandwidth is always equal
to or greater than what is achieved by the BSIP scheme, and
(3) the gains from reducing the bandwidth wastage should
be more than the worth of issued coupons (i.e., bandwidth
waste with BSIP - bandwidth waste with GIFT > aggregate
worth of coupons). GIFT formulates and solves this problem
as a constraint-based, linear programming (LP) bandwidth
allocation optimization problem, as discussed below.

Bandwidth allocation LP optimization: GIFT accounts for
constraints from both, the applications’ and system’s perspec-
tives. For the applications, at each decision instance k:

e All I/O requests (r;) of application i issued across all
assigned OSTs (S;) should get the same bandwidth in
order to facilitate synchronized I/O progress, i.e., for
application i, b;; = b;Vj € S;, where b;; is bandwidth
allocated to application i’s I/O request on OST j and b;
is the bandwidth allocated to application i’s I/O request
running on the most contented OST.

o The final bandwidth allocation b; should be s.t.

(@) biﬁbsip(l 7Bthres) <b <1 ifiey
() bjpsip <bi <1 otherwise

The second constraint essentially allows GIFT to reduce
the bandwidth share of a throttle-friendly application (belong-
ing to set Y) by a configurable parameter (B;ps) (Table 2).
Higher values of By,.s create more opportunity of reducing
bandwidth wastage, but also result in higher coupon values.
Our evaluation shows that GIFT delivers performance for a
wide range of By, values and does not require tuning.

From the system’s perspective, the bandwidth allocation at
each OST is constrained by its full capacity. Thatis, Vj € Z,
where Z is the set of all OSTs, if L; is the set of applications
served by j, then) ;c L b; < 1. With these constraints in mind,
at every instance, k, we have the following polynomial-time
optimization problem: maximize the effective system I/O
bandwidth by making allocations b; for each application i:

maximize Z Z b; (D

jEZiELj

We make two important remarks: (1) throttle-friendly ap-
plications are not always necessarily throttled. In fact, if it
is optimal to give more bandwidth to a throttle-friendly ap-
plication (i.e., expand a throttle-friendly application), given
a set of contending applications, then the GIFT’s LP-based
optimization solution does so. (2) At any time instance, the
throttling decision is not limited to picking only one can-
didate. In fact, the GIFT’s LP-based optimization solution
might select to throttle multiple throttle-friendly applications
simultaneously and expand multiple applications (including
throttle-friendly applications) if it leads to highest effective
system 1/O bandwidth while honoring the constraints.

USENIX Association

18th USENIX Conference on File and Storage Technologies 109

3.5 GIFT Implementation

To evaluate GIFT, we implemented it using FUSE [67] as
the base file system. Our prototype extends FUSE to capture
the functionality of a parallel file system. The architecture of
the GIFT implementation is similar to that of a Lustre-based
HPC storage system (Sec. 2). Compute nodes mount the re-
mote partition through FUSE. A local service daemon acts
as a file system client on each compute node and monitors
the mounted partition. An application’s requests for file sys-
tem operations are intercepted by the service daemon and
executed on remote storage targets through RPC calls over
the network. The file system client forwards file metadata
requests to a remote metadata service (MDS), which decides
the remote storage target (OST) mappings of a file. Once a
file is open, data requests are directly sent over the network
to the appropriate OST without involving the MDS. Each I/O
request is augmented with metadata about application identity.
A local service daemon (OSS) running on the storage node
persists the application’s data to the OST. Similar to Lus-
tre, our implementation uses two separate network channels:
“Lnet” for internal messages (for example, heartbeat, control
messages, etc.) and “Dnet” for application data.

The MDS daemon broadcasts a heartbeat message to all
the OSSes at a user-configurable time interval. Each OSS
responds to the heartbeat message with a list of currently
active data requests. The OSSes send a set of <application,
I/O requests> tuples for each application they are serving.
The MDS uses this data to look up its “coupon” table, make
redemption decisions, and determine a set of throttle-friendly
applications. Then, it makes a LP optimal bandwidth allo-
cation decision and sends a set of <application, bandwidth
allocation> tuples to each OSS. The optimal bandwidth
allocation algorithm is implemented using the COIN-OR
CLP [43] library. The blkio control group (cgroup) is used
to enforce bandwidth limits. GIFT uses the MDS as a central-
ized coordination and decision-making service for all OSSes.
OSSes incurring transient failures can be synchronized at
the next decision instance. GIFT uses a 1 second timeout and
makes a new decision if more than 80% of the OSSes respond.
GIFT’s decision instance interval is configurable and set to
10 seconds by default, that is decisions are made every 10
sec (Sec. 4). Note that GIFT operates and makes decisions
at the system-level without requiring any input from the user
applications or changing user applications.

We chose FUSE instead of a production parallel file sys-
tem such as Lustre or GPFS to implement GIFT’s core ideas
because the current underlying implementation of bandwidth
control support provided in Lustre and GPFS cannot be used
for GIFT purposes. This is because the current bandwidth
control support does not guarantee synchronous I/O progress
and may create imbalance across contended OSTs — a key
source of inefficiency that GIFT attempts to solve. GPFS pro-
vides bandwidth control only for maintenance tasks [24]. We

experimented with recent QoS control features of Lustre as
provided by LIME and other frameworks (TBF-NRS algo-
rithm) [56, 80, 86], but found that fairness mechanism does
not work as expected because the QoS support does not ac-
count for the OST mappings. Even simple experiments such
as running a few applications with equal QoS support results
in significant performance differences (up to 25%) because
of varying level of contention at OST level which leads to
non-synchronous progress — these issues and OST mapping
information is not accounted by existing early QoS support
features. GIFT solves these issues.

4 Evaluation

Methodology. GIFT is evaluated on a real system using sys-
tem and application characteristics of supercomputers Mira,
Theta, and Stampede2. GIFT’s experimental setup includes
64 OSSes (and corresponding 64 OSTs) and one MDS run-
ning on a cluster with Intel Xeon E5-2686 v4 servers — similar
to the Stampede2 OSS and MDS configuration. A total of
192 file system clients are connected to OSSes. The servers
and clients are connected to each other via Ethernet with a
measured peak bandwidth of 4.5 GB/s. Each OST is con-
nected to a single HDD with a peak bandwidth of 102 MB/s.
Experiments are driven by an application set of 250 appli-
cations, where applications are executed with repetitions as
per the typical number of distinct applications submitted on
Stampede?2 during a week [1, 16]. The characteristics of ap-
plications, such as number of nodes, total compute time and
amount of I/O data, are taken from applications running on
Stampede2 [16,62,66]. Number of MPI processes, and length
of compute interval and I/O intervals is based on Darshan logs
from Mira and Theta [83]. We use a transparent checkpointing
library (DMTCP [3]) to produce periodic I/O from HPC appli-
cations such as CoMD [51], SNAP [87], and miniFE [26]. The
application arrival times follow a Gamma distribution [1,44]
and are scheduled on the system using an FCFS strategy
with easy-backfilling, as used by contemporary HPC sched-
ulers [65]. For practical repeatability, the real-system eval-
uation scales down the compute and I/O phases to get one
week’s system wall clock time to finish within a few days.
We also evaluate GIFT using simulations to gain deeper in-
sights into GIFT’s performance on large-scale systems. The
simulations allow us to study aspects of GIFT which are too
time consuming to be feasible for a representative real-system
evaluation. Specifically, we use simulations to explore the ef-
fect of GIFT model parameters and high contention on GIFT
performance — these explorations require hundreds of runs
to cover the full parameter space. The simulations use the
same parameters as the real-system evaluation, but the default
application set size is increased to 500 and the simulated time
period is 25 days of system wall clock time. As discussed
later, the simulation results support the real-system evaluation
results and demonstrate the robustness of GIFT.

110 18th USENIX Conference on File and Storage Technologies

USENIX Association

Mean App I/O Time
Improvement Over POFS (%)

Mean App Run Time

o
125 Improvement Over POFS (%)

System Bandwidth
Improvement Over POFS (%)

System Throughput
Improvement Over POFS (%)

10.0
7.5
5.0
2.5

0.07
-26%

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

(a) Mean App I/0 Time

5 -10%
BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

(b) Mean App Runtime

o

25
2.0
15
1.0
0.5
0.07

103%

-15%
BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

-5%
BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

(c) Effective System I/O B/w

(d) System Throughput

Figure 7: GIFT’s implementation provides improvement for both application- and system- level objectives (higher is better).

Scheduling Policies. We evaluate GIFT against seven com-
peting I/O scheduling policies: Per-OST Fair Share (POFS),
Basic Synchronous I/O Progress (BSIP), Minimum Band-
width Wastage (MBW), Throttle Small Applications (TSA),
Expand Small Applications (ESA), Throttle Most Frequent
Applications (TMF), and Throttle Randomly (RND). POFS,
BSIP, and MBW are implemented as discussed in Sec. 2. TSA
attempts to increase the effective system bandwidth by throt-
tling small applications, while ESA attempts to improve the
system throughput by increasing the bandwidth allocation for
longer-running, smaller applications that generally do small
I/O [2,4,5]. We also compare against other simple, intuitive
strategies such as TMF and RND, which pick the “most fre-
quently appearing” and “random” applications for bandwidth
throttling, respectively. POFS is used as the baseline policy.

Objective Metrics. Application I/O Time is the amount of
time spent in I/O by an application during its run. Application
Run Time is the run time of the application. Effective System
Bandwidth is the average effective I/O bandwidth during the
run of an application set, defined as overall system bandwidth
minus the wasted bandwidth (Sec. 2). System Throughput is
the number of jobs completed per unit time.

GIFT’s real-system implementation provides better
application- and system- level performances. First, our re-
sults show that GIFT outperforms all competing techniques
significantly. Fig. 7 (a)-(d) show that GIFT performs better for
mean application I/O time, mean application runtime, effec-
tive system bandwidth, and system throughput, respectively.
The mean application I/O time with GIFT is 10% better than
with POFS, and 3.5% better than the next best technique,
BSIP. Interestingly, when applications are throttled based on
their characteristics (TSA, ESA, and TMF), or are arbitrarily
throttled (RND), the performance remains similar to that of
BSIP. This shows that naive, rule-based techniques cannot
match the performance delivered by the GIFT approach.

GIFT also improves the effective system bandwidth by
more than 17% compared to POFS and other techniques, ex-
cept MBW. Expectedly, MBW improves the effective system
bandwidth the highest because it solely focuses on this metric.
Next, we note that by compromising fairness one could design
techniques that solely focus on improving system throughput
(e.g., favor small jobs). GIFT does not compromise fairness,

__ 012
2Est
T 36 30.08
CTkFZP
Sus
25928004
3228

0.00

0 10 20 30 40 50
Time (hours)

Figure 8: GIFT implementation bounds outstanding node-hours
using application- and system-level redemption rate thresholds.

and it neither directly manipulates nor aims to improve the
system job throughput, but by virtue of reducing I/O band-
width waste and mean application I/O time, GIFT yields 2%
improvement in system throughput. We note that even a small
improvement in system throughput leads to large monetary
savings in operational cost of HPC systems [18,71,84].

Next, we recall that GIFT gives out compute node-hours as
regret, but it is minimal compared to the system throughput
improvement it enables (2% savings in total compute node-
hours). Fig. 8 shows that GIFT gave out less than 0.06% hours
of total compute node-hours from the system regret budget in
a more than two-day long experimental run — this result shows
that application- and system-level redemption rate thresholds
keep the system regret budget under control. Even if one were
to award outstanding node-hours every day, GIFT would give
out only 0.12% of node-hours, which is much smaller than
the gains in system throughput (2%); this trend is also later
supported by simulation results.

Next, we discuss the effectiveness of GIFT in terms of fair-
ness. First, recall that the design of GIFT introduces two ideas:
(1) opportunistically rewarding applications, and (2) compen-
sating unfairness in I/O performance via additional compute
hours. These ideas do not naturally align with the traditional
notion of fairness - where a scheme tends to distribute the
“benefits” equally among all applications and the “currency”
of fairness measurement remains the same. In contrast, GIFT
is designed to distribute the benefit opportunistically among
applications because, as discussed earlier, distributing the ben-
efits equally among all applications leads to benefit (system
bandwidth) wastage due to non-synchronous I/O progress.
GIFT achieves fairness by compensating I/O unfairness with
compute resources. Therefore, GIFT’s performance cannot
be directly compared with POFS to establish its fairness ef-
fectiveness. Nevertheless, we provide this comparison for
completeness and to demonstrate that GIFT is not unfair.

USENIX Association

18th USENIX Conference on File and Storage Technologies

111

Fig. 9(a) and (b) show that GIFT implementation provides
similar fairness in terms of both the I/O and runtime perfor-
mance as the baseline fairness strategy (POFS). First, as ex-
pected, GIFT indeed provides better performance than POFS
for many applications. In fact, GIFT is able to improve the
I/O performance of one-third of the applications by more
than 20%, while competing techniques cannot. But, this im-
provement is not evenly distributed among all beneficiary
applications. This is because, as noted earlier, GIFT rewards
certain applications opportunistically by increase their I/O
bandwidth if it helps reduce the overall bandwidth waste. We
note that these decisions are not systematically biased toward
preferring certain applications over others.

Therefore, next, we focus on applications that receive worse
performance than under the POFS scheme. This set of appli-
cation provides us a better quantification of “unfairness” of
GIFT and other competing schemes. First we note that other
competing schemes, besides GIFT, tend to provide worse per-
formance than POFS for a large fraction of applications com-
pared to POFS - indicating that they are not consciously fair-
ness aware. To further quantify this better, we use a more intu-
itive and traditional way to measure unfairness - the fraction
of applications that achieve worse performance than POFS.
As Fig. 9(c) shows GIFT outperforms other schemes in this
metric as well (32% for GIFT vs. more than 45% for all other
schemes, and 76% for MBW which aggressively focuses only
on performance and not fairness). More importantly, even
though 32% of the all the applications under GIFT achieve
worse performance POFS, we calculated that the average mag-
nitude of I/O time degradation for applications performing
worse than POFS is approx. 1.2%. This shows that GIFT
is able to provide a similar fair performance compared to
our baseline fairness scheme (POFS). These are applications
which get throttled initially but are unable to redeem coupons,
for which they get compensated in node-hours. Finally, we
note, unlike other competing schemes, GIFT indeeds com-
pensates these applications via compute resources and hence,
achieves fairness over the long term.

GIFT improves performance across different parameters
and the required system regret budget level needed to
award outstanding hours is fairly low even under pes-
simistic scenarios. To study the impact of model parameters
on GIFT performance accurately, we perform a simulation-
based exploration. First, we briefly present the simulation
results for the same objective metrics as the real system eval-
uation. We find that GIFT’s simulation results support and
closely match the trends observed with the real system evalua-
tion (Fig. 10 vs. Fig. 7). Fig. 10 shows that compared to POFS,
GIFT improves the mean application I/O time by 15% and ef-
fective system bandwidth by 25%. Similarly, GIFT improves
the mean application run time by more than 4% and system
throughput by approx. 2%. We note thatthe absolute improve-
ment values are higher than real system evaluation because

Individual App 1/0 Time
1I816)rovement Over POFS (%)

Individual App Run Time
Improvement Over POFS (%)
Percentage of Apps with

BSIP 40 ., >0% /O Time Degradation

j TSA PR Y 6%
50 ‘/_/ fen 20) o .
/_/ — TMF J 40

0 0

________ —— RND 30

—s0q T e mew ~207 . 20

— GIFT —40f o

—-100+ - 0
1 63 126 188 250 1 63 126 188 250 53 TR E2 THF RND MEW GIFT
Application ID Application ID Bandwidth Allocation Policies

() (b) (©

Figure 9: GIFT implementation provides I/O and runtime perfor-
mance fairness to individual applications.

Mean App. I/0 Time Effective Sys. B/w
Improvement Over POFS (%) Improvement Over POFS (%)

30 s
1s 123%
20
10
5 10
01 01
-41%

BSIP TSA ESA TMF RND MBW GIFT BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies Bandwidth Allocation Policies

(a) Mean App I/0 Time (b) Effective System B/w

Mean App. Runtime Sys. Throughput
Improvement Over POFS (%) Improvement Over POFS (%)

2
1
01
-11% -9%

BSIP TSA ESA TMF RND MBW GIFT BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies Bandwidth Allocation Policies

o N WAG

(c) Mean App Run Time (d) System Throughput

Figure 10: GIFT simulation results support GIFT real-system-based
implementation results and show significant improvements.

—e— Mean App.BI(/)O Time

NS ZSW i
p—o—0—0—0—g—0—0—0—0—

—— Effective Sys. B/w
30

)
]

N
o u
N
o
N
o

Improvement
Over POFS (%

o -0-0-0- 151-0-0-0-0-0-0-0-0-0-(15

1

=N
o u

0 10
0 02 04 06 08 1 0 02 04 0.6 0.8 1 10! 10° 10° 107 10° 10%
Tau Bthres N

Figure 11: GIFT improves performance across different values of
throttle-and-reward parameters.

simulation study covers a longer time frame (25 days) and a
larger application set (500); this provides more opportunities
for GIFT to make better throttle-and-reward decisions.

Next, our results (Fig. 11) illustrate that GIFT performs
effectively across the parameter space and does not require
tuning. Recall that T is the minimum redemption rate for the
system to throttle and for an application to be considered
throttle-friendly. Therefore, it is expected that at higher values
of 1, the I/O time would improve slightly. GIFT also contin-
ues to provide significant improvement in effective system
bandwidth, even with high 7T values. Recall that B, is the
maximum factor by which an application’s bandwidth can be
throttled. Fig. 11(b) shows that GIFT is effective at different
B:nres values. Note that GIFT increases the effective system
bandwidth by as much as 5% points for higher B;p,.s values.
This trend is expected: a higher Byj,.s value implies higher

112 18th USENIX Conference on File and Storage Technologies

USENIX Association

——Tau=0.8, Bthres=0.1
——Tau=0.1, Bthres=0.1
——Tau=0.8, Bthres=0.8

——Tau=0.8, Bthres=0.1
——Tau=0.1, Bthres=0.1
——Tau=0.8, Bthres=0.8

o
w

=N W
o o
=
o

Node Hours

Outstanding

o
o wu

Cumulative Num
Samples (billions)

0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time (days) Time (days)

(a) Cumulative Num. Samples (b) Outstanding Node-Hours

Figure 12: GIFT is able to collect high cumulative number of samples
and bound the node-hours awarded.
Mean App. I/0 Time Mean App. I/0 Time Mean App. I/0 Time

Improvement Over POFS (%) Improvement Over POFS (%) Improvement Over POFS (%)
30 30

20 20 20

10 10 10

0

0 0
1 10 20 30 40 >50 1 3 5 7 9 11 13>15 <1 2 4 8 >16
Number of Number of Size of I/O
App. Appearances 1/0 Intervals Per Rank (GiB)

(a) Num of Appearances (b) Num of I/O Intervals (c) Per Interval I/O Size

Figure 13: Applications with all types of characteristics experience
improvement in I/O performance with GIFT.

throttling power, and hence, better opportunities to fill the
bandwidth gap. However, this also causes slight reduction in
I/O time improvement (2% points). Next, Fig. 11(c) shows the
impact of parameter N (the length of the receding window)
on GIFT performance. Increasing N does not impact I/O time
but it improves effective system bandwidth slightly due to
better stability from one decision instance to the next. Overall,
GIFT does better than POFS across a wide range of N values.

Studying GIFT’s characteristics over time, Fig. 12(a)
shows that GIFT collects a large number of samples as
time progresses for both, default parameter configuration
(1=0.8, Bipres = 0.1) and extreme cases (T = 0.1, Byes = 0.1
and T = 0.8, B;jres = 0.8). The sample collection continues in
order to adjust to application characteristics and learn about
new applications. Fig. 12(b) also shows that the number of
outstanding node-hours is quite low at all times due to ef-
fectiveness of GIFT’s redemption rate thresholds — therefore,
indicating that only a small system regret budget is needed.
Fig. 12(b) also shows that even under a pessimistic parameter
selection (T = 0.1, Bypres = 0.1, low redemption rate thresh-
old for applications to be considered throttle-friendly), GIFT
needs a low number of outstanding node-hours at all times
(less than 20 hours at any instance, although the correspond-
ing 2% improvement in system throughput translates to a gain
of more than 5,800 node-hours). Even if outstanding node-
hours are awarded daily, the system regret budget needs to be
only 360 node-hours over 24 days, much less than the 5,800
node-hours gained with 2% system throughput improvement.

GIFT provides performance improvement for applica-
tions of different characteristics, under high I/O con-
tention, and device bandwidth (SSD vs. HDD). We per-
formed simulation based exploration to understand how GIFT

Mean App. I/O Time Mean App. Runtime Effective Sys. B/w
Improvement Over POFS (%) Improvement Over POFS (%) Improvement Over POFS (%)
3

20
16
12
8
4

oORNWARUON
ey
o

77100 250 500 750 1000
Application Set Size

(c) Effective I/0 B/w

9"160 250 500 750 1000
Application Set Size

(a) App I/O Time

100 250 500 750 1000
Application Set Size

(b) App Runtime

Figure 14: GIFT performs better than POFS at all contention levels.

performs when key application characteristics are varied:
number of appearances of an application, number of I/O in-
tervals, and the size of I/O per I/O interval per MPI process
(rank). We found (Fig. 13 (a)-(c)) that GIFT continues to
provide a significant improvement in application I/O perfor-
mance as we vary the number of appearances of an application,
number of I/O intervals, and the per-interval I/O size across a
wide range. Our results (Fig. 14) also show that GIFT’s perfor-
mance benefits actually improve as we increase the contention
level from 100-applications set to 1,000-applications set; this
is expected because a higher-level of contention increases the
chances for GIFT to exercise throttle and reward. For 1,000
application-set GIFT improves mean application I/O time by
up to 16%, mean application run time by up to 7%, and effec-
tive system bandwidth by up to 30%. Finally, although GIFT
does not rely on specific storage device characteristics to pro-
vide benefits, we studied the effect of device bandwidth (e.g.,
SSD vs. HDD) on the limits of GIFT performance. As ex-
pected, we did not find the GIFT performance improvements
to be sensitive to the underlying storage device.

GIFT implementation is low-overhead and scalable on a
real system. GIFT has two sources of overhead: computation
and communication. MDS incurs the computation overhead
due to solving an LP optimization problem. Communication
overhead is incurred due to message exchanges between the
OSTs and MDS. To obtain pessimistic estimates on the GIFT
implementation overhead on a real system, we increase the
number of OSTs from 32 to 200 and increase the application
set size to 1,000 — amplifying the degree of GIFT overheads.
We measured that the CPU overhead on the MDS increased
from 1 ms to 5 ms which is negligible compared to decision
instance interval (10 seconds); GIFT produces similar re-
sults with similar decision instance interval lengths, however
choosing too small interval (e.g., 1 second) can make over-
head effects visible and choosing very large interval (e.g., 10
minute) can lead missed opportunities for throttle-and-reward.
The volume of messages between the MDS and the OSTs is
also minimal (less than 4 MB over two days) and occurs on a
non-critical network path. In our real system experiments, we
measured that overall GIFT’s implementation imposes a neg-
ligible overhead on I/O performance even under pessimistic
scenarios (less than 0.01%).

USENIX Association

18th USENIX Conference on File and Storage Technologies 113

5 Discussion

Relationship between I/O bandwidth improvements and
system throughput. We note that GIFT does not actively ma-
nipulate the I/O bandwidth allocation to directly improve the
system throughput. It is trivial to improve the system through-
put - for example, by allocating more I/O bandwidth share to
short-running jobs which can significantly increase the sys-
tem throughput at the expense of fairness. Nevertheless, as
our results show, GIFT is able to improve the overall system
throughput. This is because GIFT eliminatea I/O bandwidth
inefficiencies by increasing the I/O bandwidth toward syn-
chronous progress which reduces the overall I/O time and run
time of applications. Reducing the overall run time of appli-
cations by judiciously utilizing the available I/O bandwidth,
in turn, leads to completion of more jobs per unit time (i.e.,
system throughput increases).

Why traditional notions of measuring fairness alone
may be not be adequate for assessing the effectiveness
of GIFT. A conventional notion of fairness measures the
amount of equal opportunity among all participants. In the
case of GIFT, this translates to providing equal bandwidth
to all jobs concurrently performing I/O on the same OST
(i.e., POFS). However, this does not lead to effective equal
bandwidth division since jobs may not be able to leverage
the full I/O bandwidth due to non-synchronous I/O progress.
While, GIFT does not enforce this fair opportunity at every
decision instance, it does enforce it as a constraint in the long
run. Thus, GIFT enforces fair opportunity as a constraint.

Another conventional notion of fairness measures the
amount of equal performance among all participants. For
example, calculating the difference between maximum and
minimum performances, or the standard deviation of perfor-
mances, or Jain’s Fairness Index [27]. Fairness can be viewed
at as all jobs having equal I/O performance. In practice, this
is difficult to enforce and impractical to achieve in a diverse
and dynamic I/O environment of an HPC storage system. Job
I/O performance depends on a variety of job-specific aspects
which are not in control of GIFT (GIFT only performs time-
divided bandwidth allocation) such as number of OSTs across
which a file is stripped, size of I/O, type and pattern of I/O, I/O
interface (POSIX, MPIIO, STDIO), etc. Thus, while GIFT
enforces equal opportunity in terms of bandwidth (resource)
allocation as hard constraint, it cannot enforce overall equal
I/O performance.

In the case of GIFT, one could argue that fairness can be
defined as all applications having equal improvement as com-
pared to POFS. However, this definition is not meaningful
since POFS already performs instantaneous fair allocation,
thus, I/O performance with POFS is fair and attempting to
achieve “fair improvement from a fair performance” does not
have practical value for end users. Therefore, as discussed
in Sec. 4, GIFT’s fairness is better quantified by focusing
on the applications which achieves worse performance than

POFS. If the improvement over POFS is positive, then GIFT
is considered fair for such beneficiary applications, but the
improvement over POFS among such beneficiary applications
is not equal. This is because GIFT rewards certain applica-
tions opportunistically by increasing their I/O bandwidth if
it helps reduce the overall bandwidth waste. Finally, GIFT
compensates unfairness in one type of resource allocation by
allocating another type of resource - this feature makes GIFT
fairness fundamentally different than traditional notions.

6 Related Work

Many prior works have focused on identifying the root causes
of contention and characterizing the I/O bottlenecks [2, 10, 12,
22,28,31,34,38,39,46,47,63, 68,81, 82, 85]. These works
do not propose mitigation techniques. Studies focusing on
application-level techniques [13, 35, 42, 56, 61, 89,91, 92],
such as CALCioM [14], rely on application modifications and
cooperation for coordinating I/O transactions among appli-
cations. Client-side solutions, which coordinate I/O requests
to and from the client-attached burst buffers or requests han-
dlers [6,25,29,36,37,76-78], end up underutilizing the back-
end bandwidth due to the lack of a storage-system view. In
general, client-side techniques are complementary to GIFT
and can be used to further enhance application performance.
On the other hand, server-side solutions aim to efficiently
schedule the I/O requests from the server nodes to the disk
targets [17,20, 21, 50, 64, 69, 70, 72, 74, 90]. For example,
IOrchestrator [88] uses spacial locality of I/O requests to
unfairly prioritize the most disk efficient requests. Note that
none of these studies consider the distributed and synchronous
I/0 behavior of HPC applications. This paper introduced,
GIFT, a new I/O bandwidth allocation approach to ensure syn-
chronous I/0 progress for HPC application while maximizing
I/0O throughput and ensuring fairness.

7 Conclusion

Improving effective system I/O bandwidth, providing fairness
among applications, and ensuring synchronous I/O progress
are three major challenges in parallel storage systems, but
no existing approaches have considered them as a joint prob-
lem. GIFT identifies and solves this new problem using a
throttle-and-reward approach - yielding significant improve-
ments (17% in mean effective system I/O bandwidth and
10% in the mean application I/O time). GIFT is available at
https://github.com/GoodwillComputingLab/GIFT.

Acknowledgment. We are thankful to our shepherd (André
Brinkmann), Phil Carns, Robert Ross, and anonymous review-
ers for their constructive feedback. This work is supported
in part by NSF Awards 1910601 and 1753840, Northeast-
ern University, and Massachusetts Green High Performance
Computing Center (MGHPCC).

114 18th USENIX Conference on File and Storage Technologies

USENIX Association

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

Stampede2 User Guide, 2018 (accessed January
10, 2019). https://portal.tacc.utexas.edu/
user-guides/stampede?.

Gonzalo Pedro Rodrigo Alvarez, Per-Olov Ostberg, Erik
Elmroth, Katie Antypas, Richard Gerber, and Lavanya
Ramakrishnan. Towards Understanding Job Heterogene-
ity in HPC: A NERSC Case Study. In Cluster, Cloud and
Grid Computing (CCGrid), 2016 16th IEEE/ACM Inter-
national Symposium on, pages 521-526. IEEE, 2016.

Jason Ansel, Kapil Arya, and Gene Cooperman.
DMTCP: Transparent Checkpointing for Cluster Com-
putations and the Desktop. In Parallel and Distributed
Processing Symposium (IPDPS), 2009 IEEE Interna-
tional, pages 1-12. IEEE, 2009.

Katie Antypas, BA Austin, TL Butler, RA Gerber, Cary
Whitney, Nick Wright, Woo-Sun Yang, and Zhengji
Zhao. NERSC Workload Analysis on Hopper. Technical
report, Technical report, LBNL Report, 2013.

Brian Austin, Tina Butler, Richard Gerber, Cary Whit-
ney, Nicholas Wright, Woo-Sun Yang, and Zhengji Zhao.
Hopper Workload Analysis. 2014.

Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette,
Surendra Byna, Ruth Aydt, Quincey Koziol, Marc Snir,
et al. Taming Parallel I/O Complexity with Auto-Tuning.
In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis, page 68. ACM, 2013.

John Bent, Sorin Faibish, Jim Ahrens, Gary Grider, John
Patchett, Percy Tzelnic, and Jon Woodring. Jitter-Free
Co-Processing on a Prototype Exascale Storage Stack.
In 012 IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1-5. IEEE, 2012.

John Bent, Garth Gibson, Gary Grider, Ben McClel-
land, Paul Nowoczynski, James Nunez, Milo Polte, and
Meghan Wingate. PLFS: A Checkpoint Filesystem for
Parallel Applications. In Proceedings of the Conference
on High Performance Computing Networking, Storage
and Analysis, page 21. ACM, 2009.

Suren Byna, A Uselton, D Knaak Prabhat, and Y He.
Trillion Particles, 120,000 cores, and 350 TBs: Lessons
Learned from a Hero I/O Run on Hopper. In Cray user
group meeting, 2013.

Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean
Hildebrand, and Erez Zadok. On the Performance Varia-
tion in Modern Storage Stacks. In FAST, pages 329-344,
2017.

(11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

(19]

(20]

Franck Cappello. Fault Tolerance in Petascale/Exascale
Systems: Current Knowledge, Challenges and Research
Opportunities. IJHPCA, 23(3):212-226, 2009.

Christopher S Daley, Devarshi Ghoshal, Glenn K Lock-
wood, Sudip Dosanjh, Lavanya Ramakrishnan, and
Nicholas J Wright. Performance Characterization of Sci-
entific Workflows for the Optimal use of Burst Buffers.
Future Generation Computer Systems, 2017.

Matthieu Dorier, Gabriel Antoniu, Franck Cappello,
Marc Snir, and Leigh Orf. Damaris: How to Efficiently
Leverage Multicore Parallelism to Achieve Scalable,
Jitter-Free 1/0. In Cluster Computing (CLUSTER),
2012 IEEE International Conference on, pages 155-163.
IEEE, 2012.

Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries
Kimpe, and Shadi Ibrahim. CALCioM: Mitigating
I/O Interference in HPC Systems Through Cross-
Application Coordination. In Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International,
pages 155-164. IEEE, 2014.

Elmootazbellah N Elnozahy and James S Plank. Check-
pointing for Peta-scale Systems: A Look into the Future
of Practical Rollback-Recovery. TDSC 2004, 1(2):97—-
108, 2004.

Thomas Furlani. XDMoD Value Analytics. 2018.

Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck
Cappello, Yves Robert, and Marc Snir. Scheduling the
1/0 of HPC Applications under Congestion. In Parallel
and Distributed Processing Symposium (IPDPS), 2015
IEEE International, pages 1013—1022. IEEE, 2015.

Richard Gerber, James Hack, Katherine Riley, Katie An-
typas, Richard Coffey, Eli Dart, Tjerk Straatsma, Jack
Wells, Deborah Bard, Sudip Dosanjh, et al. Crosscut
Report: Exascale Requirements Reviews, March 9-10,
2017-Tysons Corner, Virginia. An Office of Science
Review Sponsored by: Advanced Scientific Computing
Research, Basic Energy Sciences, Biological and En-
vironmental Research, Fusion Energy Sciences, High
Energy Physics, Nuclear Physics. Technical report, Oak
Ridge National Lab.(ORNL), Oak Ridge, TN (United
States); Argonne ..., 2018.

Richard A Gerber and Harvey Wasserman. Large Scale
Computing and Storage Requirements for High Energy
Physics. Technical report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), 20102.

Ajay Gulati, Arif Merchant, and Peter J Varman. pClock:
An Arrival Curve Based Approach for QoS Guarantees
in Shared Storage Systems. In ACM SIGMETRICS

USENIX Association

18th USENIX Conference on File and Storage Technologies

115

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Performance Evaluation Review, volume 35, pages 13—
24. ACM, 2007.

Ajay Gulati, Arif Merchant, and Peter J Varman.
mClock: Handling Throughput Variability for Hyper-
visor 1O Scheduling. In Proceedings of the 9th USENIX
conference on Operating systems design and implemen-
tation, pages 437-450. USENIX Association, 2010.

Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller,
Feiyi Wang, and Dustin Leverman. Comparative /O
Workload Characterization of Two Leadership Class
Storage Clusters. In Proceedings of the 10th Parallel
Data Storage Workshop, pages 31-36. ACM, 2015.

Jun He, Duy Nguyen, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Reducing File System Tail
Latencies with Chopper. In FAST, volume 15, pages
119-133, 2015.

John Hearns, Marc A Kaplan, and Egonle Bo. Limit /
fair share of gpfs bandwidth, Jan 2018.

Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW
Scogland, Marc Stearman, Mark Grondona, Jim Gar-
lick, Becky Springmeyer, and Michela Taufer. Scal-
able I/O-aware Job Scheduling for Burst Buffer Enabled
HPC Clusters. In Proceedings of the 25th ACM Inter-
national Symposium on High-Performance Parallel and
Distributed Computing, pages 69—80. ACM, 2016.

M Heroux and S Hammond. MiniFE: Finite Element
Solver.

Raj Jain, Arjan Durresi, and Gojko Babic. Through-
put Fairness Index: An Explanation. In ATM Forum
contribution, volume 99, 1999.

Ye Jin, Xiaosong Ma, Mingliang Liu, Qing Liu, Jeremy
Logan, Norbert Podhorszki, Jong Youl Choi, and Scott
Klasky. Combining Phase Identification and Statistic
Modeling for Automated Parallel Benchmark Gener-
ation. ACM SIGMETRICS Performance Evaluation
Review, 43(1):309-320, 2015.

Magnus Karlsson, Christos Karamanolis, and Xiaoyun
Zhu. Triage: Performance Differentiation for Storage
Systems using Adaptive Control. ACM Transactions on
Storage (TOS), 1(4):457-480, 2005.

Seong Jo Kim. Parallel I/O Profiling and Optimization
in HPC Systems. 2014.

Youngjae Kim and Raghul Gunasekaran. Understanding
I/0 Workload Characteristics of a Peta-scale Storage
System. The Journal of Supercomputing, 71(3):761—
780, 2015.

(32]

[33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

Michelle Koo, Wucherl Yoo, and Alex Sim. 1/O Perfor-
mance Analysis Framework on Measurement Data from
Scientific Clusters. 2015.

Douglas Kothe and Ricky Kendall. Computational Sci-
ence Requirements for Leadership Computing. Oak
Ridge National Laboratory, Technical Report, 2007.

Samuel Lang, Philip Carns, Robert Latham, Robert Ross,
Kevin Harms, and William Allcock. I/O Performance
Challenges at Leadership Scale. In Proceedings of the
Conference on High Performance Computing Network-
ing, Storage and Analysis, page 40. ACM, 2009.

Han Deok Lee, Young Jin Nam, Kyong Jo Jung,
Seok Gan Jung, and Chanik Park. Regulating I/O Per-
formance of Shared Storage with a Control Theoretical
Approach. In MSST, pages 105-117, 2004.

Yan Li, Xiaoyuan Lu, Ethan L Miller, and Darrell DE
Long. Ascar: Automating Contention Management for
High-Performance Storage Systems. In Mass Storage
Systems and Technologies (MSST), 2015 31st Sympo-
sium on, pages 1-16. IEEE, 2015.

Ning Liu, Jason Cope, Philip Carns, Christopher
Carothers, Robert Ross, Gary Grider, Adam Crume, and
Carlos Maltzahn. On the Role of Burst Buffers in
Leadership-Class Storage Systems. In Mass Storage
Systems and Technologies (MSST), 2012 IEEE 28th Sym-
posium on, pages 1-11. IEEE, 2012.

Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Automatic Identification of Ap-
plication I/O Signatures from Noisy Server-Side Traces.
In FAST, volume 14, pages 213-228, 2014.

Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Server-Side Log Data Analytics
for I/O Workload Characterization and Coordination on
Large Shared Storage Systems. In High Performance
Computing, Networking, Storage and Analysis, SC16: In-
ternational Conference for, pages 819-829. IEEE, 2016.

Glenn K Lockwood, Wucherl Yoo, Suren Byna,
Nicholas J Wright, Shane Snyder, Kevin Harms, Zachary
Nault, and Philip Carns. UMAMI: A Recipe for Gen-
erating Meaningful Metrics Through Holistic I/O Per-
formance Analysis. In Proceedings of the 2nd Joint In-
ternational Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems, pages 55-60.
ACM, 2017.

William Loewe, T McLarty, and C Morrone. IOR Bench-
mark, 2012.

116

18th USENIX Conference on File and Storage Technologies

USENIX Association

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky,
Ron Oldfield, Todd Kordenbrock, Karsten Schwan, and
Matthew Wolf. Managing Variability in the IO Perfor-
mance of Petascale Storage Systems. In High Perfor-
mance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, pages 1-12.
IEEE, 2010.

Robin Lougee-Heimer. The Common Optimization
INterface for Operations Research: Promoting Open-
source Software in the Operations Research Community.
IBM Journal of Research and Development, 47(1):57—
66, 2003.

Uri Lublin and Dror G Feitelson. The Workload on
Parallel Supercomputers: Modeling the Characteristics
of Rigid Jobs. Journal of Parallel and Distributed Com-
puting, 63(11):1105-1122, 2003.

Robert Lucas. Top Ten Exascale Research Challenges.
In DOE ASCAC Subcommittee Report, 2014.

Huong Luu, Marianne Winslett, William Gropp, Robert
Ross, Philip Carns, Kevin Harms, Mr Prabhat, Suren
Byna, and Yushu Yao. A Multiplatform Study of I/O Be-
havior on Petascale Supercomputers. In Proceedings of
the 24th International Symposium on High-Performance
Parallel and Distributed Computing, pages 33—-44. ACM,
2015.

Sandeep Madireddy, Prasanna Balaprakash, Philip
Carns, Robert Latham, Robert Ross, Shane Snyder, and
Stefan M Wild. Analysis and Correlation of Applica-
tion I/O Performance and System-Wide I/O Activity.
In Networking, Architecture, and Storage (NAS), 2017
International Conference on, pages 1-10. IEEE, 2017.

George S Markomanolis, Bilel Hadri, Rooh Khurram,
and Saber Feki. Scientific Applications Performance
Evaluation on Burst Buffer. In International Confer-
ence on High Performance Computing, pages 701-711.
Springer, 2017.

Deirdre N McCloskey, Stephen T Ziliak, et al. The
Standard Error of Regressions. Journal of economic
literature, 34(1):97-114, 1996.

Arif Merchant, Mustafa Uysal, Pradeep Padala, Xiaoyun
Zhu, Sharad Singhal, and Kang Shin. Maestro: Quality-
of-Service in Large Disk Arrays. In Proceedings of
the 8th ACM international conference on Autonomic
computing, pages 245-254. ACM, 2011.

Jamaludin Mohd-Yusof, S Swaminarayan, and TC Ger-
mann. Co-Design for Molecular Dynamics: An Exas-
cale Proxy Application, 2013.

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

Andrey Ovsyannikov, Melissa Romanus, Brian
Van Straalen, Gunther H Weber, and David Trebotich.
Scientific Workflows at Satawarp-Apeed: Accelerated
Data-Intensive Science using NERSC’s Burst Buffer.
In Parallel Data Storage and data Intensive Scalable
Computing Systems (PDSW-DISCS), 2016 1st Joint
International Workshop on, pages 1-6. IEEE, 2016.

Tirthak Patel, Suren Byna, Glenn K Lockwood, and De-
vesh Tiwari. Revisiting I/O Behavior in Large-Scale
Storage Systems: The Expected and the Unexpected. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1-13, 2019.

Torben Kling Petersen. HPC Storage Current Status and
Futures.

Yingjin Qian, Xi Li, Shuichi Thara, Andreas Dilger, Car-
los Thomaz, Shilong Wang, Wen Cheng, Chunyan Li,
Lingfang Zeng, Fang Wang, et al. LPCC: Hierarchical
Persistent Client Caching for Lustre. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 88.
ACM, 2019.

Yingjin Qian, Xi Li, Shuichi Ihara, Lingfang Zeng, Jiir-
gen Kaiser, Tim Siif}, and André Brinkmann. A Con-
figurable Rule Based Classful Token Bucket Filter Net-
work Request Scheduler for the Lustre File System. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, page 6. ACM, 2017.

Robert Ross, Robert Ross, Gary Grider, Gary Grider,
Evan Felix, Evan Felix, Mark Gary, Mark Gary, Scott
Klasky, Scott Klasky, et al. Storage Systems and In-
put/Output to Support Extreme Scale Science. Technical
report, Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), 2015.

Robert B Ross, Rajeev Thakur, et al. Pvfs: A parallel
file system for linux clusters. In Proceedings of the 4th

annual Linux showcase and conference, pages 391-430,
2000.

Frank B Schmuck and Roger L Haskin. Gpfs: A shared-
disk file system for large computing clusters. In FAST,
volume 2, 2002.

Philip Schwan et al. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
symposium, volume 2003, pages 380-386, 2003.

David Shue, Michael J Freedman, and Anees Shaikh.
Performance Isolation and Fairness for Multi-Tenant
Cloud Storage. In OSDI, volume 12, pages 349-362.
USENIX, 2012.

USENIX Association

18th USENIX Conference on File and Storage Technologies

117

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Nikolay A Simakov, Joseph P White, Robert L DeLeon,
Steven M Gallo, Matthew D Jones, Jeffrey T Palmer,
Benjamin Plessinger, and Thomas R Furlani. A Work-
load Analysis of NSF’s Innovative HPC Resources Us-
ing XDMoD. arXiv preprint arXiv:1801.04306, 2018.

Shane Snyder, Philip Carns, Kevin Harms, Robert Ross,
Glenn K Lockwood, and Nicholas J Wright. Modular
HPC 1I/0O Characterization with Darshan. In Extreme-
Scale Programming Tools (ESPT), Workshop on, pages
9-17. IEEE, 2016.

Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev
Thakur, and Samuel Lang. Server-Side I/O Coordination
for Parallel File Systems. In Proceedings of 2011 Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, page 17. ACM, 2011.

Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Sub-
ramani, and P Sadayappan. Characterization of Back-
filling Strategies for Parallel Job Scheduling. In Paral-
lel Processing Workshops, 2002. Proceedings. Interna-
tional Conference on, pages 514-519. IEEE, 2002.

Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither,
Chris Hempel, Tommy Minyard, S Mehringer, Eric
Wernert, H Tufo, D Panda, et al. Stampede 2: The Evo-
lution of an XSEDE Supercomputer. In Proceedings
of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact,
page 15. ACM, 2017.

Miklos Szeredi. FUSE: Filesystem in Userspace.
https://fuse.sourceforge.net/,2005. Online (ac-
cessed January 10, 2019).

Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and
Margo Seltzer. Benchmarking File System Benchmark-
ing: It* IS* Rocket Science. In HotOS, volume 13, pages
1-5, 2011.

Sagar Thapaliya, Purushotham Bangalore, Jay Lofstead,
Kathrn Mohror, and Adam Moody. I0-Cop: Managing
Concurrent Accesses to Shared Parallel File System. In
Farallel Processing Workshops (ICCPW), 2014 43rd
International Conference on, pages 52—60. IEEE, 2014.

Matthew Wachs, Michael Abd-El-Malek, Eno Thereska,
and Gregory R Ganger. Argon: Performance Insulation
for Shared Storage Servers. In FAST, volume 7, pages
5-5, 2007.

Edward Walker. The Real Cost of a CPU Hour. Com-
puter, (4):35-41, 20009.

Chien-Min Wang, Tse-Chen Yeh, and Guo-Fu Tseng.
Provision of Storage QoS in Distributed File Systems
for Clouds. In Parallel Processing (ICPP), 2012 41st In-
ternational Conference on, pages 189-198. IEEE, 2012.

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari,
and Sudharshan S Vazhkudai. Improving Large-scale
Storage System Performance via Topology-Aware and
Balanced Data Placement. In Parallel and Distributed
Systems (ICPADS), 2014 20th IEEE International Con-
ference on, pages 656—663. IEEE, 2014.

Hui Wang and Peter J Varman. Balancing Fairness and
Efficiency in Tiered Storage Systems with Bottleneck-
Aware Allocation. In FAST, volume 14, pages 229-242,
2014.

Jingjing Wang, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. Controlled Contention: Balancing Contention
and Reservation in Multicore Application Schedul-
ing. In Parallel and Distributed Processing Sympo-
sium (IPDPS), 2015 IEEFE International, pages 946-955.
IEEE, 2015.

Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato,
and Weikuan Yu. An Ephemeral Burst-buffer File Sys-
tem For Scientific Applications. In Proceedings of the In-
ternational Conference for High Performance Comput-
ing, Networking, Storage and Analysis, page 69. IEEE
Press, 2016.

Teng Wang, Sarp Oral, Michael Pritchard, Bin Wang,
and Weikuan Yu. Trio: Burst Buffer Based I/O Orches-
tration. In Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, pages 194-203. IEEE,
2015.

Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer,
Scott Atchley, and Weikuan Yu. Burstmem: A High-
Performance Burst Buffer System for Scientific Applica-
tions. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 71-79. IEEE, 2014.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307-320. USENIX Association,
2006.

Li Xi and Zeng Lingfang. LIME: A Framework for
Lustre Global QoS Management. Lustre Administrator
and Developer Workshop, 2018.

Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin,
Scott Klasky, Sarp Oral, and Norbert Podhorszki. Char-
acterizing Output Bottlenecks in a Supercomputer. In
High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, pages
1-11. IEEE, 2012.

118

18th USENIX Conference on File and Storage Technologies

USENIX Association

[82]

[83]

[84]

[85]

[86]

[87]

Bing Xie, Yezhou Huang, Jeffrey S Chase, Jong Youl
Choi, Scott Klasky, Jay Lofstead, and Sarp Oral. Predict-
ing Output Performance of a Petascale Supercomputer.
In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing,
pages 181-192. ACM, 2017.

Cong Xu, Shane Snyder, Vishwanath Venkatesan, Philip
Carns, Omkar Kulkarni, Suren Byna, Roberto Sisneros,
and Kalyana Chadalavada. DXT: Darshan eXtended
Tracing. Technical report, Argonne National Lab.(ANL),
Argonne, IL (United States), 2017.

Fan Yang and Andrew A Chien. Extreme Scaling of
Supercomputing with Stranded Power: Costs and Capa-
bilities. arXiv preprint arXiv:1607.02133, 2016.

Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross,
and Gabriel Antoniu. On the Root Causes of Cross-
application I/O Interference in HPC Storage Systems.
In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 750-759. IEEE, 2016.

L Zeng, J Kaiser, A Brinkmann, T Sti3, L Xi, Q Yingjin,
and S Thara. Providing QoS-Mechanisms for Lustre
through Centralized Control Applying the TBF-NRS.
Lustre User Group, 2017.

Joe Zerr and Randal Baker. SNAP.
nersc.gov/users/computational-systems/cori/
nersc-8-procurement/trinity-nersc-8-rfp/
nersc-8-trinity-benchmarks/snap/, 2018
cessed January 10, 2019).

(ac-

http://www.

[88]

[89]

[90]

[91]

[92]

Xuechen Zhang, Kei Davis, and Song Jiang. IOrches-
trator: Improving the Performance of Multi-node I/0
Systems via Inter-server Coordination. In Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, N