
USENIX Association

February 24–27, 2020
Santa Clara, CA, USA

Proceedings of the
18th USENIX Conference on File and Storage

Technologies

© 2020 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-12-0

Cover Image created by freevector.com and distributed under the Creative Commons Attribution-ShareAlike 4.0 license
(https://creativecommons.org/licenses/by-sa/4.0/).

Conference Organizers
Program Co-Chairs
Sam H. Noh, UNIST (Ulsan National Institute of Science

and Technology)
Brent Welch, Google

Program Committee
Nitin Agrawal, ThoughtSpot
George Amvrosiadis, Carnegie Mellon University
John Bent, Seagate
Pramod Bhatotia, The University of Edinburgh
Suparna Bhattacharya, Hewlett Packard Enterprise
William J. Bolosky, Microsoft Research
André Brinkmann, Johannes Gutenberg-University Mainz
Randal Burns, Johns Hopkins University
Ali Butt, l Tech
Young-ri Choi, UNIST (Ulsan National Institute of Science

and Technology)
Angela Demke Brown, University of Toronto
Gary Grider, Los Alamos National Laboratory
Haryadi Gunawi, University of Chicago
Dean Hildebrand, Google
Yu Hua, Huazhong University of Science and Technology
H. Howie Huang, The George Washington University
Jian Huang, University of Illinois at Urbana–Champaign
Jooyoung Hwang, Samsung Electronics
Bill Jannen, Williams College
Kimberly Keeton, HP Labs
Geoff Kuenning, Harvey Mudd College
Patrick P. C. Lee, The Chinese University of Hong Kong
Sungjin Lee, DGIST (Daegu Gyeongbuk Institute of Science

and Technology)
Darrell Long, University of California, Santa Cruz
Xiaosong Ma, Qatar Computing Research Institute
Umesh Maheshwari, Hewlett Packard Enterprise
Ethan L. Miller, University of California, Santa Cruz,

and Pure Storage
Changwoo Min, Virginia Tech
Kiran-Kumar Muniswamy-Reddy, Amazon
Dalit Naor, IBM Research
Sam H. Noh, UNIST (Ulsan National Institute of Science

and Technology)
Don Porter, The University of North Carolina at Chapel Hill
Rob Ross, Argonne National Laboratory
Keith A. Smith, MongoDB

Vasily Tarasov, IBM Research
Devesh Tiwari, Northeastern University
Carl Waldspurger, Carl Waldspurger Consulting
Brent Welch, Google
Ric Wheeler, Facebook
Avani Wildani, Emory University
Youjip Won, Korea Advanced Institute of Science and

Technology (KAIST)
Gala Yadgar, Technion—Israel Institute of Technology
Jishen Zhao, University of California, San Diego

Poster Session Chair
Dean Hildebrand, Google

Work-in-Progress Reports (WiPs) Chair
Avani Wildani, Emory University

Test of Time Awards Committee
Jiri Schindler, Tranquil Data
Bianca Schroeder, University of Toronto

Tutorial Coordinators
Andy Klosterman, NetApp
John Strunk, Red Hat

Steering Committee
Nitin Agrawal, ThoughtSpot
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs
Geoff Kuenning, Harvey Mudd College
Arif Merchant, Google
Florentina Popovici, Google
Raju Rangaswami, Florida International University
Erik Riedel
Jiri Schindler, Tranquil Data
Bianca Schroeder, University of Toronto
Keith A. Smith, MongoDB
Eno Thereska, Amazon
Carl Waldspurger, Carl Waldspurger Consulting
Hakim Weatherspoon, Cornell University
Ric Wheeler, Facebook
Erez Zadok, Stony Brook University

Kang Chen
Guanyu Feng
Cheng Li

Ke Yang
Guangyan Zhang
Xiaowei Zhu

Pradeep Kumar
Ankush Jain
Michael Kuchnik

Tao Zhang
Jaehun Han
Simon Bertron

External Reviewers

Message from the
FAST ’20 Program Co-Chairs

Welcome to the 18th USENIX Conference on File and Storage Technologies, FAST ’20. This year’s conference continues the
tradition of bringing together researchers and practitioners from both industry and academia for a program of innovative and
rigorous storage-related research. We are pleased to present a diverse set of papers on topics such as cloud storage, key-value
stores, consistency, reliability, caching, HPC systems, SSD, and traditional file systems. Submissions to the conference came
from authors representing academia, industry, and the open source community.

FAST ’20 received 138 submissions. Of these, we accepted 23 papers, for an acceptance rate of 17%. The Program
Committee used a two-round online review process and then met in person to select the final program. In the first round,
each paper received at least three reviews. For the second round, 79 papers received at least three more reviews. The Program
Committee discussed 61 papers in an all-day meeting on December 6, 2019, at Google in Sunnyvale, CA. We used Eddie
Kohler’s excellent HotCRP software to manage all stages of the review process, from submission to author notification.

As in the previous years, we included a category of short papers. Short papers provide a vehicle for presenting completed
research that does not require a full-length paper to describe and evaluate. We received 25 short paper submissions, of
which 2 were accepted. Also in line with previous years, we included a category of deployed-systems papers, which address
experience with the practical design, implementation, analysis or deployment of large-scale, operational systems. We received
6 deployed-systems submissions, of which we accepted 3.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the authors
who submitted their work to FAST ’20. We would also like to thank the attendees of FAST ’20 and the future readers of
these papers. Together with the authors, you form the FAST community and make storage research vibrant and exciting.
We extend our thanks to the entire USENIX staff, especially Casey Henderson, Jasmine Murcia, Sarah TerHune, Camille
Mulligan, Olivia Vernetti, and Arnold Gatilao, who have provided outstanding support throughout the planning and
organizing of this conference with the highest degree of professionalism and friendliness. Most importantly, their behind-the-
scenes work makes this conference actually happen. We would like to thank the Poster and Work-in-Progress Session Chairs,
Dean Hildebrand and Avani Wildani. Our thanks go also to the members of the FAST Steering Committee who provided
invaluable advice and feedback, and to our Steering Committee Liaison, Keith Smith, for his guidance and encouragement on
many issues, large and small, over the past year.

Finally, we wish to thank our Program Committee for their many hours of hard work reviewing, discussing, and shepherding
the submissions. Some of the PC traveled halfway across the world for the one-day, in-person PC meeting. In total, the PC
wrote 653 thoughtful and meticulous reviews. HotCRP recorded approximately 473,000 words in reviews and comments
(excluding HotCRP boilerplate language). The reviewers’ evaluations, and their thorough and conscientious deliberations at
the PC meeting, contributed significantly to the quality of our decisions. Each paper had a shepherd that reviewed the final
submission and provided additional feedback. In many cases this led to significant improvements in the final quality of the
submissions. We look forward to an interesting and enjoyable conference!

Brent Welch, Google
Sam H. Noh, UNIST (Ulsan National Institute of Science and Technology)
FAST ’20 Program Co-Chairs

FAST ’20: 18th USENIX Conference on File and Storage
Technologies February 25–27, 2020

Boston, MA, USA

Cloud Storage
MapX: Controlled Data Migration in the Expansion of Decentralized Object-Based Storage Systems 1
Li Wang, Didi Chuxing; Yiming Zhang, NiceX Lab, NUDT; Jiawei Xu and Guangtao Xue, SJTU

Lock-Free Collaboration Support for Cloud Storage Services with Operation Inference and Transformation 13
Jian Chen, Minghao Zhao, and Zhenhua Li, Tsinghua University; Ennan Zhai, Alibaba Group Inc.; Feng Qian, University
of Minnesota - Twin Cities; Hongyi Chen, Tsinghua University; Yunhao Liu, Michigan State University & Tsinghua
University; Tianyin Xu, University of Illinois Urbana-Champaign

POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native
Relational Database . . 29
Wei Cao, Alibaba; Yang Liu, ScaleFlux; Zhushi Cheng, Alibaba; Ning Zheng, ScaleFlux; Wei Li and Wenjie Wu,
Alibaba; Linqiang Ouyang, ScaleFlux; Peng Wang and Yijing Wang, Alibaba; Ray Kuan, ScaleFlux; Zhenjun Liu and
Feng Zhu, Alibaba; Tong Zhang, ScaleFlux

File Systems
Carver: Finding Important Parameters for Storage System Tuning . . 43
Zhen Cao, Stony Brook University; Geoff Kuenning, Harvey Mudd College; Erez Zadok, Stony Brook University

Read as Needed: Building WiSER, a Flash-Optimized Search Engine. . 59
Jun He and Kan Wu, University of Wisconsin—Madison; Sudarsun Kannan, Rutgers University; Andrea Arpaci-Dusseau
and Remzi Arpaci-Dusseau, University of Wisconsin—Madison

How to Copy Files. . 75
Yang Zhan, The University of North Carolina at Chapel Hill and Huawei; Alexander Conway, Rutgers University;
Yizheng Jiao and Nirjhar Mukherjee, The University of North Carolina at Chapel Hill; Ian Groombridge, Pace
University; Michael A. Bender, Stony Brook University; Martin Farach-Colton, Rutgers University; William Jannen,
Williams College; Rob Johnson, VMWare Research; Donald E. Porter, The University of North Carolina at Chapel Hill;
Jun Yuan, Pace University

HPC Storage
Uncovering Access, Reuse, and Sharing Characteristics of I/O-Intensive Files on Large-Scale Production
HPC Systems. . 91
Tirthak Patel, Northeastern University; Suren Byna, Glenn K. Lockwood, and Nicholas J. Wright, Lawrence Berkeley
National Laboratory; Philip Carns and Robert Ross, Argonne National Laboratory; Devesh Tiwari, Northeastern University

GIFT: A Coupon Based Throttle-and-Reward Mechanism for Fair and Efficient I/O Bandwidth Management on
Parallel Storage Systems . . 103
Tirthak Patel, Northeastern University; Rohan Garg, Nutanix; Devesh Tiwari, Northeastern University

SSD and Reliability
Scalable Parallel Flash Firmware for Many-core Architectures. . 121
Jie Zhang and Miryeong Kwon, KAIST; Michael Swift, University of Wisconsin-Madison; Myoungsoo Jung, KAIST

A Study of SSD Reliability in Large Scale Enterprise Storage Deployments. . 137
Stathis Maneas and Kaveh Mahdaviani, University of Toronto; Tim Emami, NetApp; Bianca Schroeder, University of Toronto

Making Disk Failure Predictions SMARTer!. . 151
Sidi Lu and Bing Luo, Wayne State University; Tirthak Patel, Northeastern University; Yongtao Yao, Wayne State
University; Devesh Tiwari, Northeastern University; Weisong Shi, Wayne State University

Performance
An Empirical Guide to the Behavior and Use of Scalable Persistent Memory. . 169
Jian Yang, Juno Kim, and Morteza Hoseinzadeh, UC San Diego; Joseph Izraelevitz, University of Colorado, Boulder;
Steve Swanson, UC San Diego

DC-Store: Eliminating Noisy Neighbor Containers using Deterministic I/O Performance and Resource Isolation. . 183
Miryeong Kwon, Donghyun Gouk, and Changrim Lee, KAIST; Byounggeun Kim and Jooyoung Hwang, Samsung;
Myoungsoo Jung, KAIST

GoSeed: Generating an Optimal Seeding Plan for Deduplicated Storage . . 193
Aviv Nachman and Gala Yadgar, Technion - Israel Institute of Technology; Sarai Sheinvald, Braude College of Engineering

Key Value Storage
209Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook

Zhichao Cao, University of Minnesota, Twin Cities, and Facebook; Siying Dong and Sagar Vemuri, Facebook; David
H.C. Du, University of Minnesota, Twin Cities

FPGA-Accelerated Compactions for LSM-based Key-Value Store. . 225
Teng Zhang, Alibaba Group, Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Zhejiang University;
Jianying Wang, Xuntao Cheng, and Hao Xu, Alibaba Group; Nanlong Yu, Alibaba-Zhejiang University Joint Institute of
Frontier Technologies, Zhejiang University; Gui Huang, Tieying Zhang, Dengcheng He, Feifei Li, and Wei Cao, Alibaba
Group; Zhongdong Huang and Jianling Sun, Alibaba-Zhejiang University Joint Institute of Frontier Technologies,
Zhejiang University

HotRing: A Hotspot-Aware In-Memory Key-Value Store. 239
Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan Sun, Huan Liu, and Feifei Li, Alibaba Group

Caching
BCW: Buffer-Controlled Writes to HDDs for SSD-HDD Hybrid Storage Server. . 253
Shucheng Wang, Ziyi Lu, and Qiang Cao, Wuhan National Laboratory for Optoelectronics, Key Laboratory of
Information Storage System; Hong Jiang, Department of Computer Science and Engineering, University of Texas at
Arlington; Jie Yao, School of Computer Science and Technology, Huazhong University of Science and Technology;
Yuanyuan Dong and Puyuan Yang, Alibaba Group

InfiniCache: Exploiting Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache. 267
Ao Wang and Jingyuan Zhang, George Mason University; Xiaolong Ma, University of Nevada, Reno; Ali Anwar, Lukas
Rupprecht, Dimitrios Skourtis, and Vasily Tarasov, IBM Research–Almaden; Feng Yan, University of Nevada, Reno; Yue
Cheng, George Mason University

Quiver: An Informed Storage Cache for Deep Learning. . 283
Abhishek Vijaya Kumar and Muthian Sivathanu, Microsoft Research India

Consistency and Reliability
CRaft: An Erasure-coding-supported Version of Raft for Reducing Storage Cost and Network Cost. 297
Zizhong Wang, Tongliang Li, Haixia Wang, Airan Shao, Yunren Bai, Shangming Cai, Zihan Xu, and Dongsheng Wang,
Tsinghua University

Hybrid Data Reliability for Emerging Key-Value Storage Devices. . 309
Rekha Pitchumani and Yang-suk Kee, Memory Solutions Lab, Samsung Semiconductor Inc.

Strong and Efficient Consistency with Consistency-Aware Durability . . 323
Aishwarya Ganesan, Ramnatthan Alagappan, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau, University of
Wisconsin—Madison

MAPX: Controlled Data Migration in the Expansion of
Decentralized Object-Based Storage Systems

Li Wang
laurence.liwang@gmail.com

Didi Chuxing

Yiming Zhang
sdiris@gmail.com (Corresponding)

NiceX Lab, NUDT

Jiawei Xu
titan xjw@cs.sjtu.edu.cn

SJTU

Guangtao Xue
xue-gt@cs.sjtu.edu.cn

SJTU

Abstract
Data placement is critical for the scalability of decentralized
object-based storage systems. The state-of-the-art CRUSH
placement method is a decentralized algorithm that de-
terministically places object replicas onto storage devices
without relying on a central directory. While enjoying
the benefits of decentralization such as high scalability, ro-
bustness, and performance, CRUSH-based storage systems
suffer from uncontrolled data migration when expanding the
clusters, which will cause significant performance degrada-
tion when the expansion is nontrivial.

This paper presents MAPX, a novel extension to CRUSH
that uses an extra time-dimension mapping (from object
creation times to cluster expansion times) for controlled
data migration in cluster expansions. Each expansion is
viewed as a new layer of the CRUSH map represented by
a virtual node beneath the CRUSH root. MAPX controls
the mapping from objects onto layers by manipulating the
timestamps of the intermediate placement groups (PGs).
MAPX is applicable to a large variety of object-based storage
scenarios where object timestamps can be maintained as
higher-level metadata. For example, we apply MAPX to
Ceph-RBD by extending the RBD metadata structure to
maintain and retrieve approximate object creation times at
the granularity of expansions layers. Experimental results
show that the MAPX-based migration-free system outper-
forms the CRUSH-based system (which is busy in migrating
objects after expansions) by up to 4.25× in the tail latency.

1 Introduction

Object-based storage systems have been widely used for var-
ious scenarios such as distributed file storage, remote block
storage, small object (e.g., profile pictures) storage, blob
(e.g., large videos) storage, etc. Compared to filesystem-
based storage, object-based storage simplifies data layout
by exposing an interface for reading and writing objects
via unique object names, and thus reduces management
complexity at the backend.

Objects are distributed among a large number of object
storage devices (OSDs) possibly with various capacities and
characteristics, making data placement critical for the scala-
bility of object-based systems. Decentralized placement
methods uniformly distribute objects among OSDs without
relying on a central directory, and usually outperform cen-
tralized methods because their clients could directly access
objects by calculating (instead of retrieving) the responsible
OSDs. CRUSH [67] is the state-of-the-art placement algo-
rithm that allows structured mapping from objects onto a hi-
erarchical cluster map comprising nodes representing OSDs,
machines, racks, etc. Currently, CRUSH has been widely
adopted in large-scale storage systems (like Ceph [66] and
Ursa [44]) owing to its simplicity and generality.

While enjoying the benefits of decentralization such as
high scalability, robustness, and performance, CRUSH-
based storage systems suffer from uncontrolled data mi-
gration after expanding the clusters and/or adding more
intermediate placement groups (PGs). Although the mi-
gration could re-balance the load of the entire system right
after the expansion, it also causes significant performance
degradation when the expansion is nontrivial (e.g., adding
several racks of storage machines).

In practical deployment of distributed storage systems,
it is preferred to avoid large-scale data migration after
cluster expansions [15], even at the cost of temporary load
imbalance. Ceph [66] is a CRUSH-based object storage
system which mitigates CRUSH’s migration problem via
implementation-level optimizations. It limits the migration
rate to a relatively-low level, performing writes to the old
OSDs if the written object is waiting for migration. However,
all object replicas will be eventually migrated to the target
OSDs calculated by the CRUSH algorithm, making Ceph
experience degraded performance for a long period of time.

In contrast, traditional centralized placement methods
could easily control data migration for cluster expansions.
For example, Haystack [15] and HDFS [9] maintain a central
directory recording object positions, so as to keep existing
objects unaffected during expansions and place only new

USENIX Association 18th USENIX Conference on File and Storage Technologies 1

objects onto the newly-added OSDs.
In this paper we present MAPX, a novel extension to

CRUSH that uses an extra dimensional mapping (from object
creation times to cluster expansion times) for controllable
data migration in the expansion of decentralized object-
based storage systems. Each expansion is viewed as a new
layer of the CRUSH map represented by a virtual node
beneath the CRUSH root. MAPX controls the mapping from
objects onto layers by manipulating the timestamps of the
intermediate PGs.

The time-dimension mapping cannot support general ob-
ject storage where the maintenance overhead of per-object
timestamps might be overwhelming. However, MAPX is
applicable to a large variety of object-based storage sce-
narios (such as block storage and file storage), where the
object creation timestamps can be maintained as higher-
level storage metadata. We apply MAPX to Ceph-RBD
(Reliable-autonomic-distributed-object-store Block Device)
[3] and CephFS (Ceph File System) [4] with minimum
modifications to the original CRUSH algorithm in Ceph
(Luminous) [5]. For Ceph-RBD, we extend the rbd header
metadata structure to maintain and retrieve approximate
object creation times at the granularity of expansion layers;
while for CephFS, we extend the inode metadata structure to
take the files’ creation times, which could also be maintained
at the granularity of layers, as the creation times of the
files’ objects. More complex applications of MAPX could
be built based on block storage (Ceph-RBD) or file storage
(CephFS). Experimental results show that the MAPX-based
migration-free system outperforms the CRUSH-based sys-
tem (which is busy in migrating objects after expansions) by
up to 4.25× in the tail latency.

The rest of this paper is organized as follows. Section 2
introduces the background and problem of CRUSH. Sec-
tion 3 presents the design of MAPX. Section 4 evaluates
the performance of MAPX and compares it with CRUSH.
Section 5 introduces related work. And finally Section 6
concludes the paper and discusses future work.

2 Background

2.1 CRUSH Overview
CRUSH uses a logical cluster map to abstract the storage
cluster’s hierarchical structure. Fig. 1 illustrates a three-
level storage hierarchy, where the entire cluster (root) is
composed of cabinets (representing racks), which are filled
with shelves (representing storage machines) each installing
many OSDs (disks). The internal nodes (root, cabinet, and
shelf) in the hierarchy are referred to as buckets (the types
of which are straw2 throughout this paper as discussed in
detail in Section 5.1). The hierarchy is flexible for extension.
For example, cabinets might be further grouped into “row”
buckets for larger clusters.

root(32)(36)

cab2(8)cab1(8) cab4(8)(12)cab3(8)

shf1_1(4) shf3_1(4)shf2_1(4)

……

select(3, cabinet)

select(1, shelf)

select(1,osd)

Placement Groups (PGs)

Placement Rule

shf4_1(4)

Affected weights

shf4_3(4)

Object-Based RBDs

…… ……

take(root)

Figure 1: Example of CRUSH placement algorithm. An
RBD is mapped to a PG which is subsequently mapped to a
list of OSDs. The second operation (select(3,cabinet))
realizes three-way replication with three different cabinets.
For simplicity each leaf OSD has the same weight of one.

Each OSD has a weight assigned by the administrator to
control the OSD’s relative amount of stored data, so that the
load of an OSD is on average proportional to its weight. The
weight of an internal bucket is (recursively) calculated as the
sum of the weights of its child items. There are mainly two
steps for CRUSH to place object replicas onto OSDs, which
are briefly introduced below and will be discussed in more
details in Section 5.1.

First, the objects are categorized into PGs by computing
the modulo of the hashing of object names, i.e., pgid =

HASH(name) mod PG NUM. Second, the objects in a PG are
mapped to a list of OSDs following the CRUSH algorithm.
The first step is similar to traditional hashing and in the rest
of this section we will briefly introduce the second step.

The CRUSH algorithm supports flexible constraints for
reliable replica placement by (i) encoding the information
of failure domains (like shared power source or network)
into the cluster map, and (ii) letting the administrator define
the placement rules that specify how replicas are placed by
recursively selecting bucket items.

Fig. 1 demonstrates a typical placement procedure of
CRUSH (for the dark blue PG) beginning at the root, where
the values in the buckets’ parentheses represent the weights.
The first operation (take(root)) of the rule selects the root
of the storage hierarchy and uses it as an input to subsequent
operations. The second operation (select(3,cabinet))
repeatedly computes the following Eq. (1) to choose x = 3
items (cabinets at this level) for three-way replication, from
totally |~i|= 4 items ∈~i beneath the root:

C(pgid,~i,r) = argmax
i∈~i

HASH(pgid,r, ID(i))×W (i), (1)

where pgid is the ID of the input PG, r = 1,2, · · · is a pa-
rameter for the argmax computation, HASH is a three-input
hash function, and ID(i) and W (i) are the ID and weight of
an item i ∈~i, respectively. To choose x distinct items, it is

2 18th USENIX Conference on File and Storage Technologies USENIX Association

867,
0.09

5902,
0.59%

58619,
5.86%

776,
3.23%

4295,
17.90%

14155,
58.98%

0

10000

20000

30000

40000

50000

60000

70000

Adding 1 OSD Adding 1 host
(10 OSDs)

Adding 1 rack
(80 OSDs)

N
o
. o

f
af
fe
ct
e
d
 P
G
s

Small cluster (240 OSDs) Large cluster (10,000 OSDs)

Figure 2: Data migration of two simulated CRUSH clusters
during expansions.

possible to perform Eq. (1) more than x times because the
output of Eq. (1) may have already been chosen in previous
computation or the chosen item may be failed/overloaded.

Similarly, the subsequent operations (select(1,shelf)
and select(1,osd)) follow Eq. (1) to choose x = 1 shelf
and OSD beneath each of the three cabinets. The final result
of the placement rule is the three darkblue OSDs in Fig. 1.

2.2 The Main Drawback of CRUSH

CRUSH achieves statistical load balancing without a central
directory, and could automatically re-balance the load when
the storage cluster map changes. On the downside, however,
it also causes uncontrollable data migration in cluster expan-
sions. For instance, adding a new shelf (shf4 3) with 4 OSDs
beneath a cabinet (cab4) in Fig. 1 will affect the weights
(labeled in the second red parentheses) of all items along the
path from the newly-added shelf up to the root, and thus will
lead to data movement not only from other shelves in cab4 to
the newly-added shf4 3 but also from other cabinets to cab4.
The amount of data migration can be as high as h ∆w

W if ∆w is
small relative to W [67], where h is the number of levels in
the hierarchy, and ∆w and W are the increased weight of the
expansion and the total weight of all OSDs, respectively.

To demonstrate the severity of the problem, we measure
the amount of data movement in two simulated CRUSH-
based three-level Ceph clusters, which adopt three-way repli-
cation taking a rack as a failure domain. One rack consists
of 8 hosts each containing 10 OSDs. The first small cluster
has a total of 3 racks, 24 hosts, and 240 OSDs, and stores
24,000 PGs; while the second large cluster has 125 racks,
1000 hosts, and 10,000 OSDs, and stores 1,000,000 PGs.
We respectively add one OSD, one machine, and one rack to
the two clusters. The result (Fig. 2) shows that the migration
is significant when the expansion is nontrivial, e.g., almost
60% of the PGs will be affected when adding one rack to
the small cluster, which will inevitably cause performance
degradation during the entire migration period.

Figure 3: MAPX records each expansion as a layer. MAPX
implicitly adds a select operation (select(1,layer)) to
the placement rule.

3 MAPX Design

Compared to moderate load imbalance, large-scale data
migration often has much more negative impact on I/O
performance in the expansion of distributed storage systems.
The CRUSH placement algorithm suffers from data migra-
tion after each cluster expansion because it “crushes” the
differences between the new and the old objects/OSDs. To
address this problem, MAPX extends the original CRUSH
algorithm with an extra time-dimension mapping.

3.1 Migration-Free Expansion
Storage systems usually prefer to avoid data migration after
cluster expansion even at the cost of temporary load imbal-
ance. For instance, Haystack and HDFS leverage a central
directory to keep existing objects unaffected during cluster
expansions. As new objects are stored onto the new OSDs,
the available capacity of them decreases over time and thus
eventually the entire system will achieve approximate load
balancing. Data migration can be performed (with metadata
modification) at any time as needed.

Inspired by the centralized placement methods, our goal is
to achieve controlled data migration for cluster expansions.
To achieve this, we design MAPX on top of CRUSH by
introducing an extra time-dimension mapping to distinguish
the new and the old objects/OSDs, while still preserving the
benefits of randomness and uniformness of CRUSH.

Fig. 3(a) depicts an example of two expansions to the
original cluster which consists of n cabinets each having
two shelves. The first expansion adds a shelf (represented
by a red rectangle) to each of the n cabinets and the second
expansion adds m cabinets (represented by blue rectangles).

USENIX Association 18th USENIX Conference on File and Storage Technologies 3

Algorithm 1 Extended select Procedure of MAPX
1: procedure SELECT(number, type)
2: if type 6=“layer” then
3: return CRUSH SELECT(number, type)
4: end if
5: layers← layers beneath currently-processing bucket

. each layer represents an expansion
6: num layers← number of layers in layers
7: pg← current Placement Group
8: ~o←Φ . output list
9: for (i = num layers−1; i≥ 0; i−−) do

10: layer← layers[i]
11: if layer.timestamp≤ pg.timestamp then
12: if layer was chosen by previous select then
13: continue
14: end if
15: ~o←~o+{layer}
16: number← number−1
17: if number == 0 then
18: break
19: end if
20: end if
21: end for
22: return~o
23: end procedure

Unlike CRUSH which monolithically updates the cluster
map, MAPX views each expansion, as well as the original
cluster, as a separate layer which contains not only the new
leaf OSDs but also all the internal buckets (shelves, cabinets,
etc.) from the leaf OSDs up to the root.

To support the time-dimension mapping with minimum
modifications to CRUSH, we insert a virtual level beneath
the common CRUSH root (Fig. 3(b)), where each virtual
node represents a layer of expansion. The virtual level en-
ables MAPX to realize migration-free expansion by mapping
new objects to the new layer before further processing of the
CRUSH algorithm. Since the new layer will not affect the
weights of the old ones, the placement of old objects within
old layers will not change.
Mapping objects to PGs. In each expansion, the new layer
is assigned with a certain number of newly-created PGs each
having a timestamp (tpgs) equal to the layer’s expansion
time (tl). When writing/reading an object O (with creation
timestamp to), we first compute the ID (pgid) of O’s PG by

pgid = Hash(name)mod INIT PG NUM[j]

+
j−1

∑
i=0

INIT PG NUM[i], (2)

where name is the object name, INIT PG NUM[i] is the
initial number of PGs of the ith layer, and the jth layer has the
latest timestamp tl ≤ to among all layers. Note that although

PGs might be remapped to other layers for, e.g., load
rebalancing (Section 3.2), INIT PG NUM is a layer’s constant
and thus the mapping from objects to PGs is immutable.
Consequently, each object is mapped to a responsible PG
during creation, which has the latest timestamp tpgs ≤ to
among all PGs. For instance, suppose that the three RBD1,
RBD2, and RBD3 in Fig. 3(b) are created respectively after
the expansions of layer0, layer1, and layer2. The objects
of RBD1, RBD2, and RBD3 will use the three layers’
INIT PG NUM to calculate their PGs respectively within
layer0, layer1, and layer2.

Mapping PGs to OSDs. Similar to CRUSH, MAPX maps a
PG onto a list of OSDs following a sequence of operations in
a user-defined placement rule. As shown in Fig. 3(b), MAPX
implicitly adds a select operation (select(1,layer)) to
the placement rule, so as to realize the time-dimension
mapping from PGs to layers without disturbing the adminis-
trators. Internally, MAPX extends CRUSH’s original select
operation to support the layer-type select(), as shown in
Algorithm 1. If type is not “layer”, then the processing is
the same as the original CRUSH (Lines 2 ∼ 4). Otherwise,
we initialize an array of layers which stores all layers
beneath the currently-processing bucket (usually the root) in
an ascending order of the layers’ timestamps (Line 5). We
also initialize num layers (the number of layers), pg (the
placement group), and~o (the output list) at Lines 6∼ 8. Then
the loop (Lines 9 ∼ 21) adds number layers in the array of
layers to the output list ~o. In most cases number = 1 so
that the PG could be mapped to OSDs in one layer, but it is
also possible to specify a larger number for, e.g., mirroring
between two layers of expansions.

Note that the replicas of an object are not necessarily
all placed on the newest layer. For example, suppose
that the last expansion (layer2) adds only two cabinets in
Fig. 3(a) (i.e., m = 2) but the second select() function
(Select(3, cabinet)) requires three cabinets. This will
cause the first select() function (select(1, layer)) to be
invoked twice to satisfy the rules following the backtracking
mechanism of CRUSH: when a select() function cannot
select enough items beneath a “layer” bucket, MAPX will
retain (rather than abandon) the selected items and backtrack
to the root to select the lacking items beneath a previous
layer. Lines 12 ∼ 14 check whether layer has been chosen
by previous select() and if so we continue to the next loop,
so as to avoid duplicate layer selection when performing
backtracking. The double check ensures Algorithm 1 to
correctly handle this situation, respectively returning layer2
and layer1 for the first and second select() functions.

3.2 Migration Control
The MAPX-based migration-free placement algorithm pro-
vides (statistical) load balancing within each layer, owing
to the randomness and uniformness of the original CRUSH

4 18th USENIX Conference on File and Storage Technologies USENIX Association

algorithm, and achieves approximate load balancing among
different layers by timely expanding the cluster when the
load of the current layer increases to the same level as
previous layers.

However, the load of a layer might change because of,
e.g., removals of objects, failures of OSDs, or unpredictable
workload changes. In Fig. 3, for example, it is possible that
the cluster performs the second expansion (layer2) when the
load of the first expansion (layer1) is as high as that of the
original cluster (layer0), but afterwards a large number of
objects of layer1 are removed and consequently the loads of
the first two layers may get imbalanced.

To address the potential load imbalance problem, we
design three flexible strategies for dynamically managing the
load in MAPX, namely, placement group remapping, cluster
shrinking, and layer merging.

PG remapping. MAPX supports to control object data
migration by dynamically remapping the PGs. Each PG
has two timestamps, namely, a static timestamp (tpgs) that
is equal to the expansion time of the PG’s initial layer, and
a dynamic timestamp (tpgd) that could be set to any layer’s
expansion time. Different from the mapping from objects to
PGs which uses static timestamps (Section 3.1), the mapping
from PGs to layers is performed by comparing the PGs’
dynamic timestamps to the layers’ timestamps (Line 11 in
Algorithm 1). Consequently, a PG can be easily remapped
to any layer by manipulating the dynamic timestamp (as
illustrated in Fig. 3(b)), which will be notified to all OSDs
and clients via incremental map updates. The storage
overhead for PGs’ timestamps is moderate. For example, if
we use a one-byte index for each PG timestamp (pointing
to the corresponding layer’s timestamp) which supports a
maximum of 28 = 256 layers), and suppose that one machine
has 20 OSDs each responsible for 200 PGs, then the memory
overhead of timestamps for a 1000-machine cluster is 1000×
20×200×2×1B = 8MB.

Cluster shrinking. When the load of a layer becomes lower
than a threshold, MAPX shrinks the cluster by removing the
layer’s devices (such as OSDs, machines, and racks) from
the cluster, as an inverse operation of cluster expansions.
Given a layer Ω to be removed from the cluster, we first
assign all PGs in Ω to the remaining layers according to their
aggregated weights (for simplicity the reassignment does not
consider the actual loads of the layers), and then migrate the
PGs to the target layers through remapping (as discussed
above). After shrinking the layer Ω is logically preserved
(with no physical devices or PGs) and its INIT PG NUM will
not change, so as not to affect the mapping from objects to
PGs (following Eq. (2)).

Layer merging. MAPX balances the loads of two layers (Ω
and Ω′) via layer merging, which could be easily realized by
setting the expansion time of one layer (Ω′) to be the same
as that of the other (Ω).

3.3 Implementing MAPX in Ceph

We have implemented the MAPX structure in Ceph by
augmenting the original CRUSH algorithm with an extra
time-dimension mapping. As shown in Fig. 3(b), the internal
buckets (like shelves, cabinets, and rows, but not leaf OSDs)
may belong to multiple layers. Therefore, we assign an
internal device in a particular layer (i.e., beneath a particular
virtual node) with a virtual device ID by concatenating the
physical device ID and the layer’s timestamp. We use
the weight fields of the virtual nodes to record the layers’
timestamps, which will be compared with the PGs’ dynamic
timestamps for layer selection.

MAPX is not suitable for general object stores, mainly
because it is nontrivial to maintain and retrieve the times-
tamps of arbitrary objects. The overhead of per-object
timestamp maintenance is similar to that of the maintenance
of a central directory, and thus should be avoided in de-
centralized placement methods like CRUSH and MAPX.
However, MAPX is applicable to a large variety of object-
based storage systems such as block storage (Ceph-RBD [3])
and file storage (Ceph-FS [4]), where the object timestamps
can be maintained as higher-level metadata.

Ceph-RBD. We have implemented the metadata-based time-
stamp retrieval mechanism for Ceph-RBD (RADOS Block
Device). Ceph stores the metadata (such as the prefix of
data object names, and the information of volume, snapshot,
striping, etc.) of an RBD in its rbd header structure,
which will be retrieved when a client mounts the RBD via
rbd open. Since an object of an RBD can be created after
any expansions, we inherit the timestamp of the current layer
(when an object is created) as the object’s timestamp. There-
fore, we add a per-object index (named ob ject timestamp)
to the rbd header structure which points to each layer’s
expansion time. The storage overhead for the extra metadata
is moderate. For example, if we use one byte for the
per-object index and each object is 4MB, then the storage
overhead of the ob ject timestamp array for a 4TB RBD is at
most 4TB

4MB ×1B = 1MB.

CephFS. We have also (partially) implemented the time-
stamp retrieval mechanism for CephFS (Ceph Filesystem).
Ceph stores the file metadata (including file creation times)
in the inode structure. A client reads inode when opening a
file and gets the file creation time. Currently we let all the
objects of a file inherit the file’s timestamp, so that we could
control the time-dimension mapping at the granularity of
files. We also plan to support finer-grained object timestamp
maintenance. If the size of a file exceeds a threshold T
(e.g., T = 100 MB), we could divide it into subfiles each
smaller than 100 MB. The file’s metadata maintains both
the mapping from the file to its sub-files and the creation
timestamp of each subfile, so that we could control the time-
dimension mapping at the granularity of subfiles.

USENIX Association 18th USENIX Conference on File and Storage Technologies 5

Figure 4: 99th percentile I/O latency of MAPX and CRUSH
(during cluster expansions).

4 Evaluation

In this section we evaluate the performance of the MAPX-
based Ceph and compare it with that of the original CRUSH-
based Ceph. Our testbed consists of four machines, of which
three machines run the Ceph OSD storage servers and the
other machine runs the client. Each machine has dual 20-
core Xeon E5-2630 2.20GHz CPU, 128GB RAM, and one
10GbE NIC, running CentOS 7.0. Each storage machine,
installs four 5.5TB HDDs, and runs Ceph 12.2 (Luminous)
with the BlueStore backend. In all experiments every storage
machine is viewed as a failure domain. The Ceph monitor is
co-located with one of the storage servers. The client runs
the fio benchmark.

4.1 I/O Performance during Expansions

We compare the I/O performance of MAPX and CRUSH
during expansions, respectively being used as the object
placement methods for Ceph.

We use the default values of all parameters of Ceph
except OSD max back f ills. As discussed in Section 1,
Ceph mitigates the migration problem of CRUSH via
implementation-level optimizations. It uses the parameter
OSD max back f ills ≥ 1 to trade off between the severity
and duration of performance degradation caused by data
migration.

By default Ceph sets the parameter OSD max back f ills=
1, which makes migration have the lowest priority so
that objects in PGs could be migrated with an extremely-
low speed. Although partially mitigating the degradation
problem, setting OSD max back f ills = 1 will significantly
extend the migration period and largely increase the write
load before the migration completes: writes to a PG waiting
for migration will first be performed to the origin OSD
and then be asynchronously migrated to the target OSD.
Clearly, this makes Ceph experience less severe performance
degradation but for a longer period of time. We set

Figure 5: IOPS of MAPX and CRUSH (during cluster
expansions).

OSD max back f ills = 10, which is more reasonable in this
experiment so that migration could get a higher priority to
demonstrate the algorithm-level difference between MAPX
and CRUSH. We will discuss more on the impact of migra-
tion priority in Section 5.2.

The initial Ceph cluster has three storage machines each
of which has two OSDs. We create 128 PGs, and the
three-way replication results in (on average) 128× 3÷ 3÷
2 = 64 PGs for which each OSD will be responsible. We
create 40 RBD images (each with 20GB data) in the initial
cluster. We expand the storage cluster by respectively adding
one and two OSDs to each machine in the cluster. We
evaluate the performance (including I/O latency and IOPS)
of Ceph running the migration-free MAPX, and compare it
with the performance of Ceph running the original CRUSH
algorithm. The I/O size is 4KB. The iodepth is 1 and 128 in
the latency and IOPS tests, respectively.

Fig. 4 shows the evaluation result for the 99th percentile
tail latencies. Note that cloud storage scenarios usually care
about the (99th, 99.9th, or 99.99th percentile) tail latency
rather than the mean or median latency, so as to guarantee
SLA. MAPX outperforms CRUSH by up to 4.25×, mainly
because the migration in CRUSH severely contends with
the normal I/O requests. In this experiment, MAPX always
uses six OSDs of the initial cluster to serve I/O requests
because it does not migrate existing RBDs to the new
OSDs. In contrast, CRUSH respectively uses six, nine,
and twelve OSDs, but the CRUSH-induced data migration
severely degrades the performance, which is unacceptable
for latency-sensitive applications.

Fig 5 shows the evaluation result for IOPS respectively in
MAPX and CRUSH. Each result is the mean of 20 runs, and
we omit the error bars because the variances to the mean are
relatively small (less than 5%). Similar to the latency test,
MAPX significantly outperforms CRUSH by up to 74.3%
in the IOPS test, because CRUSH’s data migration contends
with the normal I/O requests.

6 18th USENIX Conference on File and Storage Technologies USENIX Association

9.7 10.7
13.4

18.6

29.9

51.6

10.93 11.1
13.7

18.9

30.2

51.8

0

10

20

30

40

50

60

600 1200 2400 4800 9600 19200

Ti
m
e
 (
u
s)

CRUSH MapX

Figure 6: Computation overhead of MAPX and CRUSH.

25.56

90.7

28

123

0

20

40

60

80

100

120

140

MapX CRUSH

La
te
n
cy
 (
m
s)

read write

Figure 7: 99th percentile I/O latency of MAPX and CRUSH
(during cluster shrinking).

4.2 Computational Overhead

We compare the computation times of MAPX and CRUSH
by simulating a Ceph cluster of different numbers of OSDs
(varying from 600 to 19,200). The result (Fig 6) shows
that both MAPX and CRUSH can map an object to an OSD
in tens of microseconds. The small extra times of MAPX
compared to CRUSH come from the computation of the
time-dimension mapping beneath the root.

4.3 I/O Performance during Shrinking

We evaluate the I/O performance of MAPX (used as the
object placement methods for Ceph) in shrinking. The Ceph
cluster has three storage machines each initially having three
OSDs, and we expand the cluster by adding one OSD to
each of the three machines using the same configurations as
that in Section 4.1. We then remove the newly-added layer
(i.e., removing one OSD from each of the three machines),
following the shrinking method (introduced in Section 3.2).
We control the migration speed by setting the number of
concurrently migrated PGs to eight.

Fig. 7 depicts the 99th percentile I/O latency of MAPX

360

152.4

256.1

300
321.7

70.9

0

50

100

150

200

250

300

350

400

N
o
. A

ff
e
ct
ed

 P
G
s
(K
)

Total No. PGs 1st exp (CRUSH) 2nd exp (CRUSH)

3rd exp (CRUSH) 4th exp (CRUSH) Layer Merge (MapX)

Figure 8: Number of affected PGs in layer merging in MAPX
(after four expansions). Since CRUSH does not support
merging, for reference we measure the number of affected
PGs after each expansion in CRUSH.

during cluster shrinking. For reference, Fig. 7 also shows the
99th percentile latency of CRUSH in shrinking by removing
one OSD from each of the three machines. Ceph shrinks
the cluster by directly modifying the cluster map. Note that
the result does not necessarily mean that MAPX has lower
latency than CRUSH in shrinking, because they adopt dif-
ferent throttling mechanisms. However, MAPX outperforms
CRUSH during cluster shrinking in that MAPX requires less
migration than CRUSH. For instance, removing an OSD in
CRUSH will lower the entire subtree’s weight and thus may
result in unnecessary data migration. In contrast, MAPX
never causes migration between preserved OSDs because
shrinking occurs at the granularity of layers. We omit the
result for IOPS during shrinking due to lack of space, which
has similar trends with that for I/O latency.

4.4 Layer Merging

We use CrushTool [6] to emulate layer merging in MAPX.
We adopt three-way replication where each object has three
replicas stored on three OSDs. Initially the storage cluster
consists of 5 racks each having 20 machines. One machine
has 20 OSDs. There are totally 100 machines and 2000
OSDs, storing 200,000 PGs. We expand the cluster four
times. In each expansion, we add a new layer of one rack
(of 20 machines and 400 OSDs), and add 40,000 new PGs
to the new layer. Clearly, MAPX maps all the new PGs onto
the newly-added OSDs and thus no migration happens. After
the four expansions, there are totally 9 racks, 180 machines,
and 3600 OSDs, storing 360,000 PGs. We then merge the 40
machines of the first and second expansions (as introduced
in Section 3.2), and measure how many PGs are affected by
the merging in MAPX.

The result is depicted in Fig. 8, where layer merging
in MAPX affects 70,910 PGs among all the 80,000 PGs
of the two merged layers. The relatively high ratio of
affected PGs in layer merging of MAPX is decided by the

USENIX Association 18th USENIX Conference on File and Storage Technologies 7

nature of CRUSH. For reference, we also emulate the four
expansions in CRUSH, where we let the cluster initially have
360,000 PGs and do not add new PGs during expansions,
because otherwise CRUSH will change the mapping from
objects to PGs causing many more PGs to be migrated.
Fig. 8 also shows how many PGs are affected by each
expansion in CRUSH. For instance, almost 90% of all the
PGs are affected in the fourth expansion when the number of
machines increases from 160 to 180.

5 Related Work

5.1 CRUSH in Ceph

Ceph [66] is a widely-used object-based storage system
supporting block storage [3], file storage [4], and simple
object storage [8] (like S3 [1]). To deterministically and
uniformly maps data objects onto OSDs without relying
on a central directory, Ceph applies CRUSH by taking the
following two steps.

In the first step, Ceph computes the placement groups
(PGs) of the objects. The actual computation of PGs is
slightly more complicated than simple hashing and modulo
(discussed in Section 2.1) when the PG number (PG NUM)
is not a power of two: it computes the pgids with double-
modulo by using two values of 2nth power near PG NUM, so
as to minimize pgid changes when changing the numbers
of PGs. For instance, consider two objects A and B with
HASH(A) = 25 and HASH(B) = 29. Suppose that at first
the PG has PG NUM1 = 8, which results in pgidA = 1 and
pgidB = 5. Then, suppose that we increase the PG number
to PG NUM2 = 12. Since 23 < 12 < 24, Ceph first computes
the modulo for A and B using 24 = 16, and respectively gets
pgidA = 9 and pgidB = 13. For pgidA < PG NUM2, Ceph will
take pgidA = 9 as the final pgid of A. In contrast, for pgidB >
PG NUM2, Ceph will compute the modulo again using 23 = 8
and get pgidB = 5 as the final pgid of B. Clearly, the double-
modulo mechanism makes the pgids not to change when the
first modulo is between PG NUM2 = 12 and 24 = 16.

In the second step, Ceph maps pgids onto OSDs in the
storage cluster, where the hierarchy is composed of OSDs
and buckets. Buckets can contain any number of OSDs
or other buckets. OSDs are always at the leaves and are
assigned weights by the administrator to control the relative
amount of data they are responsible for. Bucket weights are
the sum of the weights of its items. Currently CRUSH has
five types (uniform, list, tree, straw, and straw2) of buckets,
and different bucket types use different formulas to choose
a given number of items beneath the bucket. The straw2
buckets are the most popular because they have the smallest
migration overhead when changing the cluster map or the
number of PGs. By default all buckets in Ceph have the
straw2 type.

5.2 Load Balancing & Migration Overhead

Ceph developers have realized the performance degradation
problem due to expansion-caused migration. They alleviate
this problem through implementation-level optimizations by
lowering the priority of migration tasks to avoid bursty
migration after the expansion [7]. However, the PGs cal-
culated by CRUSH have to be eventually migrated. Further,
the conservative migration settings significantly extend the
migration period during which a large fraction of PGs are
waiting for migration. This complicates their write proce-
dure (first being written to the origin OSDs and then to the
target OSDs), unnecessarily increasing the load.

In contrast, MAPX provides administrators with the abi-
lity to control the migration at the algorithm level: the
migration may never happen if (as in most cases) there is
not severe imbalance between the loads of different layers.
Further, sometimes CRUSH needs to increase the number of
PGs, for example to reduce the per-OSD load, which causes
a large fraction of objects to be migrated even using the
double-modulo method (Section 5.1), while MAPX could
smoothly add PGs during expansions without migration.

Focusing on OSD failure caused data migration, Ref. [36]
proposes to use cluster device flags to selectively label failed
OSDs for reducing data transfer. However, it is not clear how
to use the flags to address/alleviate the migration problem
when expanding the storage clusters.

Consistent distributed hash tables (DHTs) [63, 57, 74,
59, 60, 38, 73] are widely used for decentralized overlay
storage. Early DHTs require multi-hop routing to locate the
data and thus are not suitable for distributed object storage.
For example, Chord [63] uses hashing to map both the IDs
of storage nodes and the keys of data onto a ring. A node
is responsible for a key if it is the nearest node after the key
on the ring. Each node only has routing information about
a subset of nodes on the ring, and it takes O(logN) time
to locate a key in an N-node Chord network. Later DHT
networks (like OneHop [18]) support direct key locating
by maintaining all routing information on each node in
the system, and have been adopted in some decentralized
object stores including Amazon Dynamo [28], S3 [1], and
OpenStack Swift [11].

Compared to CRUSH, most DHTs cannot express the
storage hierarchy including OSDs, machines, racks, etc.
DHT-based storage systems have to use additional mech-
anisms to model the hierarchy (e.g., Cassandra [41] and
CubeX [71] respectively adopt virtual nodes and multi-level
cubic ring [70], and hierarchy-aware DHTs[33, 51, 29, 39,
69] adopt hierarchical routing tables), which are inflexible
compared to CRUSH. Further, load assignment in DHTs is
decided by the positions of the nodes and keys on the ring,
and thus adding a new node will only make a portion of
the load of its successor move to it, which inevitably causes
imbalance (although introducing less migration).

8 18th USENIX Conference on File and Storage Technologies USENIX Association

5.3 Storage Systems
Decentralized Object storage systems. In recent years,
decentralized object storage has been widely used in various
scenarios. For example, Twitter uses virtual buckets to store
its photos [2], LinkedIn designs Ambry [54] which adopts
logical grouping and asynchronous replication to realize
geo-distributed object storage [61], and Facebook designs
F4 [52] which adopts erasure coding [45] to reduce repli-
cation factors for its warm objects. Key-value (KV) storage
systems [10, 20, 28, 40, 47] could be viewed as generalized
object stores that provide an interface for reading, writing,
deleting and modifying the values associated with keys.
Unlike general object stores, their values are often relatively
small.

Centralized Object storage systems. Some object stores
adopt a centralized metadata directory to simplify data
placement. Haystack [15] is a centralized object store
for Facebook’s large amounts of small objects like photos,
audio/video pieces, H5 files, etc. Haystack places object data
(packed into needles) in large files stored in data servers,
and stores object positions (i.e., on which machines) in
a central directory. Similar to Haystack, Lustre [16] and
HDFS [9] leverage a central directory to maintain object
positions which helps keep existing objects unaffected dur-
ing cluster expansions. The central directory based place-
ment methods are inefficient in scalability and robustness.
Further, the multi-phase I/O of metadata and data leads to
poor performance and complicates consistency issues [23,
22, 55, 34] and thus cannot satisfy the requirement of the
emerging OLDI (online data-intensive) applications [25, 68].
Compared to the centralized placement methods, MAPX
preserves the benefits of decentralized CRUSH placement al-
gorithm while providing flexible control over data migration
in expanding the storage clusters.

Block storage systems. Large-scale block storage sys-
tems [65, 49, 42, 35] adopt distributed protocols [12, 17]
to provide block interface to remote clients. For example,
Ursa [44] designs a hybrid block store for optimizing SSD-
based storage [46, 14, 27, 26, 13]. Salus [64] provide
virtual disk service based on HBase [31]. Blizzard [50]
realizes high-performance parallel I/O based on FDS [53].
PARIX [45, 72] performs speculative partial writes to alle-
viate the inability of erasure coding (EC) [19, 62, 37] and
efficiently support random small writes.

File systems. Distributed file systems spread the data of a
file across many storage servers [22, 24, 30, 32, 35, 43, 48,
58]. For instance, GFS [30] is a large-scale fault-tolerant file
system for data-intensive cloud applications. Zebra [32] uses
striping on RAID [21] and logs for high disk parallelism.
BPFS [24] focuses on persistent memory hardware and uses
epoch barrier to provide an in-memory file system with
ordering guarantees. OptFS [22] improves the journaling file
system [56] by decoupling durability from ordering.

6 Conclusion

The contention between decentralized and centralized data
placement methods has been long lived in the design
of large-scale object storage systems. The decentralized
CRUSH method achieves high scalability, robustness, and
performance, but suffers from uncontrollable data migra-
tion in cluster expansions. This paper presents MAPX, a
novel extension to CRUSH that embraces the best of both
decentralized and centralized methods. MAPX controls data
migration by introducing an extra time-dimension mapping
from object creation times to cluster expansion times, while
still preserving the randomness and uniformness of CRUSH.
We have applied MAPX to Ceph-RBD and CephFS, re-
spectively by extending the rbd header and inode metadata
structures. In our future work, we will study how to reduce
the maintenance overhead of object timestamps, so as to
apply MAPX to a broader range of object-based storage
scenarios.

Acknowledgement

We would like to thank John Bent, our shepherd, and the
anonymous reviewers for their insightful comments. We
thank Mingya Shi and Haonan Wang for helping in the
experiments, and we thank the Didi Cloud Storage Team
for their discussion. Li Wang and Yiming Zhang are co-
primary authors. Jiawei Xu implemented some parts of
MAPX when he was an intern at Didi Chuxing. This research
is supported by the National Key R&D Program of China
(2018YFB2101102), the National Natural Science Founda-
tion of China (NSFC 61772541, 61872376 and 61370018).
and the Joint Key Project of the NSFC (U1736207).

References
[1] https://aws.amazon.com/s3/.

[2] https://blog.twitter.com/engineering/en_us/a/2012/

blobstore-twitter-s-in-house-photo-storage-system.

html.

[3] https://ceph.com/ceph-storage/block-storage/.

[4] https://ceph.com/ceph-storage/file-system/.

[5] https://docs.ceph.com/docs/master/releases/

luminous/.

[6] https://docs.ceph.com/docs/mimic/man/8/crushtool/.

[7] https://docs.ceph.com/docs/mimic/rados/

configuration/osd-config-ref/.

[8] https://github.com/ceph/ceph/tree/master/src/rgw.

[9] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.

html.

[10] https://rocksdb.org/.

[11] https://www.swiftstack.com/product/open-source/

openstack-swift/.

USENIX Association 18th USENIX Conference on File and Storage Technologies 9

https://aws.amazon.com/s3/
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://ceph.com/ceph-storage/block-storage/
https://ceph.com/ceph-storage/file-system/
https://docs.ceph.com/docs/master/releases/luminous/
https://docs.ceph.com/docs/master/releases/luminous/
https://docs.ceph.com/docs/mimic/man/8/crushtool/
https://docs.ceph.com/docs/mimic/rados/configuration/osd-config-ref/
https://docs.ceph.com/docs/mimic/rados/configuration/osd-config-ref/
https://github.com/ceph/ceph/tree/master/src/rgw
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://rocksdb.org/
https://www.swiftstack.com/product/open-source/openstack-swift/
https://www.swiftstack.com/product/open-source/openstack-swift/

[12] AIKEN, S., GRUNWALD, D., PLESZKUN, A. R., AND WILLEKE, J.
A performance analysis of the iscsi protocol. In Mass Storage Systems
and Technologies, 2003.(MSST 2003). Proceedings. 20th IEEE/11th
NASA Goddard Conference on (2003), IEEE, pp. 123–134.

[13] ANAND, A., MUTHUKRISHNAN, C., KAPPES, S., AKELLA, A.,
AND NATH, S. Cheap and large cams for high performance data-
intensive networked systems. In NSDI (2010), USENIX Association,
pp. 433–448.

[14] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHANISHAY-
EE, A., TAN, L., AND VASUDEVAN, V. Fawn: a fast array of wimpy
nodes. In SOSP (2009), J. N. Matthews and T. E. Anderson, Eds.,
ACM, pp. 1–14.

[15] BEAVER, D., KUMAR, S., LI, H. C., SOBEL, J., AND VAJGEL, P.
Finding a needle in haystack: facebook’s photo storage. In Usenix
Conference on Operating Systems Design and Implementation (2010),
pp. 47–60.

[16] BRAAM, P. The lustre storage architecture. arXiv preprint arX-
iv:1903.01955 (2019).

[17] CASHIN, E. L. Kernel korner: Ata over ethernet: putting hard drives
on the lan. Linux Journal 2005, 134 (2005), 10.

[18] CASTRO, M., COSTA, M., AND ROWSTRON, A. I. T. Debunking
some myths about structured and unstructured overlays. In NSDI
(2005).

[19] CHAN, J. C., DING, Q., LEE, P. P., AND CHAN, H. H. Parity
logging with reserved space: Towards efficient updates and recovery
in erasure-coded clustered storage. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies (FAST 14)
(2014), pp. 163–176.

[20] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH,
D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND GRUBER,
R. E. Bigtable: A distributed storage system for structured data. Acm
Transactions on Computer Systems 26, 2 (2008), 1–26.

[21] CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND
PATTERSON, D. A. Raid: High-performance, reliable secondary
storage. ACM Computing Surveys (CSUR) 26, 2 (1994), 145–185.

[22] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic crash consistency. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 228–243.

[23] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Consistency without ordering. In
Proceedings of the 10th USENIX conference on File and Storage
Technologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012
(2012), p. 9.

[24] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., LEE,
B., BURGER, D., AND COETZEE, D. Better i/o through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (2009), ACM,
pp. 133–146.

[25] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM 51, 1 (2008),
107–113.

[26] DEBNATH, B., SENGUPTA, S., AND LI, J. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2011), SIGMOD ’11, ACM, pp. 25–36.

[27] DEBNATH, B. K., SENGUPTA, S., AND LI, J. Flashstore: High
throughput persistent key-value store. PVLDB 3, 2 (2010), 1414–
1425.

[28] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G.,
LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHAL-
L, P., AND VOGELS, W. Dynamo: amazon’s highly available key-
value store. Acm Sigops Operating Systems Review 41, 6 (2007), 205–
220.

[29] GANESAN, P., GUMMADI, P. K., AND GARCIA-MOLINA, H. Canon
in g major: Designing dhts with hierarchical structure. In ICDCS
(2004), pp. 263–272.

[30] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file
system. In SOSP (2003), pp. 29–43.

[31] HARTER, T., BORTHAKUR, D., DONG, S., AIYER, A., TANG, L.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Analysis
of hdfs under hbase: A facebook messages case study. In Proceedings
of the 12th USENIX Conference on File and Storage Technologies
(FAST 14) (2014), pp. 199–212.

[32] HARTMAN, J. H., AND OUSTERHOUT, J. K. The zebra striped
network file system. ACM Transactions on Computer Systems (TOCS)
13, 3 (1995), 274–310.

[33] HARVEY, N. J. A., JONES, M. B., SAROIU, S., THEIMER, M., AND
WOLMAN, A. Skipnet: A scalable overlay network with practical
locality properties. In USENIX Symposium on Internet Technologies
and Systems (2003).

[34] HERLIHY, M. P., AND WING, J. M. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.
12, 3 (July 1990), 463–492.

[35] HILDEBRAND, D., AND HONEYMAN, P. Exporting storage systems
in a scalable manner with pnfs. In 22nd IEEE/13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST’05)
(2005), IEEE, pp. 18–27.

[36] HUANG, M., LUO, L., LI, Y., AND LIANG, L. Research on data
migration optimization of ceph. In 2017 14th International Computer
Conference on Wavelet Active Media Technology and Information
Processing (ICCWAMTIP) (2017), IEEE, pp. 83–88.

[37] JIN, C., FENG, D., JIANG, H., AND TIAN, L. Raid6l: A log-assisted
raid6 storage architecture with improved write performance. In 2011
IEEE 27th Symposium on Mass Storage Systems and Technologies
(MSST) (2011), IEEE, pp. 1–6.

[38] KAASHOEK, M. F., AND KARGER, D. R. Koorde: A simple degree-
optimal distributed hash table. In IPTPS (2003), pp. 98–107.

[39] KARGER, D. R., AND RUHL, M. Diminished chord: A protocol for
heterogeneous subgroup formation in peer-to-peer networks. In IPTPS
(2004), pp. 288–297.

[40] LAKSHMAN, A., AND MALIK, P. Cassandra:a structured storage
system on a p2p network. In Proc Acm Sigmod International
Conference on Management of Data (2009).

[41] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Review
44, 2 (2010), 35–40.

[42] LEE, E. K., AND THEKKATH, C. A. Petal: Distributed virtual disks.
In ACM SIGPLAN Notices (1996), vol. 31, ACM, pp. 84–92.

[43] LEUNG, A. W., PASUPATHY, S., GOODSON, G. R., AND MILLER,
E. L. Measurement and analysis of large-scale network file system
workloads. In USENIX annual technical conference (2008), vol. 1,
pp. 2–5.

[44] LI, H., ZHANG, Y., LI, D., ZHANG, Z., LIU, S., HUANG, P., QIN,
Z., CHEN, K., AND XIONG, Y. Ursa: Hybrid block storage for
cloud-scale virtual disks. In Proceedings of the Fourteenth EuroSys
Conference 2019 (2019), ACM, p. 15.

[45] LI, H., ZHANG, Y., ZHANG, Z., LIU, S., LI, D., LIU, X., AND
PENG, Y. Parix: speculative partial writes in erasure-coded systems.
In 2017 USENIX Annual Technical Conference (USENIX ATC 17)
(2017), USENIX Association, pp. 581–587.

[46] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Silt: A
memory-efficient, high-performance key-value store. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples (2011), ACM, pp. 1–13.

10 18th USENIX Conference on File and Storage Technologies USENIX Association

[47] LU, L., GOPALAKRISHNAN, H., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Wisckey: Separating keys from values in
ssd-conscious storage. Acm Transactions on Storage 13, 1 (2017), 5.

[48] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY, R. S.
A fast file system for unix. ACM Transactions on Computer Systems
(TOCS) 2, 3 (1984), 181–197.

[49] MEYER, D. T., AGGARWAL, G., CULLY, B., LEFEBVRE, G.,
FEELEY, M. J., HUTCHINSON, N. C., AND WARFIELD, A. Parallax:
virtual disks for virtual machines. In ACM SIGOPS Operating Systems
Review (2008), vol. 42, ACM, pp. 41–54.

[50] MICKENS, J., NIGHTINGALE, E. B., ELSON, J., GEHRING, D.,
FAN, B., KADAV, A., CHIDAMBARAM, V., KHAN, O., AND
NAREDDY, K. Blizzard: Fast, cloud-scale block storage for cloud-
oblivious applications. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14) (2014), pp. 257–273.

[51] MISLOVE, A., AND DRUSCHEL, P. Providing administrative control
and autonomy in structured peer-to-peer overlays. In IPTPS (2004),
pp. 162–172.

[52] MURALIDHAR, S., LLOYD, W., ROY, S., HILL, C., LIN, E., LIU,
W., PAN, S., SHANKAR, S., SIVAKUMAR, V., AND TANG, L. f4:
Facebook’s warm blob storage system. In Usenix Conference on
Operating Systems Design and Implementation (2014), pp. 383–398.

[53] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN, O., HOW-
ELL, J., , AND SUZUE, Y. Flat datacenter storage. In OSDI (2012).

[54] NOGHABI, S. A., SUBRAMANIAN, S., NARAYANAN, P.,
NARAYANAN, S., HOLLA, G., ZADEH, M., LI, T., GUPTA, I., AND
CAMPBELL, R. H. Ambry:linkedin’s scalable geo-distributed object
store. In International Conference on Management of Data (2016),
pp. 253–265.

[55] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTERHOUT,
J. K., AND ROSENBLUM, M. Fast crash recovery in ramcloud. In
SOSP (2011), pp. 29–41.

[56] PIERNAS, J., CORTES, T., AND GARCÍA, J. M. Dualfs: a new
journaling file system without meta-data duplication. In Proceedings
of the 16th international conference on Supercomputing (2002), ACM,
pp. 137–146.

[57] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R. M., AND
SHENKER, S. A scalable content-addressable network. In Proceed-
ings of the ACM SIGCOMM 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication,
August 27-31, 2001, San Diego, CA, USA (2001), pp. 161–172.

[58] REN, K., ZHENG, Q., PATIL, S., AND GIBSON, G. Indexfs: Scaling
file system metadata performance with stateless caching and bulk
insertion. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2014),
IEEE Press, pp. 237–248.

[59] ROWSTRON, A. I. T., AND DRUSCHEL, P. Pastry: Scalable,
decentralized object location, and routing for large-scale peer-to-peer
systems. In Middleware (2001), pp. 329–350.

[60] SHEN, H., XU, C.-Z., AND CHEN, G. Cycloid: A constant-degree
and lookup-efficient p2p overlay network. Perform. Eval. 63, 3 (2006),
195–216.

[61] SPIROVSKA, K., DIDONA, D., AND ZWAENEPOEL, W. Optimistic
causal consistency for geo-replicated key-value stores. In Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Confer-
ence on (2017), IEEE, pp. 2626–2629.

[62] STODOLSKY, D., GIBSON, G., AND HOLLAND, M. Parity logging
overcoming the small write problem in redundant disk arrays. In
ACM SIGARCH Computer Architecture News (1993), vol. 21, ACM,
pp. 64–75.

[63] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for internet applications. ACM SIGCOMM Computer Communication
Review 31, 4 (2001), 149–160.

[64] WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P., KIRUBANAN-
DAM, J., ALVISI, L., AND DAHLIN, M. Robustness in the salus
scalable block store. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13) (2013), pp. 357–370.

[65] WARFIELD, A., ROSS, R., FRASER, K., LIMPACH, C., AND HAND,
S. Parallax: Managing storage for a million machines. In HotOS
(2005).

[66] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D., AND
MALTZAHN, C. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation (2006), pp. 307–320.

[67] WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND MALTZAHN,
C. Crush: Controlled, scalable, decentralized placement of replicated
data. In SC’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (2006), IEEE, pp. 31–31.

[68] ZAHARIA, M., CHOWDHURY, M., DAS, T., AND DAVE, A. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI (2012), pp. 1–14.

[69] ZHANG, Y., CHEN, L., LU, X., AND LI, D. Enabling routing control
in a dht. IEEE Journal on Selected Areas in Communications 28, 1
(2009), 28–38.

[70] ZHANG, Y., LI, D., GUO, C., WU, H., XIONG, Y., AND LU, X.
Cubicring: Exploiting network proximity for distributed in-memory
key-value store. IEEE/ACM Transactions on Networking 25, 4 (2017),
2040–2053.

[71] ZHANG, Y., LI, D., AND LIU, L. Leveraging glocality for fast failure
recovery in distributed ram storage. ACM Transactions on Storage
(TOS) 15, 1 (2019), 1–24.

[72] ZHANG, Y., LI, H., LIU, S., XU, J., AND XUE, G. Pbs: An
efficient erasure-coded block storage system based on speculative
partial writes. ACM Transactions on Storage (TOS) 15 (2020), 1–26.

[73] ZHANG, Y., AND LIU, L. Distributed line graphs: A universal
technique for designing dhts based on arbitrary regular graphs. IEEE
Transactions on Knowledge and Data Engineering 24, 9 (2011),
1556–1569.

[74] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH,
A. D., AND KUBIATOWICZ, J. Tapestry: a resilient global-scale
overlay for service deployment. IEEE Journal on Selected Areas in
Communications 22, 1 (2004), 41–53.

USENIX Association 18th USENIX Conference on File and Storage Technologies 11

Lock-Free Collaboration Support for Cloud Storage Services
with Operation Inference and Transformation ⇤

Jian Chen1⇤, Minghao Zhao1⇤, Zhenhua Li1 , Ennan Zhai2

Feng Qian3, Hongyi Chen1, Yunhao Liu1,4, Tianyin Xu5

1Tsinghua University, 2Alibaba Group, 3University of Minnesota, 4Michigan State University, 5UIUC

Abstract
This paper studies how today’s cloud storage services support
collaborative file editing. As a tradeoff for transparency/user-
friendliness, they do not ask collaborators to use version con-
trol systems but instead implement their own heuristics for
handling conflicts, which however often lead to unexpected
and undesired experiences. With measurements and reverse
engineering, we unravel a number of their design and im-
plementation issues as the root causes of poor experiences.
Driven by the findings, we propose to reconsider the col-
laboration support of cloud storage services from a novel
perspective of operations without using any locks. To enable
this idea, we design intelligent approaches to the inference
and transformation of users’ editing operations, as well as
optimizations to the maintenance of files’ historic versions.
We build an open-source system UFC2 (User-Friendly Collab-
orative Cloud) to embody our design, which can avoid most
(98%) conflicts with little (2%) overhead.

1 Introduction

Computer-supported collaboration allows a group of geo-
distributed people (i.e., collaborators) to cooperatively work
online. To enable this, the most common technique is Ver-
sion Control Systems (VCSes) like Git, SVN and Mercurial,
which require the mastery of complex operations and thus are
not suited to non-technical users [58]. In contrast, dedicated
online editors, such as Google Docs and Overleaf, provide
web-based easy-to-use collaboration support, but with limited
functions and “walled-garden” concerns [8, 10, 13, 68]. As an
alternative approach, cloud storage services (e.g., Dropbox,
OneDrive, Google Drive, and iCloud) have recently evolved
their functionality from simple file backup to online collabora-
tion. For example, over 300,000 teams have adopted Dropbox
for business collaboration, submitting ⇠4000 file edits per
second [62]. For ease of use, collaboration is made transparent
by almost every service today through automatic file synchro-
nization. When a user modifies a file in a “sync folder” (a
local directory created by the service), the changed file will
be automatically synchronized with the copy maintained at

⇤Co-primary authors. Zhenhua Li is the corresponding author.

Pattern 1: Losing updates
Alice is editing a file. Suddenly, her file is overwritten All studied
by a new version from her collaborator, Bob. Sometimes, cloud storage
Alice can even lose her edits on the older version. services

Pattern 2: Conflicts despite coordination
Alice coordinates her edits with Bob through emails to All studied
avoid conflicts by enforcing a sequential order. Every cloud storage
edit is saved instantly. Even so, conflicts still occur. services

Pattern 3: Excessively long sync duration Dropbox,
Alice edits a shared file and confirms that the edit has OneDrive,
been synced to the cloud. However, Bob does not SugarSync,
receive the updates for an excessively long duration. Seafile, Box

Pattern 4: Blocking collaborators by opening files Seafile
Alice simply opens a shared Microsoft Office file with- (only for
out making any edits. This mysteriously disables Microsoft
Bob’s editing the file. Office files)

Table 1: Common patterns of unexpected and undesired collabora-
tive editing experiences studied in this paper.

the cloud side. Then, the cloud will further distribute the new
version of the file to the other users sharing the file.

Collaboration inevitably introduces conflicts – simultane-
ous edits on two different copies of the same file. However, it
is non-trivial to automatically resolve conflicts, especially if
the competing edits are on the same line of the file. Instead of
requiring users to learn complex diff-and-merge instructions
to solve conflicts in VCSes, all of today’s cloud storage ser-
vices opt for transparency and user-friendliness – they devise
different approaches to preventing conflicts or automatically
resolving conflicts. Unfortunately, these efforts do not work
well in practice, often resulting in unexpected results. Table 1
describes four common patterns of unexpected/undesirable
collaborative experiences caused by cloud storage services.

To “debug” these patterns from the inside out, we study
eight widely-used cloud storage services based on traffic anal-
ysis with trace-driven experiments and reverse engineering.
The studied services include Dropbox, OneDrive, Google
Drive, iCloud Drive, Box [2], SugarSync [20], Seafile [16],
and Nutstore [11]. Also, we collect ten real-world collabora-
tion traces, among which seven come from the users of differ-
ent services and the other three come from the contributors
of well-known projects hosted by Github. Our study results
reveal a number of design issues of collaboration support in
today’s cloud storage services. Specifically, we find:

USENIX Association 18th USENIX Conference on File and Storage Technologies 13

(a) Step 1: Operation Inference (b) Step 2: Operation Transformation (c) Step 3: Merged Version Generation

Sr

V0

V1,2

Execute Sr
on V0

AliceAlice

BobBob

Send the
merged version

Organize
V0 and V1

Organize
V0 and V2

Edit graph

Edit graph

V1

V0

V2

S1

S2

AliceAlice

BobBob

UploadUpload

UploadUpload

Find a minimum-
cost path

Find a minimum-
cost path

 ...

 ...

Organize
V0 and V1

Organize
V0 and V2

Edit graph

Edit graph

V1

V0

V2

S1

S2

Alice

Bob

Upload

Upload

Find a minimum-
cost path

Find a minimum-
cost path

Conflict
graph

Transform operations &
Retain editing intentions

Directly transform and merge

Exist true
conflicts?

No

Yes
Reorganize
S1 and S2

Figure 1: Working principle for merging two versions of the same file at the cloud side: (a) inferring the operation sequences S1 and S2 that
respectively change V0 to V1 and V2 using edit graphs; (b) transforming and merging S1 and S2 into Sr with the minimal conflict, based on a
conflict graph and topological sorting when necessary; (c) executing Sr on V0 to generate the merged version V1,2.

• Using file-level locks to prevent conflicts is difficult due to
the unpredictability of users’ real-time editing behavior (as
cloud storage services can neither designate nor monitor
the editor) and the latency between clients and the server.

• Existing conflict-resolution solutions are too coarse-
grained and do not consider user intention – they either
keep the latest version based on the server-side timestamp
or distribute all the conflicting versions to the users.

Most surprisingly, we observe that the majority of “con-
flicts” reported by these cloud storage services are not true
conflicts but are artificially created. In those false-positive
conflicts (or false conflicts), the collaborators were editing
different parts of a shared file. This is echoed by the com-
mon practice of mitigating false conflicts in cloud storage
service-based collaborative editing by intentionally dividing
an entire text file into multiple separate files [18, 23]. Such
false conflicts can be automatically resolved at the server side
without user intervention.

In this paper, we show that it is feasible to provide effective
collaboration support in cloud storage services by intelligently
merging conflicting file versions using the three-way merge
method [54, 63], where two conflicting versions are merged
based on a common-context version. This is enabled by the in-
ference and transformation of users’ editing operations; mean-
while, no lock is used so as to achieve the transparency and
user-friendliness. As depicted in Figure 1, our basic idea is to
first infer the collaborators’ operation sequences [1(a)], and
then transform these sequences based on their true conflicts
(if any) [1(b)] to generate the final version [1(c)]. Compared
to a file-level or line-level conflict resolution (e.g., adopted by
Dropbox or Git), our solution is more fine-grained: modifica-
tions on different parts of the same file or even the same line
can be automatically merged.

Building a system with the above idea, however, requires
us to address two technical challenges. First, inferring opera-
tion sequences in an efficient way is non-trivial, since it is a
computation-intensive task for cloud storage services1. As il-
lustrated in Figure 1(a), when two versions V1 and V2 emerge,
we need to first find the latest common-context version V0

1In contrast, it is straightforward and lightweight to acquire a user’s
operation sequences in Google Docs [7], Overleaf [15], and similar services,
where a dedicated editor is used and monitored in real time.

hosted at the cloud, and then infer two operation sequences
S1 and S2 that convert V0 to V1 and V2, respectively. The com-
mon approach using dynamic programming [33, 44, 57] may
take excessive computing time in our scenario, e.g., ⇠30 sec-
onds for a 500-KB file. To address the issue, we leverage an
edit graph [4, 55] to organize V0 and V1, and thus essentially
reduce the inference time, e.g., ⇠200 ms for a 500-KB file.

The second challenge is how to transform and merge S1 and
S2 into Sr with minimal conflict, i.e., 1) simplifying manual
conflict resolution of text files by sending only one merged
version (V1,2) to the collaborators; and 2) retaining the collab-
orators’ editing intentions while minimizing the amount of
conflicts to be manually resolved in V1,2. As illustrated in Fig-
ure 1(b), it is easy to directly transform and merge S1 and S2,
via operation transformation [39], if there is no true conflict.
To address the challenging case (of true conflicts), we utilize
a conflict graph [53] coupled with topological sorting to reor-
ganize all operations, so as to prioritize the transformation of
real conflicting operations and minimize their impact on the
transformation of other operations.

Besides solving the above challenges, we facilitate conflict
resolution by maintaining each shared file’s historic versions
at the cloud with CDC (content-defined chunking [59]) dedu-
plication. For a user-uploaded version, we adopt full-file sync
for small files and delta sync for larger files to achieve the
shortest upload time. For a server-merged version, we design
operation-based CDC (OCDC) which exploits the implicit
operations inferred during conflict resolution to accelerate
CDC – only the boundaries of those chunks affected by the
operations need recalculation.

We build UFC2 (User-Friendly Collaborative Cloud) on top
of Amazon EFS (Elastic File System) and S3 to implement
our design. Our evaluation using real-world traces indicates
that conflicts generated during collaboration are significantly
reduced by 98% on average (the remainder are true conflicts).
Meanwhile, the incurred time overhead by a conflict resolu-
tion is usually between 10 and 80 ms, which is merely 0.6%–
4% (2% on average) of the delivery time for a file update.
In addition, our designed OCDC optimization outpaces the
traditional CDC by ⇠3 times, thus reducing the data chunk-
ing time from 30–400 ms to 10–120 ms for a common file.
Finally, we have made all the source code and measurement
data publicly available at https://UFC2.github.io.

14 18th USENIX Conference on File and Storage Technologies USENIX Association

https://UFC2.github.io

Trace Timespan # Col-s # Files # Versions Avg. File Size Major File Types
Dropbox-1 11/2/2018–2/6/2019 5 305 3527 86 KB tex (52%), pdf (16%), Matlab src (24%) & fig (4%)
Dropbox-2 4/3/2019–5/14/2019 6 216 2193 67 KB tex (57%), pdf (21%), Matlab fig (9%)
OneDrive 3/15/2019–5/31/2019 5 253 2673 83 KB tex (61%), pdf (15%), Matlab fig (7%)

iCloud Drive 2/1/2019–4/30/2019 6 301 3211 59 KB tex (53%), pdf (22%), Matlab fig (12%)
Box 3/21/2019–5/2/2019 8 273 2930 60 KB tex (66%), pdf (27%)

SugarSync 4/11/2019–5/26/2019 9 325 3472 89 KB tex (49%), pdf (25%), Matlab src (19%) & fig (3%)
Seafile 2/17/2019–4/30/2019 7 251 2823 71 KB tex (55%), pdf (19%), Matlab fig (10%)

Spark-Git 1/15/2018–3/27/2019 58 15181 129957 4 KB Scala (78%), Java (6%), py (5%)
TensorFlow-Git 7/24/2018–3/27/2019 86 16754 246016 9 KB py (30%), C header (14%) & src (29%), txt (20%)

Linux-Git 9/9/2018–3/30/2019 87 63865 901167 13 KB C header (31%) & src (42%), txt (16%)
Table 2: Statistics of the ten real-world collaboration traces. “Col-s” means collaborators, “src” means source code, and “py” means python.

2 Design Challenges

In this section, we employ trace-driven experiments, special
benchmarks, and reverse engineering to deeply understand the
design challenges of collaborative support in today’s cloud
storage services. In particular, we analyze the root causes of
poor experiences listed in Table 1.

2.1 Study Methodology
In order to quantitatively understand how today’s cloud stor-
age services behave under typical collaborative editing work-
loads, we first collected ten real-world collaboration traces as
listed in Table 2. Among them, seven are provided by users
(with informed consent) that collaborate on code/document
writing using different cloud storage services. The other three
are extracted from well-known open-source GitHub projects.
Each trace contains all the file versions uploaded by every
involved user during the collection period.

For the first seven traces, relatively few (i.e., 5–9) collabo-
rators work on a project for a couple of months. Each of their
workloads is unevenly distributed over time: during some pe-
riods collaborators frequently edit the shared files, whereas
during the other periods there are scarcely any edits to the
shared files. By contrast, in the last three traces, a large num-
ber of collaborators constantly submit their edits for quite a
few months, and thus generate many more file versions. In
addition, the collaborators involved in all the ten traces are
located across multiple continents.

Using these traces, we conducted a comparative measure-
ment study of eight mainstream cloud storage services: Drop-
box, OneDrive, Google Drive, iCloud Drive, Box, SugarSync,
Seafile, and Nutstore. For each service, we ran its latest PC
client (as of Jul. 2019) on Windows-10 VMs rented from Ama-
zon EC2; these VMs have the same hardware configuration
(a dual-core CPU@2.5 GHz, 8 GB memory, and 32 GB SSD
storage) and network connection (whose downlink/uplink
bandwidth is restricted to 100 / 20 Mbps by WonderShaper to
resemble a typical residential network connection [1, 19]).

We deployed puppet collaborators on geographically dis-
tributed VMs across five major regions to replay a trace, with
one client software and one puppet collaborator running on

one VM. Specifically, we rented AWS VMs in South America,
North America, Europe, the Middle-East, and the Asia-Pacific
(including East Asia and Australia). We instructed the puppet
collaborators to upload different file versions (as recorded
in the trace) to the cloud. To safely reduce the duration of
the replay, we skipped the “idle” timespan in the trace dur-
ing which no file is edited by any collaborator. In addition,
we strategically generated some “corner cases” that seldom
appear in users’ normal editing, so as to make a deeper and
more comprehensive analysis. For example, we edited fix-
sized small (KB-level) files to measure cloud storage services’
sync delay, so as to avoid the impact of file size variation;
we edited a random byte on a compressed file to figure out
their adoption of delta sync mechanisms; and we performed
specially controlled edits to investigate their usage of locks,
as well as their delivery time of lock status.

We captured all the IP-level sync traffic in the trace-driven
and benchmark experiments via Wireshark [25]. From the
traffic, we observe that almost all the communications during
the collaboration are carried out with HTTPS sessions (using
TLS v1.1 or v1.2). By analyzing the traffic size and occur-
rence time of respective HTTPS sessions, we can understand
the basic design of these eight mainstream cloud storage ser-
vices, e.g., using full-file sync or delta sync mechanisms to
deliver a file update.

To reverse engineer the implementation details, we at-
tempted to reverse HTTPS by leveraging man-in-the-middle
attacks with Charles [3], and succeeded with OneDrive, Box,
and Seafile. For the three services, we are able to get the
detailed information of each synced file (including its ID, cre-
ation time, edit time, and to our great surprise the concrete
content), as well as the delivered lock status and file update.
Furthermore, since Seafile is open source, we also read the
source code to understand the system design and implementa-
tion, e.g., its adoption of FIFO message queues and the CDC
delta sync algorithm.

For the remaining five cloud storage services, we are unable
to reverse their HTTPS sessions, as their clients do not accept
the root CA certificates forged by Charles. For these services,
we search the technical documentation (including design doc-
uments and engineering blogs) to learn about their designs,
such as locks and message queues [5, 9, 12, 14, 21, 22, 31].

USENIX Association 18th USENIX Conference on File and Storage Technologies 15

Cloud Storage Service Lock Mechanism Conflict Resolution Message Queue File Update Method
Dropbox No lock Keep all the conflicting versions LIFO rsync
OneDrive No lock Keep all the conflicting versions Queue Full-file sync

Google Drive No lock Keep only the latest version - Full-file sync
iCloud Drive No lock Ask users to choose among multiple versions - rsync

Box Manual locking Keep all the conflicting versions Queue Full-file sync
SugarSync No lock Keep all the conflicting versions Queue rsync

Seafile Automatic/manual⇤ Keep all the conflicting versions FIFO CDC
Nutstore Automatic locking Keep all the conflicting versions - Full-file & rsync

Table 3: A brief summary of the collaboration support of the eight mainstream cloud storage services in our study. “⇤”: Seafile only supports
automatic locking for Microsoft Office files. “-”: we do not observe obvious queuing behavior.

2.2 Results and Findings
Our study quantifies the occurrence of conflicts in different
cloud storage services, and uncovers their key design princi-
ples as summarized in Table 3.

Occurrence probability of conflicts. When the ten traces
are replayed with each cloud storage service, we find con-
siderable difference (ranging from 0 to 4.8%) in the ratio of
conflicting file versions (generated during a replay) over all
versions, as shown in Table 4. Most notably, Google Drive
appears to have never generated conflicts, because once it
detects conflicting versions of a file (at the cloud) it only
keeps the latest version based on their server-side timestamps.
In contrast, the most conflicting versions are generated with
iCloud Drive, because its sync delay (i.e., the delivery time of
a file update) is generally longer than that of the other cloud
storage services (as later indicated in Figure 3 and Table 5).
In comparison, for each trace Nutstore generates the fewest
conflicting versions (with Google Drive not considered), as
its automatic locking during collaboration can avoid a portion
(7.6%–19.1%) of conflicts.

Locks. We observe that the majority of the studied cloud
storage services (Dropbox, OneDrive, Google Drive, iCloud
Drive, and SugarSync) never use any form of locks for files
being edited. As a consequence, collaboration using these
products can easily lead to conflicts. Box, Seafile, and Nut-
store use coarse-grained file-level locks; unfortunately, we
find that their use of locks is either too early or too late2,
leading to undesired experiences. This is because cloud stor-
age services are unable to acquire users’ real-time editing
behaviors and thus cannot accurately determine when to re-
quest/release locks. Specifically, locking too early leads to
Pattern 4 in Table 1, locking too late (locking after editing)
leads to Pattern 1, and unlocking too early leads to Pattern 2.

Box only supports manual locks on shared files. When
Alice attempts to lock a shared file f and Bob has not opened
it, f is successfully locked by Alice and then Bob cannot edit
it (until it is manually unlocked by Alice). However, if Bob

2Ideally, a file should be locked right before the user starts editing, and
unlocked right after the user finishes the editing.

has already opened f when Alice attempts to lock it, he can
still edit it but cannot save it, because when Bob attempts
to save his edit the file editor (e.g., MS Word) will re-check
the permission of f . In essence, Box implements locks by
creating a process on Bob’s PC, which attempts to “lock” a
file by changing the file’s permission as read-only. In this
case, if Bob is using an exclusive editor (not allowing other
applications to write the file it opened), Alice’s edits cannot
be synced to Bob, thus leading to Pattern 3; otherwise, Bob’s
edits will be overwritten by Alice’s, leading to Pattern 1.

Seafile automatically locks a shared file f when f is opened
by an MS Office application, and f will not be unlocked
until it is closed. This locking mechanism is coarse-grained
and may lead to Pattern 4. For non-MS Office files, Seafile
supports manual locks in the same way as Box, and thus they
have the same issue in collaboration.

Nutstore attempts to lock a shared file f automatically,
when Alice saves her edit. At this time, if Bob has not opened
f , f is successfully locked by Alice and Bob cannot edit it;
after Alice’s saved edit is propagated to Bob, f is automati-
cally unlocked. However, if Bob opened the shared file before
Alice saves the file, Nutstore has the same problems as Box
and Seafile (Patterns 1 and 3 in Table 1).

Finally, we are concerned with the delivery time of a
lock status (i.e., whether a file is locked). According to our
measurements, the lock status is delivered in real time with
⇠100% success rates. As in Figure 2, the delivery time ranges
from 0.7 to 1.6 seconds, averaging at 1.0 second. This indi-
cates that today’s cloud storage services implement dedicated
infrastructure (e.g., queues) for managing locks.

In summary, implementing desirable locks in cloud storage
services is not only complex and difficult but also somewhat
expensive. Therefore, we feel it wiser to give up using locks.
Conflict resolution. We find three different strategies for
resolving the conflicts. First, Google Drive only keeps the
latest version (defined by the timestamp each version arrives
at the cloud). All the older versions are discarded and can
hardly be recovered by the users (Google Drive does not
reserve a version history for any file). Note that this notion
of “latest” may not reflect the absolute latest (which depends
on the client-side time), e.g., when the real latest version

16 18th USENIX Conference on File and Storage Technologies USENIX Association

0.8 1 1.2 1.4 1.6
Delivery Time (Second)

0

0.2

0.4

0.6

0.8

1

C
D

F

Nutstore
Seafile
Box

Figure 2: CDF of the delivery time of a lock
status. Note that among all the studied ser-
vices, only three of them use locks.

0 10 20 30
Delivery Time (Second)

0

0.2

0.4

0.6

0.8

1

C
D

F

Dropbox
OneDrive
Google Drive
iCloud Drive
Box
SugarSync
Seafile
Nutstore

Figure 3: CDF of the delivery time of a file
update, where the file is several KBs in size.

p r o p e

p

r

u

e

l

p

(0,0)

(8,6)

A Minimum-Cost Path
r l y

Figure 4: A simple edit graph for reconciling
V0 (the horizontal word “properly”) and V1
(the vertical word “purple”).

Trace DB OD GD ID Box SS SF NS
DB1 4.4% 4.4% 0 4.5% 4.3% 4.3% 4.3% 3.6%
DB2 4.7% 4.7% 0 4.8% 4.6% 4.7% 4.6% 3.8%
OD 4.1% 4.1% 0 4.2% 4.0% 4.0% 4.1% 3.5%
ID 4.1% 4.0% 0 4.1% 4.1% 4.1% 4.1% 3.4%

Box 4.3% 4.3% 0 4.4% 4.2% 4.3% 4.3% 3.7%
SS 4.2% 4.1% 0 4.2% 4.2% 4.1% 4.2% 3.7%
SF 4.5% 4.5% 0 4.6% 4.5% 4.5% 4.5% 3.8%
SG 1.3% 1.3% 0 1.3% 1.3% 1.3% 1.3% 1.2%
TG 3.5% 3.5% 0 3.5% 3.5% 3.5% 3.5% 3.2%
LG 4.0% 4.0% 0 4.0% 4.0% 4.0% 4.0% 4.0%

Table 4: Ratio of conflicting file versions (over all versions) when the
ten traces are replayed with each of the studied cloud storage services.
DB=Dropbox, OD=OneDrive, GD=Google Drive, ID=iCloud
Drive, SS=SugarSync, SF=Seafile, NS=Nutstore, SG=Spark-Git,
TG=TensorFlow-Git, and LG=Linux-Git.

arrives earlier due to network latency. Second, iCloud Drive
asks the user to choose one version from all the conflicting
versions. The user has to compare them by hand, and then
make a decision (which is often not ideal). Third, a more
common solution is to keep all the conflicting versions in the
shared folder, and disseminate them to all the collaborators.
This solution is more conservative (which does not cause
data loss), but leaves all burdens to users. Moreover, given
the distributed nature, merging efforts from the collaborators
could cause further conflicts if not coordinated well.

Given the difficulties in resolving conflicts, we advocate
that cloud storage services should make more effort to proac-
tively avoid, or at least significantly reduce, the conflicts.

Delivery latency and message queue. Delivery latency of a
file (update) prevalently exists in cloud storage at both infras-
tructure (e.g., S3 and Azure Blob) and service (e.g., Dropbox)
levels [34, 35, 43, 64, 67, 74]. It stems from multiple factors
such as network jitter, system I/O, and load balancing in the
datacenter [43, 50]. We measure the delivery time of a file up-
date regarding the eight cloud storage services. As in Figure 3
and Table 5, some services always have reasonable delivery
time. On the other hand, in a few services, the maximum

Cloud Service Min Median Mean P99 Max
Dropbox 1.6 2.0 141.2 312 17751
OneDrive 1.6 4.0 33.4 106 4415

Google Drive 10.9 11.7 11.7 12.9 18.1
iCloud Drive 8.1 11.8 11.9 11.9 16.9

Box 4.4 5.1 41.8 115 6975
SugarSync 2.0 6.8 51.3 124 7094

Seafile 2.7 4.0 53.8 99 9646
Nutstore 4.2 5.0 5.0 5.0 5.6

Table 5: Statistics (in unit of second) of the delivery time of a file
update, where the file is several KBs in size.

delivery time reaches several hours for a KB-level file, and
the 99-percentile (P99) delivery time can reach hundreds of
seconds. The unpredictability and long tail latency can some-
times break the time order among file updates, which is the
main root cause of Patterns 2 and 3.

Additionally, we find that the implementation of message
queues in some cloud storage services aggravates the delivery
latency. Specifically, different services have very different
message queue implementations, leading to different queue-
ing behaviors. For a FIFO queue (used by Seafile), when the
server is overloaded, many requests for file/fetch updates are
processed by the server but not accepted by the client due
to client-side timeout, thus wasting the server’s processing
resources. This problem can be mitigated by using LIFO
queues (used by Dropbox). However, for a LIFO queue, the
requests from “unlucky” users (who encounter the server’s
being overloaded after issuing fetch update requests) wait for
a long duration. We suspect that the services with excessively
long delivery time are using big shared queues with no QoS
consideration, and may benefit from using a dedicated queue
like QJUMP [41].

File update methods. Collaboration results in frequent,
short edits to files. Delta sync is known to be efficient in updat-
ing short edits, compared with full-file sync where the whole
file has to be transferred [49]. To understand the file update
method, we let Alice modify a Z-byte highly compressed file,

USENIX Association 18th USENIX Conference on File and Storage Technologies 17

where Z 2 {1,1K,10K,100K,1M}, and observed the traffic
usage in delivering the file update. By comparing the traffic
usages in uploading and downloading an update, we find that
OneDrive, Google Drive, and Box adopt full-file sync, and
the others adopt delta sync (rsync [72] or CDC [59]). Espe-
cially, we confirm Seafile’s adoption of CDC from its source
code [17]. In terms of Nutstore, it adopts a hybrid file update
method: full-file sync for small (64 KB) files and delta sync
for the other files, so as to achieve the highest update speed,
because small and large files are more suitable for full-file and
delta sync, respectively (full-file sync requires fewer rounds
of client-server message exchanges).

2.3 Implications
Our study results show that today’s cloud storage services
either do not use any locks or use coarse-grained file-level
locks to prevent conflicts. The former would inevitably lead
to conflicts. The latter, however, is hard to prevent conflicts
in practice for two reasons: 1) it is hard to accurately pre-
dict user’s editing behaviors in real time and therefore to
determine the timing of applying the lock, and 2) the latency
between the client and the server can vary significantly, so
file-level conflicts are generally inevitable. Furthermore, the
study shows that full-file and delta sync methods can be com-
bined to accelerate the delivery of a file update. To address
the revealed issues, we explore the possibility of developing
lock-free conflict resolution by inferring fine-grained user in-
tentions. We also explore a hybrid design of full-file and delta
sync methods for efficient file update and synchronization.

3 Our Solution

This section aims to address the challenges uncovered in §2.
Our key idea is to model file editing events as insert or
delete operations (§3.2). Based on the operation model, we
infer the collaborators’ operation sequences (§3.3), and then
transform these sequences (§3.4) based on their conflicts to
generate the final version. We explain the above procedure
with a simple case of two file versions, and demonstrate its
applicability to the complex case of multiple versions (§3.5).
We also design optimizations to the maintenance of shared
files’ historic versions (§3.6),

3.1 True and False Conflicts
We examine the conflicting file versions as listed in Table 4
in great detail. We find that ⇠1/3 of them come from non-text
(e.g., PDF or EXE) files, which, as mentioned in §1, are typ-
ically generated based on text files and thus can be simply
deleted or regenerated from text files for pretty easy conflict
resolution. The remainder relate to text files, the vast majority
of which, to our surprise, only contain “false positive” con-

flicts as the collaborators in fact operated on different parts of
a shared file.

Take the Dropbox-1 collaboration trace as an example.
When it is replayed with Dropbox or OneDrive, among the
3,527 file versions hosted at the cloud side, 154 text files
are considered (by Dropbox and OneDrive) to be conflicting
versions and then distributed to all the collaborators. Actually,
152 out of the 154 apparently conflicting versions can be
correctly merged at the cloud side. The remaining two cannot
be correctly merged as two collaborators happen to edit the
same part of the shared file in parallel, thus generating 9 true
conflicts. In other words, the vast majority of the (coarse-
grained) file-level conflicts are false (positive) conflicts when
seen at the (fine-grained) operation level.

3.2 Explicit and Implicit Operations
We model operation as the basic unit in collaborative file
editing. A shared file can be regarded as a sequence of char-
acters, and an explicit operation is a user action that has truly
occurred to the shared file, modifying some of its characters.
In detail, an explicit operation O consists of seven properties:
• There are two possible operation types: insert and
delete; O.type represents the operation type of O.

• The targeted string is the string that will be inserted or
deleted by O, which is denoted by O.str.

• The length of O is the (character) length of O.str, which is
denoted by O.len.

• The position of O is where O.str will be inserted to or
deleted from in the shared file, which is denoted by O.pos.

• O must be performed on a context (file version), which is
called the base context of O, or denoted as O.bc.

• O is performed on O.bc to generate a new context, which
is called the result context of O, or denoted as O.rc.

• The range of characters impacted by O in O.bc is the impact
region of O, denoted as O.ir. It is calculated as:

O.ir =

(
[O.pos,O.pos+1) if O.type = insert;
[O.pos,O.pos+O.len) if O.type = delete.

This formula tells that when a string is inserted to O.bc, the
insert operation only affects the position (in O.bc) where the
string is inserted; but when a string is deleted from O.bc,
the positions where all the characters of the string formerly
appear at O.bc are affected.

Automatically acquiring a user’s explicit operations is triv-
ial and lightweight when the editor can be monitored, e.g., in
Google Docs [7] and Overleaf [15]. In these systems, users
are required to use a designated online file editor, by moni-
toring which all the collaborators’ explicit operations can be
directly captured in real time.

In contrast, our studied cloud storage services are supposed
to work independently with any editors and support any types
of text files, thus bringing great convenience to their users

18 18th USENIX Conference on File and Storage Technologies USENIX Association

(especially non-technical users). Therefore, we do not attempt
to monitor any editors or impose any restrictions on the file
types, and thus cloud storage services cannot capture users’
explicit operations. Instead, we choose to analyze users’ im-
plicit operations based on the numerous file versions hosted
at the cloud side. For a shared file f , implicit operations repre-
sent the cloud-perceived content changes to f (i.e., the even-
tual result of a user’s editing actions), rather than the user’s
editing actions that have actually happened to f . Obviously,
implicit operations, as well as their various properties, have to
be indirectly inferred from the different versions of f . Since
we focus on implicit operations in this work, we simply use
“operations” to denote “implicit operations” hereafter.

3.3 Operation Inference (OI)
When no conflict happens, inferring the operations from two
consecutive versions of a file is intuitive, so in this part we
only consider the OI when two conflicting versions emerge at
the cloud. Note that when there are more than two conflicting
versions, our described algorithms below still apply.

When two conflicting versions of a file, V1 and V2 (of n1
and n2 bytes in length) are uploaded to the cloud by two
collaborators, the cloud first pinpoints their latest common-
context version V0 (of n0 bytes in length) hosted in the cloud.
Generally, the cloud knows which version is consistent with
a collaborator’s local copy during her last connection to the
cloud. When the collaborator uploads a new version, this
“consistent” version is regarded as the base context (version)
of the new version, so that all versions of a shared file consti-
tute a version tree, in which the parent of a version is its base
context. Therefore, to pinpoint V0 is to find the latest common
ancestor of V1 and V2 in the version tree.

After pinpointing V0, the cloud starts to infer the operation
sequences (S1 and S2) that change V0 to V1 and V2, respec-
tively. To infer S1, the common approach is to first find the
longest common subsequence (LCS) between V0 and V1 us-
ing dynamic programming [33, 44, 57]. Then, by comparing
the characters in V0 and the LCS one by one, a sequence of
delete operations can be acquired, which changes V0 to the
LCS; in a similar manner, a sequence of insert operations
that changes the LCS to V1 can be acquired. After that, the ac-
quired delete and insert operations are combined to consti-
tute S1 (S2 is constituted in a similar manner). Unfortunately,
this common approach requires O(n0 ⇤n1) computation com-
plexity, which may require considerable time for a large file,
e.g., ⇠30 seconds for a 500-KB file.

To address this problem, we leverage an edit graph [4, 55]
to organize V0 and V1. Figure 4 exemplifies how to calculate
the LCS between two words “properly” (V0, on the horizontal
axis) and “purple” (V1, on the vertical axis) using an edit
graph, where a diagonal edge has weight 0 and a horizontal
or vertical edge has weight 1. Accordingly, finding the LCS
between V0 and V1 is converted to finding a minimum-cost

path that goes from the start point (i.e., (0,0) in Figure 4) to
the end point (i.e., (8,6) in Figure 4). With an edit graph, the
problem can be solved with O((n0 +n1)⇤d) complexity [55],
where d = n0+n1�2l is the number of horizontal and vertical
edges (i.e., the length of difference between V0 and V1) and l
is the number of diagonal edges (i.e., the length of the LCS).
Note that d is usually much smaller than n0 and n1 in practice:
in our collected traces, the median and mean values of d

n0+n1
are merely 0.12% and 2.19%. Thus, the cloud can infer S1
and S2 efficiently using the edit graph, e.g., for a 500-KB file
the inference time is typically optimized from ⇠30 seconds
to ⇠200 ms, resulting in a 150⇥ reduction.

3.4 Operational Transformation (OT)
After the operation sequences S1 and S2 are inferred, which
contain s1 and s2 operations respectively (all operations in
a sequence are sorted by their position and have the same
base context V0), the cloud first detects whether there exist
true conflicts, and then constructs a conflict graph [53] (as
shown in Figure 5) if there are any. A conflict graph is a
directed acyclic graph that has s1 + s2 vertices representing
the aforementioned s1 + s2 operations. After that, operation
transformation (OT) [39] is adopted to transform and merge
S1 and S2 into a result sequence Sr, which can be executed on
V0 to generate the merged file version V1,2.

Detecting true conflicts. In order to detect true conflicts
between S1 and S2, the cloud first merges S1 and S2 into
a temporary sequence Stemp sorted by the operations’ posi-
tion, and initializes the conflict graph G with s1 + s2 vertices
and 0 edges. Then, for each operation in Stemp, the cloud
checks whether the operations behind it conflict with it – this
is achieved by checking whether the impact regions of two
operations overlap each other. If two operations Stemp[i] and
Stemp[j] are real conflicting operations, an edge ei, j connect-
ing vi to v j (denoted by solid arrows in Figures 5a and 5b)
is added to G to represent a true conflict. If there are no true
conflicts between any two operations, G is useless and sim-
ply discarded. The detection, in the worst case (where each
operation in S1 conflicts with each operation in S2), bears
O((s1 + s2)2) complexity. However, in common cases there
exist only a few conflicts, and thus the detection can be quickly
carried out with O(s1 + s2) complexity.

Basics of OT. As the de facto technique for conflict res-
olution in distributed collaboration, OT [39] has been well
studied [40,61] and used (e.g., Google Docs [7], Overleaf [15],
Wave [24], and Etherpad [6]). It resolves conflicts by trans-
forming parallel operations on a shared file to equivalent
sequential operations (if possible). A very simple example of
OT is shown in Figure 6. More details and examples of OT
can be found at https://UFC2.github.io

OT when there are no true conflicts. According to our
detection results on the ten collaboration traces (cf. Table 2),

USENIX Association 18th USENIX Conference on File and Storage Technologies 19

https://UFC2.github.io

(a)

(b)

Inferred operations in S1

Inferred operations in S2
Operation position

1

8

2

74

5 6

3

(c) 18 274 5 6 3

1 82

7

4

5

6

3

Figure 5: Reordering conflicting operations with a conflict graph.
(a) In the two operation sequences S1 and S2, a dashed line denotes a
sequence, while a solid arrow represents a true conflict. (b) S1 and S2
are reorganized into a conflict graph, where conflicting operations are
linked with directed edges. (c) In the result sequence Sr, operations
are sorted by their topological order in the conflict graph.

OT

V0

O1 O2

V1 V2

V0

O1

O2'

V1

V1,2
Figure 6: An example of OT that merges V1 and V2, in which O2 is
transformed to O0

2 to resolve the conflict between O1 and O2.

when a file-level conflict occurs there are no true conflicts
with a very high (>95%) probability, which is consistent
with the results of our manual examination in §3.1. When
there are no true conflicts detected, the cloud directly applies
OT on S1 and S2 to generate Sr and V1,2. Traditionally, the
computation complexity of OT is deemed as O((s1+ s2)2). In
our case, since there are no true conflicts and Stemp are already
sorted by the operations’ position, we choose to transform the
operations in Stemp in their descending order of position, thus
achieving a much lower complexity of O(s1 + s2). After the
transformation, we get Sr and execute Sr on V0 to generate
the merged version.

OT in the presence of true conflicts. If there are true con-
flicts detected, it is impossible to directly and correctly resolve
the conflicts as in the above case. Consequently, we choose to
prioritize the mitigation of user intervention while preserving
potentially useful information, so as to facilitate users’ man-
ual conflict resolution. Specifically, two principles should be
followed: 1) the cloud should send only one merged version
V1,2 to the collaborators for easy manual conflict resolution;
and 2) users’ editing intentions should be retained as much
as possible, while the number of conflicts that have to be
manually resolved in V1,2 had better be minimized.

To realize the two principles, our first step is to utilize
topological sorting [46] to reorganize and help transform S1

and S2 (via their conflict graph G) following two rules. First,
real conflicting operations should be transformed and put
into Sr in the ascending order of their position, so that their
conflicts can be resolved at one time and thus do not negatively
impact the transformation of other operations. Second, non-
conflicting operations should be put into Sr in the descending
order of their position, so that they can be quickly transformed
like in the case of no true conflicts.

After S1 and S2 are topologically sorted and put into Sr
(see Figure 5c), we apply our customized OT scheme to em-
body the aforementioned two principles for resolving true
conflicts. First of all, we classify true conflicts into differ-
ent categories that are suited to different processing strate-
gies. Given two conflicting operations O1 and O2 working
on the same base context (V0), there seem to be four differ-
ent categories of conflicts in the form of “O1.type/O2.type”:
1) delete/delete, 2) delete/insert, 3) insert/delete,
and 4) insert/insert. Here “/” means O1.pos  O2.pos.
However, by carefully examining the impact regions of O1
and O2 (O1.ir and O2.ir) in each category, we find that
insert/delete conflicts are never true conflicts, because
an insert operation only affects the targeted string at the po-
sition it appears, and never affects a to-be-deleted string that
starts behind this position. Thus, we only need to deal with
the other three categories as follows.

• For a delete/delete conflict, all the characters deleted
by the users (say, Alice and Bob) are O1.str[O2.str. To
retain both users’ editing intentions as much as possible,
we choose to delete only the characters both users want
to delete (i.e., O1.str\O2.str), while preserving the other
characters with related information. For example, let V0 =
“We need foods, water, clothes, and books.”; O1 made by
Alice is to delete “foods, water, ” at position 8, whereas
O2 made by Bob is to delete “water, clothes, ” at posi-
tion 15. In this case, O1 is transformed to insert “[Al-
ice delete:foods,]” at position 8, and O2 is transformed
to insert “[Bob delete:clothes,]” at position 30 (= 8+
the length of “[Alice delete:foods,]”). After the two trans-
formed operations are executed on V0, the merged version
V1,2 is “We need [Alice delete:foods,][Bob delete:clothes,
]and books.” This is not a perfect result, but is pretty easy
to be manually resolved by Alice and Bob.

• For a delete/insert conflict, we notice that the charac-
ters deleted by Alice might be the literal context of the
characters inserted by Bob. Thus, the deleted characters
should be preserved to facilitate (mostly Bob’s) manual
conflict resolution. For example, let V0 = “There is a cat
in the courtyard.”; O1 is to delete “ in the courtyard” at
position 14, changing V0 to V1 (“There is a cat.”), whereas
O2 is to insert “spacious ” at position 22, changing V0 to
V2 (“There is a cat in the spacious courtyard.”). Without
appropriate transformation, the merged version is “There
is a catspacious .”, which is obviously confusing. In this

20 18th USENIX Conference on File and Storage Technologies USENIX Association

Trace # File Versions # Conflicting Versions # MV Conflicts # Conflicts # True Conflicts Reduction of Conflicts
Dropbox-1 3527 154 8 501 9 98.2%
Dropbox-2 2193 104 12 257 5 98.1%
OneDrive 2673 109 10 284 7 97.5%

iCloud Drive 3211 133 9 402 8 98.0%
Box 2930 125 5 374 8 97.9%

SugarSync 3472 147 13 523 11 97.9%
Seafile 2823 126 11 411 9 97.8%

Spark-Github 129957 1728 133 6724 167 97.5%
TensorFlow-Github 246016 8621 845 66231 1097 98.3%

Linux-Github 901167 36048 3210 216584 2882 98.7%
Table 6: Measurement statistics when the ten collaboration traces are replayed with UFC2. “MV Conflicts” denote the conflicts of multiple
versions, i.e., � 3 conflicting versions are generated from the same base version.

case, O1 is split into two operations: one is to insert
“[Alice delete: in the]” at position 14, and the other is to
insert “[Alice delete: courtyard]” at position 37 (= 14+
the length of “[Alice delete: in the]”); and O2 is trans-
formed to insert “[Bob insert: spacious]” at position 37.
Afterwards, V1,2 is “There is a cat[Alice delete: in the][Bob
insert: spacious][Alice delete: courtyard].”, which is also
imperfect but easy to be manually resolved.

• For an insert/insert conflict, except when O1.str =
O2.str (which rarely happens), we choose to preserve both
O1.str and O2.str by inserting O2.str after O1.str, mean-
while adding the related information. For example, let V0 =
“We need foods and books.” O1 is to insert “, water,” at
position 13, whereas O2 is to insert “, clothes,” at the
same position. In this case, V1,2 is “We need foods, [Alice
insert:water][Bob insert:clothes], and books.”

3.5 Merging Conflicts of Multiple Versions

Our above-designed scheme, despite being described with
a simple case of two versions, is also applicable to solving
conflicts between multiple versions. Multi-version conflicts
do not often happen in practice, e.g., we can calculate from
Table 6 that they only account for 9% of the total conflicts.

In this complex case, suppose multiple collaborators (say
n � 3) simultaneously edit the same base version V0 and then
generate n conflicting versions V1, V2, V3, ... , Vn. To resolve
such conflicts, we first figure out the operation sequences (i.e.,
S1, S2, S3, ..., Sn) for each version using edit graphs, which
represent the changes in each version relative to their common
base version V0. Afterwards, with our devised operation trans-
formation method, all the operation sequences are merged
one by one, so as to generate the result operation sequence
Sr1,2,3,...,n . Specifically, S1 and S2 are first merged to generate
Sr1,2 , and then S3 are merged with Sr1,2 to generate Sr1,2,3 . This
procedure is repeated until all the operation sequences are
merged, resulting in Sr1,2,3,...,n . Finally, similar to the simple
case of two versions , Sr1,2,3,...,n is executed on V0 to generate
the final version V1,2,3,...,n.

Insert Delete

Mark Mark Mark

New boundary

�D� Chunks in V0 and
two operations

�E� Mark the Dffected
chunks in V1,2

(c) Recalculate boundaries
for the marked chunks

New boundary

① ④ ② ③

① ② ③ ④

① ⓑ ⓓⓒ ⓔ

Figure 7: Boundary recalculation in OCDC. Chunk 2� is split into
b� and c� as its size exceeds the size limitation of a single chunk
after the characters are added. Chunks 3� and 4� are re-partitioned
as d� and e� as the total sizes of their remaining parts exceed the
size limitation of a single chunk (otherwise, they will be combined).

3.6 Maintenance of Historic Versions
The merged version V1,2 of a shared file, as well as the pre-
vious versions, should be kept in the cloud so that 1) users
can retrieve any previous versions as they wish, and 2) the
cloud can pinpoint V0 from historic versions in future conflict
resolutions. To save the storage space for hosting historic ver-
sions, we break each version into variable-sized data chunks
using CDC [59] for effective chunk-level deduplication.

For a user-uploaded file version, guided by the findings in
§2.2, we adopt full-file sync for small (64 KB) files and
CDC delta sync for larger files to achieve the (expected) short-
est upload time. Here we adopt CDC delta sync rather than
the more fine-grained rsync to make our delta sync strategy
compatible with the aforementioned CDC-based version data
organization. In other words, we allow a little extra network
traffic to save expensive computation cost.

For a server-merged version V1,2, we exploit the implicit op-
erations inferred during the aforementioned conflict resolution
to accelerate CDC, which is referred to as operation-based
CDC (OCDC). Specifically, for each operation in the result
sequence Sr, we examine whether its impact region overlaps
the boundaries of any chunks of V0 (see Figure 7 (a)); if yes,
we mark the boundary (or boundaries) as “changed” (see Fig-
ure 7 (b)). After examining all operations in Sr, we use the
unchanged boundaries to split V1,2 into multiple parts, and
recalculate the block boundaries of those parts that contain

USENIX Association 18th USENIX Conference on File and Storage Technologies 21

0 50 100
File Size (KB)

20

40

60

80

100

In
fe

re
nc

e
Ti

m
e

(m
s) Linear Fitting

 R = 0.9236

Figure 8: Time overhead incurred by our de-
vised operation inference. Here R is the corre-
lation coefficient between the measurements
and linear fitting.

0 50 100
Number of Operations

0

0.2

0.4

0.6

0.8

Tr
an

sf
or

m
at

io
n

Ti
m

e
(m

s)

Linear Fitting - True Conflicts (x)
Linear Fitting - False Conflicts (+)

 R1 = 0.9446
 R2 = 0.9521

Figure 9: Time overhead incurred by our de-
vised operation transformation. Here R1 and
R2 are the correlation coefficients with and
without true conflicts.

0 50 100
File Size (KB)

0

1

2

3

4

Ti
m

e
(S

ec
on

d)

File Update
Conflict Resolution

Figure 10: Total time overhead of a con-
flict resolution vs. the delivery time of a file
update (using the hybrid full-file/delta sync
method).

“changed” boundaries (see Figure 7 (c)). OCDC is especially
effective when there is only small difference between V1/V2
and V0 (which is the usual case in practice).

4 Implementation and Evaluation

To implement our design, we build a prototype system UFC2
(User-Friendly Collaborative Cloud) on top of Amazon Web
Services (AWS) with 5,000 lines of Python code, and evaluate
UFC2 using real-world workloads in multiple aspects.

4.1 Implementation
At the infrastructure level of UFC2, we host the (hierarchical)
metadata of historic versions in Amazon EFS for efficient file
system access, and the (flat) data chunks in Amazon S3 for
economic content storage – note that the unit storage price
of EFS (⇠$0.3/GB/month) is around 10⇥ higher than that of
S3 [38]. Besides, the web service of UFC2 runs on a standard
VM (with a dual-core CPU @2.5 GHz, 8-GB memory, and 32-
GB SSD storage) rented from Amazon EC2. Moreover, the
employed EFS storage, S3 storage, and EC2 VM are located
at the same data center in Northern Virginia, so there is no
bottleneck among them. At the client side, we deploy puppet
collaborators on geo-distributed VMs rented from Amazon
EC2 to replay our collected ten real-world collaboration traces
(cf. Table 2). Details of these VMs and the replay processes
are the same as those described in §2.1.

4.2 Experiment Results
Ratio of conflicts resolved. Our first metric to evaluate the
collaboration support of cloud storage services is the num-
ber of conflicts. We replay the ten traces with UFC2, and
observe that the file versions generated by UFC2 (at the cloud
side) are slightly different from those generated by Drop-
box/OneDrive/iCloud Drive/Box/SugarSync/Seafile (cf. §2.2)
due to the variation (esp., in latency) of network environments;
also, the resulting conflicts are slightly different. Notably, all
the false conflicts are automatically resolved by UFC2. The

remaining conflicts are all true conflicts that should be manu-
ally resolved by the collaborators, assisted with the helpful
information automatically added by UFC2. As listed in Ta-
ble 6, the ratio of conflicts is reduced by 97.5%–98.7% for
different traces, i.e., an average reduction by 98%.

Time overhead of conflict resolution. Conflict resolution
in UFC2 consists of two steps: operation inference (OI, §3.3)
and operation transformation (OT, §3.4). Thus, we first exam-
ine the time overhead incurred by the two steps separately, and
then analyze the total time of conflict resolution (compared
to the delivery time of a file update).

First, we record the time of OI in every conflict resolu-
tion when replaying the ten traces with UFC2. The results
are plotted as a scatter diagram shown in Figure 8, together
with a linear fitting. The correlation coefficient (R) between
the measurements and the linear fitting results is as large as
0.9236, indicating that the time of OI is generally proportional
to the file size. This is because by leveraging an edit graph,
we reduce the computation complexity of OI from O(n0 ⇤n1)
to O((n0 +n1)⇤d) (refer to §3.3 for the details).

Second, we record the time of OT in every conflict resolu-
tion, and find it is very small (<1 ms) compared to the time
of OI. As shown in Figure 9, the time of OT is highly pro-
portional to the number of operations; in addition, the perfor-
mance is quite similar with or without true conflicts. Accord-
ing to §3.4, the complexity of our devised OT is O(s1 + s2),
which explains the experiment results.

Further, we calculate the total time of a conflict resolution,
and record the delivery time of the corresponding file update
(using the hybrid full-file/delta sync method). As shown in
Figure 10, the total time of a conflict resolution is 10–80
ms, while the delivery time of a file update is 1.5–3 seconds.
The former is merely 0.6%–4% (on average 2%) of the latter,
showing that our conflict resolution brings negligible perfor-
mance overhead to the collaboration in cloud storage.

Time overhead of OCDC vs. traditional CDC. We record
the time spent in breaking a merged file version into data

22 18th USENIX Conference on File and Storage Technologies USENIX Association

0 50 100
File Size (KB)

0

100

200

300

400

D
at

a
C

hu
nk

in
g

Ti
m

e
(m

s)

Linear Fitting - Tranditional CDC (x)
Linear Fitting - OCDC (+)

 R1 = 0.9861
 R2 = 0.9690

Figure 11: Data chunking time for a com-
mon file, using OCDC vs. traditional CDC.

0 50 100
File Size (KB)

0

20

40

60

80

100

120

Sy
nc

 T
ra

ffi
c

(K
B)

Google Drive
UFC2
Nutstore
iCloud Drive
Dropbox

Figure 12: Sync traffic of UFC2 and repre-
sentative cloud storage services for a file up-
date when there are no file-level conflicts.

0 50 100
File Size (KB)

0

2

4

6

8

10

12

Sy
nc

 T
im

e
(S

ec
on

d) Google Drive
iCloud Drive
Dropbox
Nutstore
UFC2

Figure 13: Sync time of UFC2 and represen-
tative cloud storage services for a file update
when there are no file-level conflicts.

0 50 100
File Size (KB)

0

50

100

150

200

250

Sy
nc

 T
ra

ffi
c

(K
B)

Google Drive
Nutstore
iCloud Drive
Dropbox
UFC2

Figure 14: Sync traffic of UFC2 and repre-
sentative cloud storage services for a file up-
date when there exist file-level conflicts.

0 50 100
File Size (KB)

0

10

20

30

Sy
nc

 T
im

e
(S

ec
on

d) Google Drive
iCloud Drive
Dropbox
Nutstore
UFC2

Figure 15: Sync time of UFC2 and represen-
tative cloud storage services for a file update
when there exist file-level conflicts.

Dropbox-1
Dropbox-2

OneDrive

iCloud Drive Box

SugarSync
Seafile

Spark-Github

TensorFlow-Github

Linux-Github
0

0.5

1

1.5

N
or

m
al

iz
ed

 S
to

ra
ge

No Deduplication
UFC2

Figure 16: Normalized storage overhead of
historic file versions for the ten real-world
collaboration traces.

chunks with OCDC when replaying the ten traces with UFC2.
For comparison, we also break the same merged file version
into data chunks with traditional CDC.

As shown in Figure 11, for both OCDC and traditional
CDC, the data chunking time is highly proportional to the
file size. This is quite intuitive because a larger file is usually
broken into more chunks. Additionally, we notice that OCDC
outperforms traditional CDC by ⇠3 times, reducing the data
chunking time from 30–400 ms to 10–120 ms.

Network overhead. We compare the sync traffic of UFC2
with those of Dropbox, Google Drive, iCloud Drive, and Nut-
store, for a file update. We only select the four cloud storage
services since Dropbox, Google Drive, and iCloud Drive each
represent a typical strategy for conflict resolution adopted by
existing cloud storage services (i.e., keep all conflicting ver-
sions, only keep the latest version, and force users to choose
one version, cf. §2.2) while Nutstore is the only service that
combines full-file sync and delta sync to enhance the file
update speed.

As shown in Figure 12, when there are no file-level con-
flicts, the sync traffic of Google Drive is close to the file size,
as Google Drive adopts full-file sync. In contrast, Dropbox
and iCloud Drive always consume nearly 10 KB and 30 KB
of sync traffic respectively due to their adoption of delta sync;

we infer that the sync granularity of Dropbox is finer than
that of iCloud Drive. In contrast, Nutstore and UFC2 resem-
ble Google Drive for small (64 KB) files and Dropbox for
larger files, as they both adopt full-file sync for small files and
delta sync for larger files to achieve the shortest sync time
(see Figure 13). This hybrid sync method results in substantial
savings of sync traffic for Nutstore and UFC2 after the turning
point (64 KB) in Figures 12 and 14.

As shown in Figure 14, when there exist file-level conflicts,
the sync traffic of Google Drive is nearly twice of the file size.
This is because (the client of) Google Drive first uploads the
local version, and then downloads the cloud-hosted newer ver-
sion to overwrite the local version. In contrast, the sync traffic
consumed by Dropbox or iCloud Drive is close to the file
size; this is because the client of Dropbox (or iCloud Drive)
renames one of the conflicting versions, and the renamed one
is uploaded as a newly-created file using full-file sync (which
usually consumes more traffic than necessary since delta sync
can still be applied).

The case of Nutstore in Figure 14 is a bit complex: for small
files, its sync traffic is nearly twice of the file size (similar
to Google Drive); for larger files, the traffic is slightly larger
than the file size (similar to Dropbox/iCloud Drive). This
is because Nutstore renames one of the conflicting versions

USENIX Association 18th USENIX Conference on File and Storage Technologies 23

when a file-level conflict occurs – if the file is small (64
KB), the two files are both uploaded to the cloud using full-file
sync; otherwise, the renamed file is uploaded using full-file
sync (which usually consumes unnecessary traffic) whereas
the original file is uploaded using delta sync.

Finally, we examine the case of UFC2 in Figure 14. Its
client first uploads a conflicting version and then downloads
the merged version from the cloud. For a small file, the two
versions are both delivered using full-file sync, so the sync
traffic is nearly twice of the file size; for a larger file, the two
versions are both delivered using delta sync (which is more
traffic-saving than what Nutstore does for a larger file), so the
sync traffic is always as small as ⇠20 KB. This is why UFC2
achieves the shortest sync time, as shown in Figure 15.

Storage Overhead. For the maintenance of a file’s historic
versions, the straightforward approach is to store all versions
separately without data deduplication; its storage overhead
is taken as the baseline and normalized as 1.0, as shown in
Figure 16. Utilizing CDC-based deduplication, the storage
overhead of UFC2 is normalized between 0.43 and 0.59 (0.49
on average) with respect to the ten traces. In comparison, the
storage overhead of Google Drive is normalized as small as
0.05–0.1, because Google Drive only stores the latest version
and discards all previous versions. We do not quantify the stor-
age overhead of the other mainstream cloud storage services
since we do not know their cloud-side storage organization.

5 Related Work
Various schemes have been proposed to address the collabo-
ration conflicts in distributed file systems (DFS) and version
control systems (VCSes). In this section, we survey the typical
schemes and compare them to our design choices.

Conflict resolution in DFSes. LOCUS [73], Coda [47] and
InterMezzo [32] mark files with unresolved conflicts as incon-
sistent, so that these files are inaccessible until users manually
rename and merge them. These schemes prevent users from
accessing the conflicting files before conflicts are resolved,
and the idea of restrictive access is inherited by some recent
cloud-backed file systems such as SCFS [30].

In contrast, Ficus [60] and Rumor [42] attempt to design
specific conflict resolvers (using semantic knowledge of cer-
tain file types or user-made rules), so as to automatically
merge conflicts of specific kinds. Bayou [69] preserves all
conflicting files and allows users to access them. Similar
approaches are adopted by recent large-scale systems like
Dynamo [36], TierStore [37], Depot [52], and COPS [51],
where all conflicting file versions are preserved, and users are
forced to manually resolve all file-level conflicts. In fact, the
above described strategies are also adopted (in part) by our
studied popular cloud storage services.

Our work essentially differs from the aforementioned
schemes by providing not only effective but also transpar-
ent and user-friendly collaboration support for replicated files

in distributed environments. The desired features are enabled
by our novel perspective and intelligent technical approaches
in addressing the concurrent conflicts.

Conflict resolution in VCSes. Popular VCSes, such as
SVN, CVS, Git, RCS [71], and SunPro [26], generally oper-
ates at a (text) line level. To resolve the conflicts between two
versions of a shared file, they use delta algorithms like bdiff
[70] and UNIX diff [45] to find the modified lines, which
are then simply combined to form a merged version. However,
if two users’ modifications are made on the same line, they
have to manually pick which line to retain. Recently, a more
advanced approach called structured merge [27,28,48,75] has
emerged in the software engineering community, which takes
the syntactic structure of a program into account and thus
can resolve very detailed conflicts happening to non-essential
elements (e.g., comments, tabs, and blanks) of a program. Dif-
ferent from VCSes’ line-level or syntactic approaches that is
mostly designed for developers, our work studies conflict res-
olution for general-purpose cloud storage services designed
for regular end users.

6 Conclusion

Despite a rich body of techniques for resolving conflicts in
collaborative systems [29, 40, 56, 65, 66], today’s mainstream
cloud storage services still use the simplest form, i.e., coarse-
grained file-level conflict detection and resolution. Given that
collaboration has become a major use case of cloud storage
services, existing mechanisms, as revealed in this paper, are
deficient, inconvenient, and sometimes frustrating.

To address the issue, we make a series of efforts towards
understanding and improving collaboration in cloud storage
services from a novel perspective of operations without using
any locks. We find that the vast majority of conflicts reported
by today’s cloud storage services are false conflicts, and de-
sign intelligent approaches to efficient operation inference,
user-friendly operation transformation, and judicious mainte-
nance of historic versions. We implement all the approaches
in an open-source prototype system that can significantly
reduce collaboration conflicts and meanwhile preserve the
transparency and user-friendliness of cloud storage services.

Acknowledgements

We thank our shepherd, Geoff Kuenning, and the anonymous
reviewers for their valuable feedback and suggestions. Also,
we thank Liangyi Gong for his help in typesetting, and Feng-
min Zhu for his generous discussion. This work is supported
in part by the National Key R&D Program of China under
grant 2018YFB1004700, the National Natural Science Foun-
dation of China (NSFC) under grants 61822205, 61632020
and 61632013, and the Beijing National Research Center for
Information Science and Technology (BNRist).

24 18th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Average U.S. Internet Speeds More Than Double
Global Average. https://www.ncta.com/whats-n
ew/average-us-internet-speeds-more-double-
global-average.

[2] Box – Secure File Sharing, Storage, and Collaboration.
https://www.box.com/.

[3] Charles Web Debugging Proxy. https://www.charle
sproxy.com/.

[4] Diff Match Patch is a High-performance Library in Mul-
tiple Languages that Manipulates Plain Text. https:
//github.com/google/diff-match-patch.

[5] Dropbox Tech Blog. https://blogs.dropbox.com/
tech/.

[6] Etherpad: Really Real-time Collaborative Document
Editing. https://github.com/ether/etherpad-li
te.

[7] Google Docs: Free Online Documents for Personal Use.
https://www.google.com/docs/about/.

[8] Google Drive privacy warning – could yours have leaked
data? https://www.welivesecurity.com/2014/07
/11/google-drive-privacy-warning/.

[9] Meet Bandaid, the Dropbox Service Proxy.
https://blogs.dropbox.com/tech/2018/03/m
eet-bandaid-the-dropbox-service-proxy/.

[10] Never-Googlers: Web Users Take the Ulti-
mate Step to Guard Their Datae. https:
//www.washingtonpost.com/technology/2019
/07/23/never-googlers-web-users-take-ultim
ate-step-guard-their-data/.

[11] Nutstore – Share Your Files Anytime, Anywhere, with
Any Device. https://www.jianguoyun.com/.

[12] Nutstore Help Center. http://help.jianguoyun.co
m/.

[13] Online Discussion – Those who refuse to
use Google for privacy reasons. https:
//www.reddit.com/r/apple/comments/9ed07l/t
hose_who_refuse_to_use_google_for_privacy/.

[14] Optimizing Web Servers for High Throughput and Low
Latency. https://blogs.dropbox.com/tech/2017/
09/optimizing-web-servers-for-high-through
put-and-low-latency/.

[15] Overleaf, Online LaTeX Editor. https://www.overle
af.com/.

[16] Seafile - Open Source File Sync and Share Software.
https://www.seafile.com/en/home/.

[17] Seafile Source Code. https://github.com/haiwen/
seafile.

[18] Simultaneous Collaborative Editing of a LaTeX File
(Online Forum Discussion). https://tex.stackexc
hange.com/questions/27549/simultaneous-col
laborative-editing-of-a-latex-file.

[19] Speedtest Global Index – Global Speeds August 2019.
https://www.speedtest.net/global-index.

[20] SugarSync – Cloud File Sharing, File Sync & Online
Backup From Any Device. https://www2.sugarsy
nc.com/.

[21] SugarSync Help Center. https://support.sugars
ync.com/hc/en-us/.

[22] The SugarSync Blog. https://www.sugarsync.com/
blog/.

[23] Tool for the (collaborative) job. https:
//blogs.ams.org/phdplus/2016/09/11/tool-
for-the-collaborative-job/.

[24] Wave | Real-time Collaboration and Coediting Service.
https://www.codox.io/.

[25] Wireshark Network Protocol Analyzer. http://www.
wireshark.org/.

[26] E. Adams, W. Gramlich, S. S. Muchnick, and S. Tirfing.
SunPro: Engineering a Pratical Program Development
Environment. In Proceedings of International Workshop
on Advanced Programming Environments, pages 86–96.
Springer-Verlag, 1986.

[27] S. Apel, O. Leßenich, and C. Lengauer. Structured
Merge with Auto-tuning: Balancing Precision and Per-
formance. In Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineer-
ing (ASE), pages 120–129. ACM, 2012.

[28] T. Apiwattanapong, A. Orso, and M. J. Harrold. JDiff:
A Differencing Technique and Tool for Object-oriented
Programs. Automated Software Engineering, 14(1):3–
36, 2007.

[29] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison,
H. Yang, and M. Zawirski. Specification and Com-
plexity of Collaborative Text Editing. In Proceedings
of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 259–268. ACM, 2016.

USENIX Association 18th USENIX Conference on File and Storage Technologies 25

https://www.ncta.com/whats-new/average-us-internet-speeds-more-double-global-average
https://www.ncta.com/whats-new/average-us-internet-speeds-more-double-global-average
https://www.ncta.com/whats-new/average-us-internet-speeds-more-double-global-average
https://www.box.com/
https://www.charlesproxy.com/
https://www.charlesproxy.com/
https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch
https://blogs.dropbox.com/tech/
https://blogs.dropbox.com/tech/
https://github.com/ether/etherpad-lite
https://github.com/ether/etherpad-lite
https://www.google.com/docs/about/
https://www.welivesecurity.com/2014/07/11/google-drive-privacy-warning/
https://www.welivesecurity.com/2014/07/11/google-drive-privacy-warning/
https://blogs.dropbox.com/tech/2018/03/meet-bandaid-the-dropbox-service-proxy/
https://blogs.dropbox.com/tech/2018/03/meet-bandaid-the-dropbox-service-proxy/
https://www.washingtonpost.com/technology/2019/07/23/never-googlers-web-users-take-ultimate-step-guard-their-data/
https://www.washingtonpost.com/technology/2019/07/23/never-googlers-web-users-take-ultimate-step-guard-their-data/
https://www.washingtonpost.com/technology/2019/07/23/never-googlers-web-users-take-ultimate-step-guard-their-data/
https://www.washingtonpost.com/technology/2019/07/23/never-googlers-web-users-take-ultimate-step-guard-their-data/
https://www.jianguoyun.com/
http://help.jianguoyun.com/
http://help.jianguoyun.com/
https://www.reddit.com/r/apple/comments/9ed07l/those_who_refuse_to_use_google_for_privacy/
https://www.reddit.com/r/apple/comments/9ed07l/those_who_refuse_to_use_google_for_privacy/
https://www.reddit.com/r/apple/comments/9ed07l/those_who_refuse_to_use_google_for_privacy/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://www.overleaf.com/
https://www.overleaf.com/
https://www.seafile.com/en/home/
https://github.com/haiwen/seafile
https://github.com/haiwen/seafile
https://tex.stackexchange.com/questions/27549/simultaneous-collaborative-editing-of-a-latex-file
https://tex.stackexchange.com/questions/27549/simultaneous-collaborative-editing-of-a-latex-file
https://tex.stackexchange.com/questions/27549/simultaneous-collaborative-editing-of-a-latex-file
https://www.speedtest.net/global-index
https://www2.sugarsync.com/
https://www2.sugarsync.com/
https://support.sugarsync.com/hc/en-us/
https://support.sugarsync.com/hc/en-us/
https://www.sugarsync.com/blog/
https://www.sugarsync.com/blog/
https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-collaborative-job/
https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-collaborative-job/
https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-collaborative-job/
https://www.codox.io/
http://www.wireshark.org/
http://www.wireshark.org/

[30] A. Bessani, R. Mendes, T. Oliveira, et al. SCFS: A
Shared Cloud-backed File System. In Proceedings of
the USENIX Annual Technical Conference (ATC), pages
169–180, 2014.

[31] R. Bhargava. Evolution of Dropbox’s Edge Network,
2017. https://blogs.dropbox.com/tech/2017/06
/evolution-of-dropboxs-edge-network/.

[32] P. Braam, M. Callahan, P. Schwan, et al. The InterMezzo
File System. In Proceedings of the 3rd of the Perl Con-
ference, O’Reilly Open Source Convention, 1999.

[33] G. Canfora, L. Cerulo, and M. Di Penta. Ldiff: An
Enhanced Line Differencing Tool. In Proceedings of
the International Conference on Software Engineering
(ICSE), pages 595–598. IEEE Computer Society, 2009.

[34] Z. Chen, Q. He, Z. Mao, H.-M. Chung, and S. Maharjan.
A Study on the Characteristics of Douyin Short Videos
and Implications for Edge Caching. In Proceedings
of the ACM Turing Celebration Conference - China
(TURC), page 13:1–13:6. ACM, 2019.

[35] Y. Cui, N. Dai, Z. Lai, M. Li, Z. Li, Y. Hu, K. Ren,
and Y. Chen. Tailcutter: Wisely Cutting Tail Latency
in Cloud CDNs under Cost Constraints. IEEE/ACM
Transactions on Networking, 27(4):1612–1628, 2019.

[36] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. In Proceedings of ACM Sym-
posium on Operating Systems Principles (SOSP), pages
205–220. ACM, 2007.

[37] M. Demmer, B. Du, and E. Brewer. TierStore: A Dis-
tributed Filesystem for Challenged Networks in Devel-
oping Regions. In Proceedings of the USENIX Confer-
ence on File and Storage Technologies (FAST), pages
35–48. USENIX, 2008.

[38] J. E, Y. Cui, M. Ruan, Z. Li, and E. Zhai. HyCloud:
Tweaking Hybrid Cloud Storage Services for Cost-
efficient Filesystem Hosting. In Proceedings of the
IEEE Conference on Computer Communications (IN-
FOCOM), pages 1–9. IEEE, 2019.

[39] C. Ellis and S. Gibbs. Concurrency Control in Group-
ware Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIG-
MOD), pages 399–407. ACM, 1989.

[40] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. SPORC: Group Collaboration Using Untrusted
Cloud Resources. In Proceedings of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 337–350. USENIX, 2010.

[41] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues Don’t
Matter When You Can JUMP Them! In Proceedings of
the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 1–14, 2015.

[42] R. G. Guy, P. L. Reiher, D. Ratner, M. Gunter, W. Ma,
and G. J. Popek. Rumor: Mobile Data Access Through
Optimistic Peer-to-peer Replication. In Advances in
Database Technologies, pages 254–265. Springer, 1999.

[43] B. Hou and F. Chen. GDS-LC: A Latency-and Cost-
aware Client Caching Scheme for Cloud Storage. ACM
Transactions on Storage, 13(4):40, 2017.

[44] J. J. Hunt, K.-P. Vo, and W. F. Tichy. Delta Algorithms:
An Empirical Analysis. ACM Transactions on Software
Engineering and Methodology, 7(2):192–214, 1998.

[45] J. W. Hunt and M. D. MacIlroy. An Algorithm for
Differential File Comparison. Bell Laboratories Murray
Hill, 1976.

[46] A. B. Kahn. Topological Sorting of Large Net-
works. Communications of the ACM, 5(11):558–562,
Nov. 1962.

[47] J. J. Kistler and M. Satyanarayanan. Disconnected Op-
eration in the Coda File System. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), pages 213–225. ACM, 1991.

[48] O. Leßenich, S. Apel, C. Kästner, G. Seibt, and J. Sieg-
mund. Renaming and Shifted Code in Structured Merg-
ing: Looking Ahead for Precision and Performance. In
Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 543–
553. IEEE, 2017.

[49] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu,
Y. Dai, and Z.-L. Zhang. Towards Network-level Effi-
ciency for Cloud Storage Services. In Proceedings of
the Conference on Internet Measurement Conference
(IMC), pages 115–128. ACM, 2014.

[50] G. Liang and U. C. Kozat. Fast Cloud: Pushing
the Envelope on Delay Performance of Cloud Storage
with Coding. IEEE/ACM Transactions on Networking,
22(6):2012–2025, 2014.

[51] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t Settle for Eventual: Scalable Causal
Consistency for Wide-area Storage with COPS. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 401–416. ACM, 2011.

[52] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud Storage with

26 18th USENIX Conference on File and Storage Technologies USENIX Association

https://blogs.dropbox.com/tech/2017/06/evolution-of-dropboxs-edge-network/
https://blogs.dropbox.com/tech/2017/06/evolution-of-dropboxs-edge-network/

Minimal Trust. In Proceedings of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 307–322. USENIX, 2010.

[53] D. Marx. Graph Colouring Problems and Their Applica-
tions in Scheduling. Periodica Polytechnica Electrical
Engineering (Archives), 48(1-2):11–16, 2004.

[54] T. Mens. A State-of-the-art Survey on Software Merg-
ing. IEEE Transactions on Software Engineering,
28(5):449–462, 2002.

[55] E. W. Myers. An O(ND) Difference Algorithm and Its
Variations. Algorithmica, 1(1):251–266, Nov. 1986.

[56] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping.
High-latency, Low-bandwidth Windowing in the Jupiter
Collaboration System. In Proceedings of the Annual
ACM Symposium on User Interface and Software Tech-
nology (UIST), pages 111–120. ACM, 1995.

[57] Y. S. Nugroho, H. Hata, and K. Matsumoto. How Dif-
ferent Are Different Diff Algorithms in Git? Empirical
Software Engineering, pages 1–34, 2019.

[58] S. Perez De Rosso and D. Jackson. What’s Wrong with
Git?: A Conceptual Design Analysis. In Proceedings of
the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software
(Onward!), pages 37–52. ACM, 2013.

[59] C. Policroniades and I. Pratt. Alternatives for Detecting
Redundancy in Storage Systems Data. In Proceedings of
the USENIX Annual Technical Conference (ATC), pages
73–86. USENIX, 2004.

[60] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and
G. Popek. Resolving File Conflicts in the Ficus File Sys-
tem. In Proceedings of the USENIX Summer Technical
Conference, pages 183–195. USENIX, 1994.

[61] B. Shao, D. Li, T. Lu, and N. Gu. An Operational Trans-
formation Based Synchronization Protocol for Web 2.0
Applications. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW), pages
563–572. ACM, 2011.

[62] C. Smith. 33 Staggering Dropbox Statistics and Facts
(2019) | By the Numbers, 2019. https://expandedra
mblings.com/index.php/dropbox-statistics/.

[63] M. Sousa, I. Dillig, and S. K. Lahiri. Verified Three-way
Program Merge. Proceedings of the ACM on Program-
ming Languages, 2(OOPSLA):1–29, 2018.

[64] Y. Su, D. Feng, Y. Hua, and Z. Shi. Understanding the
Latency Distribution of Cloud Object Storage Systems.
Journal of Parallel and Distributed Computing, 128:71–
83, 2019.

[65] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achiev-
ing Convergence, Causality Preservation, and Intention
Preservation in Real-time Cooperative Editing Systems.
ACM Transactions on Computer-Human Interaction
(TOCHI), 5(1):63–108, Mar. 1998.

[66] D. Sun and C. Sun. Context-Based Operational Trans-
formation in Distributed Collaborative Editing Systems.
IEEE Transactions on Parallel and Distributed Systems
(TPDS), 20(10):1454–1470, Oct. 2009.

[67] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3:
Cutting tail latency in cloud data stores via adaptive
replica selection. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 513–527, 2015.

[68] D. Svantesson and R. Clarke. Privacy and Consumer
Risks in Cloud Computing. Computer law & security
review, 26(4):391–397, 2010.

[69] D. B. Terry, M. Theimer, K. Petersen, A. J. Demers,
M. Spreitzer, and C. Hauser. Managing Update Con-
flicts in Bayou, a Weakly Connected Replicated Storage
System. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 172–182.
ACM, 1995.

[70] W. F. TICHY. The String-to-String Correction Problem
with Block Moves. ACM Transactions on Computer
Systems, 2(4):309–321, 1984.

[71] W. F. Tichy. RCS – A System for Version Control. Soft-
ware: Practice and Experience, 15(7):637–654, 1985.

[72] A. Tridgell and P. Mackerras. The Rsync Al-
gorithm. Technical report, 1996. https:
//openresearch-repository.anu.edu.au/bit
stream/1885/40765/3/TR-CS-96-05.pdf.

[73] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS Distributed Operating System. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 49–70. ACM, 1983.

[74] Z. Wu, C. Yu, and H. V. Madhyastha. Costlo: Cost-
effective Redundancy for Lower Latency Variance on
Cloud Storage Services. In Proceedings of the USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 543–557, 2015.

[75] F. Zhu and F. He. Conflict Resolution for Structured
Merge via Version Space Algebra. Proceedings of the
ACM on Programming Languages, 2(OOPSLA):166,
2018.

USENIX Association 18th USENIX Conference on File and Storage Technologies 27

https://expandedramblings.com/index.php/dropbox-statistics/
https://expandedramblings.com/index.php/dropbox-statistics/
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf

POLARDB Meets Computational Storage: Efficiently Support Analytical
Workloads in Cloud-Native Relational Database

Wei Cao†, Yang Liu‡, Zhushi Cheng†, Ning Zheng‡, Wei Li†, Wenjie Wu†, Linqiang Ouyang‡,
Peng Wang†, Yijing Wang†, Ray Kuan‡, Zhenjun Liu†, Feng Zhu†, Tong Zhang‡

† Alibaba Group, Hang Zhou, Zhejiang, China
‡ ScaleFlux Inc., San Jose, CA, USA

Abstract
This paper reports the deployment of computational storage
drives in Alibaba Cloud to enable cloud-native relational
database cost-effectively support analytical workloads. With
its compute-storage decoupled architecture, cloud-native re-
lational database should pushdown data-intensive tasks (e.g.,
table scan) from front-end database nodes to back-end storage
nodes in order to adequately support analytical workloads.
This however makes it a challenge to maintain the cost ef-
fectiveness of storage nodes. The emerging computational
storage opens a new opportunity to address this challenge: By
replacing commodity SSDs with computational storage drives,
storage nodes can leverage the in-storage computing power
to much more efficiently perform table scans. Practical imple-
mentation of this simple idea is non-trivial and demands cohe-
sive innovations across the software (i.e., database, filesystem
and I/O) and hardware (i.e., computational storage drive) lay-
ers. This paper presents such a holistic implementation for
Alibaba cloud-native relational database POLARDB. To the
best of our knowledge, this is the first real-world deployment
of cloud-native databases with computational storage drives
ever reported in the open literature.

1 Introduction

Relational database is an essential building block in mod-
ern information technology infrastructure. Therefore, all the
cloud vendors have invested significant efforts to grow their
relational database service (RDS) business. Not surprisingly,
some cloud vendors have developed their own cloud-native
relational database systems, e.g., Amazon Aurora [28] and
Alibaba POLARDB [9]. In order to achieve sufficient scala-
bility and fault resilience, cloud-native relational databases
naturally follow the design principle of decoupling compute
from data storage [4,17]. Meanwhile, they typically aim to be
compatible with mainstream open-source relational databases
(e.g., MySQL and PostgreSQL) and achieve high performance
for OLTP (online transaction processing) workloads at a much
lower cost than their on-premise counterparts.

It is highly desirable for cloud-native relational databases
to adequately support analytical workloads. As pointed out by
the authors of [28], because cloud-native relational databases
decouple compute from data storage, the network band-
width between database nodes and storage nodes becomes a
scarce resource. This however does not match well to ana-
lytical workloads that involve intensive data access. To best
serve OLTP workloads, cloud-native relational databases typ-
ically employ the row-store model (or the hybrid-row/column
model [5]). This could make the network bandwidth an even
bigger bottleneck for analytical workloads. In order to bet-
ter serve analytical workloads, the almost only viable option
is to off-load data-access-intensive tasks (in particular table
scan) from database nodes to storage nodes. This concept is
certainly not new and has been adopted by both proprietary
database appliances (e.g., Oracle Exadata) and open-source
databases (e.g., MySQL NDB Cluster). In spite of the simple
concept, its practical implementation in the context of cloud-
native databases is particularly non-trivial. On one hand, each
storage node must be equipped with sufficient data process-
ing power to handle table scan tasks. On the other hand, to
maintain the cost effectiveness of cloud-native databases, we
cannot significantly (or even modestly) increase the cost of
storage nodes. By complementing CPUs with special-purpose
hardware (e.g., GPU and FPGA), heterogeneous computing
architecture appears to be an appealing option to address this
data processing power vs. cost dilemma.

This work applies heterogeneous computing in POLARDB
storage nodes to efficiently support table scan pushdown. The
key idea is simple: Each POLARDB storage node off-loads
and distributes table scan tasks from its CPU to its data stor-
age devices. Under this framework, each data storage device
becomes a computational storage drive [1] that can carry
out table scan on the I/O path. Compared with off-loading
table scan to a dedicated stand-alone computing device (e.g.,
FPGA/GPU-based PCIe card), distributing table scan across
all the storage drives can minimize the data traffic across the
storage/memory hierarchy and obviate data processing hot-
spot. This simple concept is not new and has been discussed

USENIX Association 18th USENIX Conference on File and Storage Technologies 29

(e.g., see [11, 14]). However, its practically viable implemen-
tation and real-world deployment remain completely missing,
at least in the open literature. This is mainly due to the dif-
ficulty of addressing two challenges: (1) how to practically
support the table scan pushdown across the entire software
hierarchy, and (2) how to implement low-cost computational
storage drives with sufficient table scan processing capability.

Over the course of materializing this simple idea in the
context of POLARDB on Alibaba Cloud, we developed a
set of software/hardware techniques to cohesively address
the two challenges. To reduce the product development cy-
cle and meanwhile ensure cost effectiveness, computational
storage drives use an FPGA-centric host-managed architec-
ture. Inside each computational storage drive, a single mid-
range low-cost Xilinx FPGA chip handles both flash mem-
ory control and table scan. With highly optimized software
and hardware design, each computational storage drive can
support high-throughput (i.e., over 2GB/s) table scan on com-
pressed data and meanwhile achieve storage I/O performance
comparable to leading-edge NVMe SSDs. We developed a
variety of techniques that enable POLARDB storage nodes
fully exploit the capability of computational storage drives.
This paper presents these design techniques and elaborates
on their implementation, and further presents evaluation re-
sults to demonstrate their effectiveness. Based on the TPC-H
queries, we extracted six individual table scan tasks and ran
these scan tasks on one storage node. Such node-level evalua-
tion shows that the computational storage drives can largely
reduce both scan latency and CPU utilization of the storage
node. We further carried out system-level evaluations on a PO-
LARDB cloud instance over 7 database nodes and 3 storage
nodes. Results show that this solution can noticeably reduce
the TPC-H query latency. To the best of our knowledge, this
is the first application of emerging computational storage in
production database ever reported in the open literature.

2 Background and Motivation

2.1 POLARDB: Basic Architecture
POLARDB is a new cloud-native OLTP database designed
by Alibaba Cloud. Its design goals come from our cloud cus-
tomers’ real needs: large per-instance storage capacity (tens
of TB), high TPS (transactions per second), high and scalable
QoS and high availability. POLARDB provides enterprise-
level cloud database services and is compatible with MySQL
and PostgreSQL. Fig. 1 illustrates the compute-storage decou-
pled architecture of Alibaba POLARDB. Database computing
nodes and storage nodes are connected through high-speed
RDMA network. In each POLARDB instance, there is only
one read/write database node that handles both the read and
write requests, and the other database nodes handle only read
requests. All the nodes in an instance, including read/write
nodes and read-only nodes, are able to access the same copy

of data on a storage node. To ensure the high availability, PO-
LARDB uses the Parallel-Raft protocol to write three copies
of data across the storage nodes [9].

Figure 1: Illustration of POLARDB architecture.

2.2 POLARDB: Table Scan Pushdown

Off-loading table scan from database nodes to storage nodes
is important for cloud-native relational database to effectively
handle analytical workloads. This concept trades heavier data
processing load on storage nodes for significantly reduced
network traffic between database nodes and storage nodes.
Moreover, since POLARDB employs the row-store model
to better serve OLTP workloads, the column-oriented nature
of table scan tends to demand even higher data processing
power in storage nodes. Therefore, the key design issue is how
to cost-effectively equip storage nodes with sufficient data
processing power to handle the additional table scan tasks.

The most straightforward option is to simply scale up each
storage node, which nevertheless is not practically desirable
mainly due to the cost overhead. Table scan over row-store
data does not fit well to modern CPU architecture and tends
to largely under-utilize CPU hardware resources (e.g., cache
memory, and SIMD processing resource) [2]. As a result, we
have to more aggressively scale up the storage nodes to com-
pensate for the inefficiency of CPU-based implementation.
Hence, this straightforward option is economically unappeal-
ing and even unacceptable, especially as the classical CMOS
technology scaling is quickly approaching its end [8].

An alternative is to complement storage node CPUs with
special-purpose hardware (e.g., FPGA or GPU) that can carry
out table scan with much better cost effectiveness. Under

30 18th USENIX Conference on File and Storage Technologies USENIX Association

this heterogeneous computing framework, the conventional
practice uses a centralized heterogeneous architecture where
the special-purpose hardware is implemented in the form of a
single stand-alone FPGA/GPU-based PCIe card (e.g., see [24,
26, 29]). Nevertheless, this approach has several drawbacks
for our targeted systems: (1) High data traffic: All the raw data
in their row-store format must be fetched from the storage
devices into the FPGA/GPU-based PCIe card. Due to the
data-intensive nature of table scan, this leads to a very heavy
data traffic over the PCIe/DRAM channels. The high data
traffic can cause significant energy consumption overhead
and inter-workload interference. (2) Data processing hot-spot:
Each storage node contains a large number of NVMe SSDs,
each of which can achieve multi-GB/s data read throughput.
As a result, analytical processing workloads could trigger very
high aggregated raw data access throughput that is far beyond
the I/O bandwidth of one PCIe card. This could make the
FPGA/GPU-based PCIe card become the system bottleneck.

The above discussion suggests that a distributed heteroge-
neous architecture is a better option. As illustrated in Fig. 2,
by distributing table scans directly into each storage drive,
we can eliminate the high data traffic over the PCIe/DRAM
channels, and obviate data processing hot-spot in the system.
This intuition directly motivated us to develop and deploy
computational storage drives in POLARDB storage nodes.

2.3 Computational Storage Drive

Loosely speaking, any data storage device that can carry out
data processing tasks beyond its core storage duty can be
called a computational storage drive. The simple concept
of empowering storage devices with additional computing
capability can trace back to over 20 years ago [3, 21, 22].
Computational storage complements with CPU to form a het-
erogeneous computing system. Compared with its CPU-only
counterpart, a heterogeneous computing system not surpris-
ingly can achieve higher performance and/or energy efficiency
for many applications, as demonstrated by prior research (e.g.,
see [10,11,15,16,18,23,27]). However, it is apparently subject
to two cost overheads: (1) the hardware cost of implementing
computational storage drives, and (2) the development cost on
developing all the necessary hardware and software solutions
to enable its real-world deployment. In spite of the over two
decades of research, computational storage has not yet entered
the mainstream market, arguably because of the absence of a
practically justifiable benefit vs. cost trade-off.

To overcome the cost barrier, we chose an FPGA-based
host-managed computational storage drive design strategy.
This can reduce the development cost from two aspects: (1)
We use a single FPGA to realize both flash memory control
and computation (i.e., table scan in this work) inside compu-
tational storage drives. Compared with ASIC-based approach,
the circuit-level programmability of FPGA can significantly
reduce the computational storage drive development cycle and

CPU	
 &	
 DRAM	

PCIe	
 Root	
 Complex	
 &	
 Switch	

Table	
 Scan	

Accelerator	

(FPGA/GPU)	
 NAND	
 Flash	

Flash	
 control	

NAND	
 Flash	

Flash	
 control	

.	
 .	
 .	

(a)	
 Centralized	
 heterogeneous	
 compuHng	
 architecture	

High	
 data	

traffic	

CPU	
 &	
 DRAM	

PCIe	
 Root	
 Complex	
 &	
 Switch	

.	
 .	
 .	

(b)	
 Distributed	
 heterogeneous	
 compuHng	
 architecture	

Low	
 data	

traffic	

No	
 compute	

hot-­‐spot	
 NAND	
 Flash	

Flash	
 control	

&	
 table	
 scan	

NAND	
 Flash	

Flash	
 control	

&	
 table	
 scan	

NAND	
 Flash	

Flash	
 control	

&	
 table	
 scan	

Distributed	

compuHng	

Compute	

hot-­‐spot	

Centralized	

compuHng	

Figure 2: Illustration of (a) centralized heterogeneous comput-
ing architecture, and (b) distributed heterogeneous computing
architecture.

cost. (2) The computational storage drive is fully managed by
the host for the functions such as address mapping, request
scheduling, and garbage collection. Its host-management na-
ture can facilitate integrating computational storage drive into
existing software stack. It enables a high flexibility to devise
and optimize the computational storage drive’s API through
which applications can utilize its configurable computation
capability. Meanwhile, the host-managed computational stor-
age drive natively integrates into the Linux I/O stack as a
storage block device to serve normal I/O requests.

However, in return for its circuit-level programmability,
FPGA is expensive (e.g., modern high-end FPGA chip could
cost few thousand dollars), leading to a higher hardware cost
of computational storage drive. Meanwhile, the objective of
this work is to deploy computational storage drive to cost-
effectively support table scan pushdown. Therefore, one key
issue is how to minimize the hardware cost overhead while
achieving sufficiently high storage I/O and table scan process-
ing performance, which will be discussed in the next section.

3 Design and Implementation

As pointed out above, although applying computational stor-
age to support table scan pushdown is a very simple concept
and has been well discussed in the open literature, its real-
world implementation and deployment has remained missing.
Our first-hand experience of implementing this concept for
POLARDB reveals that transferring this simple idea into real
product faces the following two major challenges:

USENIX Association 18th USENIX Conference on File and Storage Technologies 31

1. Support table scan pushdown across the entire software
hierarchy: Table scan pushdown is initiated by the user-
space POLARDB storage engine that accesses data by
specifying the offsets in files, while table scan is physi-
cally served by computational storage drive that operates
as a raw block device and manages data with LBA (log-
ical block address). The entire storage I/O stack sits
in between POLARDB storage engine and computa-
tional storage drive. Hence, we have to cohesively en-
hance/modify the entire software/driver stack in order to
create a path in support of table scan pushdown.

2. Implement low-cost computational storage drive: As dis-
cussed above in Section 2.3, although the FPGA-based
design approach can significantly reduce the develop-
ment cost, FPGA tends to be expensive. Moreover, since
FPGA typically operates at only 200∼300MHz (in con-
trast to 2∼4GHz CPU clock frequency), we have to em-
ploy a large degree of circuit-level implementation paral-
lelism (hence more silicon resource) in order to achieve
sufficiently high performance. Therefore, we must de-
velop solutions to enable the use of low-cost FPGA chip
in our implementation.

The remainder of this section presents a set of design tech-
niques across the software and hardware stacks that can ad-
dress the above two major challenges.

3.1 Support Table Scan Pushdown Across the
Entire Software Stack

To tackle the first challenge, we developed techniques to sup-
port the table scan pushdown across the entire software stack,
as illustrated in Fig. 3. POLARDB database nodes incorporate
a front-end analytical processing engine called POLARDB
MPP. Being compatible with the MySQL protocol, this an-
alytical processing engine can parse, optimize and rewrite
SQL using the AST (abstract syntax tree) and a number of
embedded optimization rules. It transforms each SQL query
into a DAG (directed acyclic graph) execution plan consist-
ing of operators and data flow topology. This analytical pro-
cessing engine natively supports table scan pushdown to the
underlying storage engine. Hence, we can keep the analytical
processing engine intact in this work.

As illustrated in Fig. 3, in order to enable table scan push-
down, we have to appropriately enhance the entire storage
stack underneath the analytical processing engine, including
POLARDB storage engine, PolarFS (a distributed filesystem
under POLARDB), and computational storage driver. In the
following, we will elaborate on the implemented enhance-
ments across these three layers.

3.1.1 Enhancement to POLARDB Storage Engine

POLARDB database storage engine follows the design prin-
ciple of LSM-tree (log-structured merge-tree) [20]. Data in

SELECT l_linestatus, sum(l_quantity)
FROM lineitem
WHERE l_shipdate <= date “1998-09-04”

POLARDB MPP

DAG Sink

Op

Table Scan

Op

 POLARDB
Storage Engine

PolarFS

Schema	
 (e.g.,	
 lineitem	
 table:	
 int,int,int,int,…)	

Predicate	
 (e.g., col 11 <= date “1998-09-04”)	

Data blocks (block_offsets	
 in	
 data	
 file)	

Table scan request conversion

Data blocks (LBA	
 on	
 storage	
 drive)
Table scan request conversion

SQL

Computational
Storage Driver

Data blocks (PBA	
 on	
 flash	
 memory)
Table scan request conversion, partition,

and scheduling

Computational
storage drive

Computational
storage drive

.	
 .	
 .	

Unchanged
Enhanced

Figure 3: Illustration of the overall software stack.

each table are organized into many files (typical file size is
few tens of MBs), and each file contains a large number of
blocks (typical block size ranges from 4KB to 32KB). In its
original implementation, POLARDB storage engine serves
the table scan requests using the CPUs on storage nodes.
Hence, the underlying storage I/O stack is oblivious to the
table scan pushdown. Since this work aims to utilize computa-
tional storage drives to process table scan, we have enhanced
POLARDB storage engine so that it can pass table scan re-
quests to the underlying filesystem PolarFS. As illustrated in
Fig. 3, storage engine accesses data blocks in terms of offsets
in files. Each table scan request contains: (1) the location
(i.e., offsets in files) of the to-be-scanned data, (2) the schema
of the table onto which the table scan is applied, and (3) the
table scan conditions to be evaluated. Meanwhile, POLARDB
storage engine allocates a memory buffer for storing data re-
turned from computational storage drives, and each table scan
request contains the location of this memory buffer.

As discussed later, the implemented computational storage
drives do not support all the possible scan conditions (e.g.,
LIKE is not supported in current implementation). Hence,
upon receiving table scan pushdown from the analytical pro-
cessing engine, the enhanced storage engine first analyzes
the scan conditions, and if necessary it extracts and passes a
subset of the scan conditions that can be served by the compu-
tational storage drives. After receiving the data returned from
the computational storage drives, the storage engine always
checks the data against the complete table scan conditions.
Moreover, to improve the overall system efficiency, we should

32 18th USENIX Conference on File and Storage Technologies USENIX Association

exploit the computational parallelism across multiple compu-
tational storage drives within each storage node. Therefore,
POLARDB storage engine is able to issue multiple table scan
requests concurrently to the underlying computational storage
devices through PolarFS.

3.1.2 Enhancement to PolarFS

As described in [9], POLARDB is deployed on the distributed
filesystem PolarFS that manages the data storage across all
the storage nodes. Each computational storage drive can only
perform table scan on its own data and meanwhile data are
scanned in the unit of storage engine data blocks. Meanwhile,
due to the use of block-level compression, variable-length
compressed blocks are contiguously packed in each file (i.e.,
each compressed block is not 4KB-aligned). Therefore, Po-
larFS employs a coarse-grained data striping (4MB stripe
size) across the computational storage drives in order to en-
sure most data blocks entirely reside on one computational
storage drive. In the rare case of one compressed block locates
across two drives, the system will use storage node CPU to
handle the corresponding scan operation.

As discussed in Section 3.1.1, POLARDB storage engine
specifies the location of to-be-scanned data in the form of
offsets in files. The to-be-scanned data may span over mul-
tiple files and hence multiple computational storage drives.
Meanwhile, computational storage drives can only locate data
in the form of LBAs. Therefore, upon receiving each table
scan request from POLARDB storage engine, PolarFS must
appropriately convert this request before forwarding it to the
computational storage driver. Accordingly, we have enhanced
PolarFS from the following aspects: (1) Suppose the to-be-
scanned data span over m computational drives, the enhanced
PolarFS decomposes this request into m scan requests, each
of which scans the data on one computational storage drive.
(2) For each scan request, it converts the data location in-
formation into offsets in LBAs. As illustrated in Fig. 3, the
enhanced PolarFS subsequently passes the m scan requests
with converted LBA-based location information to the under-
lying computational storage driver.

3.1.3 Enhancement to Computational Storage Driver

As discussed above in Section 2.3, our computational storage
drive is fully managed by a host-side driver in the kernel
space. The driver exposes each computational storage drive
as a block device. Upon receiving each table scan request from
PolarFS, the driver carries out the following operations. It first
analyzes the scan conditions, and if necessary re-arranges the
scan conditions in order to better streamline the hardware-
based scan processing and hence improve the throughput. For
example, suppose the table contains 16 fields (i.e., f1, f2, · · · ,
f16), and the scan condition involves two comparisons, where
the first one compares f10 and a constant, and the second

one compares f2 and f5. Since hardware can pipeline the
table record parsing, field selection, and comparison, if we
re-arrange the scan condition by interchanging the position of
the two comparisons, we can improve the hardware utilization
efficiency and hence achieve higher processing throughput.
The driver further converts the location information of the
to-be-scanned data from the LBA domain into the physical
block address (PBA) domain, where each PBA associates
with a fixed location in NAND flash memory.

Moreover, the driver internally partitions each scan request
into a number of (much) smaller scan sub-tasks, which can
serve for two purposes: (1) A large scan task may occupy the
flash memory bandwidth for a long time, which can cause
other normal I/O request suffer from a longer latency. This
problem can be mitigated by partitioning a large scan task
into small sub-tasks and cohesively scheduling them with
normal I/O requests. (2) By partitioning a large scan task
into small sub-tasks, it helps to reduce the hardware resource
usage for internal buffering and improve flash memory access
parallelism. Moreover, storage device background operations,
in particular garbage collection (GC), can severely interfere
with table scan and hence cause significant latency penalty.
Since all the flash management functions are handled by the
host-side driver, we enhanced the driver so that it can cohe-
sively schedule GC and table scan in order to minimize the
GC-induced interference. In particular, in the case of heavy
and bursty analytical processing workloads, the driver will
adaptively reduce or even suspend the GC operation.

3.2 Reduce Hardware Implementation Cost

In order to tackle the challenge of computational storage drive
implementation cost, the key is to maximize the FPGA hard-
ware resource utilization efficiency. To achieve this objective,
we further developed the following techniques across the soft-
ware and hardware layers.

3.2.1 Hardware-Friendly Data Block Format

We first modified POLARDB storage engine data block for-
mat in order to facilitate the FPGA implementation of table
scan. Table scan mainly involves various data comparison
operations (e.g., =, ≥, ≤). In spite of the FPGA circuit-level
programmability, it is difficult for FPGA to implement com-
parators that can efficiently support multiple different data
types. In this work, we modified POLARDB storage engine
so that it stores all the table data in the memory-comparable
format, i.e., data can be compared using the function mem-
cmp(). As a result, computational storage drives only need to
implement a single type of comparator that can carry out the
memcmp() function, regardless of the specific data types in
different fields of a table. By enabling the implementation of
type-oblivious comparators in FPGA, this can largely reduce
the usage of FPGA resources for implementing table scan.

USENIX Association 18th USENIX Conference on File and Storage Technologies 33

We further modified the storage engine data block struc-
ture in order to improve the hardware utilization efficiency.
Fig. 4(a) illustrates the data block format being used in the
original storage engine: One data block contains a number
of sorted table entries, and ends with meta information (i.e.,
1-byte data compression type and 4-byte CRC). Although
such a block format can be easily handled by CPUs, it is not
friendly to the hardware-based table scan in computational
storage drives. We modified the data block format as illus-
trated in Fig. 4(b), where we add an additional block header
including 1-byte block compression type, 4-byte number of
key-value pairs, and 4-byte number of restart keys (note that
restart key is used to facilitate key search in the presence
of prefix compression). This modified block format is much
more friendly to hardware-based table scan because: (1) Com-
putational storage drive can decompress each block and check
CRC without demanding POLARDB storage engine to pass
the size information of each block. (2) By adding the “# of
keys” and “# of restarts” fields at the beginning of each block,
the hardware can more conveniently handle the restarts within
each block and detect the end of each block. This is well suited
to the sequential data processing flow of the hardware, and
hence simplifies the FPGA-based hardware implementation.

Compressed	
 block	

Type:	
 1-­‐byte	

CRC:	
 4-­‐byte	

Compressed	
 block	

Type:	
 1-­‐byte	

CRC:	
 4-­‐byte	

#	
 of	
 keys:	
 4-­‐byte	
 	

#	
 of	
 restarts:	
 4-­‐byte	

Type:	
 1-­‐byte	

(a)	
 (b)	

Figure 4: (a) Block structure in conventional practice, and (b)
modified block structure to simplify hardware implementation
of data scan.

3.2.2 FPGA Implementation

Fig. 5 shows the parallel and pipelined architecture of our
FPGA implementation. To reduce the cost, we use a single
mid-range FPGA chip for both flash memory control and table
scan. The FPGA incorporates a powerful soft-decision LDPC
(low-density parity-check) coding engine. This enables the
use of low-cost 3D TLC (and QLC in the future) NAND flash
memory, which helps to reduce the overall computational
storage drive cost. We use a parallel and pipelined hardware
architecture to improve the table scan processing throughput.
As shown in Fig. 5, it contains two parallel data decompres-
sion engines and four data scan engines. Current implementa-

tion supports the Snappy decompression and following scan
conditions: =, 6=, >, ≥, <, ≤, NULL, and !NULL.

Middle-­‐range	
 Xilinx	
 KU15P	
 16nm	
 FPGA	

Flash	
 Control	

(so>	
 LDPC)	

Scan	
 #1	

Scan	
 #3	

Scan	
 #2	

Scan	
 #4	
 PCIe	

Gen3x4	

Buffer	

Decomp.	
 #1	

Decomp.	
 #2	

Buffer	

Figure 5: Parallel and pipelined FPGA implementation.

To further improve the hardware resource utilization effi-
ciency, we applied a simple design technique described as
follows. As pointed out above, all the fields are stored in the
memory-comparable form, hence we only need to implement
type-oblivious memcmp modules to evaluate each condition.
Since the number of scan conditions varies among different
table scan tasks, each scan engine employs a recursive archi-
tecture in order to maximize the FPGA resource utilization.
Each scan engine contains one memcmp module and one RE
(result evaluation) module. Let P = ∑

m
i=1(∏

ni
j=1 ci, j) denote

the overall scan task, where each ci, j is one individual condi-
tion on one field. The symbols ∑ and ∏ represent the logic
OR and AND operation, respectively. Using a single memcmp
and RE module, we recursively evaluate the predicate with
one condition ci, j at a time. The RE module checks whether
the previous memcmp output (i.e., all the ci, j’s that have been
evaluated so far) is sufficient to determine the value of the
result P. Once the value of P (i.e., either 1 or 0) can be deter-
mined, the scan engine can immediately finish the evaluation
on current row, and start to work on another row. This recur-
sive architecture can handle any arbitrary predicate with the
optimal FPGA hardware resource utilization.

4 Evaluation

This section presents evaluation results to demonstrate the
effectiveness of this deployed solution. The remainder of
this section is organized as follows: Section 4.1 summa-
rizes the experimental environment and basic storage per-
formance of the computational storage drives. Section 4.2
evaluates and compares the table scan performance when
using CPUs or computational storage devices to realize ta-
ble scan. Section 4.3 presents the TPC-H evaluation results
on a POLARDB instance in Alibaba Cloud, and Section 4.4
provides further concluding remarks.

4.1 Experimental Setup
In order to become practically viable products, besides provid-
ing in-storage computing capability, computational storage
drives must have top-notch storage I/O performance (at least
comparable with leading-edge commodity NVMe SSDs). The

34 18th USENIX Conference on File and Storage Technologies USENIX Association

storage performance of our computational storage drives is
summarized as follows. Each drive uses 64-layer 3D TLC
NAND flash memory chips. With PCIe Gen3×4 interface,
each drive can sustain 2.2GB/s and 3.0GB/s sequential write
and read throughput. Under 100% address span and fully trig-
gered GC, each drive can achieve 160K and 590K random
4KB write and read IOPS, which are on par with the latest
enterprise-grade NVMe SSDs. Each computational storage
drive hosts a single mid-range Xilinx UltraScale+ KU15p
FPGA chip that handles both flash memory control and com-
putation. To maximize the error correction strength, each drive
supports soft-decision LDPC code decoding with beyond-
3GB/s decoding throughput. The performance evaluation is
carried out on a POLARDB instance (with seven database
nodes and three storage nodes) in Alibaba Cloud.

4.2 Table Scan Performance Evaluation

The FPGA inside each computational storage drive incorpo-
rates two Snappy decompression engines and four data scan
engines. The decompression throughput varies with the data
compressibility. Under compression ratio of 60% and 30%,
the two decompression engines total can achieve 2.3GB/s and
2.8GB/s decompression throughput, respectively. The data
scan engines also have variable throughput that depend on
several runtime parameters, e.g., the size of each row in the
table, table schema, and scan conditions.

We uses the LINEITEM table defined in TPC-H benchmark
as a test vehicle to evaluate the effectiveness of moving table
scan to computational storage drives. The LINEITEM table
contains total 16 columns mixed with data types of identifier,
integer, decimal, fixed-length and variable-length strings. To
cover a wide range of processing complexity, we chose the
following six table scan tasks (extracted from different TPC-H
queries) to carry out evaluations on one storage node:
TS-1: Select L_PARTKEY, L_EXTENDEDPRICE,

L_DISCOUNT
from LINEITEM
where L_SHIPDATE ≥ “1994-06-01” and
L_SHIPDATE < “1994-07-01”

TS-2: Select L_PARTKEY, L_SUPPKEY, L_QUANTITY
from LINEITEM
where L_SHIPDATE ≥ “1993-01-01” and
L_SHIPDATE < “1994-01-01”

TS-3: Select L_ORDERKEY, L_SUPPKEY,
L_EXTENDEDPRICE, L_DISCOUNT, L_SHIPDATE
from LINEITEM
where L_SHIPDATE ≥ “1995-01-01” and
L_SHIPDATE ≤ “1996-12-31”

TS-4: Select L_ORDERKEY, L_EXTENDEDPRICE,
L_DISCOUNT
from LINEITEM
where L_SHIPDATE ≤ “1995-03-12”

TS-5: Select L_ORDERKEY

from LINEITEM
where L_COMMITDATE < L_RECEIPTDATE

TS-6: Select L_PARTKEY, L_SUPPKEY, L_QUANTITY
from LINEITEM

For the above six scan tasks, the data selectivity in terms
of table entries is 1.25%, 15.17%, 30.34%, 54.04%, 63.22%,
and 100.00%, respectively. We set the raw data compression
ratio as 0.5 when generating the LINEITEM table, and use the
Snappy compression library to compress each data block. For
each table scan task, we measured the scan latency and PCIe
data traffic when turning on and off the table scan pushdown.
When we turn off the table scan pushdown, storage node treats
each computational storage drive as a normal SSD and relies
on CPU to carry out the table scan processing.

Fig. 6 shows the measured scan latency and CPU utilization,
where each data point is obtained by averaging the results of
10 independent runs. As discussed above, each computational
storage drive contains four hardware data scan engines. Hence,
the storage node runs the scan tasks under two hardware con-
figurations: (a) one computational storage drive with 4 CPU
threads, and (b) two computational storage drives with 8 CPU
threads. The notation CPU-based Scan and CSD-based Scan
correspond to the cases when storage nodes use its CPU and
computational storage drives to carry out table scan process-
ing, respectively. As shown in Fig. 6, under each hardware
configuration, we studied four cases: (1) CPU-based scan
without data compression, (2) CSD-based scan without data
compression, (3) CPU-based scan with Snappy compression,
and (4) CSD-based scan with Snappy compression.

The results clearly show that, compared with CPU-based
scan, its CSD-based counterpart can simultaneously reduce
the scan latency and CPU utilization. For example, when we
run the scan task TS-1 (with Snappy compression) on two
drives with 8 threads, CSD-based scan can reduce the latency
from 55s to 39s and meanwhile reduce the CPU utilization
from 514% to 140%. Compared with other scan tasks, TS-
6 can least benefit from CSD-based scan because its very
simple scan condition largely under-utilizes the hardware re-
source in computational storage drives. Even for TS-6 (with
Snappy compression), when using two drives with 8 threads,
CSD-based scan can reduce the latency from 65s to 53s and
meanwhile reduce the CPU utilization from 558% to 374%.
Fig. 6 also shows that, although the CPU utilization of CPU-
based scan remain relatively constant across all the six scan
tasks, the CPU utilization of CSD-based scan noticeably in-
creases as the data selectivity becomes larger. For example,
TS-1 (with the selectivity of 1.25%) and TS-2 (with the se-
lectivity of 15.17%) have less CPU utilization than others.
This can be explained as follows: In the case of CSD-based
scan, the CPU workload is proportional to the data selectivity.
The smaller the data selectivity is, the less amount of data are
transferred to and processed by the host CPU. In contrast, in
the case of CPU-based scan, regardless of the data selectivity,
host CPU has to fetch and process all the data from drives. The

USENIX Association 18th USENIX Conference on File and Storage Technologies 35

Figure 6: Measured scan latency and CPU utilization when the storage node runs the scan tasks on (a) one computational storage
drive with 4 CPU threads, and (b) two computational storage drives with 8 CPU threads.

results also show that the effectiveness of CSD-based scan
can readily scale with the number of computational storage
drives. Finally, the results reveal that light-weight compres-
sion (i.e., Snappy in this study) can noticeably improve the
performance of CPU-based scan at the cost of CPU utiliza-
tion. In comparison, CSD-based scan is relatively insensitive
to the use of compression.

To further reveal the benefit of using computational storage
table scan pushdown to reduce data movement across the
storage and memory hierarchy, Fig. 7(a) shows the measured
volume of data being transferred from computational storage
drives to host DRAM, and Fig. 7(b) shows the measured total
host memory data transfer volume. The results show that

Figure 7: (a) PCIe data traffic and (b) memory data traffic
inside the storage node.

CSD-based scan can significantly reduce the data transfer

volume across the storage and memory hierarchy. The benefit
improves as the data selectivity becomes smaller. For example,
in the case of scan task TS-1 (with the selectivity of 1.25%) ,
CSD-based scan can almost eliminate the PCIe data transfer
traffic, and reduce the host memory data traffic by 5× (without
compression) and 3× (with compression). The results also
show that compression can very effectively reduce data traffic
volume across the storage and memory hierarchy.

4.3 System-level Evaluation

We further ran TPC-H analytical workload benchmark on a
POLARDB cloud instance with 32 SQL-engine containers
distributed on 7 database nodes and 3 back-end storage nodes.
Each storage node hosts 12 computational storage drives,
and each drive has a capacity of 3.7TB. We considered the
following three different scenarios:

1. No pushdown: In this baseline scenario, database nodes
do not push the table scan down to storage nodes. As
a result, storage nodes have to transfer all the data to
database nodes for table scan.

2. CPU-based pushdown: We enable the table scan push-
down from database nodes to storage nodes, and the
CPUs on the storage nodes are responsible for carrying
out table scan.

3. CSD-based pushdown: We enable the table scan push-
down from database nodes to storage nodes, and the
computational storage drives on the storage nodes are
responsible for carrying out table scan.

For each one out of the total 22 TPC-H queries, we mea-
sured the POLARDB performance by splitting data into parti-
tions and submitting n scan requests in parallel to the back-
end storage cluster. In this study, we considered three different

36 18th USENIX Conference on File and Storage Technologies USENIX Association

Figure 8: Measured TPC-H query latency under 32 parallel requests.

Figure 9: Measured TPC-H query latency under 64 parallel requests.

Figure 10: Measured TPC-H query latency under 128 parallel requests.

USENIX Association 18th USENIX Conference on File and Storage Technologies 37

Figure 11: (a) PCIe data traffic inside storage nodes and (b) network data traffic in the POLARDB cluster.

values of n: 32, 64, and 128. Fig. 8, Fig. 9, and Fig. 10 show
the measured latency of all the 22 TPC-H queries under 32, 64,
and 128 parallel requests, respectively. Each evaluation point
is obtained by averaging the results of 5 independent runs.
The results clearly show the significant benefit of migrating
table scan operations from database nodes to storage nodes,
which can be intuitively justified given the compute-storage
decoupled architecture of POLARDB. The results show that,
as the number of requests increases, CSD-based pushdown
on average can more noticeably outperform CPU-based push-
down in terms of scan latency. For example, in the case of 32
parallel requests (with Snappy compression), when switching
from CPU-based pushdown to CSD-based pushdown, only
4 queries experience more than 30% latency reduction. In
contrast, in the case of 128 parallel requests (with Snappy
compression), when switching from CPU-based pushdown to
CSD-based pushdown, 11 queries experience more than 30%
latency reduction, where the maximum latency reduction is
50% for Q7. This is because, as the number of parallel re-
quests increases, storage nodes will have more parallel table
scan tasks to better utilize the hardware resource in the com-
putational storage drives. Moreover, the results show that the
benefit of CSD-based pushdown tends to improve when table
data are compressed by Snappy. This can be explained as fol-
lows: When table data are compressed, CPU-based pushdown
will consume more CPU resource in order to handle both data
decompression and query processing. Hence a larger num-
ber of parallel requests will more likely make CPU-based
pushdown CPU-bound. In contrast, CSD-based pushdown
can readily leverage the hardware decompression engines in
computational storage drives.

The results also show that CPU-based pushdown may even
slightly outperform CSD-based pushdown in few cases under
32 or 64 requests (e.g., Q10 with 32 requests). This is most
likely caused by the sub-optimal behavior of table scan push-
down scheduling, which leads to significant under-utilization
of the hardware resource in the computational storage drives.
Our future work will focus on improving the quality of ta-
ble scan pushdown scheduling in order to avoid significant
hardware resource under-utilization. Finally, Fig. 11 shows
the measured total volume of PCIe data traffic inside stor-
age nodes and total volume of network data traffic between
database nodes and storage nodes. When switching from CPU-
based pushdown to CSD-based pushdown, 7 TPC-H queries
(with Snappy compression) experience more than 50% reduc-
tion on the PCIe data traffic volume, where the maximum
PCIe data traffic volume reduction is 97% for Q6 followed by
94% for Q14. By moving table scan from database nodes to
storage nodes, 12 TPC-H queries (with Snappy compression)
experience more than 70% reduction on the total network
data traffic volume. The above results clearly demonstrate the
significant reduction in data traffic and scan latency of table
scan pushdown in cloud-native database.

4.4 Summary

In-storage computing is a very simple concept and has been
well discussed in the research community. Nevertheless, its
practical implementation and deployment in real systems has
remained elusive. Meanwhile, it is not uncommon that signif-
icant gain at the component level does not translate to notice-
able benefit at the system level. Hence, commercializing the

38 18th USENIX Conference on File and Storage Technologies USENIX Association

simple idea of in-storage computing goes far beyond imple-
menting a storage device that can do certain computation, and
demands cohesive innovations across software and hardware
hierarchy. Targeting at bringing in-storage table scan to cloud-
native database systems, we have developed holistic solutions
across the storage engine, filesystem, driver, and hardware
stack. The component-level evaluation results in Section 4.2
show that our implemented computational storage drive can
achieve high-throughput in-storage table scan, leading to sig-
nificant reduction on host CPU usage and storage-to-memory
data movement. The system-level evaluation results in Sec-
tion 4.3 show that our holistic solution indeed can carry the
component-level gain to the system level. The system-level
evaluation also confirms the critical importance of realizing
table scan pushdown from database nodes to storage nodes.

5 Related Work

Prior work has well studied the promise of accelerating
databases using special-purpose hardware (in particular
FPGA and GPU) to complement with CPUs. Many prior
efforts focused on off-loading the table scan in analytical
processing to dedicated accelerators (typically in the form of
PCIe cards) built with either FPGA [24,26,29] or GPU [7,25].
Beyond table scan, prior work also investigated the poten-
tial of off-loading more complicated query processing ker-
nels [12, 19, 30]. Nevertheless, in spite of extensive prior
efforts and impressive performance benefits being demon-
strated over the years, IBM/Netezza [24] appears to be the
only known commercially successful product on mainstream
markets. It off-loads data compression and table scan into
dedicated FPGA-based PCIe cards in IBM PureData Systems.
Beyond using stand-alone accelerators to complement CPUs,
Oracle even integrated special-purpose analytics acceleration
units into its own SPARC CPU [6], which however appar-
ently suffers from a very high development cost and has been
discontinued by Oracle.

The emerging computational storage enables new oppor-
tunities to implement heterogeneous computing platforms
for databases. The authors of [13] studied the design of
computational storage drives that support key-value store.
Prior work [11, 14] focused on leveraging computational stor-
age drives to realize in-storage table scan. Although prior
work [11, 14] share the same basic concept as this work,
there are several distinct differences: (1) This work presents
a holistic system solution in the context of cloud-native re-
lational database, and demonstrates its effectiveness in real
production environment. In comparison, prior work [11] ran
synthetic queries inside one computational storage drive with-
out integration with databases and system I/O stack. Prior
work [14] implemented a prototype based on a modified
MySQL running on a single server. It did not consider the
integration with a database system with compute-storage de-
coupled architecture, and did not consider the use of multiple

computational storage drives in one server. (2) The basic stor-
age I/O performance metrics (i.e., sequential throughput and
IOPS) of the computational storage drives being used in prior
work are much worse than that of leading-edge commodity
NVMe SSDs. As a result, the systems in prior work tend
to be much more I/O-bound and hence more easily benefit
from in-storage table scan. The benefits shown in prior work
may largely diminish when being compared with systems
that deploy leading-edge commodity NVMe SSDs. (3) Both
prior work [11, 14] use embedded processors within SSD
controllers to carry out the data processing, which however
cannot match the multi-GB/s intra-SSD NAND flash memory
access bandwidth and hence cannot achieve high-throughput
predicate evaluation. (4) Data compression is widely used in
databases to reduce the storage bit cost. As a result, compu-
tational storage drives must carry out data decompression in
order to support predicate evaluation on the data read path.
However, prior work [11, 14] did not consider the implemen-
tation of data decompression.

6 Conclusions

This paper reports a cohesive cross-software/hardware im-
plementation that enabled Alibaba cloud-native relational
database POLARDB to effectively support analytical work-
loads. The basic design concept is to dispatch the costly table
scan operations in analytical processing from CPU into com-
putational storage drives. Being well aligned with current
industrial trend towards heterogeneous computing, the key
idea is very simple and can trace back to over two decades
ago. Nevertheless, it is non-trivial to practically materialize
this simple idea with justifiable benefit vs. cost trade-off in the
real world. Under the framework of Alibaba POLARDB, this
work developed a set of design solutions across the entire soft-
ware and hardware stacks to practically implement this simple
idea in production cloud database environment. Experimen-
tal results on a POLARDB cloud instance over 7 database
nodes and 3 storage nodes show that our implementation can
achieve more than 30% latency reduction for 12 out of the
total 22 TPC-H queries. Meanwhile, our implementation can
reduce more than 50% storage-to-memory data movement
volume for 12 TPC-H queries. It is our hope that this work
will inspire much more research and development efforts to
investigate how future cloud infrastructure can leverage the
emerging computational storage drives.

References

[1] SNIA Technical Work Group on Computational Storage.
https://www.snia.org/computational.

[2] D. J. Abadi, S. R. Madden, and N. Hachem. Column-
stores vs. Row-stores: How different are they really? In

USENIX Association 18th USENIX Conference on File and Storage Technologies 39

Proceedings of the International Conference on Man-
agement of Data (SIGMOD), pages 967–980, 2008.

[3] A. Acharya, M. Uysal, and J. Saltz. Active disks: Pro-
gramming model, algorithms and evaluation. In Proc. of
the International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages 81–91, 1998.

[4] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
pages 159–174, 2007.

[5] A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page
layouts for relational databases on deep memory hierar-
chies. The VLDB Journal, 11(3):198–215, Nov. 2002.

[6] K. Aingaran, S. Jairath, and D. Lutz. Software in silicon
in the Oracle SPARC M7 processor. In IEEE Hot Chips
Symposium (HCS), pages 1–31, 2016.

[7] P. Bakkum and K. Skadron. Accelerating SQL database
operations on a GPU with CUDA. In Proceedings of the
Workshop on General-Purpose Computation on Graph-
ics Processing Units, pages 94–103, 2010.

[8] M. T. Bohr and I. A. Young. CMOS scaling trends and
beyond. IEEE Micro, 37(6):20–29, November 2017.

[9] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng,
Y. Wang, and G. Ma. PolarFS: An ultra-low latency and
failure resilient distributed file system for shared storage
cloud database. Proc. VLDB Endow., 11(12):1849–1862,
Aug. 2018.

[10] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger.
Active disk meets flash: A case for intelligent SSDs. In
Proc. of the International ACM Conference on Super-
computing, pages 91–102, 2013.

[11] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J.
DeWitt. Query processing on smart SSDs: Opportuni-
ties and challenges. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data
(SIGMOD), pages 1221–1230, 2013.

[12] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J.
Tsotras. FPGA-based multithreading for in-memory
hash joins. In Proc. of Conference on Innovative Data
Systems Research (CIDR), 2015.

[13] Z. István, D. Sidler, and G. Alonso. Caribou: Intelligent
distributed storage. Proc. VLDB Endow., 10(11):1202–
1213, Aug. 2017.

[14] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. G.
Lee, and J. Jeong. YourSQL: A high-performance
database system leveraging in-storage computing. Proc.
VLDB Endow., 9(12):924–935, Aug. 2016.

[15] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King,
S. Xu, and Arvind. BlueDBM: An appliance for big
data analytics. In Proc. of the International Symposium
on Computer Architecture (ISCA), pages 1–13, 2015.

[16] Y. Kang, Y.-S. Kee, E. Miller, and C. Park. Enabling
cost-effective data processing with smart SSD. In Proc.
of IEEE Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1–12, May 2013.

[17] J. J. Levandoski, D. B. Lomet, S. Sengupta, R. Stutsman,
and R. Wang. High performance transactions in
deuteronomy. In Proceedings of Biennial Conference
on Innovative Data Systems Research (CIDR), 2015.

[18] D. Li, F. Wu, Y. Weng, Q. Yang, and C. Xie. HODS:
Hardware object deserialization inside SSD storage. In
Proc. of IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pages 157–164, 2018.

[19] M. Najafi, M. Sadoghi, and H.-A. Jacobsen. Flexi-
ble query processor on FPGAs. Proc. VLDB Endow.,
6(12):1310–1313, Aug. 2013.

[20] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

[21] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick.
A case for intelligent RAM. IEEE Micro, 17(2):34–44,
Mar 1997.

[22] E. Riedel, G. A. Gibson, and C. Faloutsos. Active stor-
age for large-scale data mining and multimedia. In Proc.
of the International Conference on Very Large Data
Bases (VLDB), pages 62–73, 1998.

[23] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker,
A. De, Y. Jin, Y. Liu, and S. Swanson. Willow: A user-
programmable SSD. In Proc. of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 67–80, 2014.

[24] M. Singh and B. Leonhardi. Introduction to the IBM
Netezza warehouse appliance. In Proceedings of the
Conference of the Center for Advanced Studies on Col-
laborative Research (CASCON), pages 385–386, 2011.

[25] E. A. Sitaridi and K. A. Ross. Optimizing select con-
ditions on GPUs. In Proceedings of the Ninth Interna-
tional Workshop on Data Management on New Hard-
ware (DaMoN), pages 4:1–4:8, 2013.

40 18th USENIX Conference on File and Storage Technologies USENIX Association

[26] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer,
B. Brezzo, D. Dillenberger, and S. Asaad. Database
analytics acceleration using FPGAs. In Proceedings of
the International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 411–420,
2012.

[27] D. Tiwari, S. S. Vazhkudai, Y. Kim, X. Ma, S. Boboila,
and P. J. Desnoyers. Reducing data movement costs us-
ing energy efficient, active computation on ssd. In Proc.
of the USENIX Conference on Power-Aware Computing
and Systems (HotPower), 2012.

[28] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon aurora: Design

considerations for high throughput cloud-native rela-
tional databases. In Proceedings of the ACM Interna-
tional Conference on Management of Data (SIGMOD),
pages 1041–1052, 2017.

[29] L. Woods, Z. István, and G. Alonso. Ibex: An intel-
ligent storage engine with support for advanced SQL
offloading. Proc. VLDB Endow., 7(11):963–974, July
2014.

[30] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili.
Kernel weaver: Automatically fusing database primi-
tives for efficient GPU computation. In proc. of Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 107–118, 2012.

USENIX Association 18th USENIX Conference on File and Storage Technologies 41

Carver: Finding Important Parameters for Storage System Tuning
Zhen Cao,1 Geoff Kuenning,2 and Erez Zadok1

1Stony Brook University and 2Harvey Mudd College

Abstract

Storage systems usually have many parameters that affect
their behavior. Tuning those parameters can provide sig-
nificant gains in performance. Alas, both manual and au-
tomatic tuning methods struggle due to the large number
of parameters and exponential number of possible configu-
rations. Since previous research has shown that some pa-
rameters have greater performance impact than others, fo-
cusing on a smaller number of more important parameters
can speed up auto-tuning systems because they would have
a smaller state space to explore. In this paper, we propose
Carver, which uses (1) a variance-based metric to quantify
storage parameters’ importance, (2) Latin Hypercube Sam-
pling to sample huge parameter spaces; and (3) a greedy but
efficient parameter-selection algorithm that can identify im-
portant parameters. We evaluated Carver on datasets con-
sisting of more than 500,000 experiments on 7 file systems,
under 4 representative workloads. Carver successfully iden-
tified important parameters for all file systems and showed
that importance varies with different workloads. We demon-
strated that Carver was able to identify a near-optimal set of
important parameters in our datasets. We showed Carver’s
efficiency by testing it with a small fraction of our dataset;
it was able to identify the same set of important parameters
with as little as 0.4% of the whole dataset.

1 Introduction
Storage systems are critical components of modern com-
puter systems that have significant impact on application per-
formance and efficiency. Most storage systems have many
configurable parameters that control and affect their overall
behavior. For example, Linux’s Ext4 [22] offers about 60
parameters, representing over 1037 potential configuration
states. The default settings are often sub-optimal; previous
research has shown that tuning storage parameters can im-
prove system performance by a factor of as much as 9× [59].

To cope with the vast number of possible configurations,
system administrators usually focus on using their domain
expertise to tune a few frequently used and well-studied pa-
rameters that are believed to significantly impact system per-
formance. However, this manual-tuning approach does not
scale well in the face of increasing complexity. Modern stor-
age systems use different file system types [21, 37, 56, 65],
new hardware (SSDs [26, 46], SMR [1, 2], NVM [33, 73]),
multi-tier and hybrid storage, and multiple virtualization lay-
ers (e.g., LVM, RAID). Storage systems range from one or
a few identical nodes to hundreds of highly heterogeneous

configurations [23, 57]. Worse, tuning results depend heav-
ily on hardware and the running workloads [10, 11, 70].

Recently, several optimization methods have been used to
auto-tune storage systems, achieving good performance im-
provements within reasonable time frames [11, 40]. These
auto-tuning techniques model the storage system as a black
box, iteratively trying different configurations, measuring an
objective function’s value, and—based on previously learned
information—selecting new configurations to try. However,
many black-box auto-tuning techniques have difficulty scal-
ing to high dimensions and can take a long time to converge
on good solutions [61]. Therefore, the problem of dealing
with the vast number of storage-parameter configurations re-
mains largely unsolved.

In machine learning and information theory, dimensional-
ity reduction is often applied to explosively sized datasets [5,
48]. We believe it can also be applied to storage-parameter
selection. Previous research has reported that certain stor-
age parameters have greater impact on performance than
others [11]. By eliminating the less important parameters,
and ordering parameters by importance, the parameter search
space—and thus the number of configurations that need to be
considered by either humans or algorithms—can be reduced
significantly [28].

Evaluating a single storage configuration is time consum-
ing, and a thorough analysis requires many configurations to
be explored; these evaluations can span days or even months.
One purpose of a storage parameter-selection algorithm is to
be able to pick important parameters by evaluating only a
small number of configurations, yet still select the important
parameters with high accuracy.

In this paper, we propose Carver, which efficiently selects
a subset of important storage parameters. Carver consists
of three components: 1) a variance-based metric to quantify
the importance of a storage parameter; 2) a sampling method
to intelligently pick a small number of configurations rep-
resenting the whole parameter space; and 3) a greedy al-
gorithm to select important parameters. Carver outputs a
set of selected important parameters; these can be used as
pre-selected parameters for auto-tuning algorithms, as well
as helping human experts better understand the behaviors of
targeted storage systems. As shown in Section 5, the afore-
mentioned three components give Carver the ability to select
a near-optimal subset of important parameters by exploring
relatively few configurations. With this efficiency, Carver
could complete its parameter selection in a relatively short
period of time in a real deployment.

Carver was thoroughly evaluated on (publicly available)

USENIX Association 18th USENIX Conference on File and Storage Technologies 43

experimental data collected from our previous work [11],
in which we conducted benchmarks on 7 file systems un-
der 4 workloads over a time span of around four years. In
that work, for each file system we picked 8–10 frequently
tuned parameters and evaluated all possible storage configu-
rations resulting from changing the values of these selected
parameters. We collected I/O throughput and latency data
throughout the evaluation. The data set consists of more than
500,000 benchmark runs (data points) in total. One advan-
tage of having collected the datasets from the whole configu-
ration space is that they can be used as the ground truth when
testing Carver with only a small subset of configurations.

With the collected datasets, we first confirmed that cer-
tain parameters have more impact on system throughput or
latency than other parameters, using Carver’s proposed im-
portance metric. We found that in all datasets there is always
a small set of parameters that have significantly more impact
on throughput than all the others. For example, under a File-
server workload, the two most important parameters for Ext4
were Journal Option and I/O Scheduler. We also observed
that the set of important parameters varies with different
workloads. In the same Ext4 example, the two most impor-
tant parameters became Block Size and Inode Size when the
workload changed to Dbserver. We also demonstrated that
our variance-based metric can always find a near-optimal set
of important parameters in these datasets.

We then demonstrated Carver’s efficiency in identifying
important parameters by applying it to different measure-
ments, such as I/O throughput and latency. Carver can easily
be extended and applied equally well to other quantifiable
objectives such as energy consumption, and even compos-
ite cost functions [41]. In our evaluation, Carver uses Latin
Hypercube Sampling (LHS) as the sampling method. LHS
allows Carver to identify the set of important parameters us-
ing a small number of experimental runs that explore only a
fraction of all configurations. For instance, among all 1,000
repeated runs, Carver was able to find the two most impor-
tant parameters for Ext4 using only 0.4% of the evaluation
results. We believe Carver’s efficiency in finding the most
important parameters quickly and accurately is critical and
promising, since (1) it can be applied to new storage systems
or environments, and (2) the parameters it identifies can then
be used by storage administrators or auto-tuning algorithms
to further optimize the system.

The three key contributions of this paper are:

1. We provide a thorough quantitative analysis of the ef-
fects of storage parameters on system performance, for
7 different file systems across 4 representative work-
loads.

2. We propose Carver, which uses a variance-based metric
of storage-parameter importance and Latin Hypercube
Sampling to drive a greedy algorithm that can identify

the most important parameters using only a small num-
ber of experimental runs.

3. We thoroughly evaluated Carver’s ability to identify
important parameters in terms of I/O throughput and
latency. We demonstrated that Carver successfully
chose a near-optimal set of important parameters for all
datasets used.

2 Motivation
In this paper, we define a storage system as the entire storage
stack from file systems to physical devices, including all in-
termediate layers. Storage systems have many configurable
options that affect their performance [10, 66], energy con-
sumption [59], reliability [63], etc. We define a parameter
as one configurable option, and a configuration as a com-
bination of parameter values. For example, Ext4’s Journal
Option parameter can take three values: data=writeback,
data=ordered, and data=journal. Based on this, [jour-
nal=“data=writeback”, block size=4K, inode size=4K] is
one configuration with three specific parameter values (Jour-
nal Option, Block Size, and Inode Size). The list of all possi-
ble (legal) configurations forms a parameter space.

Storage systems usually come with many configurable pa-
rameters that control and affect their overall behavior. An
earlier study [59] showed that tuning even a tiny set of pa-
rameters could improve performance and energy efficiency
by as much as 9×. However, tuning storage systems is not
an easy task; we believe its challenges arise from at least the
following four aspects:

1. Large parameter spaces. Storage systems are com-
plex, incorporating numerous file system types [21, 37,
56, 65], devices [1, 2, 26, 33, 46, 73], and intermediate
layers [52, 54]. They often span large networks and
distributed environments [6, 23, 30, 57]. Modern stor-
age systems have hundreds or even thousands of tun-
able parameters—and networks are also parameterized.
Worse, evaluating a single configuration can take many
minutes or even hours, making experimental tuning un-
usually time-consuming.

2. Nontransferable tuning results. Evaluation results de-
pend on the specific environment, including the hard-
ware, software, and workload [10, 11, 59]. A good con-
figuration for one setup might perform poorly when the
environment changes even slightly [60].

3. Nonlinear parameters. A system is nonlinear when
the output is not directly proportional to the input.
Many computer systems are nonlinear [16], including
storage systems [66]. This makes traditional regression-
based analysis more challenging [50, 58].

4. Discrete and non-numeric (categorical) parameters.
Some storage parameters are continuous, but many are

44 18th USENIX Conference on File and Storage Technologies USENIX Association

discrete and take only a limited set of values. Worse,
some are categorical (e.g., the I/O scheduler name or
file system type). Many optimization techniques per-
form poorly on discrete values, and often cannot ad-
dress categorical values efficiently or at all [24, 49].

Given these challenges, manually tuning storage systems
becomes nearly impossible, and automatic tuning can be
computationally infeasible. Recent efforts have used black-
box optimization techniques to auto-tune storage configura-
tions [11,40], addressing several of the above challenges and
achieving useful performance improvements. However, we
believe that the challenge of tuning storage systems is far
from being solved. It has been shown that several of these
black-box optimization techniques have scalability problems
in high-dimensional spaces [61]. Therefore, directly apply-
ing them to tuning systems with hundreds or thousands of
parameters would be difficult.

In machine learning and information theory, dimensional-
ity reduction is a common technique for coping with large-
sized datasets [5,48]. If it can be applied in storage systems,
it will significantly reduce the search space [28], making it
easier for humans or algorithms to tune storage systems.

Previous work has reported that not all storage parameters
have an equally important performance impact: a few have
much greater effect than others [11]. We observed similar
trends from our collected datasets. Figure 1 demonstrates
the impact of the parameters Block Size and I/O Scheduler
on the throughput of an Ext4 file systems under a typical
file server workload. Each boxplot in the figure represents a
median and range of throughput that any Ext4 configuration
can produce after fixing the value of one parameter (shown
on the X axis). We see that setting the I/O Scheduler to dif-
ferent values (blue bars) makes little difference, resulting in
nearly equal medians and ranges of throughput. However,
setting the value of Block Size has a greater impact on both
the median and the throughput range; specifically, to reach
the maximum throughput, Block Size must be set to 4K. Al-
though choosing a large Block Size is a decision that may
be obvious to an expert, we have made similar observations
in other storage systems and with different workloads. This
naturally led us to investigate how we can quantify the im-
pact or importance of each storage parameter, and how we
can select important parameters efficiently.

3 Dimensionality Reduction in a Nutshell
In this section we briefly discuss some commonly applied
approaches to dimensionality reduction, and argue that some
metrics are not suitable for quantifying storage parameters’
importance. Note that different disciplines might use some-
what different terminology than storage systems. For exam-
ple, parameters are analogous to features in machine learn-
ing, independent variables in regression analysis, and dimen-
sions in mathematics; optimization objectives can be called
dependent variables or target variables. When discussing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

bs=1k bs=2k bs=4k io=noop io=cfq io=deadline

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c)

Figure 1: Range of throughput after fixing the value of one param-
eter. Red bars represent setting the block size to 1K, 2K, or 4K,
respectively, while blue bars represent setting the I/O scheduler to
noop, cfq, or deadline.

different techniques (Section 3), we use the field-appropriate
terms.

Many approaches have been proposed to address the curse
of dimensionality, which refers to the fact that data be-
come sparse in high-dimensional spaces and thus make al-
gorithms designed for low-dimensional spaces less effective.
Dimensionality-reduction approaches can be generally sum-
marized into two categories: feature extraction and feature
selection [25, 39].

Feature extraction refers to projecting high-dimensional
data into low-dimensional spaces; the newly constructed fea-
tures are usually linear or nonlinear combinations of the orig-
inals. Common feature-extraction methods include Princi-
pal Component Analysis (PCA) [62], Independent Compo-
nent Analysis [29], and Linear Discriminant Analysis [47].
One major drawback of feature extraction is that the physical
meaning of each feature is lost by the projection and the non-
linear combination of many dimensions into fewer ones [39].
Common feature-extraction techniques thus conflict with our
goal in this paper, which is to select a few original storage
parameters that can be understood and interpreted.

Conversely, feature selection directly selects a subset of
features from the original ones, with the intention of find-
ing only those that are important. Feature-selection methods
can be classified as supervised or unsupervised [39]. Unsu-
pervised feature selection, such as Principle Feature Anal-
ysis [43], chooses a subset that contains most of the essen-
tial information based on relationships among features. It
does not consider the impact of features on optimization ob-
jectives during the selection phase. In contrast, supervised
feature selection chooses a subset that can discriminate be-
tween or approximate the target variables. Examples include
Lasso [68] and decision-tree based algorithms [31]. Since
we are interested in finding parameters that have significant
impact on our optimization objectives, such as I/O through-
put, supervised feature selection best fits our needs.

Several intrinsic properties of our project also limit our
choice of feature-selection methods. Many storage parame-
ters are discrete or categorical (see Sections 2 and 5.1). The

USENIX Association 18th USENIX Conference on File and Storage Technologies 45

performance of storage systems is usually presented as I/O
throughput or latency, which are continuous. Therefore, an
ideal feature-selection method should work with categori-
cal features and continuous targets. Although there are dis-
cretization techniques that can break continuous target vari-
ables into discrete sections, feature-selection results depend
heavily on the quality of discretization [39]. One common
approach for dealing with categorical features is to trans-
form each of them into dummy binary parameters that take
values of 0 or 1. For instance, io scheduler with three pos-
sible values (noop, deadline, and cfq) can be converted into
three binary features: “io scheduler = noop”, “io scheduler
= deadline”, and “io scheduler = cfq”. All the binary fea-
tures can take on values 0 or 1. This approach is unsatisfac-
tory because it selects the individual binary features instead
of the original categorical ones. Moreover, converting a cat-
egorical parameter with N values into N separate binary pa-
rameters would expand the parameter space exponentially.
For this reason, we feel that Lasso [68] is not suitable for
our problem, even though it has been successfully applied
to selecting important knobs in databases [70]. Although
Group Lasso has been proposed to partially address this defi-
ciency [14,34,74], the computational cost of the Lasso-based
methods is still high [39].

Another popular category of feature-selection methods
has been built upon information theory [8, 20, 31, 39]. These
approaches usually define a metric for the homogeneity of the
target variable within certain subsets. Commonly used met-
rics include Gini impurity [39] and Entropy [5] for discrete
target variables, and Variance [7] for continuous variables.
In this paper we propose Carver, which applies a variance-
based metric for parameter importance, as described in Sec-
tion 4.1.

4 Design of Carver

In this section we detail the design of Carver. Carver con-
sists of three components: 1) a variance-based metric for
measuring storage parameters’ importance (Section 4.1), 2) a
sampling method to select a small number of configurations
from huge parameter spaces—in this paper using Latin Hy-
percube Sampling (Section 4.2), and 3) a greedy algorithm
for finding important parameters (Section 4.3). A good sam-
pling method allows Carver to select a near-optimal subset
of important parameters while having to evaluate relatively
few configurations. In this section we use throughput as an
example of the target (objective) variable, but Carver is also
applicable to many other metrics.

4.1 Measuring Parameter Importance

Carver uses a variance-based metric to quantify storage-
parameter importance. The variance of a set S of storage

configurations is defined as usual:

Var(S) =
1

|S|

|S|∑
i=1

(yi − µ)2, (1)

where yi is the throughput of the i-th configuration; |S| is
number of configurations in S; and µ is the average through-
put within S. Inspired by CART (Classification and Regres-
sion Trees) [7], we use the reduction in variance to measure
parameter importance. We extend CART’s original defini-
tion to support categorical parameters taking an arbitrary but
finite number of values, as compared with only two in CART.

We define the parameter importance PI of a parame-
ter P that can take a finite number of categorical values,
{p1, ..., pn}, n > 1, as:

PI (P) = Var(S)−
n∑

i=1

|SP=pi
|

|S|
Var(SP=pi

) (2)

Here S is the original set of configurations, and SP=pi
is

the subset of configurations with the parameter P taking the
value pi. Intuitively, an important parameter P divides a set
S of configurations into multiple subsets, and the weighted
sum of variances within each subset should be much smaller
than the variance of S. Thus, a high PI indicates a parameter
that has a significant effect on performance.

The variance-based metric defined in Carver uses a greedy
approach, where the next important parameter will be picked
by calculating its importance when fixing the values of previ-
ously selected parameters. Therefore, for parameter Q with
a total of m possible categorical values {q1, ..., qm},m > 1,
we define the conditional parameter importance forQ, given
P = p as:

CPI (Q|P = p) =

Var(SP=p)−
m∑
j=1

|SQ=qj ,P=p|
|SP=p|

Var(SQ=qj |P=p) (3)

where SQ=qj ,P=p denotes the set of configurations with pa-
rameters P and Q taking values p and qj , respectively. Sim-
ilar to Equation 2, given P = p, the next most important
parameter Q divides SP=p into multiple subsets, and if Q
is important then the weighted sum of variances within each
subset will be much smaller than variance of SP=p. To re-
move the restriction to a given value p, we define CPI (Q|P)
as the maximum of CPI (Q|P = pi) over all possible values
pi ∈ {p1, ..., pn} that parameter P can take:

CPI (Q|P) = n
max
i=1

CPI (Q|p = pi) (4)

Note that in this paper we use only variance-based metrics
to measure parameter importance and select the most criti-
cal subset. We leave storage-performance prediction, which
requires a large amount of training data [71], for future work.

46 18th USENIX Conference on File and Storage Technologies USENIX Association

4.2 Sampling
Given the large parameter space and the time needed to eval-
uate a single storage configuration, we must limit the num-
ber of experimental runs required to select important pa-
rameters. Therefore, Carver needs an exploratory method
that can cover the space uniformly and comprehensively, yet
sparsely. In this work, we chose Latin Hypercube Sampling
(LHS) [45].

LHS is a stratified sampling method [13]. In two dimen-
sions, a square grid containing samples is a Latin Square iff
there is only one sample in each row and each column. A
Latin Hypercube is the generalization of a Latin Square to
higher dimensions, where each sample is the only one in each
axis-aligned hyperplane containing it [36]. LHS has been
shown to be more effective in exploring parameter spaces
than random sampling [45] and Monte Carlo sampling [15].
It has been successfully applied in sampling configurations
of storage [27] and cloud systems [42].

Previous work has also applied Plackett-Burman (P&B)
Design [53] to evaluate the impact of parameters in storage
benchmarks [51] and databases [18]. However, P&B design
requires each parameter to have only two possible values,
and the target variable must be a monotonic function of the
input parameters. Neither requirement holds in our problem.

We demonstrated that LHS enables Carver to pick impor-
tant storage parameters with only a small number of evalua-
tions; see Section 5.4.

4.3 Parameter-Selection Algorithm
Based on our proposed measurements of parameter impor-
tance and on Latin Hypercube Sampling (LHS), the pseudo-
code for Carver’s parameter-selection algorithm is as fol-
lows:
Algorithm 1 Parameter Selection
Input: P : set of parameters, S: initial set of configurations;

stop(S, selected): user-defined stopping function.
selected ← {}
S∗ ← LHS(S)
repeat
p∗ ← argmaxCPI (p|selected), p ∈ P
selected .insert(p∗)
P.remove(p∗)

until stop(S, selected) is true or P is empty
Output: selected

In this algorithm, Carver takes a set of initial parameters
and configurations. It first uses LHS to pick a small number
of configurations and evaluates them. Carver then greedily
selects the current most important parameters based on the
evaluation results for the selected configurations. The most-
important parameter is selected based on the highest param-
eter importance value. Carver fixes the value of the most
important parameter and calculates the conditional param-
eter importance (CPI) values for the remaining parameters;

the parameter with the highest CPI is selected as the second-
most important. Carver continues evaluating important pa-
rameters by fixing the values of previously selected parame-
ters, until the stop function returns true. A naı̈ve stop func-
tion could be sizeof(selected) ≥ N , which would select
the N most important parameters. An alternative variance-
based stopping function might stop when the variances of
subsets of configurations (given the current selected parame-
ters) are below a certain threshold ϑ. This stopping condition
indicates that by setting the values of the selected parame-
ters, the system throughput already falls into a small enough
range that there is little potential gain from additional tun-
ing. In our experiments, we applied this idea and used the
Relative Standard Deviation (RSD) [13], or Coefficient of
Variation, to define our stopping condition. The RSD of a
set S of configurations is defined as:

RSD(S) =
1

µ

√
Var(S)

N − 1
(5)

where N is the number of configurations and µ is the mean
throughput of configurations within S. We chose RSD be-
cause it is normalized to the mean throughput and is repre-
sented as a percentage; that way the same threshold can be
used across different datasets. We used a threshold of 2% in
our experiments; as seen in Section 5, parameters selected
by this criterion gave us near-optimal and stable throughput.

5 Evaluation
In this section we detail our evaluation of Carver. We
first cover the experimental settings we used for collecting
datasets in Section 5.1. Section 5.2 provides an overview
of storage-parameter importance using our variance-based
metric. Section 5.3 demonstrates that the subset of impor-
tant parameters selected by Carver’s importance metric is
near-optimal. We show the efficiency of Carver’s parameter-
selection algorithm in Section 5.4, from multiple perspec-
tives.

5.1 Experiment Settings
To thoroughly study the problem of storage parameter se-
lection and evaluate Carver, we used datasets originally col-
lected for our previous work [11]. The whole dataset con-
sists of more than half a million benchmark results on typical
storage systems. We describe the experimental settings and
collected datasets in this section.

Hardware. We performed experiments using several Dell
PE R710 servers, each with two Intel Xeon quad-core
2.4GHz CPUs, 24GB RAM, and four storage devices: two
SAS HDDs, one SATA HDD, and one SSD. Ubuntu 14.04
was installed on all machines with Linux kernel 3.13. We
denote this configuration as S1. We also collected several
datasets on a slightly different configuration, S2, where we
used the GRUB boot loader to limit the available memory to

USENIX Association 18th USENIX Conference on File and Storage Technologies 47

4GB. We explain the reasons for this change below. We also
upgraded the system to Ubuntu 16.04 with kernel 4.15. Ex-
periments on S2 were only conducted on the SSD, given the
increasing use of SSDs in production systems.

Workload. We benchmarked storage configurations with
four common macro-workloads generated by Filebench [3,
67]:

1. Mailserver mimics the I/O workload of a multi-
threaded email server;

2. Fileserver emulates a server hosting users’ home direc-
tories;

3. Webserver emulates a typical static Web server with a
high percentage of reads; and

4. Dbserver mimics the behavior of an Online Transaction
Processing (OLTP) database.

Before each experimental run, we formatted and mounted
the storage devices with the selected configuration. In set-
ting S1 we chose Filebench’s default workload profiles, lim-
iting the working-set size so we could evaluate more config-
urations within a practical time period. We call those pro-
files Mailserver-default, Fileserver-default, etc. Our previ-
ous study’s goal, which applies to this work as well, was
to allow us to explore a large set of parameters and values
quickly. By evaluating each configuration once, saving the
results, and later looking them up in our database, we could
test Carver in seconds instead of waiting for several hours to
run the benchmarks selected by Algorithm 1. Clearly, a real-
world deployment would not have such a database available
and a search for the most important parameters would require
running actual benchmark tests, each of which would take
significant time. However, as shown in Section 5.4, Carver
tests few enough configurations that even these experiments
can be completed in a short time, ranging from a few hours
to a few days. An additional benefit of the full database
is that we were able to compare configurations found by
Carver with the true best configuration found by our com-
plete datasets.

Because we wanted our database to record results of as
many experiments as possible, we decided to trade off a
smaller working set size in favor of increasing the number
of configurations we could explore in a practical time pe-
riod. Our experiments demonstrated a wide range of perfor-
mance numbers and are suitable for the purpose of studying
storage-parameter importance. As shown in Table 2, storage
parameters do have a wide range of importance under these
workloads. We first ran each workload for up to 2 hours
to observe its behavior, and then chose a running time long
enough for the cumulative throughput to stabilize; we found
100 seconds sufficient for this purpose. In setting S2, we in-
creased the working-set size to 10GB and the running time

to 300 seconds, but used relatively fewer total configura-
tions, which we denote Mailserver-10GB, Fileserver-10GB,
etc. The RAM size was set to 4GB in S2 so that the bench-
mark working set could not fit into memory completely, thus
forcing more I/Os.

Parameter space. To evaluate our parameter-selection al-
gorithm, we ideally want our parameter spaces to be large
and complex. Considering that evaluating storage systems
takes a long time, we decided to experiment with a reason-
ably sized set of frequently studied and tuned storage pa-
rameters. We selected them in close collaboration with sev-
eral storage experts who have either contributed to storage-
stack designs or have spent years tuning storage systems in
the field. We chose seven Linux file systems that span a
wide range of designs and features: Ext2 [12], Ext3 [69],
Ext4 [21], XFS [65], Btrfs [56], Nilfs2 [35], and Reiserfs [55].
We experimented with various types of parameters, includ-
ing file-system formatting and mounting options and some
Linux kernel parameters. Table 1 lists all our file systems,
their (abbreviated) parameters, and the number of possible
values that each parameter can take. Note that under S1 we
conducted benchmarks on four storage devices, and we treat
the device as one of the parameters. Under S2 we focused
on Ext4 and XFS experiments with an SSD, but evaluated a
wider variety of parameters. Cells with “–” mean that the pa-
rameters are inapplicable for the given file system. Cells with
“dflt” mean we used the default value for that parameter, and
so that parameter was not considered during the parameter-
selection phase. Note that the total number of configurations
for each file system does not necessarily equal the product
of the number of parameter values, because some parameter
combinations are invalid (e.g., in Ext4 the inode size cannot
exceed the block size). The total number of configurations
across all datasets is 29,544. We ran all configurations in
each parameter space under four workloads. We repeated
each experiment at least three times to get a stable and rep-
resentative measurement of performance. Over a time span
of more than two years, we collected data from more than
500,000 experimental runs.

Although we have been collecting benchmarking data over
a time span of 4 years, we focused on one dataset at a time,
where we benchmarked one file system on the same hard-
ware under the same workload. Each dataset’s collection
took 1–2 months. Therefore, there may be minor hardware
wear-out effects. We repeated each experiment for at least 3
runs, and made sure the variation among the results of these
repeated runs were acceptable [10]. We used the average
throughput and latency numbers among repeated runs when
evaluating Carver.

5.2 Parameter Importance: an Overview
We have collected experimental data from 9 different param-
eter spaces (Table 1) under 4 representative workload types.
Having the complete datasets allowed us to accurately cal-

48 18th USENIX Conference on File and Storage Technologies USENIX Association

Set-
ting

File
System

Blk
Size

Inode
Size

Block
Grp

Jour-
nal

Flex
Grp

Read-
ahead

XFS
Sctr
Size

Allc
Grp
Cnt

Log
Buf
Cnt

Log
Buf
Size

Allc
Size

Node
Size

Spec
Opt

Atime
Opt

I/O
Schd

Drty
Bg

Ratio

Drty
Ratio Dev Total

S1 Ext2 3 7 6 – – – – – – – – – – 2 3 dflt dflt 4 2,208
S1 Ext3 3 7 6 3 – – – – – – – – – 2 3 dflt dflt 4 6,624
S1 Ext4 3 7 6 3 dflt dflt – – – – – – – 2 3 dflt dflt 4 6,624
S1 XFS 3 5 – – – – dflt 9 dflt dflt dflt – – 2 3 dflt dflt 4 2,592
S1 Btrfs – 5 – – – – – – – – – 3 4 2 3 dflt dflt 4 288
S1 Nilfs2 3 – 9 2 – – – – – – – – – 2 3 dflt dflt 4 1,944
S1 Reiserfs dflt – – 3 – – – – – – – – 2 2 3 dflt dflt 4 192
S2 Ext4 3 3 dflt 3 3 3 – – – – – – – dflt 3 2 3 SSD 3,888
S2 XFS 3 2 – – – – 3 4 2 2 2 – – dflt 3 2 3 SSD 5,184

Table 1: Details of parameter spaces. Each cell gives the number of settings we tested for the given parameter and file system; empty cells
represent parameters that are inapplicable to the given file system and “dflt” represents those that were left at their default setting. We
evaluated 29,544 configurations in total under four workloads, and each experiment was repeated 3+ times.

culate and evaluate the importance of different storage pa-
rameters, which serves as the ground truth when evaluating
Carver’s parameter-selection algorithm, whose goal is to ex-
plore only a small fraction of the parameter space yet find the
same subset of important parameters as if we had explored
it all. In this section, we first provide an overview of the
importance of storage parameters.

0

3*10
7

P
I

PI

0

4*10
6

C
P

I

PI

CPI (X | journal)

0

5*10
5

Block
Size

Inode
Size

Block
Group

Atime
Option

Journal
Option

Special
Option

I/O
Schd.

Dev.

C
P

I

PI

CPI (X | journal)

CPI (X | journal, device)

Figure 2: Top 3 most important Ext4 parameters under S1,
Fileserver-default. The most important parameter is measured by
its PI; the second and third parameters are evaluated by their CPI
given higher-ranked parameters. The Y-axis scales in the three sub-
figures are different.

Figure 2 shows the three most important parameters for
Ext4 under S1, Fileserver-default. The parameter with the
highest importance was evaluated and selected by its Pa-
rameter Importance (PI), as defined in Section 4.1. The
second most important parameter was chosen by its Con-
ditional Parameter Importance (CPI) given the most impor-
tant one, in this case CPI (X|journal). Similarly, the 3rd

most important parameter was evaluated by comparing its
CPI (X|journal , device). Note that the Y-axis scales in the
three sub-figures are different (but higher is always better).
The X axis shows the Ext4 parameters that we experimented
with. As shown in the top subfigure in Figure 2, Journal Op-
tion turns out to be the most important parameter for Ext4
under S1, Fileserver-default. It has the highest variance re-

duction, 2.7×107. In comparison, the PI of Device is around
106, while all other parameters are under 5× 104. Similarly,
the second and third most important parameters are Device
and Block Size, respectively, both with a much higher CPI
value than other parameters.

We discovered that parameter importance depends heavily
on file system types and on the running workload. Table 2
lists the top 4 important parameters for Ext4, XFS, and Btrfs
under various workload types; the column header #N identi-
fies the Nth most important parameter. We also applied the
stopping criterion described in Section 4.3. Cells marked as
“–” here indicate that no parameter gave a large reduction in
variance, and thus no parameter was considered important.
To avoid cluttering the paper, we only list 3 file systems un-
der 4 workloads here, and we show only the top 4 ranked
parameters under each case.

As we can see in Table 2, the important parameters are
quite diverse and depend significantly on the file system
types and workloads. For Ext4 under S2 and Dbserver-
10GB, the top 4 ranked parameters are Block Size, Inode
Size, I/O Scheduler, and Journal Option. When the work-
load changes to Webserver-10GB, the top 4 parameters be-
come Inode Size, Flex BG, Block Size, and Journal Option.
For Fileserver-10GB under Ext4, we found only three im-
portant parameters, indicating that fixing the values of these
three parameters already resulted in quite stable throughputs;
we discuss this observation in more detail in Section 5.3. We
found similar results on XFS: the values and number of im-
portant parameters depended heavily on the workloads. In-
terestingly, for Btrfs under S1, Webserver-default, we did
not find any important parameters. That is because the
Webserver-default workload consists primarily of read op-
erations, and the default working-set size used by Filebench
is small. All Btrfs configurations actually produce quite sim-
ilar throughput under Webserver-default. For this reason, we
also collected datasets from workloads with a much larger
working-set size (10GB), denoted as S2.

USENIX Association 18th USENIX Conference on File and Storage Technologies 49

Setting Workload File System Parameter #1 Parameter #2 Parameter #3 Parameter #4
S2 Fileserver-10GB Ext4 Journal Option I/O Scheduler Inode Size –
S2 Dbserver-10GB Ext4 Block Size Inode Size I/O Scheduler Journal Option
S2 Mailserver-10GB Ext4 I/O Scheduler Inode Size Journal Option Block Size
S2 Webserver-10GB Ext4 Inode Size Flex Block Group Block Size Journal Option
S2 Fileserver–10GB XFS I/O Scheduler Inode Size Allocation Group Count –
S2 Dbserver-10GB XFS Block Size Log Buffer Size Dirty Ratio Alloc Group Count
S2 Mailserver-10GB XFS Inode Size I/O Scheduler Log Buffer Size Allocation Size
S1 Fileserver-default Btrfs Special Option Inode Size Device –
S1 Mailserver-default Btrfs Inode Size Device – –
S1 Webserver-default Btrfs – – – –

Table 2: Top-ranked important parameters for various file systems. The column header #N identifies the Nth most important parameter.

5.3 Evaluating The Greedy Algorithm

In Section 5.2 we used Carver’s variance-based metric to
pick a set of important parameters for our datasets. However,
we must also establish that the selection results are good, i.e.,
whether there exists another set of parameters, with equal
or smaller size, that can lead to an even narrower range of
throughput. We demonstrate the effectiveness of Carver’s
variance-based metric in this section.

0%

20%

40%

60%

80%

100%

 0 5 10 15 20

R
el

at
iv

e
S

ta
n
d
ar

d
 D

ev
ia

ti
o
n

Average Throughput (kop/s)

N = 2

N = 1

Figure 3: Impact of parameters on performance and stability (Ext4,
S1, Fileserver-default). Each dot represents a set of configurations
created by fixing N parameters, where different dot sizes and colors
are used for different values of N. Performance is measured by the
average throughput (X axis) of all possible configurations within
each set; stability is measured by the relative standard deviation (Y
axis; lower is better) of the throughput within each set.

Figure 3 shows the results for Ext4 under S1, Fileserver-
default, where each point represents a set of configurations
that fixes the values of N parameters. For N = 1, we have
28 points, which equals the sum of possible value counts for
each parameter, as shown in Table 1. There are 374 points
forN = 2. We use different point colors and sizes for differ-
ent numbers of parameters. We only plot up to N = 2 here;
we extend to N = 4 in Figure 4. Larger points are used for
smaller N values, since fixing fewer parameter values would
result in a larger number of usable configurations. For exam-
ple, fixing journal option = ordered in our datasets leads to a

0%

2%

4%

6%

8%

10%

14 15 16 Max

R
el

at
iv

e
S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

Average Throughput (kop/s)

N = 1

(ordered)

(writeback)

N = 2

(ordered, ssd)

N = 3

(ordered, ssd, 32)

N = 4

(ordered, ssd,
32, 512)

(ordered, sas,
32, 512)

Carver

Figure 4: A zoom into the bottom-right part of Figure 3 (the “best”
quadrant), with points for N = 3, 4 added. Plotted points show
either the highest average throughput or the lowest relative stan-
dard deviation among all configurations gotten by fixing the values
of N parameters. The labels around the dots show the correspond-
ing fixed parameter values. The parameter values are ordered by
(Journal Option, Device, Block Group, and Inode Size). The tri-
angle marks the point achieved by fixing the values of parameters
selected by Carver.

set of 2,208 configurations; fixing journal option = ordered,
device=ssd reduces that number to 552.

In Figure 3, performance is measured by the average
throughput within each set of configurations, as presented on
the X axis. The Y axis shows the stability of each set, mea-
sured by the Relative Standard Deviation (RSD) of through-
put within the set. We chose to use the RSD rather than
variance because the figure shows sets of varying numbers
of configurations; RSD is normalized by the configuration
count and the average throughput, and thus is easier to com-
pare. If a set of parameters is important, it should ideally
lead to a larger average throughput and lower RSD; therefore
the best points should cluster in the bottom-right quadrant of
Figure 3. As we can see from that figure, fixing just one
parameter value (purple dots) causes the mean throughput
to range from 2.5Kops/s to around 15Kops/s, and the RSD
ranges from around 7% to 76%. The upper-left purple point
(2,500, 76%) represents the configurations achieved by set-
ting Journal Option to journal. The other two points, repre-
senting Journal Options of ordered and writeback, turn out
to be the best among all purple points. Both are seen near
the bottom right with mean throughput of around 15K and

50 18th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100

0.1 0.2 0.4 0.8 1.6 3.2 6.4

10 20 40 80 160 320 640

P
er

ce
n

ta
g

e
o

f
R

u
n

s
(%

)

Percentage of Dataset (%)

Running Time (min)

#1
#2
#3

(a) Ext4, Fileserver-default

 0

 20

 40

 60

 80

 100

 4 8 16 32

20 40 80

P
er

ce
n
ta

g
e

o
f

R
u
n
s

(%
)

Percentage of Dataset (%)

Running Time (min)

#1
#2
#3

(b) Btrfs, Fileserver-default

Figure 5: Carver’s ability to correctly find the top 3 important parameters within small portions of the dataset. The X1 (bottom) axis (log2
scale) shows the percentage of the dataset that was used; for each percentage we ran Carver 1,000 times on different, random LHS-compatible
subsets of that size. The X2 (top) axis (log2) shows the running time that would be needed to benchmark the selected configurations. We
used the PI calculated from the whole dataset as ground truth. The Y axis shows the percentage of runs that were able to correctly find the
important parameters. The solid, dashed, and dotted lines show the results for finding the parameters ranked 1st, 2nd, and 3rd, respectively.
Note that although Btrfs required a larger percentage of the dataset, the absolute numbers are similar in both figures, and the running times
for Btrfs are shorter (see text).

an RSD value of 7%. Clearly, the Journal Option parame-
ter has the highest impact on performance; setting it to an
improper value could lead to low throughput and high RSD,
while setting it correctly provides significant benefits. The
points with N = 2 form several clusters. All points with
mean throughput less than 9K result from setting Journal
Option to journal (and with another parameter set to various
valid values). Conversely, all points with mean throughput
larger than 14K result from a Journal Option of ordered or
writeback. Journal Option is actually the most important pa-
rameter selected by Carver (as seen in Table 2).

To probe this question further, we zoomed into the bottom-
right part of Figure 3 and added points for N = 3 and
N = 4, as shown in Figure 4. The X and Y axes are similar
but with narrower ranges (and the X axis starts at 14K). The
label “Max” on the X axis, with a small tick mark, shows
the global maximum throughput of all Ext4 configurations
within the parameter space. For each N , we plotted only
the point(s) with the highest average throughput or lowest
RSD. The labels around each point show the associated pa-
rameter values, ordered by (Journal Option, Device, Block
Group, and Inode Size). The black triangle marks the point
with highest mean throughput, gotten by fixing the values of
the three most important parameters selected by Carver. For
N = 1, the best two points resulted from setting Journal Op-
tion to either ordered or writeback. These two points overlap
with each other in this figure, as they share nearly identical
mean throughput and RSD values. Only one point is plot-
ted for N = 2, since the point (journal option=ordered, de-
vice=ssd) shows both the highest throughput and the lowest
RSD among all N = 2 points; the same is true for N = 3.
For N = 4, the left red point shows the lowest RSD value
while the right red point shows the highest average through-
put. In Figure 4, the top three parameters selected by Carver
are Journal Option, Device, and Block Size. By setting the

values of these three parameters, the best average throughput
(denoted as a triangle in Figure 4) is quite close to the global
best average throughput achieved by fixing 3 parameter val-
ues (blue point). By comparing the two sets of parameters,
we can see that Carver successfully identified the top 2 im-
portant parameters; the final average throughput and relative
standard deviation achieved by the selected top 3 parameters
are quite close to the global optimum. We believe the differ-
ence in the 3rd selection is due to two reasons:

1. In Carver, the definition of parameter importance fo-
cuses on measuring the impact of the parameter on
performance, which can be either positive or negative.
When discussing “optimality” in Figure 4, we only con-
sidered positive impacts.

2. Carver stops after selecting 3 parameters, as the RSD
has already dropped below our 2% threshold at that
point. If we removed the stopping criterion, the 4th pa-
rameter that Carver would select would be Block Group,
which aligns with the globally optimal set of top 4 pa-
rameters, denoted as red dots in Figure 4.

5.4 Carver: Evaluation
All evaluations and analysis in Section 5.2 and 5.3 were con-
ducted on the complete dataset of all possible parameter con-
figurations. However, collecting such datasets for storage
parameters is usually impractical, given the challenges dis-
cussed in Section 2. One design goal of Carver is to select
important parameters while evaluating only a small fraction
of configurations. Carver does so by utilizing Latin Hyper-
cube Sampling (LHS), which has been effective in exploring
system parameter spaces [27, 42]. We demonstrate the ef-
fectiveness of Carver’s parameter-selection algorithm from
the following two perspectives: selecting important parame-
ters for I/O throughput (see Section 5.4.1) and latency (see

USENIX Association 18th USENIX Conference on File and Storage Technologies 51

Section 5.4.2).

5.4.1 Selecting Important Parameters for
Throughput

A critical question is whether Carver can reliably find the im-
portant parameters of a system, and how many experimental
runs are necessary to do so. To answer this question, we used
our entire dataset of experimental runs on Ext4, Fileserver-
default and Btrfs, Fileserver-default to represent the “ground
truth” of which parameters matter. For Ext4, Fileserver-
default, the top 3 important parameters are Journal Option,
Device, and Block Size. For Btrfs, Fileserver-default, they
are Special Option, Node Size, and Device.

We then tested Carver by repeatedly choosing a random
subset of the full dataset, simulating a real-world environ-
ment in which an experimenter would use LHS to choose
configurations to test, and then using the results of those tests
to identify important parameters. In all cases we constrained
the random subset to be compatible with Latin Hypercube
Sampling (LHS), as our hypothetical investigator would do,
and tested whether Carver correctly located the first, second,
and third most important parameters. We varied the size of
the subsets as a percentage of the entire dataset and ran 1,000
iterations of each trial (with different random subsets).

Figure 5 presents the results of running these experiments.
The X1 (bottom) axis shows the percentage of the whole
dataset that was used by Carver, and is in log2 scale. The
X2 (top) axis shows the actual running time for benchmark-
ing the selected configurations, and is also in log2 scale. The
Y axis shows the fraction of runs that successfully found the
same important parameters as the ground truth. The solid,
dashed, and dotted lines show the results of finding the 1st,
2nd, and 3rd most important parameters, respectively.

Figure 5(a) shows that even with only 0.1% of the dataset
(7 configurations), Carver has a 60% probability of correctly
identifying the most important parameter. When using 0.4%
(26), Carver was able to find the 1st and 2nd ranked parameter
in 100% and 99.8% of the 1,000 runs, respectively. Setting
the values of the most important two parameters would al-
ready produce high average throughput (97% of the global
optimum) with high stability (2% of RSD), as shown in Fig-
ure 4. The chance of correctly selecting the third most impor-
tant parameter increases with the percentage of the dataset
used by Carver. With 1% (67) of the dataset, the probability
of correctly finding the 3rd parameter is around 50%, while
sampling 5% (331) successfully identifies the 3rd parameter
in all 1,000 runs.

For Btrfs, shown in Figure 5(b), Carver needed a larger
fraction of the dataset to make correct selections. This is
because Btrfs has only 288 configurations, compared with
6,624 for Ext4. Yet by evaluating only 16% (45) of all con-
figurations, Carver found the 1st and 2nd parameters with
greater than 80% probability. Carver identified the 3rd pa-
rameter in more than 80% of runs with 31% (90) sampled.

 0

 20

 40

 60

 80

 100

0.1 0.2 0.4 0.8 1.5 2.5 5

10 20 40 80 160 280 5600

P
er

ce
n

ta
g

e
o

f
R

u
n

s
(%

)

Percentage of Dataset (%)

Running Time (min)

#1
#2
#3

Figure 6: Carver’s ability to correctly find the top 3 important pa-
rameters for the latency metric within small portions of the dataset.
Experimental settings, graph axes, and legends are the same as in
Figure 5.

5.4.2 Selecting Important Parameters for La-
tency

To further evaluate Carver’s effectiveness in selecting impor-
tant parameters, we collected datasets with latency metrics.
The experimental settings were the same as described in Sec-
tion 5.1. We ran the Fileserver workload on the Ext4 config-
uration with S2 settings (see Table 1). Instead of using the
average I/O throughput reported by Filebench, we now used
the average latency. Due to a limitation in Filebench’s cur-
rent implementation, it is difficult to collect and calculate
accurate tail latency numbers, such as the 99th percentile, so
we leave parameter selection for tail latency as future work.

Figure 6 shows the evaluation results of selecting impor-
tant parameters using the latency metric. The X axis, Y axis,
and legends remain the same as in Figure 5. As shown by
the red line, with barely 0.2% of all configurations evaluated,
Carver was still able to identify the most important param-
eters in more than 800 out of 1,000 runs. With 1.5% (58
configurations) evaluated, Carver was able to correctly pick
the top 2 parameters in almost all the 1,000 runs. Selecting
the third most important parameter required a few more eval-
uation; using 2.5% of the dataset (97 configurations), Carver
successfully identified it in 998 runs.

In sum, Carver is effective in selecting parameters using
only a few evaluations. In our experiments, Carver found the
top 2 important parameters with higher than 80% probability
by evaluating fewer than 50 configurations. Fixing the values
of the most important two parameters can already result in
high and stable system throughput, as shown in Section 5.3.
Carver can find the 3rd parameter with about 50% probability
using only about 50 evaluations. Furthermore, the total run-
ning time for these evaluations is tractable: the worst case,
in Figure 6, is under 4 days. Moreover, auto-tuning a stor-
age system with an optimization algorithms often requires
an initialization phase to explore the whole space [11, 42].
Carver can use the data collected during the initialization
phase to select parameters; in this case, no extra evaluation
needs to be conducted. Integrating Carver with auto-tuning

52 18th USENIX Conference on File and Storage Technologies USENIX Association

algorithms is part of our future work.

6 Related Work
Parameter selection for computer systems. There have
been several attempts to select important parameters for var-
ious types of software systems. Aken et al. [70] applied
Lasso to choose important knobs for databases. They con-
verted categorical parameters into binary dummy features
and included polynomial features to deal with parameter
interactions. As discussed in Section 3, Lasso does not
scale well when the system has many categorical parame-
ters. Plackett-Burman (P&B) design of experiments [53] has
been applied to evaluating the impact of parameters in stor-
age benchmarks [51] and databases [18]. However, P&B
assumes that each parameter has only two possible values
and that the target variable is a monotonic function of the
input parameters; neither assumption holds for storage pa-
rameter spaces. Adaptive Sampling [19] and Probabilistic
Reasoning [64] have been applied to evaluating the impact
of database knobs. They either only work for continuous
parameters, or have scalability issues in high-dimensional
spaces. In comparison, Carver applies variance-based met-
rics for storage-parameter importance. To the best of our
knowledge, we have conducted the first thorough quanti-
tative study of storage-parameter importance by evaluating
Carver on datasets collected from a variety of file systems
and workloads. Carver also provides insights into the inter-
actions between parameters.

Auto-tuning storage systems. Several researchers have
built systems to automate storage-system tuning. Strunk
et al. [63] applied Genetic Algorithms (GAs) to auto-
mate storage-system provisioning. Babak et al. [4] used
GAs to optimize the I/O performance of HDF5 applica-
tions. GAs have also been applied to storage-recovery prob-
lems [32]. Deep Q-Networks have been successfully ap-
plied in optimizing performance for Lustre [40]. More re-
cently, Madireddy et al. applied a Gaussian process-based
machine learning algorithm to model Lustre’s I/O perfor-
mance and its variability [44]. Our own previous work [11]
provided a comparative study of applying multiple opti-
mization algorithms to auto-tune storage systems. However,
many auto-tuning algorithms have scalability issues in high-
dimensional spaces [61], which is one of the motivations for
Carver. Selecting the important subset of parameters could
reduce the search space dramatically, which would then ben-
efit either auto-tuning algorithms or manual tuning by ex-
perts.

General feature selection. Many feature-selection tech-
niques have been proposed in various disciplines. Li et
al. [39] provide a thorough summary and comparison for
most state-of-the-art feature-selection algorithms. Based on
our arguments in Section 3, we chose to use variance-based
metrics for storage-parameter selection.

7 Conclusions
Modern storage systems come with many parameters that af-
fect their behavior. Tuning parameter settings can bring sig-
nificant performance gains, but both manual tuning by ex-
perts and automated tuning have difficulty dealing with large
numbers of parameters and configurations. In this paper, we
propose Carver, which addresses this problem with the fol-
lowing three contributions:

1. Carver uses a variance-based metric for quantifying
storage parameter importance, and proposes a greedy
yet efficient parameter-selection algorithm.

2. To the best of our knowledge, we provide the first thor-
ough study of storage-parameter importance. We evalu-
ated Carver across multiple datasets (chosen from more
than 500,000 experimental runs) and showed that there
is always a small subset of parameters that have the
most impact on performance—but that the set of impor-
tant parameters changes with different workloads, and
that there are interactions between parameters.

3. We demonstrated Carver’s efficiency by testing it on
small fractions of the configuration space. This effi-
ciency gives Carver the potential to be easily applied to
new systems and environments and to identify impor-
tant parameters in a short time, with a small number of
configuration evaluations.

In the future, we plan to extend Carver to support other
parameter-selection techniques, such as Group Lasso [14,34,
74] and ANOVA [9,13,38,72]. We will evaluate and improve
Carver with more optimization objectives (e.g., reliability),
and even larger storage-parameter spaces. Currently Carver
can only measure storage importance for one objective at
a time (e.g., throughput, latency). We plan to investigate
how to extend Carver’s parameter selection algorithm into
the problem of multi-objective optimization [17]. We also
plan to integrate Carver with auto-tuning algorithms [11].

Acknowledgments
We thank the anonymous FAST reviewers and our shep-
herd, Bill Bolosky, for their valuable comments. This work
was made possible in part thanks to Dell-EMC, NetApp,
and IBM support; and NSF awards CCF-1918225, CNS-
1900706, CNS-1729939, and CNS-1730726.

References
[1] Abutalib Aghayev, Mansour Shafaei, and Peter

Desnoyers. Skylight—a window on shingled disk oper-
ation. Trans. Storage, 11(4):16:1–16:28, October 2015.

[2] Abutalib Aghayev, Theodore Ts’o, Garth Gibson, and
Peter Desnoyers. Evolving ext4 for shingled disks.
In Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST), pages 105–120,

USENIX Association 18th USENIX Conference on File and Storage Technologies 53

Santa Clara, CA, February-March 2017. USENIX As-
sociation.

[3] George Amvrosiadis and Vasily Tarasov. Filebench
github repository, 2016. https://github.com/filebench/
filebench/wiki .

[4] Babak Behzad, Huong Vu Thanh Luu, Joseph
Huchette, Surendra Byna, Prabhat, Ruth Aydt, Quincey
Koziol, and Marc Snir. Taming parallel I/O complex-
ity with auto-tuning. In Proceedings of the Interna-
tional Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’13, pages 68:1–
68:12, New York, NY, USA, 2013. ACM.

[5] Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning, volume 1. Springer New York, 2006.

[6] Dhruba Borthakur et al. HDFS architecture guide.
Hadoop Apache Project, 53, 2008.

[7] Leo Breiman, Jerome Friedman, Charles J. Stone, and
Richard A. Olshen. Classification and regression trees.
CRC press, 1984.

[8] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and
Mikel Luján. Conditional likelihood maximisation:
A unifying framework for information theoretic fea-
ture selection. Journal of Machine Learning Research,
13(Jan):27–66, 2012.

[9] Morton B. Brown and Alan B. Forsythe. Robust tests
for the equality of variances. Journal of the American
Statistical Association, 69(346):364–367, 1974.

[10] Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hilde-
brand, and Erez Zadok. On the performance variation
in modern storage stacks. In Proceedings of the 15th
USENIX Conference on File and Storage Technologies
(FAST), pages 329–343, Santa Clara, CA, February-
March 2017. USENIX Association.

[11] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez
Zadok. Towards better understanding of black-box
auto-tuning: A comparative analysis for storage sys-
tems. In Proceedings of the Annual USENIX Tech-
nical Conference, Boston, MA, July 2018. USENIX
Association. Data set at http://download.filesystems.org/
auto-tune/ATC-2018-auto-tune-data.sql.gz.

[12] R. Card, T. Ts’o, and S. Tweedie. Design and imple-
mentation of the second extended filesystem. In Pro-
ceedings to the First Dutch International Symposium
on Linux, Amsterdam, Netherlands, December 1994.

[13] George Casella and Roger L. Berger. Statistical Infer-
ence, volume 2. Duxbury Pacific Grove, CA, 2002.

[14] Christophe Chesneau and Mohamed Hebiri. Some the-
oretical results on the grouped variables Lasso. Mathe-
matical Methods of Statistics, 17(4):317–326, 2008.

[15] Liu Chu, Eduardo Souza De Cursi, Abdelkhalak
El Hami, and Mohamed Eid. Reliability based opti-
mization with metaheuristic algorithms and Latin hy-
percube sampling based surrogate models. Applied and
Computational Mathematics, 4(6):462–468, 2015.

[16] Yvonne Coady, Russ Cox, John DeTreville, Peter Dr-
uschel, Joseph Hellerstein, Andrew Hume, Kimberly
Keeton, Thu Nguyen, Christopher Small, Lex Stein,
and Andrew Warfield. Falling off the cliff: When sys-
tems go nonlinear. In Proceedings of the 10th Confer-
ence on Hot Topics in Operating Systems (HOTOS ’05),
2005.

[17] Kalyanmoy Deb. Multi-objective optimization using
evolutionary algorithms, volume 16. John Wiley &
Sons, 2001.

[18] Biplob K. Debnath, David J. Lilja, and Mohamed F.
Mokbel. SARD: A statistical approach for ranking
database tuning parameters. In IEEE 24th International
Conference on Data Engineering Workshop (IDEW),
pages 11–18, 2008.

[19] Songyun Duan, Vamsidhar Thummala, and Shivnath
Babu. Tuning database configuration parameters with
iTuned. Proc. VLDB Endow., 2(1):1246–1257, August
2009.

[20] Pablo A. Estévez, Michel Tesmer, Claudio A. Perez,
and Jacek M. Zurada. Normalized mutual information
feature selection. IEEE Transactions on Neural Net-
works, 20(2):189–201, 2009.

[21] Ext4. http:// ext4.wiki.kernel.org/ .

[22] Ext4 documentation. https://www.kernel.org/doc/
Documentation/filesystems/ext4.txt .

[23] S. Ghemawat, H. Gobioff, and S. T. Leung. The
Google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP
’03), pages 29–43, Bolton Landing, NY, October 2003.
ACM SIGOPS.

[24] Gradient descent. https:// en.wikipedia.org/wiki/Gradient
descent .

[25] Isabelle Guyon and André Elisseeff. An introduction
to variable and feature selection. Journal of Machine
Learning Research, 3(Mar):1157–1182, 2003.

[26] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and
Haryadi S. Gunawi. The tail at store: A revelation
from millions of hours of disk and SSD deployments.
In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 263–276, 2016.

[27] Jun He, Duy Nguyen, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Reducing file system tail
latencies with Chopper. In Proceedings of the 13th

54 18th USENIX Conference on File and Storage Technologies USENIX Association

USENIX Conference on File and Storage Technologies,
FAST’15, pages 119–133, Berkeley, CA, USA, 2015.
USENIX Association.

[28] J. H. Holland. Adaptation in natural and artificial sys-
tems: An introductory analysis with applications to bi-
ology, control, and artificial intelligence. U. Michigan
Press, 1975.

[29] Aapo Hyvärinen and Erkki Oja. Independent compo-
nent analysis: Algorithms and applications. Neural
Networks, 13(4-5):411–430, 2000.

[30] M. Kaminsky, G. Savvides, D. Mazieres, and M. F.
Kaashoek. Decentralized user authentication in a
global file system. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP ’03), Bolton Landing, NY, October 2003. ACM
SIGOPS.

[31] Jalil Kazemitabar, Arash Amini, Adam Bloniarz, and
Ameet S Talwalkar. Variable importance using decision
trees. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Sys-
tems 30, pages 426–435. Curran Associates, Inc., 2017.

[32] Kimberly Keeton, Dirk Beyer, Ernesto Brau, Arif Mer-
chant, Cipriano Santos, and Alex Zhang. On the road to
recovery: Restoring data after disasters. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems, pages 235–248, New York, NY,
USA, 2006. ACM.

[33] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evalu-
ating phase change memory for enterprise storage sys-
tems: A study of caching and tiering approaches. In
Proceedings of the 12th USENIX Conference on File
and Storage Technologies, pages 33–45, Berkeley, CA,
2014. USENIX.

[34] Seyoung Kim and Eric P. Xing. Tree-guided group
Lasso for multi-task regression with structured sparsity.
In ICML, pages 543–550, 2010.

[35] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi
Hifumi, Seiji Kihara, and Satoshi Moriai. The Linux
implementation of a log-structured file system. ACM
SIGOPS Operating Systems Review, 40(3):102–107,
2006.

[36] Latin hypercube sampling. https:// en.wikipedia.org/wiki/
Latin hypercube sampling.

[37] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies (FAST), pages 273–286,
Santa Clara, CA, February 2015. USENIX Association.

[38] Howard Levene. Robust tests for equality of variances.
Contributions to Probability and Statistics. Essays in
Honor of Harold Hotelling, pages 279–292, 1961.

[39] Jundong Li, Kewei Cheng, Suhang Wang, Fred
Morstatter, Robert P Trevino, Jiliang Tang, and Huan
Liu. Feature selection: A data perspective. ACM Com-
puting Surveys (CSUR), 50(6):94, 2017.

[40] Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller,
and Darrell D. E. Long. Capes: Unsupervised system
performance tuning using neural network-based deep
reinforcement learning. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, 2017.

[41] Z. Li, A. Mukker, and E. Zadok. On the importance of
evaluating storage systems’ $costs. In Proceedings of
the 6th USENIX Conference on Hot Topics in Storage
and File Systems, HotStorage’14, 2014.

[42] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He,
Lianjie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong
Sun. Metis: robustly optimizing tail latencies of cloud
systems. In Proceedings of the 2018 USENIX Con-
ference on Usenix Annual Technical Conference, pages
981–992. USENIX Association, 2018.

[43] Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian.
Feature selection using principal feature analysis. In
Proceedings of the 15th ACM international conference
on Multimedia, pages 301–304. ACM, 2007.

[44] Sandeep Madireddy, Prasanna Balaprakash, Philip
Carns, Robert Latham, Robert Ross, Shane Snyder, and
Stefan M Wild. Machine learning based parallel i/o
predictive modeling: A case study on lustre file sys-
tems. In International Conference on High Perfor-
mance Computing, pages 184–204. Springer, 2018.

[45] M. D. McKay, R. J. Beckman, and W. J. Conover. A
comparison of three methods for selecting values of in-
put variables in the analysis of output from a computer
code. Technometrics, 21(2):239–245, 1979.

[46] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur
Mutlu. A large-scale study of flash memory failures
in the field. In Proceedings of the 2015 ACM Inter-
national Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS 2015), pages 177–
190, Portland, OR, June 2015. ACM.

[47] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bern-
hard Scholkopf, and Klaus-Robert Mullers. Fisher dis-
criminant analysis with kernels. In Proceedings of the
IEEE Signal Processing Society Workshop on Neural
Networks for Signal Processing, pages 41–48. IEEE,
1999.

[48] Kevin P. Murphy. Machine Learning: A Probabilistic
Perspective. MIT press, 2012.

USENIX Association 18th USENIX Conference on File and Storage Technologies 55

[49] John A. Nelder and Roger Mead. A simplex method
for function minimization. The Computer Journal,
7(4):308–313, 1965.

[50] John Neter, Michael H. Kutner, Christopher J. Nacht-
sheim, and William Wasserman. Applied Linear Statis-
tical Models, volume 4. Irwin Chicago, 1996.

[51] Nohhyun Park, Weijun Xiao, Kyubaik Choi, and
David J. Lilja. A statistical evaluation of the im-
pact of parameter selection on storage system bench-
marks. In Proceedings of the 7th IEEE International
Workshop on Storage Network Architecture and Paral-
lel I/Os (SNAPI), volume 6, 2011.

[52] D. Patterson, G. Gibson, and R. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In Proceed-
ings of the ACM SIGMOD, pages 109–116, Chicago,
IL, June 1988. ACM Press.

[53] Robin L. Plackett and J. Peter Burman. The design
of optimum multifactorial experiments. Biometrika,
pages 305–325, 1946.

[54] LVM2 resource page. http:// sources.redhat.com/ lvm2/ .

[55] H. Reiser. ReiserFS v.3 whitepaper. http://web.archive.
org/web/20031015041320/http://namesys.com/ .

[56] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-tree filesystem. Trans. Storage, 9(3):9:1–
9:32, August 2013.

[57] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proceedings
of the First USENIX Conference on File and Storage
Technologies (FAST ’02), pages 231–244, Monterey,
CA, January 2002. USENIX Association.

[58] George A.F. Seber and Alan J. Lee. Linear Regression
Analysis, volume 329. John Wiley & Sons, 2012.

[59] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluat-
ing performance and energy in file system server work-
loads. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages 253–266,
San Jose, CA, February 2010. USENIX Association.

[60] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Op-
timizing energy and performance for server-class file
system workloads. ACM Transactions on Storage
(TOS), 6(3), September 2010.

[61] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando de Freitas. Taking the human out
of the loop: A review of Bayesian optimization. Pro-
ceedings of the IEEE, 104(1):148–175, 2016.

[62] Jonathon Shlens. A tutorial on principal component
analysis. arXiv preprint arXiv:1404.1100, 2014.

[63] John D. Strunk, Eno Thereska, Christos Faloutsos, and
Gregory R. Ganger. Using utility to provision stor-
age systems. In Proceedings of the 6th USENIX Con-

ference on File and Storage Technologies, FAST’08,
pages 313–328, Berkeley, CA, USA, 2008. USENIX
Association.

[64] David G. Sullivan, Margo I. Seltzer, and Avi Pfef-
fer. Using probabilistic reasoning to automate software
tuning, volume 32. ACM, 2004.

[65] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck. Scalability in the XFS file
system. In Proceedings of the Annual USENIX Tech-
nical Conference, pages 1–14, San Diego, CA, January
1996.

[66] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and
Margo Seltzer. Benchmarking file system benchmark-
ing: It *IS* rocket science. In Proceedings of HotOS
XIII:The 13th USENIX Workshop on Hot Topics in Op-
erating Systems, Napa, CA, May 2011.

[67] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. ;login: The USENIX Magazine, 41(1):6–12,
March 2016.

[68] Robert Tibshirani. Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), pages 267–288, 1996.

[69] Stephen Tweedie. Ext3, journaling filesys-
tem. In Ottawa Linux Symposium, July 2000.
http://olstrans.sourceforge.net/ release/OLS2000-ext3/
OLS2000-ext3.html .

[70] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,
and Bohan Zhang. Automatic database management
system tuning through large-scale machine learning. In
Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD ’17, pages
1009–1024, 2017.

[71] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, An-
thony Brockwell, Christos Faloutsos, and Gregory R.
Ganger. Storage device performance prediction with
CART models. In The IEEE Computer Society’s 12th
Annual International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunica-
tions Systems. (MASCOTS), pages 588–595, 2004.

[72] Bernard Lewis Welch. On the comparison of several
mean values: An alternative approach. Biometrika,
38(3/4):330–336, 1951.

[73] H.-S. Philip Wong, Simone Raoux, SangBum Kim,
Jiale Liang, John P. Reifenberg, Bipin Rajen-
dran, Mehdi Asheghi, and Kenneth E. Goodson.
Phase change memory. Proceedings of the IEEE,
98(12):2201–2227, Dec 2010.

[74] Ming Yuan and Yi Lin. Model selection and estimation
in regression with grouped variables. Journal of the

56 18th USENIX Conference on File and Storage Technologies USENIX Association

Royal Statistical Society: Series B (Statistical Method-
ology), 68(1):49–67, 2006.

USENIX Association 18th USENIX Conference on File and Storage Technologies 57

Read as Needed: Building WiSER, a Flash-Optimized Search Engine

Jun He, Kan Wu, Sudarsun Kannan†, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin–Madison

†Department of Computer Science, Rutgers University

Abstract

We describe WiSER, a clean-slate search engine designed
to exploit high-performance SSDs with the philosophy "read
as needed". WiSER utilizes many techniques to deliver high
throughput and low latency with a relatively small amount
of main memory; the techniques include an optimized data
layout, a novel two-way cost-aware Bloom filter, adaptive
prefetching, and space-time trade-offs. In a system with mem-
ory that is significantly smaller than the working set, these
techniques increase storage space usage (up to 50%), but re-
duce read amplification by up to 3x, increase query throughput
by up to 2.7x, and reduce latency by 16x when compared to
the state-of-the-art Elasticsearch. We believe that the philoso-
phy of "read as needed" can be applied to more applications
as the read performance of storage devices keeps improving.

1 Introduction

Modern solid-state storage devices (SSDs) [19, 20] provide
much higher throughput and lower latency than traditional
persistent storage such as hard disk drives (HDDs). Currently,
flash-based SSDs [19, 20] are readily available; in the near
future, even higher performance NVRAM-based systems may
supplant flash [4], boosting performance even further.

SSDs exhibit vastly different characteristics from
HDDs [24, 36]; as we shift from HDDs to SSDs, the software
on top of the storage stack must evolve to harvest the
high performance of the SSDs. Thus far, optimization for
SSDs has taken place within many important pieces of the
storage stack. For example, RocksDB [16], Wisckey [38]
and other work [23, 34, 42] have made key-value stores
more SSD-friendly; FlashGraph [59], Mosaic [43] and
other work [48, 49, 60] optimize graphs for SSDs; SFS [45],
F2FS [39] and other work [30, 37] have made systems
software more SSD-friendly.

In this evolution, an important category of application has
been overlooked: full-text search engines. Search engines
are widely used in many industrial and scientific settings to-
day, including popular open-source offerings such as Elastic-
search [7] and Solr [3]. As of the time of this writing, Elastic-
search is ranked 7th among all database engines, higher than
well-known systems such as Redis, Cassandra, and SQLite [6].
Elasticsearch is used in important applications, such as at
Wikipedia and Github to power text (edited contents or source

code) search [7, 22]. They are also widely used for data ana-
lytics [7]; for example, Uber uses Elasticsearch to generate
dynamic prices in real time based on users’ locations.

Furthermore, the challenges in search engines are unique,
interesting, and different from the ones in key-value stores,
graphs, and system software. The key data structure in a
search engine is an inverted index, which maps individual
terms (i.e., words) to lists of documents that contain the terms.
On top of the inverted index, multiple auxiliary data struc-
tures (e.g., posting lists) and technologies (e.g., compression)
also play important roles to implement an efficient search
engine. In addition to compelling data structures, the unique
workloads of search engines also provoke new thoughts on
SSD-based optimizations. For example, phrase queries (e.g.,
“United States”) stress multiple data structures in the engine
and require careful design.

Search engines pose great challenges to storage systems.
First, search engines demand low latency as users often inter-
face with them interactively. Second, search engines demand
high data throughput because they retrieve information from a
large volume of data. Third, search engines demand high scal-
ability because data grows quickly. Due to these challenges,
many search engines eschew using secondary storage, putting
most/all data directly into memory instead [13, 15].

However, we believe the advent of faster storage suggests
a reexamination of modern search engine design. Given that
using RAM for large datasets can be cost prohibitive, can
one instead rebuild a search engine to better utilize SSDs to
achieve the necessary performance goals with main memory
that is significantly smaller than the dataset?

We believe the answer is yes, if we re-design the system
with the principle read as needed. Emerging fast storage de-
vices [14, 18, 29, 36, 57] offer high bandwidth; for example,
inexpensive (i.e., $0.17/GB) SSDs currently offer 3.5 GB/s
read bandwidth [17], and even higher performance can be
provided with multiple devices (e.g., RAID). These high-
performance storage devices allow applications to read data
as needed, which means that main memory can be used as
a staging buffer, instead of a cache; thus, large working sets
can be kept within secondary storage and less main memory
is required. To read as needed, applications must optimize the
efficiency of the data stream flowing from the storage device,
through the small buffer (memory), to CPU.

USENIX Association 18th USENIX Conference on File and Storage Technologies 59

In this paper, we present the design, implementation, and
evaluation of WiSER, a flash-optimized high-I/O search en-
gine that reads data as needed. WiSER reorganizes tradi-
tional search data structures to create and improve the read
stream, thus exploiting the bandwidth that modern SSDs pro-
vide. First, we propose a technique called cross-stage group-
ing, which produces locality-oriented data layout and signif-
icantly reduces read amplification for queries. Second, we
propose a novel two-way cost-aware Bloom filter to reduce
I/O for phrase queries. Third, we use adaptive prefetch to
reduce latency and improve I/O efficiency. Fourth, we enable
a space-time trade-off, increasing space utilization on flash
for fewer I/Os; for example, we compress documents indi-
vidually, which consumes more space than compression in
groups, but allows us to retrieve documents with less I/O.

We built WiSER1 from ground up with 11,000 lines of C++
code, for the following reasons. First, an implementation in
C++ allows us to interact with the operating system more
closely than the state of the art engine, Elasticsearch, which
is written in Java; for example, it allows us to readily prefetch
data using OS hints. Second, a fresh implementation allows
us to reexamine the limitations of current search engines. For
example, by comparing with WiSER, we found that the net-
work implementation in Elasticsearch significantly limits its
performance and could be improved. Overall, our clean slate
implementation produces highly efficient code, which allows
us to apply various flash-optimized techniques to achieve
high performance. For some (but not all) workloads, WiSER
with limited memory performs better than Elasticsearch with
memory that holds the entire working set.

We believe that this paper makes the following contribu-
tions. First, we propose a design philosophy, read as needed,
and follow the philosophy to build a flash-optimized search en-
gine with several novel techniques. For example, we find that
plain Bloom filters employed elsewhere [11, 16, 42] surpris-
ingly increase I/O traffic; consequently, we propose two-way
cost-aware Bloom filters, which exploit unique properties of
search engine data structures. Second, WiSER significantly
reduces the need for vast amounts of memory by exploiting
high-bandwidth SSDs to achieve high performance at low
cost. Third, we have built a highly efficient search engine:
thanks to our proposed techniques and efficient implementa-
tion, WiSER delivers higher query throughput (up to 2.7x)
and lower latencies (up to 16x) than a state-of-the-art search
engine (Elasticsearch) in a low-memory system that we use
to stress the engine.

The paper is organized as follows. We introduce the back-
ground of search engines in Section 2. We propose techniques
for building a flash-optimized search engine in Section 3.
We evaluate our flash-optimized engine in Section 4, discuss
related work in Section 5, and conclude in Section 6.

1WiSER is available at http://research.cs.wisc.edu/adsl/Software/wiser/.

ID Text

1 I thought about naming the engine CHEESE, but I
could not explain CHEE.

2 Fried cheese curds, cheddar cheese sale.
3 Tofu, also known as bean curd, may not pair well

with cheese.

Table 1: An Example of Documents An indexer parses the
documents to build an inverted index; a document store will
keep the original text.

ID
2
3

POS
3
6

OFF
(13,17)
(25,28)

ID
1
2
3

POS
7
2,5
12

OFF
(34,39)
(6,11),(28,33)
(52,57)

…
cheese

…
curd

…

…

…

…Term Map Postings Lists

A Posting

TF
1
2
1

TF
1
1

Figure 1: An Example of Inverted Index This figure shows
the general contents of inverted index without specific layout
information. Term Map allows one to look up the location of
the postings list of a term.

2 Search Engine Background

Search engines play a crucial role in retrieving information
from large data collections. Although search engines are de-
signed for text search, they are increasingly being used for
data analytics because search engines do not need fixed data
schemes and allow flexible data exploration. Popular modern
search engines, which share similar features, include Elas-
ticsearch, Solr, and Splunk [6]. Elasticsearch and Solr are
open-source projects based on Lucene [1], an information
retrieval library. Elasticsearch and Solr wrap Lucene by im-
plementing practical features such as sharding, replication,
and network capability. We use Elasticsearch as our baseline
as it is the most popular [6] and well-maintained project. Al-
though we only study Elasticsearch, our results also apply to
other engines, which share the same underlying library (i.e.,
Lucene) or key data structures.

2.1 Elasticsearch Data Structures

Search engines allow users to quickly find documents (e.g.,
text files, web pages) that contain desired information. Docu-
ments must be indexed to allow fast searches; the core index
structure in popular engines is the inverted index, which stores
a mapping from a term (e.g., a word) to all the documents
that contain the term.

An indexer builds the inverted index. Table 1 shows an
example of documents to be indexed. First, the indexer splits
a document into tokens by separators such as space and punc-
tuation marks. Second, the indexer transforms the tokens. A
common transformation is stemming, which unifies tokens
(e.g., curds) to their roots (e.g., curd). The transformed tokens
are usually referred to as terms. Finally, the location informa-

60 18th USENIX Conference on File and Storage Technologies USENIX Association

Term Index
Term Dictionary

Skiplist
ID-TF

POS OFF

1

2

3 4 5

6 7

Figure 2: Inverted Index in Elasticsearch Term Index maps
a term to an entry in Term Dictionary. A Term Dictionary
entry contains metadata about a term (e.g., doc frequency)
and multiple pointers pointing to files that contain document
IDs and Term Frequencies (ID-TF), positions (POS), and byte
offsets (OFF). The number in the figure indicates a typical
data access sequence to serve a query. No.3, 4, and 5 indicate
the access of skip lists, document ID and Term Frequencies.
For Wikipedia, the sizes of each component are Term Index: 4
MB, Term Dictionary: 200 MB, Skiplist.ID.TF: 2.7 GB, POS:
4.8 GB, OFF: 2.8 GB.

tion of the term is inserted to a list, called a postings list. The
resulting inverted index is shown in Figure 1.

A posting contains the location information of a term in
a particular document (Figure 1). Such information often in-
cludes a document ID, positions, and byte offsets of the term
in the document. For example, a position records that term
“cheese” is the 2-th and 5-th token in document 2. Positions en-
able the processing of phrase queries: given a phrase such as
“cheese curd”, we know that a document contains the phrase if
the first term, “cheese”, is the x-th token and the second term
“curd” is the x+1-th one. An offset pair records the start and
end byte address of a term in the original document. Offsets
enable quick highlighting; the engine presents the most rele-
vant parts (with the queried terms highlighted) of a document
to the user. A posting also contains information such as term
frequency for ranking the corresponding document.

Query processing includes multiple stages: document
matching, ranking, phrase matching, highlighting; different
types of queries go through different stages. For queries with
a single term, an engine executes the following stages: it-
erating document IDs in a term’s postings list (document
matching); calculating the relevance score of each document,
which usually uses term frequencies, and finding the top doc-
uments (ranking); and highlighting queried terms in the top
documents (highlighting). For AND queries such as “cheese
AND curd”, which look for documents containing multiple
terms, document matching includes intersecting the document
IDs in multiple postings lists. For the example in Figure 1,
intersecting {1,2,3} and {2,3} produces {2,3}, which are
the IDs of documents that contain both “cheese” and “curd”.
For phrase queries, a search engine needs to use positions to
perform phrase matching after document matching.

Figure 2 shows the data structures of Elasticsearch. To
serve a query with a single term, Elasticsearch follows these
steps. First, Elasticsearch locates a postings list by Term In-

●

●

●

●

●

●
●

●

● ● ● ● ● ●

●

● ● ●
●

● ●

ideally−needed
1

10

100

in−mem 16 8 4 2 1 0.5
memory size(GB)

R
ea

d
Tr

af
fic

 (G
B

) ● ● ●es es_no_pref wiser

Figure 3: Read Traffic of Search Engines This figure shows
read I/O traffic of various search engines as the size of mem-
ory decreases. es: Elasticsearch, es_no_pref: Elasticsearch
without prefetch. Note that serving queries leads to only read
traffic. The ideally-needed traffic assumes a byte-addressable
storage device.

dex (1) and a Term Dictionary (2). The Term Index and Term
Dictionary contain location information of the skip lists, doc-
ument IDs, positions, and offsets (details below). Second, the
engine will load the skip list, which contains more informa-
tion for navigating document IDs, term frequencies, positions,
and offsets. Third, it will iterate through the document IDs and
use the corresponding term frequencies to rank documents.
Fourth, after finding the documents with top scores, it will
read offsets and document text to generate snippets.

2.2 Elasticsearch Performance Problems

Elasticsearch cannot achieve the highest possible performance
from the storage system due in part to read amplification.
Elasticsearch groups data of different stages into multiple
locations and arranges data such that data items in the early
stages are smaller. The intention is that data in early stages,
which is accessed more frequently than data in later stages, is
cached. However, grouping data by stage also could lead to
large read amplification.

Figure 3 shows the I/O traffic of a real query workload
over Wikipedia; as the amount of memory is decreased, the
I/O traffic incurred by Elasticsearch increases significantly.
In contrast, the amount of read traffic in WiSER remains
relatively low regardless of the amount of memory available.

3 WiSER: A Flash-Optimized Search Engine

Given that SSDs offer high bandwidth, applications that "read
data as needed" may be able to run effectively on systems that
do not contain enough main memory to cache the entire work-
ing set. However, since device bandwidth is not unlimited,
applications must carefully control how data is organized and
accessed to match the performance characteristics of modern
SSD storage [36].

At the highest level, the less I/O an application must per-
form, the faster that application will complete; since search
engine queries involve only read operations, we should reduce
read amplification as much as possible. Second, retrieving
data from SSDs instead of RAM can incur relatively long
latency; therefore, applications should hide I/O latency as

USENIX Association 18th USENIX Conference on File and Storage Technologies 61

Prefetch Zone

md skiplist IDs TFs

…

POSs OFFs

zone size locationterm

zone size locationterm

zone size locationterm

…

Term Map

…BFs

Figure 4: Structure of WiSER’s Inverted Index Contents
of each postings list are placed together. Within each postings
list, IDs, TFs and so on are also placed together to maximize
compression ratio, which is the same as Elasticsearch.

much as possible with prefetching or by overlapping compu-
tation with I/O. Third, SSDs deliver higher data bandwidth
for larger requests; therefore, an application should organize
and structure its data to enable large requests.

We introduce techniques that allow WiSER to reduce read
amplification, hide I/O latency, and issue large requests. First,
cross-stage data grouping groups data of different stages and
stores it compactly during indexing (reducing read implication
and enabling large requests). Second, two-way cost-aware fil-
tering employs special Bloom filters to prune paths early and
reduce I/O for positions in the inverted index; our Bloom
filters are novel in that they are tightly integrated with the
query processing pipeline and exploit unique properties of
search engines (again reducing read amplification). Third, we
adaptively prefetch data to reduce query latency; unlike the
prefetch employed by Elasticsearch (i.e., OS readahead), our
prefetch dynamically adjusts the prefetch size to avoid read-
ing unnecessary data (hiding I/O latency and enabling large
requests without increasing read amplification). Fourth, we
take advantage of the inexpensive and ample space of SSDs
by trading disk space for I/O speed; for example, WiSER
compresses documents independently and aligns compressed
documents to file system blocks to prevent data from cross-
ing multiple blocks (reducing read amplification). We now
describe these techniques in more detail.

In discussing our design, we will draw on examples from
the English Wikipedia, which is a representative text data
set [33, 35, 44, 50, 53, 54, 56]. Its word frequency follows the
same distribution (zipf’s law) as many other corpuses [41,50],
such as Twitter [47].

3.1 Technique 1: Cross-Stage Data Grouping

One key to building a flash-optimized high-I/O search engine
is to reduce read amplification. We propose cross-stage group-
ing to reduce read amplification for posting lists of small or
medium sizes. The processing of such postings lists is critical
because most of the postings lists fall into this category. For
example, 99% of the postings lists in Wikipedia are small or
medium (less than 10,000 documents are in the postings list).
Also, search engines often shard large postings lists into such
smaller ones to reduce processing latency.

Cross-stage data grouping puts data needed for different
stages of a query into continuous and compact blocks on the

storage device, which increases block utilization when trans-
ferring data for a query. Figure 4 shows the resulting data
structures after group; data needed for a query is located in
one place and in the order that it will be accessed. Essentially,
the grouped data becomes a stream of data, in which each
piece of data is expected to be used at most once. Such ex-
pectation matches the query processing in a search engine, in
which multiple iterators iterate over lists of data. Such streams
can flow through a small buffer efficiently with high block
utilization and low read amplification.

Grouped data introduces significantly less read amplifica-
tion than Elasticsearch for small and medium postings lists.
Due to highly efficient compression, the space consumed
by each postings list is often small; however, due to Elastic-
search’s layout, the data required to serve a query is spread
across multiple distant locations (Term Dictionary, ID-TF,
POS, and OFF) as shown in Figure 2. Elasticsearch’s layout
increases the I/O traffic and also the number of I/O operations.
On the other hand, as shown in Figure 4, the grouped data
can often be stored in the one block (e.g., 99% of the terms in
Wikipedia can be stored in a block), incurring only one I/O.

3.2 Technique 2: Two-way Cost-aware Filters

Phrase queries are pervasive and are often used to improve
search precision [31]. Unfortunately, phrase queries put great
pressure on a search engine’s storage system, as they require
retrieving a large amount of positions data (as described in
Section 2). To build a flash-optimized search engine, we must
reduce the I/O traffic of phrase queries.

Bloom filters, which can test if an element is a member of
a set, are often used to reduce I/O; however, we have found
that plain Bloom filters, which are often directly used in data
stores [11, 42, 46], increase I/O traffic for phrase queries be-
cause individual positions data is relatively small due to com-
pression and, therefore, the corresponding Bloom filter can
be larger than the positions data.

As a result, we propose special two-way cost-aware Bloom
filters by exploiting unique properties of search engines to
reduce I/O. The design is based on the observation that the
postings list sizes of two (or more) terms in a phrase query are
often different. Therefore, we construct Bloom filters during
indexing to allow us to pick the smaller Bloom filter to filter
out a larger amount of positions data during querying. In
addition, we design a special bitmap-based structure to store
Bloom filters to further reduce I/O. This section gives more
details on our Bloom filters.
3.2.1 Problems of plain Bloom filters

A plain Bloom filter set contains terms that are after a par-
ticular term; for example, the set.after of term “cheese” in
document 2 of Table 1 contains “curd” and “sale”. To test the
existence of a phrase “cheese curd”, an engine can simply
test if “curd” is in set.after of “cheese”, without reading any
positions. If the test result is negative, we stop and conse-
quently avoid reading the corresponding positions. If the test

62 18th USENIX Conference on File and Storage Technologies USENIX Association

BF POS

term1

term2

BF POS1 2

2

Figure 5: Phrase Processing With Bloom Filters WiSER
uses one of the Bloom filters to test the existence of a phrase
(1) and then read positions for positive tests to confirm (2).

result is positive, we must confirm the existence of the phrase
by checking positions because false positives are possible in
Bloom filters; also, we may have to use positions to locate
the phrase within a document for highlighting.

However, we must satisfy the following two conditions to
reduce I/O. First, the percentage of negative tests must be
high because this is the case where we only read the Bloom
filters and avoid other I/O. If the test is positive (a phrase
may exist), we have to read both Bloom filters and positions,
which increases I/O. Empirically, the percentage of positive
results is low for real phrase queries to Wikipedia [21]: only
12% of the tests are positive. Intuitively, the probability for
two random terms to form a phrase in a document is also low
due to a large number of terms in a regular document. The
second condition is that the I/O traffic to the Bloom filters
must be smaller than the traffic to positions needed to identify
a phrase; otherwise, we would just use the positions.

Meeting the second condition is challenging because the
sizes of plain Bloom filters are too large in our case, although
they are considered space-efficient in other uses [11, 42].
Bloom filters can be larger than their corresponding posi-
tions because positions are already space efficient after com-
pression (delta encoding and bit packing [2]). In addition,
Bloom filters are configured to be relatively large because
their false positive ratios must be low. The first reason to
reduce false positive is to increase negative test results, as
mentioned above. The second reason is to avoid reading un-
necessary file system blocks. Note that a 4-KB file system
block contains positions of hundreds of postings. If any of the
positions are requested due to false positive tests, the whole
4-KB block must be read; however, none of the data in the
block is useful.

3.2.2 Two-way and cost-aware filtering

We now show how we can reduce I/O traffic to both Bloom fil-
ters and positions with cost-aware pruning and a bitmap-based
store. To realize it, first we estimate I/O cost and use Bloom
filters conditionally (i.e., cost-aware): we only use Bloom
filters when the I/O cost of reading Bloom filters is much
smaller than the cost of reading positions if Bloom filters are
not used. For example, in Figure 5, we will not use Bloom
filters for query “term1 term2” as the I/O cost of reading the
Bloom filters is too large. We estimate the relative I/O costs
of Bloom filter and positions among different terms by term
frequencies (available before positions are needed), which is
proportional to the sizes of Bloom filters and positions.

Second, we build two Bloom filters for each term to al-

Bitmap Filter Array Bitmap Filter Array Bitmap Filter Array …

…Skip List

Figure 6: Bloom Filter Store The sizes of the arrays may
vary because some Bloom filters contain no entries and thus
are not stored in the array.

low filtering in either direction (i.e., two-way): a set for all
following terms and another set for all preceding terms of
each term. This design is based on the observation that the
positions (and other parts) sizes of the terms in a query are
often vastly different. With these two Bloom filters, we can
apply filters forward or backward, whichever can reduce I/O.
For example, in Figure 5, instead of using Bloom filters of
term1 to test if term2 is after term1, we can now use Bloom
filters of term2 to test if term1 is before term2. Because the
Bloom filters of term2 are much smaller, we can apply it to
significantly reduce I/O.

To further reduce the size of Bloom filters, we employ a
bitmap-based data layout to store Bloom filters. Figure 6
shows the data layout. Bloom filters are separated into groups,
each of which contains a fixed number of filters (e.g., 128);
the groups are indexed by a skip list to allow skipping reading
large chunks of filters. In each group, we use a bitmap to
mark the empty filters and only store non-empty filters in the
array; thus, empty Bloom filters only take one bit of space
(in the bitmap). Reducing the space usage of empty filters
can significantly reduce overall space usage of Bloom filters
because empty filters are common. For instance, about one-
third of the filters for Wikipedia are empty. Empty filters of
a term come from surrounding punctuation marks and stop
words (e.g., “a”, “is”, “the”), which are not added to filters.

Empirically, we find that expecting five insertions and a
false positive probability of 0.0009 in the Bloom filter [12]
(each filter is 9-byte) offers a balanced trade-off between
space and test accuracy for English Wikipedia; these param-
eters should be tuned for other data sets. We use the same
parameters for all Bloom filters in WiSER because storing
parameters would require extra space and steps before testing
each filter; one could improve the space overhead and accu-
racy by limiting the number of parameter sets for the engine
and selecting the optimal ones for specific filters from the
available sets.

3.3 Technique 3: Adaptive Prefetching

Although the latency of SSDs is low, it is still much higher
than that of memory. The relatively high latency of SSDs
adds to query processing time, especially the processing of
long postings lists which demands a large amount of I/O. If
we load one page at a time as needed, query processing will
frequently stop and wait for data, which also increases system
overhead. In addition, the I/O efficiency will be low due to
small request sizes [36].

USENIX Association 18th USENIX Conference on File and Storage Technologies 63

To mitigate the impact of high I/O latency and improve the
I/O efficiency, we propose adaptive prefetching. Prefetching, a
commonly used technique, can reduce I/O stall time, increase
the size of I/O requests, and reduce the number of requests,
which boosts the efficiency of flash devices and reduces sys-
tem overhead. However, naive prefetching, such as the Linux
readahead [10], used by Elasticsearch, suffers from signif-
icant read amplification. Linux unconditionally prefetches
data of a fixed size (default: 128 KB), which causes high read
amplification due to the diverse data sizes needed.

For the best performance, prefetching should adapt to the
queries and the structures of persistent data. Among all data
in the inverted index, the most commonly accessed data in-
cludes metadata, skip lists, document IDs, and term frequen-
cies, which are often accessed together and sequentially; thus
we place them together in an area called the prefetch zone. Our
adaptive approach prefetches data when doing so can bring
significant benefits. We prefetch when all prefetch zones in-
volved in a query are larger than a threshold (e.g., 128 KB);
we divide the prefetch zone into small prefetch segments to
avoid accessing too much data at a time.

To enable adaptive prefetch, WiSER employs prefetch-
friendly data structures, as shown in Figure 4. A search engine
should know the size of the prefetch zone before reading the
posting list (so the prefetch size can be adapted). To enable
such prefetching, we hide the size of the prefetch zone in the
highest 16 bits of the offset in WiSER’s Term Map (the 48 bits
left is more than enough to address large files). In addition, the
structure in the prefetch zone is also prefetch-friendly. Data
in the prefetch zone is placed in the order it is used, which
avoid jumping ahead and waiting for data that has not been
prefetched. Finally, compressed data is naturally prefetch-
friendly. Even if there are data “holes” in the prefetch zone
that are unnecessary for some queries, prefetching data with
such holes is still beneficial because these holes are usually
small due to compression and the improved I/O efficiency can
well offset the cost of such small read amplification.

WiSER prefetches by dynamically calling madvise() with
the MADV_SEQUENTIAL hint to readahead in the prefetch zone.
We could further improve prefetching with more precise mem-
ory management; for example, we could isolate the buffers
used for different queries and avoid interference between
queries. In addition, Linux prefetches in fixed sizes; we could
allow variable sizes to avoid wasting I/O.

3.4 Technique 4: Trade Disk Space for I/O

With a small increase in disk space, WiSER is able to perform
less I/O to its document store. We compress each document
individually in WiSER, which often increases space usage but
avoids reading and decompressing unnecessary documents.
Compression algorithms, such as LZ4, achieve better com-
pression when more data is compressed together. As a result,
when compressing documents, engines like Elasticsearch put
documents into a buffer (default size: 16 KB) and compresses

all data in the buffer together. Unfortunately, decompressing a
document requires reading and decompressing all documents
compressed before the document, leading to more I/O and
computation. In WiSER, we trade space for less I/O by using
more space but reducing the I/O while processing queries.

In addition, WiSER aligns compressed documents to the
boundaries of file system blocks if the unaligned data would
incur more I/O. A document may suffer from the block-
crossing problem, where a document is unnecessarily placed
across two (or more) file system blocks and requires reading
two blocks during decompression. For example, a 3-KB data
chunk has a 75% chance of spanning across two 4-KB file sys-
tem blocks. To avoid this problem, WiSER aligns compressed
document if doing so could reduce the block span.

3.5 Impact on Indexing

Our techniques focus on optimizing query processing instead
of index creation since query processing is performed far more
frequently. Overall, we believe the overhead introduced to
indexing is more than justified by the significant performance
improvements on query processing. Cross-stage data group-
ing does not add overhead to indexing since the same data
is simply placed in different locations. Adaptive prefetching
employs existing information and does not add any overhead
during indexing. Trading space for less I/O adds moderate I/O
overhead for the indexing phase (25% for Wikipedia) because
the document store takes more space.

Building two-way cost-aware Bloom filters requires addi-
tional computation: the indexer in WiSER builds two Bloom
filters, set.before and set.after, for each term in each document.
Although a fixed number of hashing calls are required to add
an entry to a filter and some filters are empty, the accumula-
tive cost can be high. Currently, we have not optimized the
building of Bloom filters. One way to speed up the building
is to parallelize it, which also speeds up writing the filters to
SSDs. Another way is to cache the hash values of popular
terms to avoid hashing the same term frequently; popular
terms appear hundreds of thousands times but would only
need to be hashed once.

3.6 Implementation

We have implemented WiSER with 11,000 lines of C++ code,
which allows us to interact with the OS more directly than
higher-level languages. Data files are mapped by mmap() to
avoid complex buffer management. We rigorously conducted
hundreds of unit tests to ensure the correctness of our code.

The major implementation differences between WiSER
and Elasticsearch are the programming languages and net-
work libraries. From our experimentation, we found that C++
does not bring significant advantage to WiSER over Elastic-
search. In fact, to make the starting performance of WiSER
similar to that of Elasticsearch we had to implement a number
of optimizations: we switched from class virtualization to
templates; we manually inlined frequently-called functions;
we used case-specific functions to allow special optimizations

64 18th USENIX Conference on File and Storage Technologies USENIX Association

for the case; and, we avoided frequent memory allocations
(e.g., by reusing preallocated std::vector).

4 Evaluation

In this section, we evaluate WiSER with WSBench, a bench-
mark suite we built, which includes synthetic and realistic
search workloads. The impact of a particular technique can
be demonstrated by comparisons between two versions of
WiSER (i.e., with and without the technique). For example,
we demonstrate the effect of two-way cost-aware Bloom fil-
ters by comparing WiSER with and without them.

At the beginning of this section, we analyze in detail how
each of the proposed techniques in WiSER is able to improve
performance by significantly reducing read amplification. We
show that: cross-stage data grouping reduces I/O traffic by 2.9
times; two-way cost-aware Bloom filters reduce I/O traffic
by 3.2 times; adaptive prefetching prefetches only necessary
data; and, trading disk space for less I/O reduces I/O traffic
by 1.7 times.

Later in this section, we show that our techniques improve
end-to-end performance. For example, we compare WiSER
(with Bloom filters) and WiSER (without Bloom filters) to
show that our Bloom filters increase query throughput up to
2.6x. We also show that WiSER delivers higher end-to-end
performance than Elasticsearch, which indicates that WiSER
is well implemented and its techniques can be applied to
modern search engines.

We strive to conduct a fair comparison between Elastic-
search and WiSER. We pre-process the dataset using Elastic-
search and input the same pre-processed data to both WiSER
and Elasticsearch. The pre-processor produces tokens, posi-
tions, and offsets. We implement the exact same relevance
calculation (BM25 [7]) in WiSER as is used in Elasticsearch.
The pre-processing and the implementation ensure that both
WiSER and Elasticsearch will produce query results with the
same quality. Despite our efforts, WiSER and Elasticsearch
still have many differences (e.g., network implementation,
where Elasticsearch performs poorly, and program languages).
However, by comparing time-independent metrics such as
read traffic size, we can see how WiSER reduces amplifica-
tion, which in turn improves end-to-end performance.

We conduct experiments on machines with 16 CPU cores,
64-GB RAM and a 256-GB NVMe SSD (peak read bandwidth
is 2.0 GB/s; peak IOPS is 200,000) [5]. We use Ubuntu with
Linux 4.4.0. We optimize the configuration of Elasticsearch
by following the best practices and tune parameters such as
the number of threads, heap size and stack size.

To evaluate how well each search engine can scale up to
large data sets that do not fit in main memory, our experiments
focus on environments with a small ratio of main memory to
working set size. The total size of English Wikipedia dataset is
18 GB, and from our experiments, we infer that the working
sets are generally a few GBs. Therefore, we configure the
search engine processes to use only 512 MB of memory (using

a Linux container); this limits the engine’s page cache to a
small size (i.e., tens of MBs). Such a configuration allows us
to demonstrate that our proposed techniques are effective at
reducing read amplification, hiding I/O latency and increasing
I/O efficiency, which are essential challenges at larger scale.

4.1 WSBench

We had to create our own benchmark to evaluate WiSER and
Elasticsearch because existing benchmarks are not sufficient.
To evaluate its engine, the Elasticsearch team uses Wikipedia
[33,44,54] and scientific papers from PubMed Central (PMC);
unfortunately, the Wikipedia benchmarks do not include real
queries and the PMC dataset is very small (only 574,199
documents and 5.5 GB when compressed) with only a few
hand-picked queries [8, 9].

We create WSBench, a benchmark based on the Wikipedia
corpus, to evaluate WiSER and Elasticsearch. The corpus
is from English Wikipedia in May 2018, which includes 6
million documents and 6 million unique terms (excluding stop
words). WSBench contains 24 synthetic workloads varying
the number of terms, the type of queries, and the popularity
level of the queried terms (also known as document frequency:
the number of documents in which a term appears). A high
popularity level indicates a long postings list and large data
size per query. These variables allow us to cover a wide range
of query types and stress the system. WSBench also includes a
realistic query workload extracted from production Wikipedia
servers [21], and three workloads with different query types
derived from the original realistic workload.

4.2 Impact of Proposed Techniques

We evaluate the proposed techniques in WiSER for three
types of synthetic workloads: single-term queries, two-term
queries, and phrase queries. Such evaluations allow us to in-
vestigate how the proposed techniques impact various aspects
of the system as different techniques have different impacts
on workloads. We investigate low-level metrics such as traffic
size to precisely show why the proposed techniques improve
end-to-end performance.

4.2.1 Cross-stage Data Grouping

Cross-stage grouping can reduce the read amplification for all
types of queries. Here we show its impact on single-term and
two-term queries where grouping plays the most important
role; phrase queries are dominated by positions data where
two-way cost-aware Bloom filters play a more important role
(as we will soon show).

Figure 7 shows the decomposed read traffic for single-term
queries. The figure shows that WiSER can significantly re-
duce read amplification (indicated by lower waste than Elas-
ticsearch); the reduction is up to 2.9x. The reduction is more
when the popularity level is lower because the block utiliza-
tion is lower. To process queries with low-popularity terms, a
search engine only needs a small amount of data; for exam-
ple, an engine only needs approximately 30 bytes of data to

USENIX Association 18th USENIX Conference on File and Storage Technologies 65

10 100 1000 10000 100000
w

as
te

do
ci

d of
f tf ti

w
as

te
do

ci
d of
f tf ti

w
as

te
do

ci
d of
f tf ti

w
as

te
do

ci
d of
f tf ti

w
as

te
do

ci
d of
f tf ti

0

3

6

9

IO
 T

ra
ffi

c
(G

B
) es_no_pref wiser

Figure 7: Decomposed Traffic of Single-Term Queries

waste represents the data that is unnecessarily read; docid,
off, skiplist, tf, and ti represents the ideally needed
data of document ID, offset, skip list, term frequency, term
index/dictionary. Positions is not needed in match queries
and thus not shown. This figure only shows the traffic from
inverted index, which relates to cross-stage data grouping;
we investigate the rest of the traffic (document store) later.

2.
384.

83

8.
5918

.8

10
.5
7

14
.8
9

6.
48

7 7.
57.
73

18
.6
9

82 32
9

20
5

37

0

1

2

3

10 100 1000 10000 100000
Two Terms Workloads (Popularity Level)N

or
m

al
iz

ed
 R

ea
d

Tr
af

fic

es es_no_pref wiser

Figure 8: I/O Traffic of Two-term Match Queries The size
(GB) is normalized to the traffic size of Elasticsearch without
prefetching.

process the term “tugman” (popularity=8). To retrieve such
small data, read amplification is inevitable as the minimal I/O
request size is 4 KB. However, we can (and should) mini-
mize the read amplification. Elasticsearch, which groups data
by stages, often needs three separate I/O requests for such
queries: one to term index, one to document IDs/term fre-
quency, and one to offsets. In contrast, WiSER only needs
one I/O request because the data is grouped to one block.

For high popularity levels (popularity=100,000), the traf-
fic reduction is inconspicuous because queries with popular
terms require a large amount of data for each stage (KBs or
even MBs). In that case, the waste from grouping data by
stages in Elasticsearch is negligible.

Figure 8 shows the aggregated I/O traffic for two-term
queries, which read two postings lists. Similar to Figure 7, we
can see that WiSER (wiser) incurs significantly less traffic
than Elasticsearch. In this figure, we show two configura-
tions of Elasticsearch: one with prefetch (es) and one without
prefetch (es_no_pref). Prefetch is a common technique to
boost performance in systems with ample memory; however,
as shown in Figure 8, naive prefetch in Elasticsearch (es)
can increase read amplification significantly. Such a dilemma
motivates our adaptive prefetch.

0
5

10
15
20

1000 5000 10000 50000 100000

IO
 T

ra
ffi

c
(G

B
)

es
wiser
wiser_bf

Figure 9: I/O Traffic of Phrase Queries Results of Elastic-
search with prefetch is not shown as it is always much worse
than Elasticsearch without prefetch.

1000 5000 10000 50000 100000

bl
oo

m
do

ci
d

po
s tf

bl
oo

m
do

ci
d

po
s tf

bl
oo

m
do

ci
d

po
s tf

bl
oo

m
do

ci
d

po
s tf

bl
oo

m
do

ci
d

po
s tf

0

5

IO
 T

ra
ffi

c
(G

B
) es_no_pref

wiser
wiser_bf

Figure 10: Decomposed Traffic Analysis of Phrase

Queries The bars show the ideal traffic sizes for each engine,
assuming the storage device is byte-addressable. The sizes
were obtained by adding counters to engine code.

4.2.2 Two-Way Cost-Aware Bloom Filters

Two-way cost-aware Bloom filters only affect phrase queries
as filters are only used to avoid positions data, which is used
for phrase queries. In Figure 9, we show that WiSER without
our Bloom filters demands a similar amount of data as Elas-
ticsearch; WiSER with our Bloom filters incurs much less I/O
traffic than WiSER without them and Elasticsearch.

Figure 10 shows the read amplification by the decomposed
traffic in Elasticsearch, WiSER without Bloom filters, and
WiSER with Bloom filters. The bars labeled with data type
names show the data needed ideally, assuming the storage de-
vice is byte-addressable. First, we can see that applying filters
significantly reduce the data needed ideally which is shown
by the reduced aggregated size of all the bars. As shown in
the figure, both Elasticsearch (es) and WiSER without filters
(wiser) demand a large amount of position data; in contrast,
WiSER with our two-way cost-aware filters (wiser_bf) sig-
nificantly reduces positions needed in all workloads. Surpris-
ingly, we find that our filters also significantly reduce the
traffic from term frequencies (tf), which is used to iterate
positions (an engine needs to know the number of positions in
each document in order to iterate to the positions of the desti-
nation document). The traffic to term frequencies is reduced
because the engine no longer need to iterate many positions.

Note that the introduction of our Bloom filters only adds a
small amount of traffic to the Bloom filters (Figure 10), thanks
to our two-way cost-aware design and the bitmap-based data
layout of Bloom filters. The two-way cost-aware design al-
lows us to prune by the smaller Bloom filter between the two
Bloom filters of the two terms in the query. The bitmap-based

66 18th USENIX Conference on File and Storage Technologies USENIX Association

bitmap

naive

0 5 10
Bloom Filter Footprint (GB)

Figure 11: Bloom Filter Footprint Our bitmap-based layout
reduces footprint by 29%.

es

wiser

0 1 2 3 4 5
IO Traffic (GB)

waste
doc

Figure 12: Document Store Traffic doc indicates ideal traf-
fic size. The relative quantity between Elasticsearch and
WiSER is the same across different workloads; therefore, we
show the result of one workload here for brevity (single-term
queries with the popularity level = 10).

layout, which uses only one bit to store an empty Bloom fil-
ter, significantly compresses Bloom filters, reducing traffic.
We observe that 32% of the Bloom filters for Wikipedia are
empty, which motivates the bitmap-based layout. Figure 11
shows that using bitmap-based layout reduces the Bloom filter
footprint by 29%.
4.2.3 Adaptive Prefetching

Adaptive prefetching aims to avoid frequent wait for I/O and
reduce read amplification by prefetching only the data needed
for the current queries. As shown in Figure 7 and Figure 8,
WiSER incurs less traffic than Elasticsearch with and without
prefetching. As expected, by taking advantage of the informa-
tion embedded in the in-memory data structure (Section 3.3),
WiSER only prefetches the necessary data. Later in this sec-
tion, we show that adaptive prefetching is able to avoid wait-
ing for I/O and improve end-to-end performance.
4.2.4 Trade Disk Space for Less I/O

The process of highlighting, which is the last step of all com-
mon queries, reads documents from the document store and
produces snippets. Figure 12 show that WiSER’s highlighting
incurs significantly less I/O traffic (42%) to the document
store than Elasticsearch because in WiSER documents are
decompressed individually and are aligned, whereas Elastic-
search may have to decompress irrelevant documents and read
more I/O blocks due to misalignment. The size of WiSER’s
document store (9.5 GB) is 25% larger than that of Elastic-
search (7.6 GB); however, we argue that this space amplifica-
tion is well justified by the 42% I/O traffic reduction. WiSER
still wastes some traffic because the compressed documents
in Wikipedia are small (average: 1.44 KB) but WiSER must
read at least 4 KB (the file system block size).

4.3 End-to-end Performance

We examine various types of workloads in this section, in-
cluding match queries (single-term and multi-term), phrase
queries, and real workloads. For match queries, WiSER
achieves 2.5 times higher throughput than Elasticsearch. For

90
50
8

35
36
0

47
35

66
43
3

25
66
0

38
02

36
88
7

15
99
6

33
32 71
84

49
59

21
69

90
0

80
0

10
42

0
5

10
15
20
25
30

10 100 1000 10000 100000
Single Term Workloads (Popularity Level)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

es es_no_pref wiser

Figure 13: Single Term Matching Throughput The through-
put (QPS) is normalized to the performance of Elasticsearch
with prefetch (the default 128 KB).

0.
41.
1

6.
7

0.
81.
5

8.
4

1.
52.
2

8.
7

5.
4

12
.6

10
.4

16
.7

23
.1

16
.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 10
0

10
00

10
00

0

10
00

00

Workloads
(Popularity Level)

N
or

m
al

iz
ed

 M
ed

ia
n

La
te

nc
y

es
es_no_pref
wiser

0.
9

4.
6

9.
8

1.
7

6.
5

11
.1

3.
2

9.
2
12
.3 16
.8

30
.7

15
.6

46
.8

80
.3

48

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 10
0

10
00

10
00

0

10
00

00

Workloads
(Popularity Level)

N
or

m
al

iz
ed

 9
5t

h%
 L

at
en

cy
 (m

s) es
es_no_pref
wiser

Figure 14: Single Term Matching Latency The latency (ms)
is normalized to the median latency of Elasticsearch with
default prefetching.

phrase queries, WiSER achieves 2.7 times higher through-
put than Elasticsearch. WiSER achieves consistently higher
performance than Elasticsearch for real-world queries. The
end-to-end evaluation shows that WiSER is overall more effi-
cient than Elasticsearch, thanks to our proposed techniques
and efficient implementation.

4.3.1 Match Queries

We now describe the results for the single-term and multi-
term queries. Because queries that match more than two terms
share similar characteristics with two-terms queries, we only
present the results of two-term queries here.

Figure 13 presents the single-term match QPS (Queries
Per Second) of WiSER. The default Elasticsearch is much
worse than other engines when the popular levels are low
because Elasticsearch incurs significant read amplification:
Elasticsearch reads 128 KB of data when only a much
smaller amount is needed (e.g., dozens of bytes). Elastic-
search without prefetch (es_no_pref) performs much better
than es_default, thanks to much less read amplification.

WiSER achieves higher throughput than Elasticsearch with-
out prefetch (es_no_pref) for low/medium popularity levels,
which accounts for a large portion of the postings lists; the
speedup is up to 2.5 times. When popularity level is 100,000,

USENIX Association 18th USENIX Conference on File and Storage Technologies 67

35
82
8

13
81
5

19
11

27
26
1

98
17

14
60

14
05
4

95
93

18
96

22
92

17
72

11
81

61
6

60
0

60
0

0
5

10
15
20
25
30

10 100 1000 10000 100000
Two Terms Workloads (Popularity Level)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

es es_no_pref wiser

Figure 15: Two Terms Intersecting Performance Through-
put (QPS) is normalized to the performance of Elasticsearch.

the query throughput of WiSER is 14% worse than Elastic-
search with default prefetching. We found that the difference
is related to WiSER’s less efficient score calculation, which
is not directly linked to I/O.

The query throughput improvement largely comes from
the reduced I/O traffic as queries with low popularity levels
are I/O intensive and I/O is the system bottleneck. Indeed, we
see that the query throughput improvement is highly corre-
lated with the I/O reduction. For example, WiSER’s query
throughput for popularity level 10 is 2.6 times higher than
Elasticsearch’s; WiSER’s I/O traffic for the same workload is
2.9 times lower than Elasticsearch’s.

WiSER achieves better median latency and tail latency than
Elasticsearch, thanks to adaptive prefetch and cross-stage data
grouping. Figure 14 shows that WiSER achieves up to 16x and
11x lower median latency than Elasticsearch, for median and
tail latency respectively. The latency of Elasticsearch is longer
due to similar reasons for its low query throughput. Elastic-
search’s data layout incurs more I/O requests than WiSER;
the time of waiting for page faults adds to the query latency.
In contrast, WiSER’s more compact data layout and adaptive
prefetch incur minimal I/O requests, eliminating unnecessary
I/O wait.

Grouped data layout also benefits two-term match queries.
Figure 15 presents results for two-term match queries, which
are similar to single-term ones. As we have shown in Figure 8
that WiSER reduces by 17% to 51% of I/O traffic for work-
loads with popularity levels no more than 1,000. As a result,
WiSER achieves 1.5x to 2.6x higher query throughput com-
pared with Elasticsearch. When a workload includes popular
terms, WiSER’s traffic reduction becomes negligible since
data grouping has little effects.
4.3.2 Phrase Queries

In this section, we show that our two-way cost-aware Bloom
filters make fast phrase query processing possible. Specif-
ically, WiSER can achieve up to 2.7 times higher query
throughput and up to 8 times lower latency, relative to Elas-
ticsearch. To support early pruning, WiSER needs to store 9
GB of Bloom filters (the overall index size increases from 18
GB to 27 GB, a 50% increase). We believe such space ampli-
fication is reasonable because flash is an order of magnitude
cheaper than RAM.

73
37

27
86

24
26

13
61

58
33

21
24

17
56

12
17

41
09

17
37

15
17

11
80 88
9

53
1

49
0

50
0

43
7

30
4

27
3

35
3

0

2

4

6

1000 5000 10000 50000 100000
Phrase Queries Workloads (Popularity Level)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t es es_no_pref wiser wiser_bf

Figure 16: Phrase Query QPS The throughput (QPS) is nor-
malized to the performance of Elasticsearch.

4.
6
9.
7

9.
2

14
.9

7.
291
0.
21
5.
9

7.
8
13
.5

12
.31
6.
9 40
.1

61
.9

56
.5

35

81
.412
4.
51
08
.5

55
.6

0

1

2

3

4

10
00

50
00

10
00

0

50
00

0

10
00

00

Workloads
(Popularity Level)

N
or

m
al

iz
ed

 M
ed

ia
n

La
te

nc
y

es
es_no_pref
wiser
wiser_bf

22
.5

67
.1

52
.7

40 36
.344
.1

85
.3

41

36
.9

10
5.
6

89
.7

43
.5 14

0.
2

23
1.
826
2.
5

10
9.
1

30
0.
53
6838
3.
2

16
2.
2

0

1

2

3

4

10
00

50
00

10
00

0

50
00

0

10
00

00

Workloads
(Popularity Level)

N
or

m
al

iz
ed

 9
5t

h%
 L

at
en

cy

es
es_no_pref
wiser
wiser_bf

Figure 17: Phrase Queries Latency The latency (ms) is nor-
malized to the corresponding latency of Elasticsearch with
default prefetching.

WSBench produces the phrase query workloads by varying
the probability that the two terms in a phrase query become
a phrase. WSBench chooses one term from popular terms
(popularity level is larger than 10,000); it then varies the
popularity level of another term from low to high. As the
popularity increases, the two terms are more likely to co-exist
in the same document and also more likely to appear as a
phrase in the document.

Figure 16 presents the phrase queries results among work-
loads in Elasticsearch (es and es_no_pref), WiSER (wiser),
and WiSER with two-way cost-aware pruning (wiser_bf).
The QPS of the basic WiSER (wiser and Elasticsearch with
no prefetch (es_no_pref) are similar because our techniques
in the basic WiSER (cross-stage data grouping, adaptive
prefetch, trading space for less I/O) have little effect for
phrase query. WiSER with two-way cost-aware Bloom fil-
ters achieves from 1.3x to 2.7x higher query throughput than
that of basic WiSER, thanks to significantly lower read ampli-
fication brought by the filters.

Figure 17 shows that Bloom filters can significantly reduce
latency (wiser vs. wiser_bf); also WiSER reduces median
and tail latency by up to 3.2x and 8.7x respectively, com-
pared to Elasticsearch. The reduction is more evident when

68 18th USENIX Conference on File and Storage Technologies USENIX Association

19
28

17
89

17
29 50
48

50
48

50
08

19
05

19
05

18
68

93
5

77
0

76
8

0.0
0.5
1.0
1.5
2.0
2.5
3.0

overall single_term multi_terms phrases
Derived Worklads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t wiser wiser_al wiser_al_bf

Figure 18: Throughput of Derived Workloads The through-
put (QPS) is normalized to the throughput of Elasticsearch
without Prefetching

the probability of forming a phrase is lower (low popular-
ity level) because the Bloom filters are smaller in that case.
Interestingly, Elasticsearch with OS prefetch (es) achieves
the lowest latency when the probability of forming phrases is
higher. The latency is lower because the OS prefetches 128
KB of positions data and avoids waiting for many page faults,
although the large prefetch increases read amplification. In
contrast, Elasticsearch without prefetch (es_no_pref) and
WiSER do not prefetch; thus they may have to frequently stop
query processing to wait for data (WiSER’s adaptive prefetch
does not prefetch position data due to fragments of unneces-
sary data.). However, the reduction of latency comes at a cost:
although the latency of individual queries is lower, the query
throughput is also lower due to the read amplification caused
by prefetch (Figure 16).

Interestingly, we find our Bloom filters also speed up the
computation of phrase queries. WiSER checks if a phrase
exists by Bloom filters, which is essentially O(1) hashing. In
the common case that the Bloom filter is empty, WiSER can
even check faster because an empty Bloom filter is marked
as 0 in the bitmap and we only need to check this bit. As a
result, in addition to avoiding reading positions, Bloom filters
also allow us to avoid intersecting the positions.

4.3.3 Real Workload

WSBench also includes realistic workloads. We compare Elas-
ticsearch and WiSER’s query throughput on the real query
log; we also split the query log into different types of query
workloads to examine the performance closely.

WiSER performs significantly better than Elasticsearch as
shown in Figure 18. For example, for single-term queries,
WiSER achieves as high as 2.2x throughput compared to Elas-
ticsearch. We observe that around 60% queries in the real
workload are of popularity less than 10,000, which benefits
from our cross-stage data grouping. For multi-term match
queries, grouped data layout also helps to increase throughput
by more than 60%. For phrase queries extracted from the real-
istic workload, WiSER with Bloom filters increases through-
put by more than 60% compared to Elasticsearch. Note that
WiSER cannot achieve 2.7x higher throughout as shown in
our synthetic phrase queries because, in this real workload,
many phrases are the names of people, brand, or events and

so on. Among these names, many terms are unpopular terms
that are not I/O intensive, where pruning has limited effect.
Finally, the overall performance of WiSER is similar to that of
real single-term query log because single-term queries occupy
half of the overall query log.

4.4 Scaling with Memory

Our previous experiments showed that WiSER performs sig-
nificantly better than Elasticsearch for a single small memory
size of 512 MB. This small memory size was chosen to stress
the I/O performance of each search engine. For our final ex-
periments, we show that we have rebuilt a search engine that
can rely less on expensive memory and more on cheaper flash.
Over a broader range of memory sizes, WiSER’s techniques
continue to improve I/O and end-to-end performance. In ad-
dition, it shows that WiSER works well with a low memory

size / working set size ratio, which may allow WiSER
to scale to large dataset without increasing much memory.

Figure 19 compares the query throughput, 50-th% query
latency, bandwidth, and amount of traffic for Elasticsearch
(es), WiSER with only cross-stage grouping (wiser_base),
and fully-optimized WiSER (wiser_final). For our two end-
to-end metrics, both versions of WiSER have much higher
query throughput and much lower query latency than Elastic-
search across all workloads and memory sizes. As expected,
query throughput is higher, and latency is lower, when more
memory is available. For workload twoterm, single.high,
and single.low, our highly efficient implementation allows
WiSER with limited memory (e.g., 128 MB) to perform bet-
ter than Elasticsearch with memory that can hold the entire
working set (e.g., 8 GB).

The significant difference in end-to-end performance be-
tween WiSER and Elasticsearch for workload twoterm,
single.high, and single.low at large memory sizes (Fig-
ure 19a and Figure 19b) is attributed to the network issue of
Elasticsearch (we have carefully setup tests in Elasticsearch
and compared it with similar applications to confirm the is-
sue); with this memory size, I/O is not a bottleneck and our
techniques should not make big differences. For the same
workloads, we can identify the effects of our techniques in
Figure 19d as we reduce the memory sizes, where I/O oper-
ations increase due to reduced cache. We can see that when
the memory size is big, the traffic sizes between Elasticsearch
and WiSER are similar, but WiSER’s traffic sizes increase
much slower than Elasticsearch’s as we reduce memory sizes,
thanks to data grouping, adaptive prefetching and trading disk
space for I/O. Note that wiser_final has more read traf-
fic than wiser_base because adaptive prefetch is turned on,
which increases the read bandwidth (Figure 19c) and helps
with end-to-end performance.

The effect of two-way cost-aware Bloom filters is evident
in Figure 19a by comparing wiser_base (no Bloom filters)
and wiser_final. The improvement is up to 1.4x (memory
size = 256 MB, note that the improvement here is less than

USENIX Association 18th USENIX Conference on File and Storage Technologies 69

phrase
tw
oterm

single.high
single.low

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

8G
B

0
200
400
600

0
4,000
8,000
12,000

0
1,000
2,000

0
20,000
40,000
60,000

Q
P
S

es

wiser_base

wiser_final

(a)

phrase
tw

oterm
single.high

single.low

12
8M

B

25
6M

B

51
2M

B

1G
B

2G
B

4G
B

8G
B

0
250
500
750

1,000
1,250

0
20
40
60

0
30
60
90

0
5

10
15
20
2550

th
%

 Q
ue

ry
 L

at
en

cy
 (m

s)

(b)

phrase
tw

oterm
single.high

single.low

12
8M

B

25
6M

B

51
2M

B

1G
B

2G
B

4G
B

8G
B

0
200
400

0
200
400
600

0
100
200
300
400

0
200
400
600R

ea
d

B
an

dw
id

th
 (M

B
/s

)

(c)

phrase
tw

oterm
single.high

single.low

12
8M

B

25
6M

B

51
2M

B

1G
B

2G
B

4G
B

8G
B

0
10
20
30
40

0
5

10
15

0
10
20

0
20
40

R
ea

d
Tr

af
fic

 (G
B

)

(d)
Figure 19: Performance over a range of memory sizes. Elasticsearch fails to run at some low memory sizes and thus some of
its data points are missing. Elasticsearch’s default prefetch is turned off here because we have found that it hurts performance.
Note that we place smaller memory sizes on the right side of the X axes to emphasize the effect of reducing memory sizes.

the max in Figure 16 because we have queries with mixed
popularity levels here). Figure 19d shows the wiser_final,
the engine with two-way cost-aware Bloom filters, incurs
much less I/O than wiser_base and es when memory is
reduced; the reduction is also up to 1.4x (wiser_base vs
wiser_final, memory size = 256 MB). As we can see, when
I/O is the bottleneck, the reduction of traffic correlates well
with improvement of end-to-end performance.

5 Related Work

Much work has gone into building flash-optimized key-value
stores that utilize high-performance SSDs [23, 34, 38, 42].
For example, Wisckey [38] separates keys and values to re-
duce I/O amplification on SSDs. FAWN-KV [23] is a power-
efficient key-value store with wimpy CPUs, small RAM and
some flash. Facebook [34] proposes yet another SSD-based
key-value store to reduce the consumption of DRAM by small
block sizes, aligning blocks and adaptive polling.

Graph applications are also often optimized for SSDs.
FlashGraph [59] speeds up graph processing by storing ver-
tices in memory and edges in SSDs. MOSAIC [43] uses
locality-optimizing, space-efficient graph representation on
a single machine with NVMe SSDs. Many other work also
facilitate high performance SSDs [48, 49, 60].

Search engines have different data manipulation and data
structures from regular key-value stores and graphs. Among
the limited literature, Wang et al. [55] and Tong et al. [52] stud-
ied studied search engine cache policies for SSDs; Rui et al.
proposes to only cache metadata of snippets in memory and
leave the data on SSDs because the I/O cost is reduced [58]. In
this paper, we systematically redesign and implement many
key data structures and processing algorithms to optimize
search engines for SSDs. Such study exposes new opportuni-
ties and insights; for example, although using Bloom filters
is straightforward in a key-value store, using them in search

engines requires understanding the search engine pipeline,
which leads us to the novel two-way cost-aware Bloom filter.

Many proposed techniques for search engines seek to re-
duce the overhead/cost of query processing [25–28,32,40,51].
These techniques may be adopted in WiSER to further im-
prove its performance.

6 Conclusions

We have built a new search engine, WiSER, that efficiently
utilizes high-performance SSDs with smaller amounts of sys-
tem main memory. WiSER employs multiple techniques, in-
cluding optimized data layout, a novel Bloom filter, adaptive
prefetching, and space-time trade-offs. While some of the
techniques could increase space usage, these techniques col-
lectively reduce read amplification by up to 3x, increase query
throughput by up to 2.7x, and reduce latency by 16x when
compared to the state-of-the-art Elasticsearch. We believe
that the design principle behind WiSER, "read as needed",
can be applied to optimize a broad range of data-intensive
applications on high performance storage devices.

Acknowledgments

We thank Suparna Bhattacharya (our shepherd), the anony-
mous reviewers and the members of ADSL for their valuable
input. This material was supported by funding from NSF
CNS-1838733, CNS-1763810 and Microsoft Gray Systems
Laboratory. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and may not reflect the views of NSF or any other institutions.

References

[1] Apache Lucene. https://lucene.apache.org/.

[2] Apache Lucene Index File Formats. https://lucene.
apache.org/core/6_0_0/index.html/.

[3] Apache Solr. lucene.apache.org/solr/.

70 18th USENIX Conference on File and Storage Technologies USENIX Association

[4] Breakthrough Nonvolatile Memory Technol-
ogy. https://www.micron.com/products/

advanced-solutions/3d-xpoint-technology.

[5] CloudLab. http://www.cloudlab.us.

[6] DB-Engines Ranking. https://db-engines.com/

en/ranking/.

[7] Elasticsearch. https://www.elastic.co/.

[8] Elasticsearch Adhoc Benchmark. https:

//elasticsearch-benchmarks.elastic.co/

no-omit/pmc/index.html.

[9] Full Text Benchmark With Academic Papers from PMC.
https://github.com/elastic/rally-tracks/

blob/master/pmc/.

[10] Improving Readahead. https://lwn.net/Articles/
372384/.

[11] LevelDB. https://github.com/google/leveldb.

[12] Libbloom. https://github.com/jvirkki/

libbloom.

[13] Lucene Memory Index. https://lucene.apache.

org/core/4_0_0/memory/org/apache/lucene/

index/memory/MemoryIndex.html.

[14] Micron NAND Flash Datasheets. https://www.

micron.com/products/nand-flash.

[15] RediSearch. redisearch.io/.

[16] RocksDB. https://rocksdb.org.

[17] Samsung 970 EVO SSD. https://www.amazon.

com/Samsung-970-EVO-1TB-MZ-V7E1T0BW/dp/

B07BN217QG/.

[18] Samsung K9XXG08UXA Flash Datasheet. http://

www.samsung.com/semiconductor/.

[19] Samsung Semiconductor. http://www.samsung.com/
semiconductor/.

[20] Toshiba Semiconductor. https://toshiba.

semicon-storage.com/ap-en/top.html.

[21] WikiBench. http://www.wikibench.eu/.

[22] Wikimedia Moving to Elasticsearch. https:

//blog.wikimedia.org/2014/01/06/

wikimedia-moving-to-elasticsearch/.

[23] David Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
FAWN: A Fast Array of Wimpy Nodes. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), pages 1–14, Big Sky, Montana,
October 2009.

[24] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 1.00 edition, August 2018.

[25] Nima Asadi and Jimmy Lin. Fast Candidate Genera-
tion for Two-phase Document Ranking: Postings List
Intersection with Bloom Filters. In Proceedings of the
21st ACM international conference on Information and
knowledge management, pages 2419–2422, Maui, HI,
2012. ACM.

[26] Nima Asadi and Jimmy Lin. Effectiveness/efficiency
Tradeoffs for Candidate Generation in Multi-stage Re-
trieval Architectures. In Proceedings of the 36th in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 997–1000,
Dublin, Ireland, 2013. ACM.

[27] Nima Asadi and Jimmy Lin. Fast Candidate Gener-
ation for Real-time Tweet Search with Bloom Filter
Chains. ACM Transactions on Information Systems
(TOIS), 31(3):13, 2013.

[28] Aruna Balasubramanian, Niranjan Balasubramanian,
Samuel J Huston, Donald Metzler, and David J Wether-
all. FindAll: a Local Search engine for Mobile Phones.
In Proceedings of the 8th international conference on
Emerging networking experiments and technologies,
pages 277–288. ACM, 2012.

[29] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), pages 359–374,
Santa Clara, California, February 2017.

[30] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System Im-
plications of Flash Memory Based Solid State Drives. In
Proceedings of the 2009 Joint International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS/Performance ’09), pages 181–192, Seat-
tle, Washington, June 2009.

[31] G. G. Chowdhury. Introduction to Modern Information
Retrieval. Neal-Schuman, 2003.

[32] Austin T Clements, Dan RK Ports, and David R Karger.
Arpeggio: Metadata Searching and Content Sharing with
Chord. In International Workshop on Peer-To-Peer Sys-
tems, pages 58–68. Springer, 2005.

[33] Ludovic Denoyer and Patrick Gallinari. The Wikipedia
XML Corpus. In International Workshop of the Initia-
tive for the Evaluation of XML Retrieval, pages 12–19.
Springer, 2006.

USENIX Association 18th USENIX Conference on File and Storage Technologies 71

[34] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM
Footprint with NVM in Facebook. In Proceedings of
the EuroSys Conference (EuroSys ’18), page 42, Porto,
Portugal, April 2018. ACM.

[35] Evgeniy Gabrilovich and Shaul Markovitch. Computing
Semantic Relatedness Using Wikipedia-based Explicit
Semantic Analysis. In IJcAI, volume 7, pages 1606–
1611, 2007.

[36] Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. The Unwritten Contract
of Solid State Drives. In Proceedings of the EuroSys
Conference (EuroSys ’17), pages 127–144, Belgrade
Serbia, April 2017. ACM.

[37] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu.
Revisiting Storage for Smartphones. ACM Transactions
on Storage, 8(4):14, 2012.

[38] Lanyue Lu and Thanumalayan Sankaranarayana Pillai
and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST ’16), pages 133–148, Santa Clara, California,
February 2016.

[39] Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (FAST ’15), pages 273–
286, Santa Clara, California, February 2015.

[40] Jinyang Li, Boon Thau Loo, Joseph M Hellerstein,
M Frans Kaashoek, David R Karger, and Robert Mor-
ris. On the Feasibility of Peer-to-peer Web Indexing
and Search. In International Workshop on Peer-to-Peer
Systems, pages 207–215. Springer, 2003.

[41] Wentian Li. Random Texts Exhibit Zipf’s-law-like Word
Frequency Distribution. IEEE Transactions on informa-
tion theory, 38(6):1842–1845, 1992.

[42] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. SILT: A Memory-efficient, High-
performance Key-value Store. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(SOSP ’11), Cascais, Portugal, October 2011.

[43] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim. Mo-
saic: Processing a Trillion-edge Graph on a Single Ma-
chine. In Proceedings of the EuroSys Conference (Eu-
roSys ’17), pages 527–543, Belgrade Serbia, April 2017.
ACM.

[44] David Milne and Ian H Witten. Learning to Link with
Wikipedia. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 509–
518. ACM, 2008.

[45] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: Random Write
Considered Harmful in Solid State Drives. In Proceed-
ings of the 10th USENIX Symposium on File and Storage
Technologies (FAST ’12), San Jose, California, February
2012.

[46] James K. Mullin. Optimal Semijoins for Distributed
Database Systems. IEEE Transactions on Software
Engineering, (5):558–560, 1990.

[47] Alexander Pak and Patrick Paroubek. Twitter as a Cor-
pus for Sentiment Analysis and Opinion Mining. In
LREc, volume 10, pages 1320–1326, 2010.

[48] Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-
vic, and Willy Zwaenepoel. Chaos: Scale-out Graph
Processing from Secondary Storage. In Proceedings of
the 25th ACM Symposium on Operating Systems Princi-
ples (SOSP ’15), Monterey, California, October 2015.

[49] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-Stream: Edge-centric Graph Processing Using
Streaming Partitions. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP
’13), pages 472–488, Nemacolin Woodlands Resort,
Farmington, Pennsylvania, October 2013.

[50] Bin Tan and Fuchun Peng. Unsupervised Query Seg-
mentation Using Generative Language Models and
Wikipedia. In Proceedings of the 17th international
conference on World Wide Web, pages 347–356. ACM,
2008.

[51] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis.
Efficient and Effective Retrieval Using Selective Prun-
ing. In Proceedings of the sixth ACM international con-
ference on Web search and data mining, pages 63–72.
ACM, 2013.

[52] Jiancong Tong, Gang Wang, and Xiaoguang Liu.
Latency-aware Strategy for Static List Caching in Flash-
based Web Search Engines. In Proceedings of the 22nd
ACM international conference on Information & Knowl-
edge Management, pages 1209–1212. ACM, 2013.

[53] Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko
Haller, and Rudi Studer. Semantic Wikipedia. In Pro-
ceedings of the 15th international conference on World
Wide Web, pages 585–594, 2006.

[54] Jakob Voß. Measuring Wikipedia. Proceedings of ISSI
2005: 10th International Conference of the International
Society for Scientometrics and Informetrics, 1, 01 2005.

72 18th USENIX Conference on File and Storage Technologies USENIX Association

[55] Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong,
Gang Wang, and Xiaoguang Liu. The Impact of Solid
State Drive on Search Engine Cache Management. In
Proceedings of the 36th international ACM SIGIR con-
ference on Research and development in information
retrieval, pages 693–702. ACM, 2013.

[56] Fei Wu and Daniel S Weld. Autonomously Semantify-
ing Wikipedia. In Proceedings of the sixteenth ACM
conference on Conference on information and knowl-
edge management, pages 41–50, 2007.

[57] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Towards an Unwritten Contract of Intel Op-
tane SSD. In 11th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage ’19), Renton,
WA, July 2019.

[58] Rui Zhang, Pengyu Sun, Jiancong Tong, Rebecca Jane
Stones, Gang Wang, and Xiaoguang Liu. Compact Snip-

pet Caching for Flash-based Search Engines. In Proceed-
ings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 1015–1018. ACM, 2015.

[59] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vo-
gelstein, Carey E Priebe, and Alexander S Szalay. Flash-
graph: Processing billion-node graphs on an array of
commodity ssds. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST
’15), pages 45–58, Santa Clara, California, February
2015.

[60] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale Graph Processing on a Single ma-
chine Using 2-Level Hierarchical Partitioning. In Pro-
ceedings of the USENIX Annual Technical Conference
(USENIX ’15), pages 375–386, Santa Clara, California,

July 2015.

USENIX Association 18th USENIX Conference on File and Storage Technologies 73

How to Copy Files

Yang Zhan
UNC Chapel Hill and Huawei

Alex Conway
Rutgers Univ.

Yizheng Jiao
UNC Chapel Hill

Nirjhar Mukherjee
UNC Chapel Hill

Ian Groombridge
Pace Univ.

Michael A. Bender
Stony Brook Univ.

Martín Farach-Colton
Rutgers Univ.

William Jannen
Williams College

Rob Johnson
VMware Research

Donald E. Porter
UNC Chapel Hill

Jun Yuan
Pace Univ.

Abstract
Making logical copies, or clones, of files and directories

is critical to many real-world applications and workflows,
including backups, virtual machines, and containers. An ideal
clone implementation meets the following performance goals:
(1) creating the clone has low latency; (2) reads are fast in
all versions (i.e., spatial locality is always maintained, even
after modifications); (3) writes are fast in all versions; (4)
the overall system is space efficient. Implementing a clone
operation that realizes all four properties, which we call a
nimble clone, is a long-standing open problem.

This paper describes nimble clones in BetrFS, an open-
source, full-path-indexed, and write-optimized file system.
The key observation behind our work is that standard copy-
on-write heuristics can be too coarse to be space efficient, or
too fine-grained to preserve locality. On the other hand, a
write-optimized key-value store, as used in BetrFS or an LSM-
tree, can decouple the logical application of updates from the
granularity at which data is physically copied. In our write-
optimized clone implementation, data sharing among clones
is only broken when a clone has changed enough to warrant
making a copy, a policy we call copy-on-abundant-write.

We demonstrate that the algorithmic work needed to batch
and amortize the cost of BetrFS clone operations does not
erode the performance advantages of baseline BetrFS; BetrFS
performance even improves in a few cases. BetrFS cloning
is efficient; for example, when using the clone operation for
container creation, BetrFS outperforms a simple recursive
copy by up to two orders-of-magnitude and outperforms file
systems that have specialized LXC backends by 3–4×.

1 Introduction

Many real-world workflows rely on logically copying files and
directories. Backup and snapshot utilities logically copy the
entire file system on a regular schedule [36]. Virtual-machine
servers create new virtual machine images by copying a pris-
tine disk image. More recently, container infrastructures like

Docker make heavy use of logical copies to package and
deploy applications [34, 35, 37, 44], and new container cre-
ation typically begins by making a logical copy of a reference
directory tree.

Duplicating large objects is so prevalent that many file sys-
tems support logical copies of directory trees without making
full physical copies. Physically copying a large file or direc-
tory is expensive—both in time and space. A classic optimiza-
tion, frequently used for volume snapshots, is to implement
copy-on-write (CoW). Many logical volume managers sup-
port block-level CoW snapshots [24], and some file systems
support CoW file or directory copies [29] via cp --reflink
or other implementation-specific interfaces. Marking a direc-
tory as CoW is quick, especially when the file system can
mark the top-level directory as CoW and lazily propagate the
changes down the directory tree. Initially, this approach is
also space efficient because blocks or files need not be rewrit-
ten until they are modified. However, standard CoW presents
a subtle tradeoff between write amplification and locality.

The main CoW knob to tune is the copy granularity. If
the copy granularity is large, such as in file-level CoW, the
cost of small changes is amplified; the first write to any CoW
unit is high, drastically increasing update latency, and space
is wasted because sharing is broken for all data. If the copy
granularity is small, updates are fast but fragmented; sequen-
tially reading the copy becomes expensive. Locality is crucial:
poor locality can impose a persistent tax on the performance
of all file accesses and directory traversals until the file is
completely rewritten or the system defragmented [8–10].
Nimble clones. An ideal logical copy—or clone—
implementation will have strong performance along
several dimensions. In particular, clones should:
• be fast to create;
• have excellent read locality, so that logically related files

can be read at near disk bandwidth, even after modification;
• have fast writes, both to the original and the clone; and
• conserve space, in that the write amplification and disk

footprint are as small as possible, even after updates to the
original or to the clone.

USENIX Association 18th USENIX Conference on File and Storage Technologies 75

1 5 10 15
0

2

4

6

8

10

12

Clone Number

G
re

p
Ti

m
e

(s
ec

)
Btrfs
Btrfs-svol
XFS
ZFS

Figure 1: Grep Time for a logically copied 256MiB directory,
as a function of the number of prior copies with small edits.
(Lower is better.) Btrfs-svol is a volume snapshot, Btrfs and
XFS use cp --reflink. Full experiment details are in §5.1.

We call a clone with this constellation of features nimble.
Existing CoW clone implementations are not nimble.

Figure 1 illustrates how performance can degrade using
standard CoW techniques in two file systems with copy opti-
mizations. We start by creating a two-level directory hierarchy
with 64 4-MiB files (256MiB total), and the experiment pro-
ceeds for several rounds. Each round does a volume snapshot
or a reflink copy (depending on what the file system supports)
and then performs a small, 16-byte edit to each file. We report
the time to do a recursive, cold-cache grep over the entire
directory at the end of each round. The experiment is detailed
further in §5.1.

After each copy and modification, read performance de-
grades. In the case of XFS and ZFS, we see a factor of 3–4×
after only 16 rounds. Btrfs degrades more gradually, about
50% over the same period. In both cases, however, the degra-
dation appears monotonic.

The critical issue here is the need to decouple the granular-
ity of writes to a clone from the granularity of copies of the
shared data. It makes perfect sense to copy a large file that is
effectively overwritten. But, for very small changes, it is more
IO efficient to keep a “delta” in scratch space until enough
changes accrue to justify the cost of a substantial rewrite. In
other words, the CoW copy size should be tuned to preserve
locality (e.g., set to an efficient transfer size for the device),
not to whatever granularity a single workload happens to use.
Contributions. In this paper, we present a logical copy spec-
ification, which we call a clone, and a set of performance
criteria that a nimble clone must satisfy. We present the de-
sign for a file system and nimble clone implementation that
meets all of these criteria.

One key insight into our solution is that the write-optimized
message-batching model used in systems such as BetrFS is
well suited to decouple writes from copies. There is already
a mechanism in place to buffer and apply small changes,
although implement the semantics of cloning requires sub-

stantial, additional data-structural work.
We extend BetrFS 0.4, an open-source, full-path-indexed,

write-optimized file system. BetrFS performance matches or
exceeds other local Linux file systems on a range of applica-
tions [8, 17, 39, 42], but BetrFS 0.4 does not support cloning.
BetrFS 0.5’s clone implements a policy we call Copy-on-
Abundant-Write, or CAW, by buffering small changes to a
cloned file or directory in messages until enough changes
accrue to warrant the cost of unsharing the cloned data.

This paper also contributes several data-structural tech-
niques to write-optimized dictionaries, in order to implement
nimble clones in BetrFS. First, we enable different traver-
sal paths to re-use the same physical data by transforming
BetrFS’s Bε-tree [3, 6] data structure into a Bε-DAG (di-
rected acyclic graph). Second, in order to realize very fast
logical copies, we develop new techniques that apply write-
optimization, which has previously been used to accelerate
changes to data stored in the key-value store, towards batch-
ing changes to the topology of the data structure itself, i.e.,
its pivots and internal pointers. An essential limitation of the
state of the art, including BetrFS, is that renames, which mod-
ify the tree structure, cannot be batched; rather, renames must
be completed immediately, including applying all pending
changes to the relevant portions of the file system namespace.
We introduce a GOTO message, which can rapidly persist a
logical copy into the message buffer, and is as fast as any
small write. With GOTOs, Bε-DAG-internal housekeeping
work is piggy-backed onto any writes to the logically copied
region. Third, we introduce a translation prefix abstraction
that can—at rest—logically correct stale keys in shared data,
facilitating both deferred copies and correct queries of par-
tially shared data. As a result of these techniques, BetrFS
can rapidly persist large logical copies much faster than the
current state of the art (33%–6.8×), without eroding read,
write, or space efficiency.

The contributions of this paper are as follows:
• A design and implementation of a Bε-DAG data structure,

which supports nimble CAW clones. The Bε-DAG extends
the Bε-tree buffered-message substrate to store and logi-
cally apply small changes to a clone, until enough changes
accrue to warrant the cost of rewriting a clone.

• A write-optimized clone design, wherein one can persist a
clone by simply writing a message into the root of the DAG.
The work of the clone is batched with other operations and
amortized across other modifications.

• An asymptotic analysis, indicating that adding cloning does
not harm other operations, and that cloning itself has a cost
that is logarithmic in the size of the Bε-DAG.

• A thorough evaluation of BetrFS, which demonstrates that
it meets the nimble performance goals, does not erode the
advantages of baseline BetrFS on unrelated workloads, and
can improve performance of real-world applications. For
instance, we wrote an LXC (Linux Container) backend
that uses cloning to create containers, and BetrFS is 3–4×

76 18th USENIX Conference on File and Storage Technologies USENIX Association

faster than other file systems with cloning support, and up
to 2 orders of magnitude faster than those without.

2 BetrFS Background

This section presents Bε-tree and BetrFS background that is
necessary to understand the cloning implementation presented
in the rest of the paper.

BetrFS [17, 18, 39, 40, 42, 43] is an in-kernel, local file sys-
tem built on a key-value store (KV-store) substrate. A BetrFS
instance keeps two KV-stores. The metadata KV-store maps
full paths (relative to the mountpoint, e.g., /foo/bar/baz)
to struct stat structures, and the data KV-store maps {full
path + block number} keys to 4KiB blocks.
The Bε-tree. BetrFS is named for its KV-store data structure,
the Bε-tree [3, 6]. A Bε-tree is a write-optimized KV-store
in the same family of data structures as an LSM-tree [25] or
COLA [2]. Like B-tree variants, Bε-trees store key-value pairs
in leaves. A key feature of the Bε-tree is that interior nodes
buffer pending mutations to the leaf contents, encoded as
messages. Messages are inserted into the root of the tree, and,
when an interior node’s buffer fills with messages, messages
are flushed in large batches to one or more children’s buffers.
Eventually, messages reach the leaves and the updates are
applied. As a consequence, random updates are inexpensive—
the Bε-tree effectively logs updates at each node. And since
updates move down the tree in batches, the IO savings grow
with the batch size.

A key Bε-tree invariant is that all pending messages for a
given key-value pair are located on the root-to-leaf traversal
path that is defined by its key. So a point query needs to read
and apply all applicable buffered messages on the traversal
path to construct a correct response. Messages have a logical
timestamp, and one can think of the contents of these buffered
messages as a history of mutations since the last time the leaf
was written.
Range operations. BetrFS includes optimizations for con-
tiguous ranges of keys. These are designed to optimize opera-
tions on subtrees of the file system namespace (e.g., mv).

Importantly, because BetrFS uses full-path keys, the con-
tents of a directory are encoded using keys that have a com-
mon prefix and thus are stored nearly contiguously in the
Bε-tree, in roughly depth-first order. One can read a file or
recursively search a directory with a range query over all
keys that start with the common directory or file prefix. As
a result, BetrFS can use a range delete message to delete an
entire file or recursively (and logically) delete a directory tree
with a single message. The range delete is lazily applied to
physically delete and recover the space.
Full-path indexing and renaming. Efficient rename opera-
tions pose a significant challenge for full-path-indexed file
systems. BetrFS has a range rename operation, which can
synchronously change the prefix of a contiguous range of keys

in the Bε-tree [42]. In a nutshell, this approach slices out the
source and destination subtrees, such that there is a single
pointer at the same Bε-tree level to the source and destination
subtrees. The range rename then does a “pointer swing”, and
the tree is “healed” in the background to ensure balance and
that nodes are within the expected branching factor. Some
important performance intuition about this approach is that
the slicing work is logarithmic in the size of the renamed data
(i.e., the slicing work is only needed on the right and left edge
of each subtree).

BetrFS ensures that range rename leaves most of the on-
disk subtree untouched by lifting out common key prefixes.
Consider a subtree T whose range is defined at T ’s parent by
pivots p1 and p2. Then the longest common prefix of p1 and
p2, denoted lcp(p1, p2), must be a prefix of all the keys in
T . A lifted Bε-tree omits lcp(p1, p2) from all keys in T . We
say that lcp(p1, p2) has been lifted out of T , and that lcp-T
is lifted. The lifted Bε-tree maintains the lifting invariant, i.e.
that every subtree is lifted at all times. Maintaining the lifting
invariant does not increase the IO cost of insertions, queries,
flushes, node splits or merges, or any other Bε-tree operations.

With the combination of tree surgery and lifting, BetrFS
renames are competitive with inode-based file systems [42].
Crash consistency. BetrFS’s Bε-tree nodes are copy-on-
write. Nodes are identified using a logical node number, and a
node translation table maps logical node numbers to on-disk
locations. The node translation table also maintains a bitmap
of free and allocated disk space. Node writeback involves
allocating a new physical location on disk and updating the
node translation table. This approach removes the need to
modify a parent when a child is rewritten.

All Bε-tree modifications are logged in a logical redo log.
The Bε-tree is checkpointed to disk every 60 seconds; a check-
point writes all dirty nodes and the node translation table to
disk and then truncates the redo log. After a crash, one need
only replay the redo log since the last checkpoint.

Physical space is reclaimed as part of the checkpointing
process with the invariant that one can only reuse space that
is not reachable from the last stable checkpoint (otherwise,
one might not recover from a crash that happens before the
next checkpoint). As a result, node reclamation is relatively
straightforward: when a node is overwritten, the node transla-
tion table tracks the pending free, and then applies that free
at the next checkpoint. We note that range delete of a subtree
must identify all of the nodes in the subtree and mark them
free as part of flushing the range delete message; the node
translation table does not store the tree structure.

3 Cloning in BetrFS 0.5

This section describes how we augment BetrFS to support
cloning. We begin by defining clone semantics, then describe
how to extend the lifted Bε-tree data structure to a lifted Bε-

USENIX Association 18th USENIX Conference on File and Storage Technologies 77

DAG (directed acyclic graph), and finally describe how to
perform mutations on this new data structure. The section
concludes with a brief asymptotic analysis of the Bε-DAG.

When considering the design, it helps to differentiate the
three layers of the system: the file system directory hierarchy,
the KV-store keyspace, and the internal Bε-tree structure. We
first define the clone operation semantics in terms of their
effect on file system directory tree. However, because all
file system directories and their descendants are mapped onto
contiguous KV-store keys based on their full paths, we then
focus the BetrFS clone discussion on the KV-store keyspace
and the internal Bε-tree structure implementation.
CLONE operation semantics. A CLONE operation takes as
input two paths: (1) a source path—either a file or directory
tree root—and (2) a destination path. The file system directory
tree is changed so that a logically identical copy of the source
object exists at the location specified by the destination path.
If a file or directory was present at the destination before the
clone, that file or directory is unlinked from the directory tree.
The clone operation is atomic.

In the KV-store keyspace, clone(s,d) copies all keys with
prefix s to new keys with prefix s replaced with prefix d. It
also removes any prior key-value pairs with prefix d.

3.1 Lifted Bε-DAGs
Our goal in making a lifted Bε-DAG is to share, along multi-
ple graph traversal paths, a large amount of cloned data, and
to do so without immediately rewriting any child nodes. Intu-
itively, we should be able to immediately add one edge to the
graph, and then tolerate and lazily repair any inconsistencies
that appear in traversals across that newly added edge. As
illustrated in Figure 2, we construct the lifted Bε-DAG by
extending the lifted Bε-tree in three ways.

First, we maintain reference counts for every node so that
nodes can be shared among multiple Bε-DAG search paths.
Reference counts are decoupled from the node itself and
stored in the node translation table. Thus, updating a node’s
reference does not require modifying any node. Whenever
a node’s reference count reaches zero, we decrement all of
its children’s reference counts, and then we reclaim the node.
Section 4 describes node reclamation.

A significant challenge for sharing nodes in a Bε-tree or
Bε-DAG is that nodes are large (target node sizes are large
enough to yield efficient transfers with respect to the under-
lying device, typically 2–4MiB) and packed with many key-
value pairs, so a given node may contain key-value pairs that
belong to unrelated logical objects. Thus, sharing a Bε-DAG
node may share more than just the target data.

For example, in Figure 2, the lower node is the common
ancestor of all keys beginning with s, but the subtree rooted
at the node also contains keys from q to v. We would like to
be able to clone, say, s to p by simply inserting a new edge,
with pivots p and pz, pointing to the common ancestor of all

query: pw

buffer

pivots p pz

query: w

s
query: sw

buffer

pivots q s sm sz v

Figure 2: Query processing example in a lifted Bε-DAG. Ini-
tially, the query pw arrives at the parent node. Since the target
child’s pointer is bracketed by pivots that share the common
prefix p (pivots p and pw bracket the pointer to the child), the
lifted Bε-DAG lifts (i.e., removes) the common prefix p from
the query term used for searching in the child, transforming
the query from pw to w. Next, the query w reaches an edge
with translation prefix s. The lifted Bε-DAG prepends the
translation prefix s to the query before continuing to the child.
Thus, the query that finally arrives at the child is sw: the com-
mon prefix p was lifted out, and the translation prefix s was
prepended. The query process proceeds recursively until a
terminal node is reached.

s keys but, as the example illustrates, this could have the side
effect of cloning some additional keys as well.

Thus, our second major change is to alter the behavior of
pivot keys so that they can exclude undesirable keys from
traversals. This filtering lets us tolerate unrelated data in
a subgraph. A baseline Bε-tree has an invariant that two
pivot keys in a parent node must bound all key-value pairs
in their child node (and sub-tree). In the Bε-DAG, we must
relax this invariant to permit node sharing, and we change
the graph traversal behavior to simply ignore any key-value
pair, message, or pivot that lies outside of the parent pivot
keys’ range. This partially addresses the issue of sharing a
subgraph with extraneous data at its fringe.

The third, related change is to augment each edge with an
optional translation prefix that alters the behavior of traver-
sals that cross the edge. When cloning a source range of keys
to a destination, part of the source key may not be lifted. A
translation prefix on an edge specifies any remaining part of
the source prefix that was not lifted at the time of cloning.
As Figure 2 shows, whenever a query crosses an edge with
translation prefix s, we prepend s to the query term before
continuing to the child, so that the appropriate key-value pairs
are found. Once completed, a query removes the transla-
tion prefix from any results, before the lifted destination key

78 18th USENIX Conference on File and Storage Technologies USENIX Association

buffer

pivots a q z

LCA of s

goto
p pz

s

Figure 3: Creating a clone by inserting a GOTO message. Note
that the GOTO message’s bracketing pivots are (p, pz), and its
child pointer contains translation prefix s. The GOTO message
supersedes the node’s other pivots during a traversal.

along the search path is added back. In the common case, the
translation prefix will be NULL.

With these changes—reference counting, filtering pivots,
and translation prefixes—a Bε-DAG can efficiently represent
clones and share cloned data among different search paths.

3.2 Creating clones with GOTO messages

To clone all keys (and associated data) with prefix s to new
keys with prefix p, we first find the lowest-common ancestor
(LCA) of all s keys in the Bε-DAG, as shown in Figure 3.
Intuitively, the LCA is the root of the lowest sub-graph that
includes all source keys. We will call the LCA of all s keys
node Ls. We then flush to Ls any pending messages for s keys,
so that all information about s keys can be found within the
sub-DAG rooted at node Ls. We also insert into the root’s
buffer a GOTO message (described below) for all p keys with
target node Ls. We finally increment the reference count of
Ls. This completes the cloning process.
GOTO messages. A GOTO message behaves like a pair of
bracketing pivots and an associated child pointer. Each GOTO
message specifies a range of keys, (a,b); a target height; and
a node, U . Whenever a query for some key x reaches a node
with a GOTO message, if x falls in the range (a,b), then the
query continues directly to node U ; said differently, a node’s
GOTO message supersedes the node’s other pivots during a
traversal. Like regular pivots, if the two pivots in a GOTO
message share a common prefix, then that prefix is removed
(lifted) from the query before continuing. Furthermore, like
regular child pointers, the pointer in a GOTO message can spec-
ify a translation prefix that gets prepended to queries before
they continue. Figure 3 illustrates a simple GOTO example,
where s is cloned to p. There is a normal child pointer associ-
ated with node pivots that bracket prefix s, as well as a GOTO
message that redirects queries for p to the LCA of s. In this
example, we assume s has not been lifted from the LCA, and,
thus, s is used as a translation prefix on the GOTO message.
Flushing GOTOmessages. Unlike a regular pair of pivots that

bracket a child pointer, a GOTO message can be flushed from
one node to another, just like any other message. Encoding
DAG structure inside a message is an incredibly powerful fea-
ture: we can quickly persist a logical clone and later batch any
post-cloning clean-up work with subsequent writes. When
subsequent traversals process buffered messages in logical
order, a GOTO takes precedence over all older messages per-
taining to the destination keys; in other words, a GOTO implic-
itly deletes all key-value pairs for the destination range, and
redirects subsequent queries to the source sub-graph.

For performance, we ensure that all root-to-leaf Bε-DAG
paths have the same length. Maintaining this invariant is
important because, together with the Bε-DAG’s fanout bounds,
it guarantees that the maximum Bε-DAG path has logarithmic
length, which means that all queries have logarithmic IO
complexity. Thus, we must ensure that paths created by GOTO
messages are not longer than “normal” root-to-leaf paths.

This length invariant constrains the minimum height of
a GOTO message to be one level above the message’s target
node, U . At the time we flush to the LCA and create the
GOTO message, we know the height of U ; as long as the GOTO
message is not flushed to the same level as U (or deeper), the
maximum query path will not be lengthened.

So, for example, if the root node in Figure 3 is at height
7 and the LCA of s is at height 3, then the GOTO message
will get lazily flushed down the tree until it resides in the
buffer of some node at height 4. At that point the GOTO will
be converted to a regular bracketing pair of node pivots and a
child pointer, as shown in Figure 4.

In flushing a GOTO above the target height, the only addi-
tional work is possibly deleting obviated internal nodes. In
the simple case, where a GOTO covers the same key range as
one child, flushing simply moves the message down the DAG
one level, possibly lifting some of the destination key. One
may also delete messages obviated by the GOTO as part of
flushing. The more difficult case is when a GOTO message
covers more than one child pointer in a node. In this case, we
retain only the leftmost and rightmost nodes. We flush the
GOTO to the leftmost child and adjust the pivot keys to include
both the left “fringe” and the GOTO message’s key range. We
similarly adjust the rightmost pivot’s keys to exclude any keys
covered by the GOTO message (logically deleting these keys,
but deferring clean-up). Any additional child pointers and
pivots between the left and rightmost children covered by the
GOTO are removed and the reference counts on those nodes
are reduced by one, effectively deleting those paths.
Converting a GOTO message into node pivots and a child
pointer is conceptually similar to flushing a GOTO. As with
flushing, a GOTO message takes precedence over any older
messages or pre-existing node pivots and child pointers that
it overlaps. This means that any messages for a child that
are obviated by the GOTO may be dropped before the GOTO is
applied.

The simplest case is where a single child is exactly covered

USENIX Association 18th USENIX Conference on File and Storage Technologies 79

buffer

pivots

goto
pab t

pa pz r w

s 2

s4s3

buffer

pivots pa pab t w

as
2

s4

s 1 s 1

Figure 4: Converting a GOTO message (left) into a pair of
bracketing pivots and a child pointer (right). Note that the
GOTO message’s pivots pab and t completely cover the range
specified by the pre-existing node pivots pz and r, so the
GOTO’s pivots replace those pivots in the new node (right).
Additionally, the translation prefix s2 is changed to as2. This
is because, in the original node (left), the prefix p is lifted by
pivots pa and pz, but in the new node (right), new prefix pa
is lifted by pivots pa and pab; a must therefore be prepended
to the translation prefix in order to maintain traversal equiva-
lence. (Not shown: the reference counts of covered children
are dropped.)

by the GOTO; here, we just replace the pointer and decrement
the original child’s reference count. For example, in Figure 4,
the GOTO message’s range (pab, t) completely covers the old
pivot range (pz,r). Thus, when converting the GOTO message
into regular pivots, we drop the node pointer with translation
prefix s3, and we decrement the reference count of the node
to which it pointed.

Partial overlap with a pivot range is handled by a combi-
nation of adjusting pivots and adding new pointers. In Fig-
ure 4, the GOTO message partially overlaps the old pivot ranges
(pa, pz) and (r,w), and there is live data on the “left” fringe
of this child (keys between pa and pab are not covered by this
GOTO). We modify the original pivot keys so that subsequent
traversals through their child pointers only consider live data,
but we leave the child nodes untouched and defer physically
deleting their data and relifting their keys. Note that in this ex-
ample, the subtree between updated pivots pa and pb should
lift pa instead of just p, so we add a to the translation prefix
until the next time this child is actually flushed and re-lifted.
We finally replace the covered pivots with new pivot keys and
a child pointer for the GOTO’s target (the pointer between pab
and t in the right portion Figure 4). In the case where a GOTO
message overlaps a single child with live data on the left and
right fringe (not illustrated), we would create a third pointer
back to the original child and increment its reference count
accordingly, with appropriate translation prefixes and pivots
to only access the live data on the “right” side.

Finally, as with flushing a GOTO, if a GOTO covers multiple
children, we remove all of the references to the “interior”
children, and replace them with a single child pointer to the
GOTO target. We note that this can temporarily violate our
target fanout; we allow the splitting and merging process,
described next, to restore the target fanout in the background.

3.3 Flushes, splits, and merges

We now explain how node flushes, splits, and merges interact
with reference counting, node sharing, translation prefixes,
and GOTO messages.

At a high level, we break flushing, splitting, and merging
into two steps: (1) convert all involved children into simple
children (defined below), then (2) apply the standard lifted
Bε-tree flushing, splitting, or merging algorithm.

A child is simple if it has reference count 1 and the edge
pointing to the child has no translation prefix. When a child
is simple, the Bε-DAG locally looks like a lifted Bε-tree, so
we can use the lifted Bε-tree flushing, splitting, and merging
algorithms, since they all make only local modifications to
the tree.

The Bε-DAG has an invariant that one may only flush into
a simple child. Thus, one of two conditions that will cause a
node to be made simple is the accumulation of enough mes-
sages in the parent of a node—i.e., a copy-on-abundant-write.
The second condition that can cause a node to become simple
is the need to split or merge the node by the background, heal-
ing thread; this can be triggered by healing a node that has
temporarily violated the target fanout, or any other condition
in the baseline Bε-tree that would cause a split or merge.

We present the process for converting a child into a simple
child as a separate step for clarity only. In our implementation,
the work of making a child simple is integrated with the
flushing, splitting and merging algorithms. Furthermore, all
the transformations described are performed on in-memory
copies of the node, and the nodes are written out to disk only
once the process is completed. Thus simplifying children
does not change the IO costs of flushes, splits, or merges.

The first step in simplifying a child is to make a private
copy of the child, as shown in Figure 5. When we make a
private copy of the child, we have to increment the reference
counts of all of the child’s children.

Once we have a private copy of the child, we can discard
any data in the child that is not live, as shown in the first two
diagrams of Figure 6. For example, if the edge to the child
has translation prefix s1, then all queries that reach the child
will have s1 as a prefix, so we can discard any messages in the
child that don’t have this prefix, because no query can ever
see them. Similarly, we can drop any children of the child
that are outside of the range of s1 keys, and we can update
pivots to be entirely in the range of s1 keys. When we adjust
pivots in the child, we may have to adjust some of the child’s
outgoing translation prefixes, similar to when we converted
GOTO messages to regular pivots.

Finally, we can relift the child to “cancel out” the trans-
lation prefix on the edge pointing to the child and all the s1
prefixes inside the child. Concretely, we can delete the s1
translation prefix on the child’s incoming edge and delete the
s1 prefix on all keys in the child.

A consequence of this restriction is that translation prefixes

80 18th USENIX Conference on File and Storage Technologies USENIX Association

buffer

pivots

refcount: r1

buffer

pivots

refcount: r2

buffer

pivots

refcount: r3
buffer

pivots

refcount: r4

s 1

s 2 s3

buffer

pivots

refcount: r1

buffer

pivots

refcount: r2−1

buffer

pivots

refcount: r3 +1
buffer

pivots

refcount: r4 +1

Before After

buffer

pivots

refcount: 1

s1

s 2 s3 s3
s2

Figure 5: Creating a private copy of a shared child. The original node’s contents are copied, and its reference count is decremented.
Since the private copy points to all of the original node’s children, those children have their reference count increased by one.
(Pivot keys are omitted for clarity; they remain unchanged.)

buffer

pivots

refcount: r1

buffer

pivots

refcount: 1

p p′s1b s1z

insert
s1m · · ·

insert
pc · · ·

s 1

s 2

s3 s4

insert
td · · ·

buffer

pivots

refcount: r1

buffer

pivots

refcount: 1

s1 s1b s1z

insert
s1m · · ·

s 1

s 2s
1

s3

buffer

pivots

refcount: r1

buffer

pivots

refcount: 1

ε b z

insert
m · · ·

s 2s
1

s3

Figure 6: Eliminating a child’s translation prefix. The original child node (left) is a private copy with reference count one. First,
nodes with unreachable keys are deleted and reclaimed (center). Then the translation prefix s1 is removed from the incident edge
and logically applied to all pivot keys and all keys in buffered messages (right).

should always be NULL after a flush. Intuitively, one only
needs a translation prefix to compensate for the effect on
lifting of logically deleted data still in a node; after a flush, this
data is physically deleted and the node is re-lifted, obviating
the need for a translation prefix.

As described, these steps slightly modify the amortized
and background work to “heal” irregularities in the Bε-DAG.
This work is primarily driven by subsequent writes to the
affected range; a shared node that is not modified on any path
can remain shared indefinitely. In our current prototype, we
do track shared nodes with very little live data, and mark
them for flushing either in the background or under space
pressure to reclaim space. The key feature of this design is
the flexibility to rewrite nodes only when it is to the advantage
of the system—either to reclaim space or recover locality for
future queries.

3.4 Putting it all together
The remaining lifted Bε-tree operations are unchanged in a
Bε-DAG. Inserts, deletes, and clones just add messages to the
root node’s buffer. When an internal node’s buffer becomes
full, we flush to one of its children (after making the child
simple, if necessary). When a leaf becomes too large or too
small, we split or merge it (after making the leaf simple).
When an internal node has too many or too few children, we
split or merge it (again after making it simple).

3.5 Asymptotic Analysis
This subsection shows that adding cloning does not affect the
asymptotics of other operations, and that the cost of a clone
is logarithmic in the size of the tree.

Insert, query, and clone complexity all depend on the Bε-
DAG height, which is bounded by the height of a lifted Bε-tree
with the same logical state. To see why, consider the following
straightforward transformation of a Bε-DAG to a Bε-tree: first

USENIX Association 18th USENIX Conference on File and Storage Technologies 81

flush all GOTO messages until they become regular pivots, then
break the CoW sharing of all nodes. Since this conversion
can only increase the height of the data structure, a logically
equivalent lifted Bε-tree is at least as tall as a Bε-DAG.

The height of a Bε-tree is O(logB N), where N is the total
number of items that have been inserted into the tree. Hence
the height of a Bε-DAG is O(logB N), where N is the number
of keys that have been created, either through insertion or
cloning, in the Bε-DAG.
Queries. Since the height of the Bε-DAG is O(logB N), the
IO cost of a query is always O(logB N).
Insertions. The Bε-DAG insertion IO cost is the same as in
a Bε-tree, i.e., O(

logB N
B1−ε). This is because the IO cost of an

insertion is h× c/b, where h is the height of the Bε-DAG, c
is the IO cost of performing a flush, and b is the minimum
number of items moved to child during a flush. Flushes cost
O(1) IOs in a Bε-DAG, just as in a Bε-tree, and flushes move
at least Ω(B/B1−ε) items, since the buffer in each node has
size Ω(B), and the fanout of each node is O(Bε).
Clones. The cost to create a clone can be broken into the
online cost, i.e,. the costs of all tasks that must be completed
before the clone is logically in place, and the offline costs,
i.e., the additional work that is performed in the background
as the GOTO message is flushed down the tree and eventually
converted to regular pivots.

The online cost of cloning s to d is merely the cost to push
all s messages to s’s LCA and insert the GOTO message. The
cost of pushing all the messages to the LCA is O(logB N) IOs.
Inserting the new GOTO message costs less than 1 IO, so the
total cost of creating a clone is O(logB N) IOs.

The background cost is incurred by the background thread
that converts all edges with a translation prefix into simple
edges. We bound the IO cost of this work as follows. A clone
from s to d can result in edges with translation prefixes only
along four root-to-leaf paths in the Bε-DAG: the left and right
fringes of the sub-dag of all s keys, and the left and right
fringes of the sub-dag of all d keys. Thus the total IO cost of
the background work is O(logB N).

4 Implementation and Optimizations

In this section, we describe two optimizations that reduce the
total cost of clones. Although they do not alter the asymp-
totics, we leverage the file system namespace and BetrFS
design to save both background and foreground IO.
Preferential splitting. Most background cloning work in-
volves removing unrelated keys and unlifted prefix data from
fringe nodes, i.e., nodes that contain both cloned and non-
cloned data. Thus, we could save work by reducing the num-
ber of fringe nodes.

Baseline BetrFS picks the middle key when splits a leaf
node. With preferential splitting, we select the key that max-
imizes the common prefix of the leaf, subject to the constraint

that both new leaves should be at least 1/4 full. Since data in
the same file share the same prefix (as do files in the same di-
rectory), preferential splitting reduces the likelihood of having
fringe nodes in a clone.

A naïve approach would compare the central half of all leaf
keys and pick the two adjacent keys with the shortest common
prefix. However, this scan can be costly. We can implement
preferential splitting and only read two keys: because the
shortest common prefix among adjacent keys is the same as
the common prefix of the smallest and the largest candidate
keys (the keys at 1/4 and 3/4 of the leaf), we can construct a
good parent pivot from these two keys.

Node reclamation. We run a thread in the background that
reclaims any node whose reference count reaches 0. As part
of the node reclamation process, we decrement each child
node’s reference count, including nodes pointed to by GOTO
messages. Node reclamation proceeds recursively on children
whose reference counts reach zero, as well.

This thread also checks any node with a translation prefix.
In an extreme case, a node with no reachable data may have a
positive reference count due to translation prefixes. For ex-
ample, if the only incident edge to a sub-DAG has translation
prefix s, but no key in the entire sub-DAG has s as a prefix,
then all data in the sub-DAG is reclaimable. As part of space
reclamation, BetrFS finds and reclaims nodes with no live
data, or possibly unshares and merges nodes with relatively
little live data.

Concurrency. B-tree concurrency is a classic problem, since
queries and inserts proceed down the tree, but splits and
merges proceed up the tree, making hand-over-hand locking
tricky. Bε-trees have similar issues, since they also perform
node splits and merges, and many of the B-tree-based solu-
tions, such as preemptive splitting and merging [28] or sibling
links [20], apply to Bε-trees, as well.

We note here that our cloning mechanism is entirely top-
down. Messages get pushed down to the LCA, GOTO mes-
sages get flushed down the tree, and non-simple edges get
converted to simple edges in a top-to-bottom manner. Thus
cloning imposes no new concurrency issues within the tree.

Background cleaning. BetrFS includes a background pro-
cess that flushes messages for frequently queried items down
the tree. The intention of this optimization is to improve
range and point query performance on frequently queried
data: once messages are applied to key-value pairs in Bε-tree
leaves, future queries need not reprocess those messages.

We found that, in the presence of clones, this background
task increased BetrFS 0.5’s space consumption because, by
flushing small changes, the cleaner would break Bε-DAG
nodes’ copy-on-write sharing.

Thus we modified the cleaner to never flush messages into
any node with a reference count greater than 1; such messages
instead wait to be flushed in normal write-optimized batches
once enough work has accrued to warrant rewriting the node.

82 18th USENIX Conference on File and Storage Technologies USENIX Association

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Clone Number

L
at

en
cy

(s
ec

)

Btrfs Btrfs-svol
XFS ZFS
BetrFS 0.5 BetrFS 0.5 (no cleaning)

(a) Time to clone a directory.

2 4 6 8
0

0.5

1

1.5

Clone Number

W
ri

te
Ti

m
e

(s
ec

)

(b) Small write latency.

2 4 6 8
0

2

4

6

8

Clone Number

G
re

p
Ti

m
e

(s
ec

)

(c) Grep Time.

Figure 7: Latency to clone, write, and read as a function of the number of times a directory tree has been cloned. Lower is better
for all measures.

5 Evaluation

This section evaluates BetrFS 0.5 performance. The evalua-
tion centers around the following questions:
• Do BetrFS 0.5 clones meet the performance goals of si-

multaneously achieving (1) low latency clone creation, (2)
reads with good spatial locality, even after modifications,
(3) fast writes, and (4) space efficiency? (§5.1)
• Does the introduction of cloning harm the performance of

unrelated operations? (§5.2)
• How can cloning improve the performance of a real-world

application? (§5.3)
All experimental results were collected on a Dell Optiplex

790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4GiB RAM,
and a 500GB, 7200 RPM SATA disk, with a 4096-byte block
size. We boot from a USB stick with the root file system,
isolating the file system under test to only the workload. The
system runs 64-bit Ubuntu 14.04.5.

We compare BetrFS 0.5 to baseline BetrFS, ext4, Btrfs,
XFS, ZFS, and NILFS2. We used BetrFS version 0.4
from github.com/oscarlab/betrfs, ZFS 0.6.5.11 from
zfsonlinux.org and kernel default versions of the other file
systems. Unless noted, each experiment was run a minimum
of 5 times. We present the mean and display bars that indicate
the minimum and maximum times over all runs. Similarly, ±
terms bound the minimum and maximum values over all runs.
Unless noted, all benchmarks are cold-cache tests.

BetrFS only works on a modified 3.11.10 kernel, so we run
BetrFS on that kernel; all other file systems run on 4.9.142.
We note that we ran experiments on both kernel versions, and
performance was generally better on the newer kernel; we
present the numbers for the newer kernel.

5.1 Cloning Performance

To evaluate the performance of cloning (and similar copy-
on-write optimizations in other file systems), we wrote a
microbenchmark that begins by creating a directory hierarchy
with eight directories, each containing eight 4MiB-files. The

microbenchmark then proceeds in rounds. In each round, we
create a new clone of the original directory hierarchy and
measure the clone operation’s latency (Figure 7a). We next
write 16 bytes to a 4KiB-aligned offset in each newly cloned
file—followed by a sync—in order to measure the impact of
copy-on-write (Figure 7b) on writes. We then clear the file
system caches and grep the newly copied directory to measure
cloning’s impact on read time (Figure 7c). Finally, we record
the change in space consumption for the whole file system at
each step (Table 1). We call this workload Dookubench.

We compare directory-level clone in BetrFS 0.5 to 3 Linux
file systems that either support volume snapshots (Btrfs and
ZFS) or reflink copies of files (Btrfs and XFS). We compare
in both modes; the label Btrfs-svol is in volume-snapshot
mode. For the file systems that support only file-level clones
(XFS and Btrfs without svol), the benchmark makes a copy
of the directory structure and clones the files.

For BetrFS 0.5, we present data in two modes. In “no
cleaner” mode, we disable the background process in BetrFS
0.5 that flushes data down the tree (Section 4). We found that
this background work created a lot of noise in our space exper-
iments, so we disabled it to get more precise measurements.
We also run the benchmark in BetrFS 0.5’s default mode
(with the cleaner enabled). As reported below, the cleaner
made essentially no difference on any benchmark, except to
increase the noise in the space measurements.

Figure 7a shows that BetrFS 0.5’s cloning time is around
60ms, which is 33% faster than the closest data point from
another file system (the first clone on XFS), 58% faster than a
volume clone on Btrfs, and an order of magnitude faster than
the worst case for the competition. Furthermore, BetrFS 0.5’s
clone performance is essentially flat throughout the experi-
ment. Thus we have achieved our objective of cheap clones.
Btrfs and ZFS also have flat volume-cloning performance,
but worse than in BetrFS 0.5. Both Btrfs and XFS file-level
clone latencies, on the other hand, degrade as a function of
the number of prior clones; after 8 iterations, clone latency is
roughly doubled.

In terms of write costs, the cost to write to a cloned file or

USENIX Association 18th USENIX Conference on File and Storage Technologies 83

github.com/oscarlab/betrfs
zfsonlinux.org

FS ∆ KiB/round σ

Btrfs 176 ±112 56.7
Btrfs-svol 32 ± 0 0
XFS 32.6 ± 95.4 50.9
ZFS 250 ±750 462.9
BetrFS 0.5 (no cleaning) 31.3 ± 29.8 19.9
BetrFS 0.5 16.3 ±950.8 460.8

Table 1: Average change in space usage after each
Dookubench round (a directory clone followed by small,
4KiB-aligned modifications to each newly cloned file).

volume is flat for all file systems, although BetrFS 0.5 can
ingest writes 8–10× faster. Thus we have not sacrificed the
excellent small-write performance of BetrFS.

Figure 7c shows that scans in BetrFS 0.5 are competitive
with the best grep times from other file systems in our bench-
marks. Furthermore, grep times in BetrFS 0.5 do not degrade
during the experiment. XFS and ZFS degrade severely—after
six clones, the grep time is nearly doubled. For XFS, there ap-
pears to be some work that temporarily improves locality, but
the degradation trend resumes after more iterations. Btrfs de-
grades by about 20% for file-level clones and 10% for volume
level clones after eight clones. This trend continues: after 17
iterations (not presented for brevity), Btrfs read performance
degrades by 50% with no indication of leveling off.

Table 1 shows the change in file system space usage after
each microbenchmark round. BetrFS 0.5 uses an average of
16KiB per round, which is half the space of the next best file
system, Btrfs in volume mode. BetrFS 0.5’s space usage is
very noisy due to its cleaner—unsurprisingly, space usage is
less after some microbenchmark rounds complete, decreasing
by up to 693KiB. When the cleaner is completely disabled,
space usage is very consistent around 32KiB. Thus enabling
the cleaner reduces average space consumption but introduces
substantial variation. Overall, these results show that BetrFS
0.5 supports space-efficient clones.

In total, these results indicate that BetrFS 0.5 supports a
seemingly paradoxical combination of performance features:
clones are fast and space-efficient, and random writes are
fast, yet preserve good locality for sequential reads. No other
file system in our benchmarks demonstrated this combination
of performance strengths, and some also showed significant
performance declines with each additional clone.

5.2 General Filesystem Performance

This section evaluates whether adding cloning erodes the
performance advantages of write-optimization in BetrFS. Our
overarching goal is to build a file system that performs well
on all operations, not just clones; thus, we measure a wide
range of of microbenchmarks and application benchmarks.
Sequential IO. We measure the time to sequentially write a

read write

60

80

100

120

140

ex
t4

ex
t4B

tr
fs

B
tr

fsX
FS

X
FS

Z
FS

Z
FSN

IL
FS

2

N
IL

FS
2

B
et

rF
S

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5

B
an

dw
id

th
(M

B
/s

ec
)

Figure 8: Bandwidth to sequentially read and write a 10 GiB
file (higher is better).

0 1M 2M 3M

10k

20k

30k

40k

50k

Files created

T
hr

ou
gh

pu
t(

fil
es

/s
ec

)

ext4 NILFS2
Btrfs BetrFS
XFS BetrFS 0.5
ZFS

Figure 9: Cumulative file creation throughput during the
Tokubench benchmark (higher is better).

10GiB file to disk (the benchmarking machine has only 4GiB
of RAM, so this is more than double the available RAM),
and then sequentially re-read the data from disk. Figure 8
shows the throughput of both operations. All the filesystems
perform sequential IO relatively well. BetrFS 0.5 performs
sequential reads at comparable throughput to BetrFS, ZFS,
and NILFS2, which is only about 19% less than ext4, Btrfs
and XFS. Sequential writes in BetrFS 0.5 are within 6% to
the fastest file system (Btrfs). We attribute this improvement
to preferential splitting, which creates a pivot matching the
maximum file data key at the beginning of the workload,
avoiding expensive leaf relifting in subsequent node splits.
Random IO. We measure random write performance with a
microbenchmark that issues 256K 4-byte overwrites at ran-
dom offsets within a 10GiB file, followed by an fsync. This
number of overwrites was chosen to run for at least several
seconds on the fastest filesystem. Similarly, we measure
random read performance by issuing 256K 4-byte reads at
random offsets within an existing 10GiB file.

Table 2 shows the execution time of the random write and
random read microbenchmarks. BetrFS 0.5 performs these
random writes 39–67× faster than conventional filesystems
and 8.5% slower than BetrFS. BetrFS 0.5 performs random
reads 12% slower than the fastest file system.
Tokubench. We evaluate file creation using the Tokubench
benchmark [13]. Tokubench creates three million 200-byte
files in a balanced directory tree (no directory is allowed to

84 18th USENIX Conference on File and Storage Technologies USENIX Association

FS random write (s) random read (s)
ext4 2770.6 ± 21.3 1947.9 ± 5.9
Btrfs 2069.1 ± 14.6 1907.5 ± 6.4
XFS 2863.4 ± 14.1 2023.3 ± 27.8
ZFS 3410.6 ±937.4 2163.9 ±112.2
NILFS2 2022.0 ± 4.8 1931.1 ± 26.6
BetrFS 4.7 ± 0.2 2201.1 ± 2.9
BetrFS 0.5 5.5 ± 0.1 2129.8 ± 6.8

Table 2: Time to perform 256K 4-byte random writes/reads
(1 MiB total IO, lower is better).

FS find (s) grep (s) delete (s)
ext4 2.22 ± 0.0 37.71 ± 7.1 3.38 ± 2.2
Btrfs 1.03 ± 0.0 8.88 ± 0.3 2.88 ± 0.0
XFS 6.81 ± 0.2 57.79 ±10.4 10.33 ± 1.4
ZFS 10.50 ± 0.2 38.64 ± 0.4 9.18 ± 0.1
NILFS2 6.72 ± 0.1 8.75 ± 0.2 9.41 ± 0.4
BetrFS 0.23 ± 0.0 3.71 ± 0.1 3.22 ± 0.4
BetrFS 0.5 0.21 ± 0.0 3.87 ± 0.0 3.37 ± 0.1

Table 3: Time to perform recursive grep, find and delete of
the Linux 3.11.10 source tree (lower is better)

Back-end FS lxc-clone (s)

Dir

ext4 19.514 ± 1.214
Btrfs 14.822 ± 0.076
ZFS 16.194 ± 0.538
XFS 55.104 ± 1.033
NILFS2 26.622 ± 0.396
BetrFS 0.5 8.818 ± 1.073

ZFS ZFS 0.478 ± 0.019
Btrfs Btrfs 0.396 ± 0.036
BetrFS 0.5 BetrFS 0.5-clone 0.118 ± 0.010

Table 4: Latency of cloning a container.

have more than 128 children). BetrFS 0.5 matches BetrFS
throughput, which is strictly higher than any other file system,
(except for one point at the end where NILFS2 is 8.7% higher),
and as much as 95× higher throughput than ext4.
Directory Operations. Table 3 lists the execution time of
three common directory operations—grep, find or delete—on
the Linux 3.11.10 kernel source tree.

BetrFS 0.5 is comparable to the baseline BetrFS on all
of these operations, with some marginal (4–5%) overhead
on grep and delete from adding cloning. We also note that
we observed a degradation for BetrFS on larger directory
deletions; the degradation is unrelated to cloning and we
leave investigation of this for future work. Overall, BetrFS
0.5 maintains the order-of-magnitude improvement over the
other file systems on find and grep.
Application Benchmarks. Figure 10 reports performance
of the following application benchmarks. We measure two
BetrFS 0.5 variants: one with no clones in the file system
(labeled BetrFS 0.5), and one executing in a cloned Linux-
3.11.10 source directory (labeled BetrFS 0.5-clone).

The git clone workload reports the time to clone a
local Linux source code repository, which is cloned from
github.com/torvalds/linux, and git diff reports the
time to diff between the v4.14 and v4.7 tags. The tar work-
load measures the time to tar or un-tar the Linux-3.11.10
source. The rsync workload copies the Linux-3.11.10 source
tree from a source to a destination directory within the same
partition and file system. With the -in-place option, rsync
writes data directly to the destination file rather than creating
a temporary file and updating via atomic rename. The IMAP

server workload initializes a Dovecot 2.2.13 mailserver with
10 folders, each containing 2500 messages, then measures
throughput of 4 threads, each performing 1000 operations
with 50% reads and 50% updates (marks, moves, or deletes).

In most of these application benchmarks, BetrFS 0.5 is the
highest performing file system, and generally matches the
other file systems in the worst cases. In a few cases, where
the application is write-intensive, such as git clone and rsync,
BetrFS 0.5-clone degrades relative to BetrFS 0.5, attributable
to the extra work of unsharing nodes, but the performance is
still competitive with, or better than, the baseline file systems.
These application benchmarks demonstrate that extending
write-optimization to include clones does not harm—and can
improve—application-level performance.

5.3 Cloning Containers

Linux Containers (LXC) is one of several popular container
infrastructures that has adopted a number of storage back-
ends in order to optimize container creation. The default
backend (dir) does a rsync of the component directories into
a single, chroot-style working directory. The ZFS and Btrfs
back-ends use subvolumes and clones to optimize this process.
We wrote a BetrFS 0.5 backend using directory cloning.

Table 4 shows the latency of cloning a default Ubuntu 14.04
container using each backend. Interestingly, BetrFS 0.5 using
clones is 3–4× faster than the other cloning backends, and up
to two orders of magnitude faster than the others.

6 Related work

File systems with snapshots. Many file systems implement
a snapshot mechanism to make logical copies at whole-
file-system-granularity [27]. Tree-based file systems, like
WAFL [15], ZFS [41], and Btrfs [29], implement fast snap-
shots by copying the root. WAFL FlexVols [12] add a level
of indirection between the file system and disks, supporting
writable snapshots and multiple active file system instances.

FFS [21] implements read-only file system views by cre-
ating snapshot inode with a pointer to each disk block; the
first time a block is modified, FFS copies the block to a new
address and updates the block pointer in the snapshot inode.

USENIX Association 18th USENIX Conference on File and Storage Technologies 85

github.com/torvalds/linux

clone diff

0

50

100

ex
t4

ex
t4

B
tr

fs

B
tr

fs

X
FS

X
FS

Z
FS

Z
FS

N
IL

FS
2

N
IL

FS
2

B
et

rF
S

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5

B
et

rF
S

0.
5-

cl
on

e

B
et

rF
S

0.
5-

cl
on

e

Ti
m

e
(s

ec
)

(a) Git latency.
Lower is better.

tar untar

0

20

40

60

80

ex
t4

ex
t4

B
tr

fs

B
tr

fs

X
FS

X
FSZ
FS

Z
FS

N
IL

FS
2

N
IL

FS
2

B
et

rF
S

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5

B
et

rF
S

0.
5-

cl
on

e

B
et

rF
S

0.
5-

cl
on

e

Ti
m

e
(s

ec
)

(b) Tar latency.
Lower is better.

-in-place rename

0

20

40

60

ex
t4

ex
t4

B
tr

fs

B
tr

fs

X
FS

X
FS

Z
FS

Z
FS

N
IL

FS
2

N
IL

FS
2

B
et

rF
S

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5

B
et

rF
S

0.
5-

cl
on

e

B
et

rF
S

0.
5-

cl
on

e

B
an

dw
id

th
(M

B
/s

ec
)

(c) Rsync throughput.
Higher is better.

0

50

100

150

200

ex
t4

B
tr

fs

X
FS

Z
FS

N
IL

FS
2

B
et

rF
S

B
et

rF
S

0.
5

B
et

rF
S

0.
5-

cl
on

e

T
hr

ou
gh

pu
t(

op
/s

)

(d) IMAP server throughput.
Higher is better.

Figure 10: Application benchmarks.

NILFS [19] is a log-structured file system that writes B-
tree checkpoints as part of each logical segment. NILFS can
create a snapshot by making a checkpoint block permanent.

GCTree [11] implements snapshots on top of ext4 by cre-
ating chains of metadata block versions. Each pointer in
the metadata block has a “borrowed bit” to indicate whether
the target block was inherited from the previous version.
Ext3cow [26] snapshots are defined by an epoch. Ext3cow
can render any epoch’s file-system view by fetching entries
alive at that epoch. NOVA-Fortis [38] supports snapshots by
adding private logs to each inode.
File or directory clones. AFS [16] introduced the idea of
volumes as a granularity for cloning and backup in a large, dis-
tributed file system; volumes isolate performance disruption
from cloning one user’s data from other users. Episode [7]
can create immutable fileset clones by copying all the fileset’s
anodes (inodes) and marking all block pointers copy-on-write.
Btrfs [29] can create file clones by sharing a file’s extents.
Windows R© 2000 Single Instance Storage (SIS) [5] uses dedu-
plication techniques to implement a new type of link that has
copy semantics. Creating the first SIS link requires a complete
data copy to a shared store. Writes are implemented copy-
on-close: once all open references to an SIS link are closed,
sharing is broken at whole-file granularity. Copy-on-close
optimizes for the case of complete overwrites.
Versioning file systems. Versioning files is an old idea, dating
back to at least TENEX system [4]. Versioning file systems
have appeared in a number of OSes [1, 22, 31], but often with
limitations such as a fixed number of versions per file and
no directory versioning. The Elephant File System [30] auto-
matically versions all files and directories, creating/finalizing
a new file version when the file is opened/closed. Each file
has an inode log that tracks all versions. CVFS [32] suggests
journal-based metadata and multi-version B-trees as two ways
to save space in versioning file systems. Versionfs [23] is a
stackable versioning file system where all file versions are
maintained as different files in the underlying file system.

Exo-clones [33] were recently proposed as a file format for
efficiently serializing, deserializing, and transporting volume

clones over a network. Exo-clones build upon an underly-
ing file system’s mechanism for implementing snapshots or
versions. Nimble clones in BetrFS 0.5 have the potential
to make exo-clones faster and smaller than on a traditional
copy-on-write snapshotting system.
Database indexes for dynamic hierarchical data. The clos-
est work to ours in databases is the BO-tree [14], a B-tree
indexing scheme for hierarchical keys that supports mov-
ing key subtrees from one place to another in the hierarchy.
They even support moving internal nodes of the key hierarchy,
which we do not. However, they do not support clones—only
moves—and their indexes are not write optimized.

7 Conclusion

This paper demonstrates how to use write-optimization to
decouple writes from copies, rendering a cloning implementa-
tion with the nimble performance properties: efficient clones,
efficient reads, efficient writes, and space efficiency. This tech-
nique does not harm performance of unrelated operations, and
can unlock improvements for real applications. For instance,
we demonstrate from 3–4× improvement in LXC container
cloning time compared to optimized back-ends. The tech-
nique of applying batched updates to the data structure itself
likely generalize. Moreover, our cloning implementation in
the Bε-DAG could be applied to any application built on a
key-value store, not just a file system.

Acknowledgments

We thank the anonymous reviewers and our shepherd Chang-
woo Min for their insightful comments on earlier drafts of
the work. This research was supported in part by NSF grants
CCF-1715777, CCF-1724745, CCF-1725543, CSR-1763680,
CCF-1716252, CCF-1617618, CCF-1712716, CNS-1938709,
and CNS-1938180. The work was also supported by VMware,
by EMC, and by NetApp Faculty Fellowships.

86 18th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Vax/VMS System Software Handbook, 1985.

[2] Michael A. Bender, Martin Farach-Colton, Jeremy T.
Fineman, Yonatan R. Fogel, Bradley C. Kuszmaul, and
Jelani Nelson. Cache-oblivious streaming B-trees. In
Proc. 19th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 81–92, 2007.

[3] Michael A. Bender, Martin Farach-Colton, William
Jannen, Rob Johnson, Bradley C. Kuszmaul, Donald E.
Porter, Jun Yuan, and Yang Zhan. An introduction
to Bε-trees and write-optimization. :login; Magazine,
40(5):22–28, Oct 2015.

[4] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Mur-
phy, and Raymond S. Tomlinson. Tenex, a paged
time sharing system for the pdp - 10. Commun. ACM,
15(3):135–143, March 1972.

[5] Bill Bolosky, Scott Corbin, David Goebel, and John (JD)
Douceur. Single instance storage in windows 2000. In
Proceedings of 4th USENIX Windows Systems Sympo-
sium. USENIX, January 2000.

[6] Gerth Stolting Brodal and Rolf Fagerberg. Lower
bounds for external memory dictionaries. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 546–554, 2003.

[7] Sailesh Chutani, Owen T Anderson, Michael L Kazar,
Bruce W Leverett, W Anthony Mason, Robert N Side-
botham, et al. The episode file system. In Proceedings
of the USENIX Winter 1992 Technical Conference, pages
43–60, 1992.

[8] Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,
Michael A. Bender, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,
and Martin Farach-Colton. File systems fated for senes-
cence? nonsense, says science! In Proceedings of the
15th Usenix Conference on File and Storage Technolo-
gies, pages 45–58, 2017.

[9] Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,
Michael A. Bender, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,
and Martin Farach-Colton. How to fragment your file
system. :login; Magazine, 42(2):22–28, Summer 2017.

[10] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A.
Bender, William Jannen, Rob Johnson, Donald Porter,
and Martin Farach-Colton. Filesystem aging: It’s more
usage than fullness. In 11th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 19),
Renton, WA, July 2019. USENIX Association.

[11] Chris Dragga and Douglas J. Santry. Gctrees: Garbage
collecting snapshots. ACM Transactions on Storage,
12(1):4:1–4:32, 2016.

[12] John K. Edwards, Daniel Ellard, Craig Everhart, Robert
Fair, Eric Hamilton, Andy Kahn, Arkady Kanevsky,
James Lentini, Ashish Prakash, Keith A. Smith, and
Edward Zayas. Flexvol: Flexible, efficient file vol-
ume virtualization in wafl. In Proceedings of the 2008
USENIX Annual Technical Conference, pages 129–142,
2008.

[13] John Esmet, Michael A Bender, Martin Farach-Colton,
and Bradley C Kuszmaul. The tokufs streaming file
system. In Proceedings of the 4th USENIX Workshop
on Hot Topics in Storage and File Systems, 2012.

[14] Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neu-
mann, Norman May, and Franz Faerber. Indexing highly
dynamic hierarchical data. In VLDB, 2015.

[15] Dave Hitz, James Lau, and Michael Malcolm. File sys-
tem design for an nfs file server appliance. In Proceed-
ings of the USENIX Winter 1994 Technical Conference,
pages 19–19, 1994.

[16] John H. Howard, Michael L. Kazar, Sherri G. Me-
nees, David A. Nichols, M. Satyanarayanan, Robert N.
Sidebotham, and Michael J. West. Scale and perfor-
mance in a distributed file system. ACM Transactions
on Computer Systems, 6(1):51–81, 1988.

[17] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: A right-
optimized write-optimized file system. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies, pages 301–315, 2015.

[18] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael A.
Bender, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: Write-
optimization in a kernel file system. ACM Transactions
on Storage, 11(4):18:1–18:29, 2015.

[19] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi
Hifumi, Seiji Kihara, and Satoshi Moriai. The linux
implementation of a log-structured file system. SIGOPS
Operating Systems Review, 40(3):102–107, 2006.

[20] Philip L. Lehman and s. Bing Yao. Efficient locking for
concurrent operations on b-trees. ACM Transactions on
Database Systems, 6(4), December 1981.

USENIX Association 18th USENIX Conference on File and Storage Technologies 87

[21] Marshall Kirk McKusick and Gregory R. Ganger. Soft
updates: A technique for eliminating most synchronous
writes in the fast filesystem. In Proceedings of the
1999 USENIX Annual Technical Conference, pages 1–
17, 1999.

[22] Lisa Moses. TOPS-20 User’s manual.

[23] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright,
Andrew Himmer, and Erez Zadok. A versatile and
user-oriented versioning file system. In Proceedings
of the 3rd USENIX Conference on File and Storage
Technologies, pages 115–128, 2004.

[24] Prashanth Nayak and Robert Ricci. Detailed study on
linux logical volume manager. Flux Research Group
University of Utah, 2013.

[25] Patrick O’Neil, Edward Cheng, Dieter Gawlic, and Eliz-
abeth O’Neil. The log-structured merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, 1996.

[26] Zachary Peterson and Randal Burns. Ext3cow: A time-
shifting file system for regulatory compliance. ACM
Transactions on Storage, 1(2):190–212, 2005.

[27] Rob Pike, Dave Presotto, Ken Thompson, and Howard
Trickey. Plan 9 from Bell Labs. In In Proceedings
of the Summer 1990 UKUUG Conference, pages 1–9,
1990.

[28] Ohad Rodeh. B-trees, shadowing, and clones. ACM
Transactions on Storage, 3(4):2:1–2:27, 2008.

[29] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage,
9(3):9:1–9:32, 2013.

[30] Douglas S. Santry, Michael J. Feeley, Norman C.
Hutchinson, Alistair C. Veitch, Ross W. Carton, and
Jacob Ofir. Deciding when to forget in the elephant file
system. In Proceedings of the Seventeenth ACM Sympo-
sium on Operating Systems Principles, pages 110–123,
1999.

[31] Mike Schroeder, David K. Gifford, and Roger M. Need-
ham. A caching file system for a programmer’s work-
station. In Proceedings of the 10th ACM Symposium on
Opeating Systems Principles. Association for Comput-
ing Machinery, Inc., November 1985.

[32] Craig A. N. Soules, Garth R. Goodson, John D. Strunk,
and Gregory R. Ganger. Metadata efficiency in version-
ing file systems. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, pages
43–58, 2003.

[33] Richard P. Spillane, Wenguang Wang, Luke Lu,
Maxime Austruy, Rawlinson Rivera, and Christos Kara-
manolis. Exo-clones: Better container runtime im-
age management across the clouds. In 8th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), Denver, CO, June 2016. USENIX
Association.

[34] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Wenji Li, Raju Rangaswami, and Ming Zhao. Eval-
uating docker storage performance: from workloads to
graph drivers. Cluster Computing, pages 1–14, 2019.

[35] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Amit Warke, Dean Hildebrand, Mohamed Mohamed,
Nagapramod Mandagere, Wenji Li, Raju Rangaswami,
and Ming Zhao. In search of the ideal storage con-
figuration for docker containers. In 2017 IEEE 2nd
International Workshops on Foundations and Applica-
tions of Self* Systems (FAS* W), pages 199–206. IEEE,
2017.

[36] Veritas. Veritas system recovery. https://www.
veritas.com/product/backup-and-recovery/
system-recovery, 2019.

[37] Xingbo Wu, Wenguang Wang, and Song Jiang. To-
talcow: Unleash the power of copy-on-write for thin-
provisioned containers. In Proceedings of the 6th Asia-
Pacific Workshop on Systems, page 15. ACM, 2015.

[38] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pages 478–496, 2017.

[39] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Optimizing every operation in a
write-optimized file system. In Proceedings of the 14th
Usenix Conference on File and Storage Technologies,
pages 1–14, 2016.

[40] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Writes wrought right, and other
adventures in file system optimization. ACM Transac-
tions on Storage, 13(1):3:1–3:26, 2017.

[41] ZFS. http://zfsonlinux.org/. Accessed: 2018-07-
05.

88 18th USENIX Conference on File and Storage Technologies USENIX Association

https://www.veritas.com/product/backup-and-recovery/system-recovery
https://www.veritas.com/product/backup-and-recovery/system-recovery
https://www.veritas.com/product/backup-and-recovery/system-recovery
http://zfsonlinux.org/

[42] Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr,
Michael A. Bender, Martin Farach-Colton, William
Jannen, Rob Johnson, Donald E. Porter, and Jun Yuan.
The full path to full-path indexing. In Proceedings
of the 16th USENIX Conference on File and Storage
Technologies, pages 123–138, 2018.

[43] Yang Zhan, Yizheng Jiao, Donald E. Porter, Alex Con-
way, Eric Knorr, Martin Farach-Colton, Michael A. Ben-

der, Jun Yuan, William Jannen, and Rob Johnson. Effi-
cient directory mutations in a full-path-indexed file sys-
tem. ACM Transactions on Storage, 14(3):22:1–22:27,
2018.

[44] Frank Zhao, Kevin Xu, and Randy Shain. Improving
copy-on-write performance in container storage drivers.

Storage Developer’s Conference, 2016.

USENIX Association 18th USENIX Conference on File and Storage Technologies 89

Uncovering Access, Reuse, and Sharing Characteristics of I/O-Intensive
Files on Large-Scale Production HPC Systems

Tirthak Patel
Northeastern University

Suren Byna, Glenn K. Lockwood, Nicholas J. Wright
Lawrence Berkeley National Laboratory

Philip Carns, Robert Ross
Argonne National Laboratory

Devesh Tiwari
Northeastern University

Abstract

Large-scale high-performance computing (HPC) applications
running on supercomputers produce large amounts of data
routinely and store it in files on multi-PB shared parallel stor-
age systems. Unfortunately, storage community has a limited
understanding of the access and reuse patterns of these files.
This paper investigates the access and reuse patterns of I/O-
intensive files on a production-scale supercomputer.

1 Introduction
High-performance computing (HPC) applications running

on large-scale facilities routinely perform TBs of I/O. Conse-
quently, significant efforts have been made to study the I/O be-
havior of HPC systems and workloads in the recent past. Pre-
vious studies have attempted to characterize the I/O of work-
loads based on application-level traces [10,11,17,39], present
experimental analysis of factors affecting I/O [35,56–58], and
provide guidance for I/O storage systems [29, 32–34, 54, 59].
However, there is limited understanding about how different
files produced by HPC systems are re-accessed and re-used,
from the same application and across applications. This is
primarily because it is fundamentally challenging to measure
and collect file-based I/O information across multiple execu-
tions as it requires tracing all executions of an application and
the affected files which imposes high overhead and hence, is
unsuitable for production HPC systems. The benefits of such
a study are multi-fold, including understanding the nature of
file-specific I/O, uncovering file reuse patterns, studying the
effect of I/O variability on I/O performance, and optimizing
file placement decisions. However, the costs of conducting
such a study are prohibitively high for production systems
[4,8,44]. This is one of the major reasons why the community
has lacked such an understanding so far.

To the best of our knowledge, this is the first work to per-
form in-depth characterization and analysis of access, reuse,
and sharing characteristics of I/O-intensive files. In particular,
this is the first work to characterize (1) whether HPC files are
ready-heavy, write-heavy, or both; (2) inter-arrival times for
re-access and type of re-access across runs; (3) sharing of a
file across multiple applications. Furthermore, our file-based
I/O timing analysis also reveals key sources of inefficiencies
that cause I/O variability within and across runs.

Figure 1: Architecture of the Cori supercomputer [7].

This study was carried out using a lightweight Darshan I/O
monitoring tool to trace application I/O on Cori, a leading
top 500 supercomputer, for a period spanning four months
(Oct’17-Jan’18) during production - covering ≈36 million
node-hours of operational system time.

Next, we briefly describe Cori and our methodology.

2 Background and Methodology
Brief Overview of the System. This study is based on a Cray
XC40 supercomputer, Cori, ranked at #13 in the Top-500 su-
percomputers list. Cori achieves the peak computational per-
formance of ≈27 Pflop/s. Cori contains 9,688 Intel Xeon Phi
and 2,388 Intel Haswell processors. Fig. 1 shows Cori’s net-
work and storage structure. Cori features a disk-based Lustre
file system which is composed of ≈10,000 disks organized
as 248 Lustre Object Storage Targets (OST). Each OST is
configured with GridRAID and has a corresponding Object
Storage Server (OSS) for handling I/O requests. The total size
of the file system is≈30 PB with a peak I/O bandwidth of 744
GB/s. During the data collection period of this study, the file
system was shared with Edison, an older Cray XC30 system
which was near the end of its lifetime (retired in May’19). Edi-
son was comparatively much smaller system (only 2 Pflop/s
of peak performance) and generated much lesser I/O traffic
compared to Cori as it was also near the end of its lifetime.
As Edison was recently decommissioned, we only focus on
Darshan logs collected on the Cori system. Cori also has
a SSD-based Cray DataWarp burst-buffer storage layer. We
note this study does not focus on burst-buffer I/O activities as
they are limited (5-15%) and the shared file system observes
almost all of the I/O traffic as per Darshan data.

USENIX Association 18th USENIX Conference on File and Storage Technologies 91

100 500 1000
Amount of Data (GB)

2

4

6

8
10

Nu
m

be
r o

f R
un

s 100 Files
100 < #Files 101

101 < #Files 102

102 < #Files 103

103 < #Files 104

104 < #Files 105

105 < #Files 106

106 < #Files 107

107 < #Files 108

Figure 2: Over 99% of ≈52 million files transferred < 1 GB
data and were accessed only once during the study period.

10 5 100 105

Data Read (GB)

10 5

10 3

10 1

101

103

105

Da
ta

 W
rit

te
n

(G
B) 100 Files

100 < #Files 101

101 < #Files 102

102 < #Files 103

103 < #Files 104

(a)

0.0 0.2 0.4 0.6 0.8 1.0
|Data Read Data Written|
Data Read + Data Written

20

40

60

80

100

PM
F

(%
 o

f R
un

s)

(b)

Figure 3: (a) Files can be divided into groups: read-heavy
(RH), write-heavy (WH), or both, read- and write- heavy
(RW). (b) Difference in data read and written per run shows
>82% of runs either perform only read I/O or only write I/O.

Data Collection. We use Darshan, a light-weight I/O moni-
toring tool which provides application-level I/O tracing capa-
bility [11] to collect file I/O access patterns. Darshan V3.10
was enabled by default on Cori for all users during the study
period. Darshan reports key information including user id,
job id, application (executable) id, start timestamp, end times-
tamp, and number of processes (ranks). Darshan also traces
key statistical metrics for each file at the I/O-software-stack-
level for different types of I/O interfaces including POSIX
(Portable Operating System Interface) I/O, MPI (Message
Passing Interface) I/O, and STD (Standard) I/O. These met-
rics include amount of read/write data, aggregate time for
read/write/meta operations, rank id of I/O performing rank(s),
and variance of I/O size and time among different application
ranks. Lastly, Darshan also collects Lustre-file-system-level
metrics such as stripe width and OST IDs over which a file
is striped. However, Darshan does not report actual file sizes,
only the size of the data transferred. Over the period of this
study, ≈84 million logs (one per execution) were collected
with information spanning ≈52 million unique files, 8489
applications, 651 users, and 12.8 PB of data transfer (6.9 PB
read data and 5.9 PB write data).
Explanation of Analysis Figures. We now briefly describe
the format of the analysis figures used for our study.
Heatmaps. These plots are used to show the significance of
a specific relationship between two metrics. The intensity of a
heatmap box color indicates the number of files which exhibit
the corresponding relationship between the two metrics.
CMF Plots. We use CMF (Cumulative Mass Function) plots
to show the cumulative distribution of a metric. A vertical
dotted blue line is used to indicate the mean of the distribution.

Some CMF plots show the distribution of the CoV (Coeffi-
cient of Variation (%) = standard deviation

mean ×100) of a metric to
highlight the normalized variability observed by the metric.
Violin Plots. These plots are used to show the density (in
terms of the number of files) for different values of a metric
in a vertical format. A horizontal solid blue line is used to
indicate the mean of the density distribution.
Next we describe how we select I/O-intensive files, classify
these files, and classify the runs which access them.

2.1 Selecting I/O-Intensive Files
As mentioned previously, Cori’s Darshan logs contain in-

formation about ≈52 million files. However, our analysis
shows that a large majority of these files perform very little
I/O during the study period. Fig. 2 shows a heatmap of the
aggregate amount of data transferred to/from a file vs. the
number of runs during which a file is accessed. Most of the
files experience less than 100 GB of I/O during the study
period and are accessed by only one run. In fact, over 99%
of these files transfer less than 1 GB data. Note that this does
not mean that the actual file size is less than 1 GB; but the
data transfer to/from the file amounts to less than 1 GB.

Therefore, a majority of such files may not be helpful in
establishing representative characteristics related to dominant
I/O patterns of HPC applications. These files include user
notes, scripts, executables, non-I/O-intensive-application out-
puts, and error logs. Therefore, our study focuses on a class
of “I/O-intensive” files which individually experience data
transfer of at least 100 GB during the study period and are
accessed by at least 2 runs - to capture the most dominant
and representative I/O patterns. From here on, we refer to
these I/O-intensive files as “files” simply. This methodol-
ogy streamlines our analysis to useful Darshan logs spanning
≈400k runs, 791 applications, 149 users, 8.5k files, and 7.8
PB of data transfer (4.7 PB read data and 3.1 PB write data).
We ensured that our analysis is not skewed by only a handful
of users performing most of the I/O to these files. In fact, over
70% of selected users perform I/O to more than 2 files, with
each user performing I/O to 57 files on average.

2.2 File Classification
Next, we classify I/O-intensive files in terms of the type of

I/O they perform. This helps us derive type-specific insights
for different types of files in Sec. 3. We study the aggregate
amount of read and write data transferred per file. Fig. 3(a)
shows a heatmap of the amount of read data transfer vs. the
amount of write data transfer. We observe that files can be
classified into three distinct clusters. The lower right cluster
consists of 22% of the files which transferred mostly read data
during the four months. We refer to these as read-heavy or RH
files. The upper left cluster consists of 7% of the files which
transferred only write data (write-heavy or WH files). Lastly,
the cluster in the top right corner with the largest percentage
of files (71%), consists of files which are both, read- and write-
heavy (referred to as RW files).

92 18th USENIX Conference on File and Storage Technologies USENIX Association

R WR R W W WRRWRuns with
File Access

Number of Consecutive
Read Runs

Number of Consecutive
Write Runs

Inter-Arrival Time
of Read Runs

Inter-Arrival Time
of Write Runs

1 2 3 4 1 2 3

Figure 4: Visual representation of inter-arrival times and num-
ber of consecutive runs for both read (R) and write (W) runs.

Finding 1. HPC files can be classified as read-heavy (RH),
write-heavy (WH), or read- and write- heavy (RW). For the
first time, we quantify that a significant fraction of the files
are read-heavy (22%) and 7% of files are write-heavy - these
7% files are constantly written to but not read, which may
indicate unread checkpoint/analysis data. 71% of HPC files
are RW files (i.e., both read- and write- heavy). These files
may include checkpoint/analysis files which do get read. Such
a file classification can be used for file placement decisions
in a multi-tier storage system including burst buffers, where
each tier is suitable for different kind of I/O operations.

2.3 Run Classification
While the files can be cleanly classified into three clusters,

they can be accessed by multiple “application runs” (simply,
referred to as “runs”) and can perform both read and write
I/O. A run refers to a job running on multiple compute nodes
and consisting of multiple MPI processes/ranks and possibly
shared-memory threads within a node. We found that a vast
majority of runs perform either mostly-read or mostly-write
I/O. To demonstrate this, we calculate the difference in the
amount of read and write data for each run using the formula:
|data read−data written|
data read+data written . The value of this formula ranges from 0

to 1: 1 indicates that all of the data transacted by the run is
either exclusively read or exclusively write and 0 indicates
equal amount of read and write data transfer. Fig. 3(b) shows
that over 82% of all runs have a value very close to 1, i.e.,
they are either read-intensive or write-intensive. In the context
of I/O, we refer to read-intensive runs as simply “read runs”
and write-intensive runs as “write runs”. We found that 69%
of all runs are read runs and 31% are write runs. RH files
are mostly read by read runs, WH files are mostly written by
write runs, and both read and writes runs operate on RW files.
This classification helps us establish a producer-consumer
relationship among runs in Sec. 3.1.
Finding 2. Somewhat surprisingly, modern HPC applica-
tions largely tend to perform only one type of I/O dur-
ing a single run: either read or write. This is in con-
trast to the commonly-held assumption that HPC applica-
tions have both read and write I/O phases during the same
run [16, 20, 21, 28, 36, 46, 49, 60]. This finding indicates the
potential rise of scientific workflows instead of traditional
monolithic scientific applications [6, 40, 45]. The presence
of non-monolithic applications provides the opportunity to
better schedule different components of a large workflow to
avoid I/O contention among different workflows.

0 20 40 60 80
Inter-Arrival Time
of Read Runs (hr)

0
20
40
60
80

100

CM
F

(%
 o

f F
ile

s)

0 20 40 60 80
Inter-Arrival Time
of Write Runs (hr)

(a)

1 6 11 16
Number of

Conseq. Read Runs

0
20
40
60
80

100

CM
F

(%
 o

f F
ile

s)

1 6 11 16
Number of

Conseq. Write Runs
(b)

Figure 5: (a) Most of the read and write runs have inter-arrival
times of 50-55 hours per file (file re-access interval). (b) The
mean number of consecutive read runs in 13 and the mean
number of consecutive write runs is 3.

3 Result Discussion and Analysis
In this section, we explore HPC file behavior concerning

multi-run reuse and multi-application sharing (Sec. 3.1), and
we study I/O data characteristics pertaining to load imbalance
and intra- and inter- run I/O variability (Sec. 3.2).

3.1 File Reuse Characteristics

Run Inter-Arrival Times. In Sec. 2.3, we showed that a run
can be classified as either read run or write run, and found that
the total number of read runs are more than 2x the number
of write runs. Now, we study the inter-arrival times of these
different runs to understand the avgerage time taken to reuse
the same file (inter-arrival time is defined as shown in Fig. 4).
Fig. 5(a) shows that the mean inter-arrival time of read runs
experienced by a file is 47 hours, while that of write runs is 55
hours. But, on an average, 80% of files are re-accessed only
after 50-55 hours for both read and write runs. We note that
the average inter-arrival time is much longer than the average
runtime of jobs on Cori (e.g., >80% of HPC jobs on these
systems finish in less than 2 hours) [3, 43].
Finding 3. Read and write runs have similar inter-arrival
times of over 2 days for 80% of the files. For the first time
we find that most files get re-accessed after a relatively long
period (>50 hours) - much longer than the runtime of jobs.
This enables opportunity for data compression [18] of files
which are expected to remain inactive for some time and also
leverage transparent burst-buffer prefetching and caching [9,
47] for files expected to be accessed in a short while.

Consecutive Runs of the Same I/O Type. Read and write
runs having similar inter-arrival times motivates us to test

USENIX Association 18th USENIX Conference on File and Storage Technologies 93

0 2.5 5 7.5 10
Number of Apps.
Accessing the File

0
20
40
60
80

100
CM

F
(%

 o
f F

ile
s)

(a)

0 20 40 60 80
Inter-Arrival Time

of Apps. (hr)

0
20
40
60
80

100

CM
F

(%
 o

f A
pp

s.)

(b)

0 6 12 18 24 30
Amount of I/O Data
Per Read Run (GB)

0
20
40
60
80

100

CM
F

(%
 o

f R
un

s)

0 6 12 18 24 30
Amount of I/O Data
Per Write Run (GB)

(c)

Figure 6: (a) Over 65% of files are accessed by at least 2 appli-
cations. (b) The average inter-arrival time of each application
to perform I/O to a specific file is 31 hours. (c) On average,
read runs transfer 17 GB of data per run, while write runs
transfer 25 GB of data per run.

if read and write runs are scheduled back to back, and if so,
how long do these sequences last. We calculate the average
number of consecutive read runs and write runs for each file
(as shown in Fig. 4) and plot the distribution in Fig. 5(b). Over
80% of files experience 2 or more consecutive read runs and
over 65% of files experience 2 or more consecutive write runs.
A majority of files experience 2 consecutive read runs (65%)
and 2 consecutive write runs (50%). This suggests that files
get accessed in alternating phases of multiple read runs and
multiple write runs - consistent with our observation that RW
files dominate the population (71%). However, there are many
files which experience a large number of consecutive read
runs (due to RH files). In fact, the mean number of consecutive
read runs experienced by a file is over 14, while the mean
number of consecutive write runs is < 4. There are only 2.2×
as many read runs as write runs (Sec. 2.3), but mean number
of consecutive read runs is 4.3× the number consecutive write
runs. This indicates that data is produced a few times, and
then consumed many times over, true for most RW files. This
observation suggests that scientific simulations often produce
data during certain runs, which is then used as a driver input
by several subsequent runs to explore different potential paths
or analyze a simulated phenomena in detail. We note that
consecutive write runs does not imply that all the previously
written data is rewritten/lost. Some scientific workflows could
append a file over two consecutive write runs and then, read a
part of the file in the subsequent run.
Finding 4. HPC files experience a few consecutive write
runs and a long string of consecutive read runs on average.
This insight can help leverage MPI “hints” [38] to guide the
system about the type of I/O about to be executed. Partitioning

0 50 100 150 200
OST ID (sorted)

0
25
50
75

100

St
at

ist
ic

(%
 o

f M
ax

.)

I/O Data Transferred
Num. Applications

Num. Files
Num. Users

Figure 7: The amount of I/O data transferred by each OST is
largely unequal, even though the number of files, applications,
and users are more balanced due to capacity balancing.

of I/O servers [25] to separately serve RH files (which perform
many consecutive reads) and RW files (for read and write
runs) can boost I/O performance.

Multi-Application File Sharing. Taking the producer-
consumer relationship one step further, it would be interest-
ing to understand if the producer and the consumer are the
same application or if they are different applications. From
a methodological point of view, we note that all applications
which access a file are run by the same user. So for any file,
both producer and consumer applications belong to the same
user. Also, a file is not considered to be shared by default
among multiple users due to permission issues. Fig. 6(a)
shows the CMF of the number of applications which access
a file. Over 67% of files are accessed by at least 2 applica-
tions, thus indicating that files are often shared by multiple
applications. Fig. 6(b) shows the CMF of the inter-arrival
time of each application which performs I/O to a file. The
mean inter-arrival time of each application is 31 hours, which
is much lower than the mean inter-arrival time of individual
read and write runs (>50 hours). Thus, for most files, 2 or
more applications serve as the producer and the consumer,
as opposed to a single application performing I/O to the file.
This is consistent with our finding that a majority (86%) of
files accessed by multiple applications are RW files (only 12%
of these shared files are RH files and only 2% are WH files).
Finding 5. HPC files are shared by multiple applications and
each application performs both read and write I/O serving
as both, the producer and the consumer. Inter-arrival times
of these runs also indicate that the producer and the con-
sumer are launched significantly apart in time - limiting the
effectiveness of potential caching across applications.

3.2 Characteristics of I/O Data Accesses

Per Run I/O Data Transfer. In Sec. 3.1, we studied how
files get used over multiple runs. We now investigate how the
data transaction characteristics change over these multiple
runs. Fig. 6(c) shows a CMF of the amount of data transferred
per run by read runs and write runs. We observe that on
average, read runs transfer 17 GB of data per run, while write
runs transfer 25 GB of data per run. In fact, 50% of read runs
transfer less than 1 GB of data.

94 18th USENIX Conference on File and Storage Technologies USENIX Association

POSIX MPI STD
0

100

200

300

400

500

600

700

Am
ou

nt
 o

f I
/O

 D
at

a
(G

B)
(a

ve
ra

ge
d

ac
ro

ss
ru

ns
)

(a)
POSIX MPI STD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
d.

 D
ev

. o
f R

an
k

I/O
 S

ize
 (G

B)
(a

ve
ra

ge
d

ac
ro

ss
ru

ns
)

(b)
POSIX MPI STD

0

50

100

150

200

250

300

350

St
d.

 D
ev

. o
f R

an
k

I/O
 T

im
e

(s
)

(a
ve

ra
ge

d
ac

ro
ss

ru
ns

)

(c)

Figure 8: (a) POSIX and MPI I/O interfaces are used to trans-
fer the most amount of data. (b) The variability in I/O size
among different ranks of the same application is very small.
(c) But, the variability in I/O time of individual ranks is large.

Finding 6. While reads runs are more abundant than write
runs and transfer more data in total, surprisingly, write runs
transfer more amount of data than read runs per run. On
average, write runs perform 1.4× the I/O of read runs per run.
This finding can be exploited to manage I/O contention better
at the system-level by limiting the number of concurrently
executing write runs. Recall that our earlier finding indicates
that HPC applications largely tend to perform only one type
of I/O during one run and hence, “write runs” can easily be
detected and classified.

Spatial Load Imbalance. Now that we have found that differ-
ent runs transfer different amount of data, the next question to
investigate is how this difference affects the back-end OSTs.
Fig. 7 shows the normalized I/O data transferred to/from each
of the OSTs during the study period. Interestingly, there is
a large spread in how much data is transferred by each OST.
The least “active” OST is only 13% as active as the most
active OST. On the other hand, when we look at the number
of files on each OST, number of applications which use these
files, and number of users which generate the files, we see
that the spread is much lower.
Finding 7. For the Lustre-based system studied in this work,
OSTs are capacity-balanced to ensure approximately equal
utilization at the file creation time, but that does not guarantee
dynamic load-balance. Consequently, there is large inequality
in terms of the amount of load (data transfer) which each
OST observes over time - emphasizing the need for dynamic
file migration (currently lacking in the Lustre file system),
replication of read-only data, and caching.

Intra-Run I/O Variability. Next, we look at how varying
OST contention can affect the I/O time of concurrently run-
ning ranks (processes) within a run as these ranks could be
performing I/O to different OSTs in parallel. For this analysis,
we individually analyze the three different I/O interfaces used
at Cori: POSIX I/O, MPI I/O, and STD I/O. First, we look at
the amount of data transferred using each interface. Fig. 8(a)
shows that POSIX is the most commonly used I/O interface
transferring about 260 GB of data per run per file on average.
Thereafter, MPI interface is used to transfer about 190 GB of

0 5 10 15 20
Run Start Time (hr)

(local time)

500

1000

1500

To
ta

l I
/O

 D
at

a
(T

B)

(a)

0 5 10 15 20
Run Start Time (hr)

(local time)

0

20

40

60

80

Ru
n

I/O
 T

im
e

(%
 o

f
M

ax
. R

un
 I/

O
Ti

m
e)

(b)

0 5 10 15 20
Run Start Time (hr)

(local time)

0

20

40

60

80

Co
V

of
 I/

O
Ti

m
e

Ac
ro

ss
 R

un
s (

%
)

(c)

Figure 9: (a) A large amount of I/O data is transferred dur-
ing 3am-5am local time. (b) Due to this, runs take the most
amount of time to complete their I/O during the correspond-
ing hours. (c) Also, variability in I/O time is lower when I/O
time is higher and higher when I/O time is lower.

data per run per file on average. STD is the least commonly
used interface, as is expected for parallel HPC applications.

Fig. 8(b) shows the standard deviation of the amount of
data transferred across each rank performing I/O per run per
file. On average, this standard deviation is very small across
all three interfaces. For example, the average standard de-
viation of the amount of data transferred across POSIX I/O
performing ranks is less than 1.5 GB, which is negligible com-
pared to the average amount of data transferred using POSIX
(260 GB). On the other hand, Fig. 8(c) shows the standard
deviation of the I/O time across each rank performing I/O per
run per file. This standard deviation is especially high for I/O
performed using POSIX interface. This is because, typically
when using the POSIX interface, each rank performs I/O to
its own file, while when using the MPI I/O interface, all ranks
perform I/O to a shared file. Because the default stripe width
on the Cori supercomputer is 1, over 99% files are striped
across only 1 OST. Therefore, if an application performs I/O
to multiple files in parallel, they tend to perform I/O to multi-
ple OSTs in parallel, as the files could be mapped to different
OSTs. Thus, varying levels of resource contention at these
OSTs can dramatically affect the I/O time of the individual
ranks when using POSIX I/O.
Finding 8. OST load imbalance leads to a high degree of
variability in I/O time of ranks which are concurrently per-
forming I/O, especially if the ranks are performing I/O to
different OSTs, which is largely the case with POSIX I/O.
This leads to the faster ranks having to wait for the slower
ranks to finish I/O before they can resume computation, thus
wasting precious compute cycles on the HPC system.

Temporal Load Imbalance. Previously, we discovered that
OST I/O imbalance and contention causes intra-run variabil-
ity in I/O time. So the next step is to explore the temporal
characteristics of I/O load. Fig. 9(a) shows the total amount
of data which is transferred at different hours of the day. We
observe that the largest amount of I/O activity is performed by
runs which start between 3am and 5am local time. Note that
Cori has users across the globe, so the specific local time (i.e.,
early morning) is not an indicator of when the local users are
the most active. We plot the amount of data with respect to the

USENIX Association 18th USENIX Conference on File and Storage Technologies 95

start time of the run which is sufficient for our analysis. We
note that our following analysis does not necessarily establish
a causal relationship between different factors, but instead
attempts to explain the observed trends. In Fig. 9(b), we plot
the I/O time of runs across different hours of the day. The
I/O time of a run is plotted as percentage of the maximum
I/O time among all runs which perform I/O to the same file
to normalize it across files. However, we observe that runs
started during 3am-5am and a few hours post 5am have the
highest runtime due to the high I/O activity during this time.
This is in spite of the fact that runs performing I/O to the same
file have low variability in terms of the amount of data they
transfer (as we will discuss later).

Interestingly, Fig. 9(c) shows that while the variability
in I/O time is generally significantly high across all times
(>20%), it is the lowest for runs which start during peak I/O
activity periods. The CoV is calculated among runs belong-
ing to the same file which start during the same hour of the
day. The CoV of I/O time plot has a near opposite trend as
that of the I/O time plot (Fig. 9(b)). In fact, the I/O time and
CoV of I/O time have a Spearman Correlation Index of -0.94,
which points to strong negative correlation. This indicates
that when the I/O activity is highest, the variability in I/O
time that the user can expect is slightly lower, i.e., if user A
starts the same run every day during a high I/O activity period,
they can expect less variability in the runs’ I/O times (and
therefore, runtimes) than user B who starts the same run every
day during a low I/O activity period. Of course, the trade-off
is that user A observes a higher I/O time on average than
user B. This happens because when the I/O activity is high,
the OSTs are heavily contended which may slow down all
I/O. Hence, the effect of any variation in I/O time is small.
However, when OSTs are not contended and I/O is faster, the
effects of variation are more pronounced and noticeable.
Finding 9. Temporal load imbalance causes I/O time of the
same run to be different during different times of the day.
Moreover, variability in I/O time is strongly negatively cor-
related with the I/O time during the time of the day. HPC
systems need new techniques to mitigate the intra-run vari-
ability (i.e., ranks of the same application finishing at different
times) which continues to have a considerable presence since
the I/O variability is significant at all times (>20%).

Inter-Run I/O Variability. The next question we address is
that if there is temporal imbalance in storage system load,
does it cause I/O time variability from one run to another?
Note that the variability we addressed in Finding 9 was among
runs starting during the same hour. Now we look at all runs
accessing the same file regardless of their start times. First, we
explore how much the amount of data transferred to/from the
same file changes from one run to another. Fig. 10(a) shows
the CMF of the CoV of the amount of I/O data transferred
across runs for each file. Overall, more than 80% of files
have a CoV of less than 5% which indicates a negligible

0 10 20 30 40 50 60 70 80
CoV of I/O Size Across Runs (%)

(a)

0
20
40
60
80

100

CM
F

(%
 o

f F
ile

s)

0 10 20 30 40 50 60 70 80
CoV of I/O Time Across Runs (%)

(b)

Figure 10: The change in the amount of data transferred across
runs to read-only files is the smallest, but these files experi-
ence the highest variability across runs in terms of I/O time.
Overall, the change in the amount of data is very small (mean
CoV is 12%); however, the change in the amount of time it
takes to transfer the data is much greater (mean CoV is 39%).

change in the amount of I/O data transferred from one run to
another. This is especially true for RH files, and even true for
RW files, which experience both, read runs and write runs,
thus indicating that similar amount of data gets produced and
consumed in a vast majority of cases. WH files exhibit the
highest variability in the amount of data transferred (mostly
write data in the case of WH files) with a mean CoV of 35%
(results for different types of files are not shown for brevity).

Fig. 10(b) shows the CoV of I/O time for different runs for
each file. Across all files, even though the amount of data does
not change significantly from one run to another, the amount
of time it takes to transfer this data experiences significant
variability: the mean CoV of the I/O time across runs is 39%.
RH files experience the most change in I/O time from one
run to another with a mean CoV of 68%, even though they
have the least change in the amount of data transferred. This
is due to the fact that the OSTs experience different levels of
contention at different times due to temporal load imbalance.
In fact, because read runs transfer less amount of data on
average than write runs (as we discussed in Finding 6), the
effect of this load imbalance is especially prominent on their
I/O time, which in turn has the largest impact on RH files.
Finding 10. HPC files tend to experience similar amount of
data transfer from one run to another, but they do experience
a large variability in terms of the amount of time taken to
transfer the data. This is especially true for ready-heavy files
which have the least variability in I/O data, but the most vari-
ability in I/O time - indicating the need for special attention
to RH files when mitigating I/O variability challenge.

4 Scope of the Findings
While we have ensured that our results and insights are

statistically significant, certain aspects of our study may limit
the applicability and generalization ability of our analysis.
User Opt-Out. Cori users had the option to opt out of Dar-
shan logging. However, the Darshan library is enabled by
default for all users. Therefore, a large majority of users, espe-
cially the ones running I/O intensive applications, run Darshan
during execution to understand their I/O behavior.
Time Period of Data Collection. Our study uses four months
of data logs for analysis and is unable to detect trends longer

96 18th USENIX Conference on File and Storage Technologies USENIX Association

than four months. However, four months is a long period
and all of the insightful findings such as read and write runs
inter-arrival times, multiple application inter-arrival times, and
temporal load imbalance are in the order of hours. We also
note that the jobs on the Cori supercomputer do not exhibit
significant seasonal behavior. That is, the I/O traffic remains
relatively similar throughout the year, as also confirmed by
previous studies [42]. Therefore, we do not expect our analysis
and findings to be affected by the time period of the study.

Unavailable Information. Our study is restricted by the type
of information traced by Darshan. Therefore, we are unable to
study file size, file amendments/overwrites, number of nodes
involved in I/O, and batch job I/O behavior. Information about
random vs. sequential I/O type is available for POSIX I/O, but
does not yield interesting results as we found that almost all
of the I/O is sequential as is expected for HPC applications.

“What if?” Analysis. Our post-event analysis also bars us
from posing “what if” questions such as what if a particular
run is removed from analysis? How would it affect the I/O
trends? Such questions are not possible to study retroactively
in a parallel storage system as all concurrently running ap-
plications affect each other’s I/O behavior in complex ways
which cannot be decoupled easily.

Impact of Cori-specific environment and workloads. As
expected, our findings are influenced by the nature of work-
loads which are executed at National Energy Research Sci-
entific Computing Center (NERSC) and the NERSC system
environment where Cori is hosted. Consequently, we caution
that our findings cannot be generalized to other HPC systems
as-is, but this work provides a methodological framework to
conduct a study of this nature at other centers to confirm and
refute the presented findings.

However, we also note that similarities between NERSC
and other centers are likely since HPC users often tend to
run workloads with similar characteristics [34]. Workloads
running at NERSC are diverse in nature and correspond to a
wide variety of scientific domains such as material science,
cosmology, combustion, fluid dynamics, climate science, and
quantum simulations. Prior studies have covered various as-
pects of these workloads [5, 31, 34, 53].

Increase in data analytics workloads may be the reason for
read-heavy file I/O. Wide increase of such workloads on lead-
ing HPC centers has been observed in recent years [1, 12, 13].
NERSC has observed a rise in data analytics workloads
in NERSC Exascale Science Applications Program (NE-
SAP) [14]. Data and learning applications such as BD-CATS
which run at NERSC are quite I/O-intensive. Interestingly,
we also observed that some applications that generate large
amounts of read data (QCD and quantum modeling of materi-
als) do not necessarily come from the data analytics domain
and have run at NERSC for many years. Finally, we note that
the scope of this study is limited to only the NERSC system
where the instrumentation was performed.

5 Related Work
In this section, we discuss and contrast some related work.

I/O Characterization Software. As HPC I/O has become
more unstable and a bigger performance bottleneck over the
last few years, much effort is geared toward developing I/O
characterization tools for individual applications [10, 11, 22,
50, 55] and for the entire system [2, 23, 24, 51, 58]. Recent
works focus on developing software for end-to-end character-
ization of I/O [15, 30, 31, 41, 48, 58]. These works deal with
tool development and do not provide detailed analysis of I/O
behavior, especially in terms of file access and reuse.
I/O Behavior Analysis. Most analysis works study the I/O
behavior of individual applications and/or runs such as I/O pe-
riodicity, bandwidth characteristics, and inter/intra application
execution I/O variability [19, 26, 29, 32–34, 37, 54, 56, 57, 59].
Variability and I/O characterization studies performed by
some of these previous works are restricted to analyzing a
few benchmarks as they do not have access to a system-level
view of hundreds of concurrently running HPC applications.
Apart from analyzing application-level I/O logs, works by Liu
et al. and Madireddy et al. [27, 28, 35] also examine storage
server logs to assess application I/O characteristics. In fact,
many studies focus extensively on the storage system’s I/O
behavior [17, 21, 39, 51, 52] by exploring optimal file-system
configurations or identifying system-level topology bottle-
necks. Above works do not consider multi-fold interactions
related to HPC files such as file re-access, multi-application
file sharing, run classification and inter-arrival, spatial- and
temporal- load imbalance, and intra- and inter- run variability.

6 Conclusion
Overall, our analysis of Darshan I/O logs on the Cori

supercomputer reveals many previously unexplored and
unexpected insights. We found that files which contribute the
most to HPC I/O are not only re-accessed in more ways than
one but are also shared across applications. They follow a
producer-consumer relationship with runs which extensively
write to the files and runs which extensively read them. We
explored why and how these files have large intra- and inter-
run variability not in terms of I/O size, but in terms of I/O time.

Acknowledgement. We are thankful to our shepherd, Avani
Wildani, and anonymous reviewers for their constructive feed-
back. This work is supported in part by NSF Awards 1910601
and 1753840, Northeastern University, and Massachusetts
Green High Performance Computing Center (MGHPCC).
It is also supported by the Director, Office of Science, Of-
fice of Advanced Scientific Computing Research, of the U.S.
Department of Energy under contract numbers DE-AC02-
05CH11231 and DE-AC02-06CH11357. This work also used
resources of the National Energy Research Scientific Comput-
ing Center, a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy.

USENIX Association 18th USENIX Conference on File and Storage Technologies 97

References
[1] NERSC 2017 Annual Report. https://www.nersc.

gov/assets/Uploads/2017NERSC-AnnualReport.
pdf, 2017.

[2] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul
Cassella, Jeremy Enos, Joshi Fullop, Ann Gentile, Steve
Monk, Nichamon Naksinehaboon, Jeff Ogden, et al. The
Lightweight Distributed Metric Service: A Scalable In-
frastructure for Continuous Monitoring of Large Scale
Computing Systems and Applications. In SC’14, pages
154–165. IEEE, 2014.

[3] Gonzalo Pedro Rodrigo Alvarez, Per-Olov Östberg, Erik
Elmroth, Katie Antypas, Richard Gerber, and Lavanya
Ramakrishnan. Towards Understanding Job Hetero-
geneity in HPC: A NERSC Case Study. In 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pages 521–526. IEEE,
2016.

[4] George Amvrosiadis, Ali R Butt, Vasily Tarasov, Erez
Zadok, and Ming Zhao. Data Storage Research Vision
2025 Report. Technical Report, 2019.

[5] Brian Austin, Tina Butler, Richard Gerber, Cary Whit-
ney, Nicholas Wright, Woo-Sun Yang, and Zhengji Zhao.
Hopper Workload Analysis. Technical report, Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United
States), 2014.

[6] Fayssal Benkhaldoun, Christophe Cérin, Imad Kissami,
and Walid Saad. Challenges of Translating HPC Codes
to Workflows for Heterogeneous and Dynamic Envi-
ronments. In 2017 International Conference on High
Performance Computing & Simulation (HPCS), pages
858–863. IEEE, 2017.

[7] Wahid Bhimji, Deborah Bard, David Paul, Melissa Ro-
manus, et al. Accelerating science with the NERSC
Burst Buffer Early User Program. In Cray User Group
(CUG), 2016.

[8] A Brinkmann, K Mohror, and W Yu. Challenges and
Opportunities of User-Level File Systemsfor HPC. Tech-
nical report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2017.

[9] Surendra Byna, Yong Chen, Xian-He Sun, Rajeev
Thakur, and William Gropp. Parallel I/O Prefetching
using MPI File Caching and I/O Signatures. In Proceed-
ings of the 2008 ACM/IEEE conference on Supercom-
puting, page 44. IEEE Press, 2008.

[10] Philip Carns, Kevin Harms, William Allcock, Charles
Bacon, Samuel Lang, Robert Latham, and Robert Ross.
Understanding and Improving Computational Science

Storage Access through Continuous Characterization.
ACM Transactions on Storage (TOS), 7(3):8, 2011.

[11] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra,
Samuel Lang, and Katherine Riley. 24/7 Characteriza-
tion of Petascale I/O Workloads. In 2009 IEEE Inter-
national Conference on Cluster Computing and Work-
shops, pages 1–10. IEEE, 2009.

[12] Steven WD Chien, Stefano Markidis, Vyacheslav Ol-
shevsky, Yaroslav Bulatov, Erwin Laure, and Jeffrey S
Vetter. TensorFlow Doing HPC. arXiv preprint
arXiv:1903.04364, 2019.

[13] Steven WD Chien, Stefano Markidis, Chai-
tanya Prasad Sishtla, Luis Santos, Pawel Herman, Sai
Narasimhamurthy, and Erwin Laure. Characterizing
Deep-Learning I/O Workloads in TensorFlow. In 2018
IEEE/ACM 3rd International Workshop on Parallel
Data Storage & Data Intensive Scalable Computing
Systems (PDSW-DISCS), pages 54–63. IEEE, 2018.

[14] Jack Deslippe, Doug Doerfler, Brian Friesen, Yun He-
len He, Tuomas Koskela, Mathieu Lobet, Tareq Malas,
Leonid Oliker, Andrey Ovsyannikov, Samuel Williams,
et al. Analyzing Performance of Selected NESAP Ap-
plications on the Cori HPC System. In High Perfor-
mance Computing: ISC High Performance 2017 Inter-
national Workshops, DRBSD, ExaComm, HCPM, HPC-
IODC, IWOPH, IXPUG, Pˆ 3MA, VHPC, Visualization
at Scale, WOPSSS, Frankfurt, Germany, June 18-22,
2017, Revised Selected Papers, volume 10524, page 334.
Springer, 2017.

[15] Sheng Di, Rinku Gupta, Marc Snir, Eric Pershey, and
Franck Cappello. Logaider: A Tool for Mining Potential
Correlations of HPC Log Events.

[16] Hassan Eslami, Anthony Kougkas, Maria Kotsifakou,
Theodoros Kasampalis, Kun Feng, Yin Lu, William
Gropp, Xian-He Sun, Yong Chen, and Rajeev Thakur.
Efficient disk-to-disk sorting: A case study in the de-
coupled execution paradigm. In Proceedings of the
2015 International Workshop on Data-Intensive Scal-
able Computing Systems, page 2. ACM, 2015.

[17] Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller,
Feiyi Wang, and Dustin Leverman. Comparative I/O
Workload Characterization of Two Leadership Class
Storage Clusters. In Proceedings of the 10th Parallel
Data Storage Workshop, pages 31–36. ACM, 2015.

[18] Jun He, John Bent, Aaron Torres, Gary Grider, Garth
Gibson, Carlos Maltzahn, and Xian-He Sun. I/O Accel-
eration with Pattern Detection. In Proceedings of the
22nd international symposium on High-performance
parallel and distributed computing, pages 25–36. ACM,
2013.

98 18th USENIX Conference on File and Storage Technologies USENIX Association

https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf
https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf
https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf

[19] Dan Huang, Qing Liu, Jong Choi, Norbert Podhorszki,
Scott Klasky, Jeremy Logan, George Ostrouchov, Xubin
He, and Matthew Wolf. Can I/O Variability Be Reduced
on QoS-Less HPC Storage Systems? IEEE Transactions
on Computers, 68(5):631–645, 2018.

[20] Ye Jin, Xiaosong Ma, Mingliang Liu, Qing Liu, Jeremy
Logan, Norbert Podhorszki, Jong Youl Choi, and Scott
Klasky. Combining Phase Identification and Statistic
Modeling for Automated Parallel Benchmark Gener-
ation. ACM SIGMETRICS Performance Evaluation
Review, 43(1):309–320, 2015.

[21] Youngjae Kim and Raghul Gunasekaran. Understanding
I/O Workload Characteristics of a Peta-scale Storage
System. The Journal of Supercomputing, 71(3):761–
780, 2015.

[22] Michelle Koo, Wucherl Yoo, and Alex Sim. I/O Perfor-
mance Analysis Framework on Measurement Data from
Scientific Clusters. 2015.

[23] Julian M Kunkel, Michaela Zimmer, Nathanael Hübbe,
Alvaro Aguilera, Holger Mickler, Xuan Wang, Andriy
Chut, Thomas Bönisch, Jakob Lüttgau, Roman Michel,
et al. The SIOX Architecture–Coupling Automatic Mon-
itoring and Optimization of Parallel I/O. In International
Supercomputing Conference, pages 245–260. Springer,
2014.

[24] Julian Martin Kunkel, Eugen Betke, Matt Bryson, Philip
Carns, Rosemary Francis, Wolfgang Frings, Roland
Laifer, and Sandra Mendez. Tools for Analyzing Parallel
I/O. In International Conference on High Performance
Computing, pages 49–70. Springer, 2018.

[25] Chih-Song Kuo, Aamer Shah, Akihiro Nomura, Satoshi
Matsuoka, and Felix Wolf. How File Access Patterns
Influence Interference Among Cluster Applications. In
2014 IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 185–193. IEEE, 2014.

[26] Qing Liu, Norbert Podhorszki, Jeremy Logan, and Scott
Klasky. Runtime I/O Re-Routing+ Throttling on {HPC}
Storage. In Presented as part of the 5th {USENIX}
Workshop on Hot Topics in Storage and File Systems,
2013.

[27] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Automatic Identification of Ap-
plication I/O Signatures from Noisy Server-Side Traces.
In FAST, volume 14, pages 213–228, 2014.

[28] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Server-Side Log Data Analytics
for I/O Workload Characterization and Coordination on
Large Shared Storage Systems. In High Performance

Computing, Networking, Storage and Analysis, SC16: In-
ternational Conference for, pages 819–829. IEEE, 2016.

[29] Glenn K Lockwood, Shane Snyder, Teng Wang, Suren
Byna, Philip Carns, and Nicholas J Wright. A Year
in the Life of a Parallel File System. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, page 74.
IEEE Press, 2018.

[30] Glenn K Lockwood, Nicholas J Wright, Shane Snyder,
Philip Carns, George Brown, and Kevin Harms. TOKIO
on ClusterStor: Connecting Standard Tools to Enable
Holistic I/O Performance Analysis. 2018.

[31] Glenn K Lockwood, Wucherl Yoo, Suren Byna,
Nicholas J Wright, Shane Snyder, Kevin Harms, Zachary
Nault, and Philip Carns. UMAMI: A Recipe for Gener-
ating Meaningful Metrics through Holistic I/O Perfor-
mance Analysis. In Proceedings of the 2nd Joint Inter-
national Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems, pages 55–60.
ACM, 2017.

[32] Uri Lublin and Dror G Feitelson. The Workload on
Parallel Supercomputers: Modeling the Characteristics
of Rigid Jobs. Journal of Parallel and Distributed Com-
puting, 63(11):1105–1122, 2003.

[33] Jakob Lüttgau, Shane Snyder, Philip Carns, Justin M
Wozniak, Julian Kunkel, and Thomas Ludwig. Toward
Understanding I/O Behavior in HPC Workflows. In
Proc. of Workshop in conjunction with ACM/IEEE Su-
percomputing Conference, Dallas, TX, USA, 2018.

[34] Huong Luu, Marianne Winslett, William Gropp, Robert
Ross, Philip Carns, Kevin Harms, Mr Prabhat, Suren
Byna, and Yushu Yao. A Multiplatform Study of I/O Be-
havior on Petascale Supercomputers. In Proceedings of
the 24th International Symposium on High-Performance
Parallel and Distributed Computing, pages 33–44. ACM,
2015.

[35] Sandeep Madireddy, Prasanna Balaprakash, Philip
Carns, Robert Latham, Robert Ross, Shane Snyder, and
Stefan M Wild. Analysis and Correlation of Applica-
tion I/O Performance and System-Wide I/O Activity.
In Networking, Architecture, and Storage (NAS), 2017
International Conference on, pages 1–10. IEEE, 2017.

[36] Anirban Mandal, Paul Ruth, Ilya Baldin, Yufeng Xin,
Claris Castillo, Mats Rynge, and Ewa Deelman. Evalu-
ating i/o aware network management for scientific work-
flows on networked clouds. In Proceedings of the Third
International Workshop on Network-Aware Data Man-
agement, page 2. ACM, 2013.

USENIX Association 18th USENIX Conference on File and Storage Technologies 99

[37] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.
Taming performance variability. In 13th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18), pages 409–425, 2018.

[38] John M May. Parallel I/O for High Performance Com-
puting. Morgan Kaufmann, 2001.

[39] S. Oral et al. Best Practices and Lessons Learned from
Deploying and Operating Large-Scale Data-Centric Par-
allel File Systems. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 217–228. IEEE, 2014.

[40] Suraj Pandey, Karan Vahi, Rafael Ferreira da Silva, Ewa
Deelman, Ming Jiang, Cyrus Harrison, Al Chu, and
Henri Casanova. Event-Based Triggering and Manage-
ment of Scientific Workflow Ensembles. In HPC Asia,
2018.

[41] Byung H Park, Saurabh Hukerikar, Ryan Adamson, and
Christian Engelmann. Big Data Meets HPC Log An-
alytics: Scalable Approach to Understanding Systems
at Extreme Scale. In 2017 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pages 758–765.
IEEE, 2017.

[42] Tirthak Patel, Suren Byna, Glenn K Lockwood, and De-
vesh Tiwari. Revisiting I/O Behavior in Large-Scale
Storage Systems: The Expected and the Unexpected. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, page 65. ACM, 2019.

[43] Gonzalo P Rodrigo, P-O Östberg, Erik Elmroth, Katie
Antypas, Richard Gerber, and Lavanya Ramakrishnan.
Towards Understanding HPC Users and Systems: A
NERSC Case Study. Journal of Parallel and Distributed
Computing, 111:206–221, 2018.

[44] Robert Ross, Lee Ward, Philip Carns, Gary Grider, Scott
Klasky, Quincey Koziol, Glenn K Lockwood, Kathryn
Mohror, Bradley Settlemyer, and Matthew Wolf. Storage
Systems and I/O: Organizing, Storing, and Accessing
Data for Scientific Discovery. Technical report, USDOE
Office of Science (SC)(United States), 2019.

[45] Mats Rynge, Scott Callaghan, Ewa Deelman, Gideon
Juve, Gaurang Mehta, Karan Vahi, and Philip J Maech-
ling. Enabling Large-Scale Scientific Workflows on
Petascale Resources using MPI Master/Worker. In Pro-
ceedings of the 1st Conference of the Extreme Science
and Engineering Discovery Environment: Bridging from
the eXtreme to the campus and beyond, page 49. ACM,
2012.

[46] Peter Scheuermann, Gerhard Weikum, and Peter Zab-
back. Adaptive load balancing in disk arrays. In Interna-
tional Conference on Foundations of Data Organization
and Algorithms, pages 345–360. Springer, 1993.

[47] Seetharami Seelam, I-Hsin Chung, John Bauer, and Hui-
Fang Wen. Masking I/O Latency using Application
Level I/O Caching and Prefetching on Blue Gene sys-
tems. In 2010 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS), pages 1–12.
IEEE, 2010.

[48] Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-
Scale Distributed Systems Tracing Infrastructure. 2010.

[49] Evgenia Smirni and Daniel A. Reed. Lessons From
Characterizing the Input/Output Behavior of Parallel Sci-
entific Applications. Performance Evaluation, 33(1):27–
44, 1998.

[50] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross,
Glenn K Lockwood, and Nicholas J Wright. Modular
HPC I/O Characterization with Darshan. In 2016 5th
Workshop on Extreme-Scale Programming Tools (ESPT),
pages 9–17. IEEE, 2016.

[51] Sudharshan S Vazhkudai, Ross Miller, Devesh Tiwari,
Christopher Zimmer, Feiyi Wang, Sarp Oral, Raghul
Gunasekaran, and Deryl Steinert. GUIDE: A Scalable
Information Directory Service to Collect, Federate, and
Analyze Logs for Operational Insights into a Leadership
HPC Facility. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, page 45. ACM, 2017.

[52] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari,
and Sudharshan S Vazhkudai. Improving Large-Scale
Storage System Performance via Topology-Aware and
Balanced Data Placement. In 2014 20th IEEE Interna-
tional Conference on Parallel and Distributed Systems
(ICPADS), pages 656–663. IEEE, 2014.

[53] Teng Wang, Suren Byna, Glenn K Lockwood, Shane
Snyder, Philip Carns, Sunggon Kim, and Nicholas J
Wright. A Zoom-in Analysis of I/O Logs to Detect
Root Causes of I/O Performance Bottlenecks. In 2019
19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pages 102–111,
2019.

[54] Teng Wang, Shane Snyder, Glenn Lockwood, Philip
Carns, Nicholas Wright, and Suren Byna. IOMiner:
Large-Scale Analytics Framework for Gaining Knowl-
edge from I/O Logs. In 2018 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pages 466–476.
IEEE, 2018.

100 18th USENIX Conference on File and Storage Technologies USENIX Association

[55] Steven A Wright, Simon D Hammond, Simon J
Pennycook, Robert F Bird, JA Herdman, Ian Miller,
A Vadgama, Abhir Bhalerao, and Stephen A Jarvis. Par-
allel File System Analysis through Application I/O Trac-
ing. The Computer Journal, 56(2):141–155, 2012.

[56] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin,
Scott Klasky, Sarp Oral, and Norbert Podhorszki. Char-
acterizing Output Bottlenecks in a Supercomputer. In
SC’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis, pages 1–11. IEEE, 2012.

[57] Bing Xie, Yezhou Huang, Jeffrey S Chase, Jong Youl
Choi, Scott Klasky, Jay Lofstead, and Sarp Oral. Predict-
ing Output Performance of a Petascale Supercomputer.
In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing,
pages 181–192. ACM, 2017.

[58] Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu
Zhang, Xiupeng Zhu, Nosayba El-Sayed, Haidong Lan,
Yibo Yang, Jidong Zhai, et al. End-to-End I/O Monitor-
ing on a Leading Supercomputer. In 16th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19), pages 379–394, 2019.

[59] Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross,
and Gabriel Antoniu. On the Root Causes of Cross-
Application I/O Interference in HPC Storage Systems.
In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 750–759. IEEE,
2016.

[60] Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei
Tang, Jia Wang, and Zhiling Lan. I/O-Aware Batch
Scheduling for Petascale Computing Systems. In Clus-
ter Computing (CLUSTER), 2015 IEEE International

Conference on, pages 254–263. IEEE, 2015.

USENIX Association 18th USENIX Conference on File and Storage Technologies 101

GIFT: A Coupon Based Throttle-and-Reward Mechanism
for Fair and Efficient I/O Bandwidth Management on Parallel Storage Systems

Tirthak Patel
Northeastern University

Rohan Garg
Nutanix

Devesh Tiwari
Northeastern University

Abstract
Large-scale parallel applications are highly data-intensive

and perform terabytes of I/O routinely. Unfortunately, on a
large-scale system where multiple applications run concur-
rently, I/O contention negatively affects system efficiency and
causes unfair bandwidth allocation among applications. To
address these challenges, this paper introduces GIFT, a princi-
pled dynamic approach to achieve fairness among competing
applications and improve system efficiency.

1 Introduction

Problem Space and Gaps in Existing Approaches. In-
crease in computing power has enabled scientists to expedite
the scientific discovery process, but scientific applications pro-
duce more and more analysis and checkpoint data, worsening
their I/O bottleneck [7, 45]. Many applications spend 15-40%
of their execution time performing I/O, which is expected
to increase for exascale systems [12, 15, 22, 31, 53, 55]. Un-
fortunately, multiple concurrent applications on a large-scale
system lead to severe I/O contention, limiting the usability of
future HPC systems [11, 45].

Recognizing the importance of the problem, there have
been numerous efforts to mitigate I/O contention from both
I/O throughput and fairness perspectives [13, 14, 17, 25, 37,
42, 75, 76, 78, 88, 89]. Unfortunately, ensuring fairness and
maximizing throughput are conflicting objectives, and it is
challenging to strike a balance between them under I/O
contention. For parallel HPC applications, the side-effect of
I/O contention is further amplified because of the need for
synchronous I/O progress. HPC applications are inherently
tightly synchronized; during an I/O phase, MPI processes
of an HPC application must wait for all processes to finish
their I/O before resuming computation (i.e., synchronous I/O
progress among MPI processes is required) [28,31,39,57,90].

MPI processes of an HPC application perform parallel I/O
access to multiple back-end storage targets (e.g., an array
of disks) concurrently. These back-end storage targets are
shared among concurrently running applications and have
different degree of sharing over time and hence, a varying
level of contention. A varying level of I/O contention at
the shared back-end parallel storage system makes differ-
ent MPI processes progress at different rates and hence, leads

to non-synchronous I/O progress. In Sec. 2, we quantify non-
synchronous I/O progress as a key source of inefficiency in
shared parallel storage systems. It results in (1) wastage of
compute cycles on compute nodes, and (2) reduction in effec-
tive system I/O bandwidth (i.e., the bandwidth that contributes
toward synchronous I/O progress), since full bandwidth is not
utilized toward synchronous I/O progress.

Recent works have noted that non-synchronous I/O
progress degrades application and system performances on
modern supercomputers like Mira, Edison, Cori, and Ti-
tan [9, 31, 32, 39, 69, 83]. Thus, there is an emerging interest
in improving the quality-of-service (QoS) of parallel stor-
age systems [24, 80, 86]. Previous works have proposed rule-
based or ad-hoc bandwidth allocation strategies for HPC stor-
age [14, 17, 23, 36, 42, 88, 89]. However, existing approaches
do not systematically implement synchronous I/O progress to
balance the competing objectives: improving effective system
I/O bandwidth and improving fairness.

To bridge this solution gap, this paper describes GIFT, a
coupon-based bandwidth allocation approach to ensure syn-
chronous I/O progress of HPC applications while maximizing
I/O bandwidth utilization and ensuring fairness among con-
current applications on parallel storage systems.

Summary of the GIFT Approach. GIFT introduces two
key ideas: (1) Relaxing the fairness window: GIFT breaks
away from the traditional concept of instantaneous fairness
at each I/O request, and instead, ensures fairness over multi-
ple I/O phases and runs of an application. This opportunity
is enabled by exploiting the observation that HPC applica-
tions have multiple I/O phases during a run and are highly
repetitive, often exhibiting similar behavior across runs; and
(2) Throttle-and-reward approach for I/O bandwidth alloca-
tion: GIFT opportunistically throttles the I/O bandwidth of
certain applications at times in an attempt to improve the
overall effective system I/O bandwidth (i.e., it minimizes the
wasted I/O bandwidth that does not contribute toward syn-
chronous I/O progress). GIFT’s throttle-and-reward approach
intelligently exploits instantaneous opportunities to improve
effective system I/O bandwidth. Further, relaxing the fairness
window enables GIFT to reward the “throttled” application at
a later point to ensure fairness.

USENIX Association 18th USENIX Conference on File and Storage Technologies 103

Compute
Nodes
(OSCs)

SION
CTRL A

CTRL B

CTRL A

CTRL B

HBA

HBA

HBA

HBA

NET

NET

NET

NET

OSSes OSTs

MDSes MDTs

CTRL A

CTRL B

HBA

HBA

NET

NET

Figure 1: Overview of HPC storage system architecture.

First, GIFT allocates I/O bandwidth to all competing appli-
cations in a fair manner and ensures synchronous I/O progress
among all processes of the same application at all times - this
fundamental design principle eliminates the key source of
parallel storage system inefficiencies (Sec. 3.1). This allows
GIFT to estimate the amount of wasted I/O bandwidth (i.e.,
bandwidth which does not contribute toward the synchronous
I/O progress). Then, GIFT exploits the “opportunity” to re-
duce the bandwidth waste by identifying and throttling the
I/O bandwidth share of some applications and expanding the
I/O bandwidth share of other applications (Sec. 3.2). To mini-
mize the I/O bandwidth waste, GIFT uses constraint-based,
linear programming to optimally allocate bandwidths to ap-
plications (Sec. 3.4). GIFT issues “coupons” to the throttled
applications – the worth of these coupons is proportional to
the degree of throttling. At a later point, GIFT “redeems” the
previously issued coupons to throttled applications to ensure
fairness (Sec. 3.3). In cases where GIFT cannot redeem issued
coupons for an application, it rewards the application with
proportional compute node-hours (credited from a bounded
“system regret budget”). This system regret budget acts as
a credit bank of compute node-hours, which GIFT uses to
achieve fairness when coupons cannot be redeemed.

The contributions of GIFT include:
Design and Implementation. GIFT designs and develops
an efficient and practical coupon-based management sys-
tem for I/O bandwidth allocation among competing appli-
cations on shared parallel storage systems. GIFT develops
new lightweight and effective techniques to identify throttle-
friendly applications, determine the degree of throttling and
expansion of I/O bandwidth share of competing applica-
tions, and redeem coupons to ensure fairness. GIFT shows
that the usage of the “system regret budget” upon failure
to redeem coupons is minimal, and that the compute node-
hours required for the system regret budget are much less
than compared to the increase in system throughput due to
faster I/O. GIFT implements all the core ideas in a real-
system prototype based on the FUSE file system, demon-
strating that GIFT’s’ ideas can be realized in practice, open
to the community for reproducibility, and do not require
heroic optimization efforts or system-specific parameter tun-
ings to realize the performance gains. GIFT is available at
https://github.com/GoodwillComputingLab/GIFT.

Evaluation of GIFT. Our evaluation confirms that GIFT re-
duces the “bandwidth waste” caused by I/O contention on a
HPC storage system, and thereby, improves the I/O bandwidth
utilization toward synchronous I/O progress, application per-
formance and fairness, and system job throughput. Our evalu-
ation is based on extensive real system experimental results,
guided by real-world, large-scale HPC system and applica-
tion parameters, and supported by simulation results. GIFT is
shown to improve the mean effective system I/O bandwidth
by 17% and the mean application I/O time by 10%, compared
to multiple competing schemes. GIFT is also shown to be
effective under various scenarios including high contention
levels and different application characteristics.

2 Background and Motivation

HPC Storage Systems. This section describes the key com-
ponents of storage systems attached to large-scale HPC sys-
tems, such as Mira, Edison, Titan, Cori, and Stampede2 [1,22,
54,73]. HPC systems use parallel file systems, such as Lustre,
Ceph, GPFS, and PVFS, to perform parallel I/O [58–60, 79].
For simplicity, this works targets widely-used Lustre-like HPC
storage system. A Lustre-like architecture consists of mul-
tiple building blocks (Fig. 1). The most basic of these is an
Object Storage Target (OST), a RAID array of disks. A file
is typically distributed across multiple OSTs for parallelism
and can be accessed in parallel from multiple MPI processes.
The OSTs serve the Object Storage Servers (OSS), which
are connected to the front-end compute nodes via an I/O net-
work. Applications running on compute nodes communicate
with the OSSes via file system clients. The Meta Data Server
(MDS) is the starting point for all file metadata operations.
MDS consults with the Meta Data Targets (MDT), which
maintain the metadata of all I/O requests.

Day in the Life of an I/O Request in a HPC System. Large-
scale applications run on multiple nodes and spawn multiple
(MPI) processes. These processes periodically write (or read)
analysis output and checkpoint data to (or from) the storage
system – referred to as an I/O phase. Processes from the same
application may perform I/O on separate files or stripe a single
file across multiple OSTs for concurrent access [8].

We refer to an I/O operation (read/write) accessing one
OST from an MPI process of an application as an I/O re-
quest. First, the file system client on the compute node issues
a remote procedure call (RPC) to the MDS, which returns
information about the file stripe and OST mappings. For a
new file creation request, the MDS first assigns OSTs in a
capacity-balanced manner. For existing files, the MDS returns
previously assigned OST information to the file system client.
Then, the file system client issues an I/O request over the
network to the OSS corresponding to the target OST [81].
In practice, during the I/O phase, an HPC application issues
multiple I/O requests from different MPI processes.

104 18th USENIX Conference on File and Storage Technologies USENIX Association

Table 1: I/O characteristics of large-scale HPC applications.
< 1 min 1-15 mins > 15 mins

I/O HACC [63], HIMMER [63], PTF [32], VPIC [9],
Phase Chombo-Crunch Chombo-Crunch [52] Plasma Based
Length [52] WRF [48], Accelerators [19]

S3D [30, 33]
< 5 min 5-30 mins 30 mins - 3hr

I/O GTC [33], WRF [48], S3D, VPIC [9],
Interval Titan Apps [39], Chombo-Crunch [52], CHIMERA [33],

GYRO [33] Titan Apps [39] Chombo-Crunch [52],
VULCAN [33]

< 100 GB 100 GB - 1 TB > 1 TB
I/O GTC [33], WRF [48], VPIC [9],
Output POP [33], VULCAN [33], XGC1 [57],
Size GYRO [33] Titan Apps [39], HIMMER [63],

HACC [63] S3D [30, 33]

0 200 400 600 800
Number of Appearances

0

20

40

60

80

100

C
D

F
(%

 A
p
p
s.

)

Stampede2

Mira

Theta

(a)

50 100 150 200
Inter Arrival Time (hours)

0

20

40

60

80

100

C
D

F
(%

 R
e
p
e
ti

ti
o
n
s)

Mira

Theta

(b)

0 20 40 60 80 100
Std. Dev. (% of Mean)

0

20

40

60

80

100

C
D

F
(%

 A
p
p
s.

)

Total Reads

Total Writes

Seq. Reads

Seq. Writes

(c)

Figure 2: CDF of the (a) number of times that applications make
appearances, (b) inter arrival times between each appearance, and
(c) variation of I/O characteristics between two appearances.

I/O Phases of HPC Applications. HPC applications are
typically long-running and perform I/O at regular inter-
vals [28, 31, 39, 57, 90]. Their execution time ranges from
a few hours to a few weeks [4, 5, 33, 57, 62, 83], and the com-
pute period between two I/O phases can be from minutes to
hours [9,33,39,48,52]. The I/O phases typically produce large
amounts of data (up to hundreds of GBs) in the form of check-
points and post-simulation results [8, 9, 33, 39, 48, 57, 62, 63].
Table 1 highlights the I/O characteristics of some popular
HPC applications collected from multiple supercomputers. It
shows that I/O phases can be as long as 30 min and the I/O
interval (compute period) can be between 5 min and 3 h. Also,
large amounts of data (100 GB - 5 TB) are transferred during
each I/O phase. Next, we discuss some HPC I/O observations.

Observation 1. HPC applications are highly repetitive in
nature – that is, HPC applications typically run repeatedly
and exhibit similar I/O behavior across their execution in-
stances, though different applications have different I/O be-
havior. Previous studies have shown that many HPC applica-
tions execute multiple times with similar execution charac-
teristics [4, 5, 12, 22, 62, 63]. This is because scientific appli-
cations often model and simulate physical phenomena. This
is an iterative process and requires repeated simulations for
model refinement. Analysis of job scheduler logs for the last
five years, two years, and one year from the leading supercom-
puters (Mira, Theta, and Stampede2) shows strong repetition
(Fig. 2). More than 40% of the applications appear more than
200 times and about 15% of the applications appear more
than 1000 times. Only less than 20% of the applications are
run less than 5 times. Interestingly, we also found that the
inter-arrival times between re-occurrences of HPC applica-
tions is relatively short on Mira and Theta (inter-arrival times

2x4 4x4 8x4 16x4 32x4
MPI Processes

(# Nodes x # Procs/Node)

0

10

20

30

40

I/
O

 T
im

e
 p

e
r

M
P
I
P
ro

ce
ss

 (
s)

Guffler

2x4 4x4 8x4 16x4 32x4
MPI Processes

(# Nodes x # Procs/Node)

12

16

20

24

28

I/
O

 T
im

e
 p

e
r

M
P
I
P
ro

ce
ss

 (
s)

Stampede 2

Figure 3: I/O variability among I/O performing processes of an HPC
application on two HPC systems.

for Stampede2 were unavailable) (Fig. 2(b)). In fact, 80% of
repetitions occur within 24 hours of each other.

Furthermore, Fig. 2(c) shows that applications exhibit only
a small variation in their I/O characteristics across repeti-
tions. This data was obtained by instrumenting HPC applica-
tions with Darshan on the Mira supercomputer [63,83]. More
than 80% of the applications that repeat more than five times
show less than 5% standard deviation (as % of mean) in total
amount of data read and written. We observe similar trends
for different types of I/O requests (sequential and random).

Unfortunately, a shared storage back-end with no con-
tention mitigation strategies results in severe contention
among competing HPC applications [10, 28, 34, 47, 81, 85].
The I/O contention issue is further exacerbated by the need
for synchronous I/O progress in HPC applications – an
MPI process of an HPC application, exiting from an I/O
phase, must wait for the slower processes to also finish their
I/O [28,31,39,57,90]. Previous studies have noted that OSTs
are the most contended resource on the I/O storage path (i.e.,
compute node, I/O routers, and OSSes) [10, 34, 47, 81, 85],
since they have the lowest bandwidth among the different re-
sources. We note that the Meta Data Server (MDS) attempts to
capacity-balance the OSTs by mapping files uniformly across
OSTs, but since the MDS has no knowledge of future access
patterns, its decisions cannot avoid runtime I/O contention
on OSTs caused due to access patterns. Next, we provide
experimental evidence to demonstrate the impact of I/O con-
tention and how it affects synchronous I/O progress of HPC
applications.

Observation 2. MPI processes from the same application
experience significantly different I/O progress during an I/O
phase – resulting in non-synchronous I/O progress across pro-
cesses. This problem cannot be solved by simply identifying
and speeding up a straggler process. To demonstrate the ef-
fects of non-synchronous I/O progress, we performed a set of
IOR benchmark [41] experiments on a local, production HPC
system, Engaging. Engaging consists of over 100 compute
nodes, and runs a production Lustre parallel file system with
44 OSTs, 44 OSSes, and 1 MDS. We ran IOR with different
number of MPI processes, with each MPI process writing
to a different OST. Other concurrently running applications
were not controlled. We performed these experiments mul-
tiple times and from different compute nodes to eliminate
transient and spatial biases. From Fig. 3, we observe that the

USENIX Association 18th USENIX Conference on File and Storage Technologies 105

I/O time of different MPI processes can vary significantly (up
to 4x) across runs and the number of nodes (2-32 nodes, with 4
MPI processes per node). This non-synchronous I/O progress
is attributed to the difference in degrees of contention encoun-
tered by different MPI processes on their respective OSTs.
Similar experiments on Stampede2 showed up to 83% varia-
tion in I/O time. Previous studies have reported similar results
on non-synchronous I/O progress of MPI processes on other
large-scale supercomputers including Cori, Mira, Edison, and
Hopper [9, 40, 63, 83]. On further analysis, we discovered
that often different processes finish at very different speeds
(covering a large spectrum), and the ordering of processes in
terms of their completion time changes significantly across
different runs, because the I/O contention at different OSTs
changes over time. This shows that the non-synchronous I/O
progress problem is not the same as the traditional straggler
problem – and hence, cannot be solved by simply identifying
and speeding up a straggler MPI process or OST.

Observation 3. Non-synchronous progress among MPI pro-
cesses is caused due to unmanaged, varying I/O contention
at the OSTs in the HPC storage back-end. Naïve strategies
to ensure synchronous I/O progress cannot find the right bal-
ance between competing objectives: maximizing effective I/O
bandwidth and fairness among applications. To further ana-
lyze the I/O contention behavior, we ran another set of IOR
experiments on Engaging, measuring the observed I/O band-
width at each OST. Each experiment consists of writing to
a particular OST from one process. Fig. 4 shows the con-
tention (defined as the inverse of bandwidth) faced on a few
OSTs (other OSTs show similar trends). Results of this sim-
ple experiment show that the degree of contention is different
on each OST and varies over time. Unfortunately, allocating
I/O bandwidth among competing applications to achieve con-
flicting objectives (fairness, effective system I/O bandwidth,
synchronous I/O progress) is non-trivial. To achieve fairness,
POFS (Per-OST Fair Share) scheme allocates I/O bandwidth
to all competing applications equally on each individual OST
(as shown in Fig. 5). But, this fair scheme may generate non-
synchronous I/O progress and lead to lower effective system
I/O bandwidth (i.e., sum of all bandwidths that contribute
toward synchronous I/O progress). For example, under POFS,
a part of the bandwidth assigned to all applications on OST3
and a part of the bandwidth assigned to A on OST1 are wasted.
This is because additionally allocated bandwidths do not con-
tribute toward synchronous I/O progress.

To ensure synchronous I/O progress, one can allocate band-
width on each OST determined by the fair allocation on the
bottlenecked OST. In Fig. 5, BSIP (Basic Synchronous I/O
Progress) scheme performs such an allocation. Essentially,
BSIP scheme allocates the I/O bandwidth to an application
as determined by its most contended OST (e.g., A’s alloca-
tions on other OSTs is determined by its bottlenecked or
the most-contended OST (i.e.,OST2)). Unfortunately, this

0 200 400 600
Time (minutes)

0

10

20

30

C
o
n
te

n
ti

o
n
 (

s/
G

iB
)

0 200 400 600
Time (minutes)

0

10

20

30

C
o
n
te

n
ti

o
n
 (

s/
G

iB
)

0 200 400 600
Time (minutes)

0

10

20

30

C
o
n
te

n
ti

o
n
 (

s/
G

iB
)

Figure 4: I/O contention on 3 of the 44 OSTs on Engaging (blue line
indicates the mean contention level).

A A A

B

D
D

C

B

E

POFS BSIP

A A A

B

D
C

B

E

D

OST 1 OST 2 OST 3OST 1 OST 2 OST 3

MBW

A A A

B

DD
C

B

OST 1 OST 2 OST 3

100%

0%

25%

50%

75%

B / W

Figure 5: Bandwidth allocation among five applications spanning on
three OSTs with (1) Per-OST Fair Share (POFS), (2) Basic Synchro-
nized I/O Progress (BSIP), and (3) Minimum Bandwidth Wastage
(MBW) schemes. Checkered boxes indicate bandwidth waste (not
contributing toward synchronous I/O progress).

scheme also creates bandwidth gaps on less contended OSTs
and lowers effective system I/O bandwidth because the band-
width share is limited by the most-contended OST. On the
other hand, a greedy approach to minimize bandwidth gaps
by preferentially allocating bandwidth to applications that
maximize effective system I/O bandwidth, while still ensur-
ing synchronous I/O progress results in unfair allocations.
Fig. 5 illustrates such a scheme, referred as MBW (Minimum
Bandwidth Wastage), which minimize bandwidth gaps by al-
locating more bandwidth to certain applications and unfairly
hurting other applications (e.g., it reduces the bandwidth share
of application E to zero in Fig. 5). In summary, allocating I/O
bandwidth among competing applications presents challeng-
ing trade-offs and GIFT strikes a balance between them as
described in the next section.

3 GIFT: Design and Implementation

3.1 Overview of GIFT
First, GIFT enforces synchronous I/O progress among pro-
cesses of an application by allocating bandwidth using the
BSIP scheme (Fig. 5). BSIP determines the bandwidth alloca-
tion to an application according to its most contended OST.
As shown in Fig. 5, BSIP scheme can create bandwidth gaps
on OSTs, GIFT attempts to “fill” these bandwidth gaps by
carefully throttling the bandwidth share of some applications
and expanding the bandwidth share of some other applica-
tions, such that a net gain in the overall effective system I/O
bandwidth is achieved. This requires identifying which appli-
cations to throttle, when to throttle, whom to expand, and how
to compensate throttled applications for fairness. GIFT uses
a simple and low-overhead approach to dynamically identify
“throttle-friendly applications”: applications which GIFT can
throttle with high confidence of rewarding the stolen band-

106 18th USENIX Conference on File and Storage Technologies USENIX Association

width at a later point. The later point could be during the
same I/O phase, a later I/O phase during the same run, or a
future run of the same application (Sec. 3.2). GIFT issues
“coupons” to throttled application which can be redeemed at
later points. At regular intervals (also referred as “decision
instance”), GIFT considers all throttle-friendly applications
(i.e., applications which can redeem a high fraction of is-
sued coupons - “high redemption rates”) and solves a linear
programming (LP) based optimization problem to maximize
the effective I/O bandwidth (Sec. 3.4). This step determines
which applications are throttled, which ones are expanded,
and by how much. Expanded applications (which can also
include throttle-friendly applications) get more than their fair
share of the bandwidth, which reduces the bandwidth wastage.

Finally, GIFT bounds the unfairness toward throttle-
friendly applications by using a dynamic limiting strategy
(Sec. 3.2). GIFT periodically assess its fairness and compen-
sates for the unfair treatment in the form of compute time
(i.e., node-hours on the HPC system). GIFT also bounds the
node-hours given out to a maximum specified “system regret
budget” of compute node-hours. Algorithm 1 outlines the
steps that GIFT takes at the start of every decision instance.

Algorithm 1 GIFT Decision Algorithm.
1: X ← All apps performing I/O
2: ∀i ∈ X , Determine fair share of bandwidth as per bi,bsip
3: Redeem previously issued coupons if possible (Sec. 3.3)
4: ↑ Redemption rate of apps with redeemed coupons
5: Determine the set of throttle-friendly apps Y (Sec. 3.2)
6: Allocate bandwidth using LP optimization (Sec. 3.4)
7: Issue coupons to throttled apps ⊆ Y
8: ↓ Redemption rate of apps with issued coupons

3.2 Identifying Throttle-friendly Applications

To identify throttle-friendly applications, GIFT throttles, is-
sues coupons, and observes the coupon redemption rate of
throttled applications. Redemption rate can be estimated with
high accuracy if the whole system state (e.g., information
about all concurrently running applications, their OST map-
ping, I/O phase length, etc.) is stored with every coupon is-
suance and redemption event. However, this can impose a
high storage and access overhead. Also, note that, some ap-
plication’s OST-level I/O behavior might change over a long
period (e.g., the number of OSTs, and OST mappings), caus-
ing the application’s throttle-friendly status to change.

Therefore, GIFT uses the concept of receding window at
the application-level that captures the recent history of an
application’s coupon redemption behavior (Sec. 3.5 and 4
show it is both lightweight and effective). The recent coupon
redemption behavior of an application is estimated at the start
of every decision instance by taking the ratio of the coupons
redeemed to the last N coupons issued, where N denotes the

Table 2: GIFT model parameters.

N Length of the receding window of applications (unit:
number of coupons issued)

τ Minimum redemption rate required for an applica-
tion to be eligible for throttling and for the system
to throttle applications (unit: ratio)

Bthres Upper threshold of the factor by which each appli-
cation’s I/O request can be throttled

length of the receding window (Table 2). For fairness and sim-
plicity, length of the receding window (N) is kept the same
for all applications, although each application may take a
different amount of time to accumulate N coupons depend-
ing upon its OST mappings, I/O phase length, and system
I/O contention level, etc. At the start of decision instance, k,
the coupon redemption rate of an application i is expressed
as ci(k) = ni(k)/N, where ni(k) is the number of coupons
redeemed (out of N) by application i. GIFT considers an ap-
plication throttle-friendly, if its redemption rate is greater than
a set threshold τ: Y (k) = {i ∈ X(k), if ci(k)≥ τ}, where X(k)
is the set of all applications performing I/O and Y (k) is the
set of throttle-friendly applications. As the receding window
moves forward, more coupons are issued only until ci(k)≥ τ.
Once the redemption rate breaches the τ limit, GIFT avoids
issuing more coupons to the application until it redeems its
existing coupons and its redemption rate goes above τ. Using
this method, GIFT ensures that unfairness is bounded for each
application in case the application’s redemption rate cannot
go over the threshold. GIFT gives out compute node-hours
as regret for unfairly treated applications periodically - this
period is referred as “regret assessment period” and, as Sec. 4
shows, it can be much larger to allow applications sufficient
time for redeeming the coupons.

Throttling applications based on threshold-based redemp-
tion rate at the application-level helps constrain the “regret”
the system experiences from giving out node-hours (out of
the system’s regret budget) for unfair treatment toward one
single application. But, in a system with multiple applica-
tions, the system’s “cumulative” regret in terms of compute
node-hours given to all applications can still grow sufficiently
large. To address this challenge, GIFT employs a receding
window at the system-level too, where it tracks the aggregate
redemption rate of coupons issued by the system to all the
applications, in order to minimize the “system regret bud-
get” level. GIFT makes sure that the system only hands out
coupons until its redemption rate is above τ (same threshold
as the one used for the applications). However, unlike applica-
tions’ redemption rates, GIFT resets the system’s redemption
rate at the end of each regret assessment period. This prevents
the system’s redemption rate from being saturated at τ be-
cause of non-throttle-friendly applications which never get
redeemed, which can cause GIFT to miss the opportunity of
throttling even throttle-friendly applications. Our evaluation
(Sec. 4) shows that GIFT’s approach of using τ at the system-
and application- level helps keep the outstanding node-hours

USENIX Association 18th USENIX Conference on File and Storage Technologies 107

(“system regret budget”) to a reasonably low level (e.g., less
than 7% of the total gain in compute node-hours obtained
via system throughput improvement due to GIFT). We also
observed that keeping the same τ for applications and system
is simple and effective; a higher τ at the system-level does not
yield additional improvements.

Finally, we note that GIFT carefully chooses the length
of receding window (N) to balance competing trade-offs:
bound on unfairness toward applications vs. stability of ap-
plication’s status (throttle-friendly or non-throttle-friendly).
If N is too large, it increases the upper bound on unfairness
toward individual applications (i.e., possibility of higher num-
ber of coupons that cannot be redeemed). If N is small, an
application’s redemption rate ci(k) can vary erratically as the
window glides, and the application’s status can toggle fre-
quently between throttle-friendly and non-throttle-friendly.
GIFT achieves stable behavior by maintaining the variance of
the mean redemption rate of the receding window to be small.
For samples within a given receding window, the maximum
variance occurs when half of the coupons can be successfully
redeemed, and the other half cannot be redeemed. Hence,
the maximum possible variance is v2 = 0.25 (independent
of N). The variance of the mean redemption rate is defined
as σ2 = v2

N , which is bounded by σ2 ≤ 0.25
N . Statistically, σ

less than 0.001 can achieve reasonable stability [49]. GIFT’s
choice of receding window length is guided by this principle.
In fact, GIFT’s evaluation demonstrates that its improvements
are not sensitive to the choice of parameters N (receding win-
dow size) and τ (redemption rate threshold), and that GIFT
performs effectively well without the need to fine-tune.

3.3 Coupon Redemption Policy
Recall that redeeming previously issued coupons is critical to
ensuring fairness. GIFT does not simply attempt to redeem an
application’s coupons the very next I/O phase after they were
issued. This is because if redeeming a coupon requires throt-
tling another application, then it would lead to a zero-sum
result in terms of improvements in efficiency (e.g., effective
system bandwidth). Thus, GIFT redeems coupons only when
it does not require throttling applications. Before perform-
ing optimal bandwidth allocation and picking applications to
throttle, GIFT first attempts to redeem coupons of previously
throttled applications (Algorithm 1 line 3).

Coupons are redeemed when GIFT finds gaps on the OSTs
on which a coupon-bearing application is running. After mak-
ing the basic fair synchronous-I/O progress (BSIP) bandwidth
allocation, GIFT searches through the coupon database of
active applications. If all of the OSTs on which the coupon-
bearing application is performing I/O have a bandwidth gap,
then the coupon is redeemed either partially (if the gap is
less than the coupon value) or fully or multiple coupons can
also be redeemed (if the gap is large enough). By redeeming
coupons in this manner, GIFT avoids throttling other appli-

Issue coupon worth 15%
b/w on one OST to app. A

A (35%)

B (65%)

OST 1 OST 2

B (65%)

100%

0%

25%

50%

75%

B / W

Redeem app. A’s coupon
with 9% b/w on one OST

A (42%)

B (25%)

OST 1 OST 2

C (33%)

B (25%)

D (25%)

E (25%)

F (25%)

Redeem app. A’s coupon
with 6% b/w on one OST

A (39%)

B (25%)

OST 1 OST 2

C (36%)

B (25%)

D (25%)

E (25%)

F (25%)

Instance k1 Instance k2 Instance k3

Figure 6: GIFT redeems coupons in a manner which is fair and
efficient, without throttling other applications.

cations. Also, GIFT, by design, allows coupons to be issued
and redeemed on different OSTs for any given application.

GIFT intelligently allocates spare bandwidth toward
redeeming coupons to maintain fairness and efficiency.
We note that redeeming coupons without throttling other ap-
plications requires availability of “spare I/O bandwidth”. One
may reason that since spare I/O bandwidth is available, ap-
plications would have naturally been allocated higher I/O
bandwidth allocation, irrespective of GIFT’s I/O bandwidth
allocation policies. Consequently, why should GIFT refer to
this additional allocated I/O bandwidth as “coupon redemp-
tion” and claim this as a mechanism to achieve fairness? Be-
low, we discuss a simple example to illustrate the wide range
of choices to allocate spare I/O bandwidth. But, GIFT care-
fully allocates this spare bandwidth such that (1) it redeems
previously issued coupons (i.e., maintains fairness over longer
term), but (2) without throttling any application at the current
decision instance, otherwise it would cause more unfairness
and lead to a zero-sum result in terms of efficiency.

As shown in Fig. 6, let us consider a simple example: two
OSTs and bandwidth allocation decisions at three decision
instances (k1, k2 and k3). At instance k1, OST1 is shared
by two applications (A and B), but OST2 is only serving
application B. The fair share of application A is 50% on
OST1. But, if A was given its fair share on OST1, then half
of the bandwidth on OST2 would be wasted since it would
have not contributed toward synchronous I/O progress even
if it was allocated to application B. Therefore, GIFT decides
to throttle application A to reduce the overall I/O bandwidth
waste. Application A’s share on OST1 is reduced to 35%
and a corresponding coupon is issued, and application B’s
share on both OSTs is increased to 65% which results in 15%
reduction in I/O bandwidth waste on OST2.

At instance k2, OST1 is shared by three applications (A,
B, and C), and OST2 is now shared by four applications (B,
D, E and F). Note that application B’s bandwidth share is de-
cided by its bottlenecked OST (OST2). Application B’s share
on OST1 and OST2 is 25% – this ensures synchronous I/O
progress and is not unfair to application B and other applica-
tions on OST1 or OST2. Due to application B’s bottleneck on
OST2, 9% of spare bandwidth is available on OST1. The fair
share for application A and C on OST1 is 33% each. A GIFT-
less approach that does not issue coupons to maintain fairness
over longer time windows, would equally divide this spare

108 18th USENIX Conference on File and Storage Technologies USENIX Association

bandwidth on OST1 (9%) to both application A and C. How-
ever, GIFT decides to allocate this spare bandwidth fully to
application A (increases its share to 42%, partially redeeming
a coupon issued to application A at instance k1). Application
C is still treated fairly even though it is not allocated any part
of the spare bandwidth. Application C’s fair share was 33%
and it still receives it. At instance k3 (same OST sharing sce-
nario as instance k2), application A receives 6% of the spare
bandwidth (completely redeeming the coupon issued at k1)
and the remaining 3% bandwidth can be allocated in any way
(it is allocated to application C in this case).

In summary, application A was throttled in the past to in-
crease the effective system I/O bandwidth utilization. Applica-
tion A was kind then, and is later picked to receive the reward
(larger share in the available spare bandwidth), without being
unfair to C or throttling any other application below its fair
share. This way, GIFT’s decision to throttle A in the past
proves to be useful. Using a throttle-and-reward approach,
GIFT reduces the overall bandwidth utilization over these
three time steps, while ensuring fairness to other applications
and maintaining synchronous I/O progress. A GIFT-less BSIP
approach (instantaneous fairness and synchronous I/O ensur-
ing allocation at each decision instance but without throttle-
and-reward approach) would have been fair but incurred 50%
bandwidth waste on OST2 at instance k1; in comparison GIFT
incurs only 35% bandwidth waste, while remaining fair over
multiple decision instances. These are the kind of opportuni-
ties that GIFT detects and exploits. Such situations are not
deterministic or predictable, which is why GIFT learns using
the concepts of redemption rate and system regret budget.

Lastly, we note that GIFT can track coupon issuance and
redemption at the user-level if the same application is be-
ing shared across multiple users and maintaining fairness at
the user-level is deemed more appropriate. This will simply
require including and tracking different types of identifiers
per I/O request. GIFT can be extended to support different
variations of “fair share” instead of being limited to treating
all applications equally important. This can be achieved via
encoding and tracking relative priority levels, or weights.

3.4 Optimal Bandwidth Allocation

Once a set of throttle-friendly applications is determined and
coupons are redeemed, GIFT proceeds to make the bandwidth
allocations to maximize the effective bandwidth. Inputs to
this step include the set of throttle-friendly applications, the
set of all applications concurrently performing I/O, and the
set of OSTs being used by each application.

First, GIFT calculates the fair share of each application
on the OSTs it is performing I/O on, to ensure synchronous
I/O progress. These allocations are the same as in the BSIP
scheme (Fig. 5). Next, GIFT maximizes the effective I/O
bandwidth by adjusting the bandwidth of all applications sub-
ject to multiple constraints: (1) only throttle-friendly appli-

cations are allowed a lower bandwidth assignment than their
fair share, (2) the total effective bandwidth is always equal
to or greater than what is achieved by the BSIP scheme, and
(3) the gains from reducing the bandwidth wastage should
be more than the worth of issued coupons (i.e., bandwidth
waste with BSIP - bandwidth waste with GIFT > aggregate
worth of coupons). GIFT formulates and solves this problem
as a constraint-based, linear programming (LP) bandwidth
allocation optimization problem, as discussed below.

Bandwidth allocation LP optimization: GIFT accounts for
constraints from both, the applications’ and system’s perspec-
tives. For the applications, at each decision instance k:

• All I/O requests (ri) of application i issued across all
assigned OSTs (Si) should get the same bandwidth in
order to facilitate synchronized I/O progress, i.e., for
application i, bi j = bi∀ j ∈ Si, where bi j is bandwidth
allocated to application i’s I/O request on OST j and bi
is the bandwidth allocated to application i’s I/O request
running on the most contented OST.
• The final bandwidth allocation bi should be s.t.

(a) bi,bsip(1−Bthres)≤ bi ≤ 1 if i ∈ Y
(b) bi,bsip ≤ bi ≤ 1 otherwise

The second constraint essentially allows GIFT to reduce
the bandwidth share of a throttle-friendly application (belong-
ing to set Y) by a configurable parameter (Bthres) (Table 2).
Higher values of Bthres create more opportunity of reducing
bandwidth wastage, but also result in higher coupon values.
Our evaluation shows that GIFT delivers performance for a
wide range of Bthres values and does not require tuning.

From the system’s perspective, the bandwidth allocation at
each OST is constrained by its full capacity. That is, ∀ j ∈ Z,
where Z is the set of all OSTs, if L j is the set of applications
served by j, then ∑i∈L j bi ≤ 1. With these constraints in mind,
at every instance, k, we have the following polynomial-time
optimization problem: maximize the effective system I/O
bandwidth by making allocations bi for each application i:

maximize ∑
j∈Z

∑
i∈L j

bi (1)

We make two important remarks: (1) throttle-friendly ap-
plications are not always necessarily throttled. In fact, if it
is optimal to give more bandwidth to a throttle-friendly ap-
plication (i.e., expand a throttle-friendly application), given
a set of contending applications, then the GIFT’s LP-based
optimization solution does so. (2) At any time instance, the
throttling decision is not limited to picking only one can-
didate. In fact, the GIFT’s LP-based optimization solution
might select to throttle multiple throttle-friendly applications
simultaneously and expand multiple applications (including
throttle-friendly applications) if it leads to highest effective
system I/O bandwidth while honoring the constraints.

USENIX Association 18th USENIX Conference on File and Storage Technologies 109

3.5 GIFT Implementation

To evaluate GIFT, we implemented it using FUSE [67] as
the base file system. Our prototype extends FUSE to capture
the functionality of a parallel file system. The architecture of
the GIFT implementation is similar to that of a Lustre-based
HPC storage system (Sec. 2). Compute nodes mount the re-
mote partition through FUSE. A local service daemon acts
as a file system client on each compute node and monitors
the mounted partition. An application’s requests for file sys-
tem operations are intercepted by the service daemon and
executed on remote storage targets through RPC calls over
the network. The file system client forwards file metadata
requests to a remote metadata service (MDS), which decides
the remote storage target (OST) mappings of a file. Once a
file is open, data requests are directly sent over the network
to the appropriate OST without involving the MDS. Each I/O
request is augmented with metadata about application identity.
A local service daemon (OSS) running on the storage node
persists the application’s data to the OST. Similar to Lus-
tre, our implementation uses two separate network channels:
“Lnet” for internal messages (for example, heartbeat, control
messages, etc.) and “Dnet” for application data.

The MDS daemon broadcasts a heartbeat message to all
the OSSes at a user-configurable time interval. Each OSS
responds to the heartbeat message with a list of currently
active data requests. The OSSes send a set of <application,
I/O requests> tuples for each application they are serving.
The MDS uses this data to look up its “coupon” table, make
redemption decisions, and determine a set of throttle-friendly
applications. Then, it makes a LP optimal bandwidth allo-
cation decision and sends a set of <application, bandwidth
allocation> tuples to each OSS. The optimal bandwidth
allocation algorithm is implemented using the COIN-OR
CLP [43] library. The blkio control group (cgroup) is used
to enforce bandwidth limits. GIFT uses the MDS as a central-
ized coordination and decision-making service for all OSSes.
OSSes incurring transient failures can be synchronized at
the next decision instance. GIFT uses a 1 second timeout and
makes a new decision if more than 80% of the OSSes respond.
GIFT’s decision instance interval is configurable and set to
10 seconds by default, that is decisions are made every 10
sec (Sec. 4). Note that GIFT operates and makes decisions
at the system-level without requiring any input from the user
applications or changing user applications.

We chose FUSE instead of a production parallel file sys-
tem such as Lustre or GPFS to implement GIFT’s core ideas
because the current underlying implementation of bandwidth
control support provided in Lustre and GPFS cannot be used
for GIFT purposes. This is because the current bandwidth
control support does not guarantee synchronous I/O progress
and may create imbalance across contended OSTs – a key
source of inefficiency that GIFT attempts to solve. GPFS pro-
vides bandwidth control only for maintenance tasks [24]. We

experimented with recent QoS control features of Lustre as
provided by LIME and other frameworks (TBF-NRS algo-
rithm) [56, 80, 86], but found that fairness mechanism does
not work as expected because the QoS support does not ac-
count for the OST mappings. Even simple experiments such
as running a few applications with equal QoS support results
in significant performance differences (up to 25%) because
of varying level of contention at OST level which leads to
non-synchronous progress – these issues and OST mapping
information is not accounted by existing early QoS support
features. GIFT solves these issues.

4 Evaluation

Methodology. GIFT is evaluated on a real system using sys-
tem and application characteristics of supercomputers Mira,
Theta, and Stampede2. GIFT’s experimental setup includes
64 OSSes (and corresponding 64 OSTs) and one MDS run-
ning on a cluster with Intel Xeon E5-2686 v4 servers – similar
to the Stampede2 OSS and MDS configuration. A total of
192 file system clients are connected to OSSes. The servers
and clients are connected to each other via Ethernet with a
measured peak bandwidth of 4.5 GB/s. Each OST is con-
nected to a single HDD with a peak bandwidth of 102 MB/s.
Experiments are driven by an application set of 250 appli-
cations, where applications are executed with repetitions as
per the typical number of distinct applications submitted on
Stampede2 during a week [1, 16]. The characteristics of ap-
plications, such as number of nodes, total compute time and
amount of I/O data, are taken from applications running on
Stampede2 [16,62,66]. Number of MPI processes, and length
of compute interval and I/O intervals is based on Darshan logs
from Mira and Theta [83]. We use a transparent checkpointing
library (DMTCP [3]) to produce periodic I/O from HPC appli-
cations such as CoMD [51], SNAP [87], and miniFE [26]. The
application arrival times follow a Gamma distribution [1, 44]
and are scheduled on the system using an FCFS strategy
with easy-backfilling, as used by contemporary HPC sched-
ulers [65]. For practical repeatability, the real-system eval-
uation scales down the compute and I/O phases to get one
week’s system wall clock time to finish within a few days.
We also evaluate GIFT using simulations to gain deeper in-
sights into GIFT’s performance on large-scale systems. The
simulations allow us to study aspects of GIFT which are too
time consuming to be feasible for a representative real-system
evaluation. Specifically, we use simulations to explore the ef-
fect of GIFT model parameters and high contention on GIFT
performance – these explorations require hundreds of runs
to cover the full parameter space. The simulations use the
same parameters as the real-system evaluation, but the default
application set size is increased to 500 and the simulated time
period is 25 days of system wall clock time. As discussed
later, the simulation results support the real-system evaluation
results and demonstrate the robustness of GIFT.

110 18th USENIX Conference on File and Storage Technologies USENIX Association

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0.0
2.5
5.0
7.5

10.0
12.5

-26%

Mean App I/O Time
Improvement Over POFS (%)

(a) Mean App I/O Time

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0.5
0.0
0.5
1.0
1.5
2.0
2.5

-10%

Mean App Run Time
Improvement Over POFS (%)

(b) Mean App Runtime

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0
5

10
15
20 103%

-5%

System Bandwidth
Improvement Over POFS (%)

(c) Effective System I/O B/w

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0.0
0.5
1.0
1.5
2.0
2.5

-15%

System Throughput
Improvement Over POFS (%)

(d) System Throughput

Figure 7: GIFT’s implementation provides improvement for both application- and system- level objectives (higher is better).

Scheduling Policies. We evaluate GIFT against seven com-
peting I/O scheduling policies: Per-OST Fair Share (POFS),
Basic Synchronous I/O Progress (BSIP), Minimum Band-
width Wastage (MBW), Throttle Small Applications (TSA),
Expand Small Applications (ESA), Throttle Most Frequent
Applications (TMF), and Throttle Randomly (RND). POFS,
BSIP, and MBW are implemented as discussed in Sec. 2. TSA
attempts to increase the effective system bandwidth by throt-
tling small applications, while ESA attempts to improve the
system throughput by increasing the bandwidth allocation for
longer-running, smaller applications that generally do small
I/O [2, 4, 5]. We also compare against other simple, intuitive
strategies such as TMF and RND, which pick the “most fre-
quently appearing” and “random” applications for bandwidth
throttling, respectively. POFS is used as the baseline policy.

Objective Metrics. Application I/O Time is the amount of
time spent in I/O by an application during its run. Application
Run Time is the run time of the application. Effective System
Bandwidth is the average effective I/O bandwidth during the
run of an application set, defined as overall system bandwidth
minus the wasted bandwidth (Sec. 2). System Throughput is
the number of jobs completed per unit time.

GIFT’s real-system implementation provides better
application- and system- level performances. First, our re-
sults show that GIFT outperforms all competing techniques
significantly. Fig. 7 (a)-(d) show that GIFT performs better for
mean application I/O time, mean application runtime, effec-
tive system bandwidth, and system throughput, respectively.
The mean application I/O time with GIFT is 10% better than
with POFS, and 3.5% better than the next best technique,
BSIP. Interestingly, when applications are throttled based on
their characteristics (TSA, ESA, and TMF), or are arbitrarily
throttled (RND), the performance remains similar to that of
BSIP. This shows that naïve, rule-based techniques cannot
match the performance delivered by the GIFT approach.

GIFT also improves the effective system bandwidth by
more than 17% compared to POFS and other techniques, ex-
cept MBW. Expectedly, MBW improves the effective system
bandwidth the highest because it solely focuses on this metric.
Next, we note that by compromising fairness one could design
techniques that solely focus on improving system throughput
(e.g., favor small jobs). GIFT does not compromise fairness,

0 10 20 30 40 50
Time (hours)

0.00

0.04

0.08

0.12

Ou
ts

ta
nd

in
g

No
de

 H
ou

rs
(%

 o
f T

ot
al

No
de

 H
ou

rs
)

Figure 8: GIFT implementation bounds outstanding node-hours
using application- and system-level redemption rate thresholds.

and it neither directly manipulates nor aims to improve the
system job throughput, but by virtue of reducing I/O band-
width waste and mean application I/O time, GIFT yields 2%
improvement in system throughput. We note that even a small
improvement in system throughput leads to large monetary
savings in operational cost of HPC systems [18, 71, 84].

Next, we recall that GIFT gives out compute node-hours as
regret, but it is minimal compared to the system throughput
improvement it enables (2% savings in total compute node-
hours). Fig. 8 shows that GIFT gave out less than 0.06% hours
of total compute node-hours from the system regret budget in
a more than two-day long experimental run – this result shows
that application- and system-level redemption rate thresholds
keep the system regret budget under control. Even if one were
to award outstanding node-hours every day, GIFT would give
out only 0.12% of node-hours, which is much smaller than
the gains in system throughput (2%); this trend is also later
supported by simulation results.

Next, we discuss the effectiveness of GIFT in terms of fair-
ness. First, recall that the design of GIFT introduces two ideas:
(1) opportunistically rewarding applications, and (2) compen-
sating unfairness in I/O performance via additional compute
hours. These ideas do not naturally align with the traditional
notion of fairness - where a scheme tends to distribute the
“benefits” equally among all applications and the “currency”
of fairness measurement remains the same. In contrast, GIFT
is designed to distribute the benefit opportunistically among
applications because, as discussed earlier, distributing the ben-
efits equally among all applications leads to benefit (system
bandwidth) wastage due to non-synchronous I/O progress.
GIFT achieves fairness by compensating I/O unfairness with
compute resources. Therefore, GIFT’s performance cannot
be directly compared with POFS to establish its fairness ef-
fectiveness. Nevertheless, we provide this comparison for
completeness and to demonstrate that GIFT is not unfair.

USENIX Association 18th USENIX Conference on File and Storage Technologies 111

Fig. 9(a) and (b) show that GIFT implementation provides
similar fairness in terms of both the I/O and runtime perfor-
mance as the baseline fairness strategy (POFS). First, as ex-
pected, GIFT indeed provides better performance than POFS
for many applications. In fact, GIFT is able to improve the
I/O performance of one-third of the applications by more
than 20%, while competing techniques cannot. But, this im-
provement is not evenly distributed among all beneficiary
applications. This is because, as noted earlier, GIFT rewards
certain applications opportunistically by increase their I/O
bandwidth if it helps reduce the overall bandwidth waste. We
note that these decisions are not systematically biased toward
preferring certain applications over others.

Therefore, next, we focus on applications that receive worse
performance than under the POFS scheme. This set of appli-
cation provides us a better quantification of “unfairness” of
GIFT and other competing schemes. First we note that other
competing schemes, besides GIFT, tend to provide worse per-
formance than POFS for a large fraction of applications com-
pared to POFS - indicating that they are not consciously fair-
ness aware. To further quantify this better, we use a more intu-
itive and traditional way to measure unfairness - the fraction
of applications that achieve worse performance than POFS.
As Fig. 9(c) shows GIFT outperforms other schemes in this
metric as well (32% for GIFT vs. more than 45% for all other
schemes, and 76% for MBW which aggressively focuses only
on performance and not fairness). More importantly, even
though 32% of the all the applications under GIFT achieve
worse performance POFS, we calculated that the average mag-
nitude of I/O time degradation for applications performing
worse than POFS is approx. 1.2%. This shows that GIFT
is able to provide a similar fair performance compared to
our baseline fairness scheme (POFS). These are applications
which get throttled initially but are unable to redeem coupons,
for which they get compensated in node-hours. Finally, we
note, unlike other competing schemes, GIFT indeeds com-
pensates these applications via compute resources and hence,
achieves fairness over the long term.

GIFT improves performance across different parameters
and the required system regret budget level needed to
award outstanding hours is fairly low even under pes-
simistic scenarios. To study the impact of model parameters
on GIFT performance accurately, we perform a simulation-
based exploration. First, we briefly present the simulation
results for the same objective metrics as the real system eval-
uation. We find that GIFT’s simulation results support and
closely match the trends observed with the real system evalua-
tion (Fig. 10 vs. Fig. 7). Fig. 10 shows that compared to POFS,
GIFT improves the mean application I/O time by 15% and ef-
fective system bandwidth by 25%. Similarly, GIFT improves
the mean application run time by more than 4% and system
throughput by approx. 2%. We note thatthe absolute improve-
ment values are higher than real system evaluation because

1 63 126 188 250
Application ID

100

50

0

50

100
Individual App I/O Time

Improvement Over POFS (%)
BSIP
TSA
ESA
TMF
RND
MBW
GIFT

(a)

1 63 126 188 250
Application ID

40

20

0

20

40

Individual App Run Time
Improvement Over POFS (%)

(b) (c)

Figure 9: GIFT implementation provides I/O and runtime perfor-
mance fairness to individual applications.

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0

5

10

15

-41%

Mean App. I/O Time
Improvement Over POFS (%)

(a) Mean App I/O Time

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0

10

20

30 123%

Effective Sys. B/w
Improvement Over POFS (%)

(b) Effective System B/w

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0
1
2
3
4
5

-11%

Mean App. Runtime
Improvement Over POFS (%)

(c) Mean App Run Time

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0

1

2

-9%

Sys. Throughput
Improvement Over POFS (%)

(d) System Throughput

Figure 10: GIFT simulation results support GIFT real-system-based
implementation results and show significant improvements.

0 0.2 0.4 0.6 0.8 1
Tau

10
15
20
25
30

Im
pr

ov
em

en
t

Ov
er

 P
OF

S
(%

)

0 0.2 0.4 0.6 0.8 1
Bthres

10
15
20
25
30

101 103 105 107 109 1011

N
10
15
20
25
30

Mean App. I/O Time Effective Sys. B/w

Figure 11: GIFT improves performance across different values of
throttle-and-reward parameters.

simulation study covers a longer time frame (25 days) and a
larger application set (500); this provides more opportunities
for GIFT to make better throttle-and-reward decisions.

Next, our results (Fig. 11) illustrate that GIFT performs
effectively across the parameter space and does not require
tuning. Recall that τ is the minimum redemption rate for the
system to throttle and for an application to be considered
throttle-friendly. Therefore, it is expected that at higher values
of τ, the I/O time would improve slightly. GIFT also contin-
ues to provide significant improvement in effective system
bandwidth, even with high τ values. Recall that Bthres is the
maximum factor by which an application’s bandwidth can be
throttled. Fig. 11(b) shows that GIFT is effective at different
Bthres values. Note that GIFT increases the effective system
bandwidth by as much as 5% points for higher Bthres values.
This trend is expected: a higher Bthres value implies higher

112 18th USENIX Conference on File and Storage Technologies USENIX Association

0 4 8 12 16 20 24
Time (days)

0
10
20
30

Cu
m

ul
at

iv
e

Nu
m

.
Sa

m
pl

es
 (b

illi
on

s)

Tau=0.8, Bthres=0.1
Tau=0.1, Bthres=0.1
Tau=0.8, Bthres=0.8

(a) Cumulative Num. Samples

0 4 8 12 16 20 24
Time (days)

0
5

10
15

Ou
ts

ta
nd

in
g

No
de

 H
ou

rs

Tau=0.8, Bthres=0.1
Tau=0.1, Bthres=0.1
Tau=0.8, Bthres=0.8

(b) Outstanding Node-Hours

Figure 12: GIFT is able to collect high cumulative number of samples
and bound the node-hours awarded.

1 10 20 30 40 >50
Number of

App. Appearances

0

10

20

30

Mean App. I/O Time
Improvement Over POFS (%)

(a) Num of Appearances

1 3 5 7 9 11 13 >15
Number of

I/O Intervals

0

10

20

30

Mean App. I/O Time
Improvement Over POFS (%)

(b) Num of I/O Intervals

<1 2 4 8 >16
Size of I/O

Per Rank (GiB)

0

10

20

Mean App. I/O Time
Improvement Over POFS (%)

(c) Per Interval I/O Size

Figure 13: Applications with all types of characteristics experience
improvement in I/O performance with GIFT.

throttling power, and hence, better opportunities to fill the
bandwidth gap. However, this also causes slight reduction in
I/O time improvement (2% points). Next, Fig. 11(c) shows the
impact of parameter N (the length of the receding window)
on GIFT performance. Increasing N does not impact I/O time
but it improves effective system bandwidth slightly due to
better stability from one decision instance to the next. Overall,
GIFT does better than POFS across a wide range of N values.

Studying GIFT’s characteristics over time, Fig. 12(a)
shows that GIFT collects a large number of samples as
time progresses for both, default parameter configuration
(τ = 0.8,Bthres = 0.1) and extreme cases (τ = 0.1,Bthres = 0.1
and τ = 0.8,Bthres = 0.8). The sample collection continues in
order to adjust to application characteristics and learn about
new applications. Fig. 12(b) also shows that the number of
outstanding node-hours is quite low at all times due to ef-
fectiveness of GIFT’s redemption rate thresholds – therefore,
indicating that only a small system regret budget is needed.
Fig. 12(b) also shows that even under a pessimistic parameter
selection (τ = 0.1,Bthres = 0.1, low redemption rate thresh-
old for applications to be considered throttle-friendly), GIFT
needs a low number of outstanding node-hours at all times
(less than 20 hours at any instance, although the correspond-
ing 2% improvement in system throughput translates to a gain
of more than 5,800 node-hours). Even if outstanding node-
hours are awarded daily, the system regret budget needs to be
only 360 node-hours over 24 days, much less than the 5,800
node-hours gained with 2% system throughput improvement.

GIFT provides performance improvement for applica-
tions of different characteristics, under high I/O con-
tention, and device bandwidth (SSD vs. HDD). We per-
formed simulation based exploration to understand how GIFT

100 250 500 750 1000
Application Set Size

0
4
8

12
16
20

Mean App. I/O Time
Improvement Over POFS (%)

(a) App I/O Time

100 250 500 750 1000
Application Set Size

0
1
2
3
4
5
6
7

Mean App. Runtime
Improvement Over POFS (%)

(b) App Runtime

100 250 500 750 1000
Application Set Size

0
5

10
15
20
25
30
35

Effective Sys. B/w
Improvement Over POFS (%)

(c) Effective I/O B/w

Figure 14: GIFT performs better than POFS at all contention levels.

performs when key application characteristics are varied:
number of appearances of an application, number of I/O in-
tervals, and the size of I/O per I/O interval per MPI process
(rank). We found (Fig. 13 (a)-(c)) that GIFT continues to
provide a significant improvement in application I/O perfor-
mance as we vary the number of appearances of an application,
number of I/O intervals, and the per-interval I/O size across a
wide range. Our results (Fig. 14) also show that GIFT’s perfor-
mance benefits actually improve as we increase the contention
level from 100-applications set to 1,000-applications set; this
is expected because a higher-level of contention increases the
chances for GIFT to exercise throttle and reward. For 1,000
application-set GIFT improves mean application I/O time by
up to 16%, mean application run time by up to 7%, and effec-
tive system bandwidth by up to 30%. Finally, although GIFT
does not rely on specific storage device characteristics to pro-
vide benefits, we studied the effect of device bandwidth (e.g.,
SSD vs. HDD) on the limits of GIFT performance. As ex-
pected, we did not find the GIFT performance improvements
to be sensitive to the underlying storage device.

GIFT implementation is low-overhead and scalable on a
real system. GIFT has two sources of overhead: computation
and communication. MDS incurs the computation overhead
due to solving an LP optimization problem. Communication
overhead is incurred due to message exchanges between the
OSTs and MDS. To obtain pessimistic estimates on the GIFT
implementation overhead on a real system, we increase the
number of OSTs from 32 to 200 and increase the application
set size to 1,000 – amplifying the degree of GIFT overheads.
We measured that the CPU overhead on the MDS increased
from 1 ms to 5 ms which is negligible compared to decision
instance interval (10 seconds); GIFT produces similar re-
sults with similar decision instance interval lengths, however
choosing too small interval (e.g., 1 second) can make over-
head effects visible and choosing very large interval (e.g., 10
minute) can lead missed opportunities for throttle-and-reward.
The volume of messages between the MDS and the OSTs is
also minimal (less than 4 MB over two days) and occurs on a
non-critical network path. In our real system experiments, we
measured that overall GIFT’s implementation imposes a neg-
ligible overhead on I/O performance even under pessimistic
scenarios (less than 0.01%).

USENIX Association 18th USENIX Conference on File and Storage Technologies 113

5 Discussion

Relationship between I/O bandwidth improvements and
system throughput. We note that GIFT does not actively ma-
nipulate the I/O bandwidth allocation to directly improve the
system throughput. It is trivial to improve the system through-
put - for example, by allocating more I/O bandwidth share to
short-running jobs which can significantly increase the sys-
tem throughput at the expense of fairness. Nevertheless, as
our results show, GIFT is able to improve the overall system
throughput. This is because GIFT eliminatea I/O bandwidth
inefficiencies by increasing the I/O bandwidth toward syn-
chronous progress which reduces the overall I/O time and run
time of applications. Reducing the overall run time of appli-
cations by judiciously utilizing the available I/O bandwidth,
in turn, leads to completion of more jobs per unit time (i.e.,
system throughput increases).

Why traditional notions of measuring fairness alone
may be not be adequate for assessing the effectiveness
of GIFT. A conventional notion of fairness measures the
amount of equal opportunity among all participants. In the
case of GIFT, this translates to providing equal bandwidth
to all jobs concurrently performing I/O on the same OST
(i.e., POFS). However, this does not lead to effective equal
bandwidth division since jobs may not be able to leverage
the full I/O bandwidth due to non-synchronous I/O progress.
While, GIFT does not enforce this fair opportunity at every
decision instance, it does enforce it as a constraint in the long
run. Thus, GIFT enforces fair opportunity as a constraint.

Another conventional notion of fairness measures the
amount of equal performance among all participants. For
example, calculating the difference between maximum and
minimum performances, or the standard deviation of perfor-
mances, or Jain’s Fairness Index [27]. Fairness can be viewed
at as all jobs having equal I/O performance. In practice, this
is difficult to enforce and impractical to achieve in a diverse
and dynamic I/O environment of an HPC storage system. Job
I/O performance depends on a variety of job-specific aspects
which are not in control of GIFT (GIFT only performs time-
divided bandwidth allocation) such as number of OSTs across
which a file is stripped, size of I/O, type and pattern of I/O, I/O
interface (POSIX, MPIIO, STDIO), etc. Thus, while GIFT
enforces equal opportunity in terms of bandwidth (resource)
allocation as hard constraint, it cannot enforce overall equal
I/O performance.

In the case of GIFT, one could argue that fairness can be
defined as all applications having equal improvement as com-
pared to POFS. However, this definition is not meaningful
since POFS already performs instantaneous fair allocation,
thus, I/O performance with POFS is fair and attempting to
achieve “fair improvement from a fair performance” does not
have practical value for end users. Therefore, as discussed
in Sec. 4, GIFT’s fairness is better quantified by focusing
on the applications which achieves worse performance than

POFS. If the improvement over POFS is positive, then GIFT
is considered fair for such beneficiary applications, but the
improvement over POFS among such beneficiary applications
is not equal. This is because GIFT rewards certain applica-
tions opportunistically by increasing their I/O bandwidth if
it helps reduce the overall bandwidth waste. Finally, GIFT
compensates unfairness in one type of resource allocation by
allocating another type of resource - this feature makes GIFT
fairness fundamentally different than traditional notions.

6 Related Work

Many prior works have focused on identifying the root causes
of contention and characterizing the I/O bottlenecks [2,10,12,
22, 28, 31, 34, 38, 39, 46, 47, 63, 68, 81, 82, 85]. These works
do not propose mitigation techniques. Studies focusing on
application-level techniques [13, 35, 42, 56, 61, 89, 91, 92],
such as CALCioM [14], rely on application modifications and
cooperation for coordinating I/O transactions among appli-
cations. Client-side solutions, which coordinate I/O requests
to and from the client-attached burst buffers or requests han-
dlers [6, 25, 29, 36, 37, 76–78], end up underutilizing the back-
end bandwidth due to the lack of a storage-system view. In
general, client-side techniques are complementary to GIFT
and can be used to further enhance application performance.
On the other hand, server-side solutions aim to efficiently
schedule the I/O requests from the server nodes to the disk
targets [17, 20, 21, 50, 64, 69, 70, 72, 74, 90]. For example,
IOrchestrator [88] uses spacial locality of I/O requests to
unfairly prioritize the most disk efficient requests. Note that
none of these studies consider the distributed and synchronous
I/O behavior of HPC applications. This paper introduced,
GIFT, a new I/O bandwidth allocation approach to ensure syn-
chronous I/O progress for HPC application while maximizing
I/O throughput and ensuring fairness.

7 Conclusion

Improving effective system I/O bandwidth, providing fairness
among applications, and ensuring synchronous I/O progress
are three major challenges in parallel storage systems, but
no existing approaches have considered them as a joint prob-
lem. GIFT identifies and solves this new problem using a
throttle-and-reward approach - yielding significant improve-
ments (17% in mean effective system I/O bandwidth and
10% in the mean application I/O time). GIFT is available at
https://github.com/GoodwillComputingLab/GIFT.

Acknowledgment. We are thankful to our shepherd (André
Brinkmann), Phil Carns, Robert Ross, and anonymous review-
ers for their constructive feedback. This work is supported
in part by NSF Awards 1910601 and 1753840, Northeast-
ern University, and Massachusetts Green High Performance
Computing Center (MGHPCC).

114 18th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Stampede2 User Guide, 2018 (accessed January
10, 2019). https://portal.tacc.utexas.edu/
user-guides/stampede2.

[2] Gonzalo Pedro Rodrigo Alvarez, Per-Olov Östberg, Erik
Elmroth, Katie Antypas, Richard Gerber, and Lavanya
Ramakrishnan. Towards Understanding Job Heterogene-
ity in HPC: A NERSC Case Study. In Cluster, Cloud and
Grid Computing (CCGrid), 2016 16th IEEE/ACM Inter-
national Symposium on, pages 521–526. IEEE, 2016.

[3] Jason Ansel, Kapil Arya, and Gene Cooperman.
DMTCP: Transparent Checkpointing for Cluster Com-
putations and the Desktop. In Parallel and Distributed
Processing Symposium (IPDPS), 2009 IEEE Interna-
tional, pages 1–12. IEEE, 2009.

[4] Katie Antypas, BA Austin, TL Butler, RA Gerber, Cary
Whitney, Nick Wright, Woo-Sun Yang, and Zhengji
Zhao. NERSC Workload Analysis on Hopper. Technical
report, Technical report, LBNL Report, 2013.

[5] Brian Austin, Tina Butler, Richard Gerber, Cary Whit-
ney, Nicholas Wright, Woo-Sun Yang, and Zhengji Zhao.
Hopper Workload Analysis. 2014.

[6] Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette,
Surendra Byna, Ruth Aydt, Quincey Koziol, Marc Snir,
et al. Taming Parallel I/O Complexity with Auto-Tuning.
In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis, page 68. ACM, 2013.

[7] John Bent, Sorin Faibish, Jim Ahrens, Gary Grider, John
Patchett, Percy Tzelnic, and Jon Woodring. Jitter-Free
Co-Processing on a Prototype Exascale Storage Stack.
In 012 IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–5. IEEE, 2012.

[8] John Bent, Garth Gibson, Gary Grider, Ben McClel-
land, Paul Nowoczynski, James Nunez, Milo Polte, and
Meghan Wingate. PLFS: A Checkpoint Filesystem for
Parallel Applications. In Proceedings of the Conference
on High Performance Computing Networking, Storage
and Analysis, page 21. ACM, 2009.

[9] Suren Byna, A Uselton, D Knaak Prabhat, and Y He.
Trillion Particles, 120,000 cores, and 350 TBs: Lessons
Learned from a Hero I/O Run on Hopper. In Cray user
group meeting, 2013.

[10] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean
Hildebrand, and Erez Zadok. On the Performance Varia-
tion in Modern Storage Stacks. In FAST, pages 329–344,
2017.

[11] Franck Cappello. Fault Tolerance in Petascale/Exascale
Systems: Current Knowledge, Challenges and Research
Opportunities. IJHPCA, 23(3):212–226, 2009.

[12] Christopher S Daley, Devarshi Ghoshal, Glenn K Lock-
wood, Sudip Dosanjh, Lavanya Ramakrishnan, and
Nicholas J Wright. Performance Characterization of Sci-
entific Workflows for the Optimal use of Burst Buffers.
Future Generation Computer Systems, 2017.

[13] Matthieu Dorier, Gabriel Antoniu, Franck Cappello,
Marc Snir, and Leigh Orf. Damaris: How to Efficiently
Leverage Multicore Parallelism to Achieve Scalable,
Jitter-Free I/O. In Cluster Computing (CLUSTER),
2012 IEEE International Conference on, pages 155–163.
IEEE, 2012.

[14] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries
Kimpe, and Shadi Ibrahim. CALCioM: Mitigating
I/O Interference in HPC Systems Through Cross-
Application Coordination. In Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International,
pages 155–164. IEEE, 2014.

[15] Elmootazbellah N Elnozahy and James S Plank. Check-
pointing for Peta-scale Systems: A Look into the Future
of Practical Rollback-Recovery. TDSC 2004, 1(2):97–
108, 2004.

[16] Thomas Furlani. XDMoD Value Analytics. 2018.

[17] Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck
Cappello, Yves Robert, and Marc Snir. Scheduling the
I/O of HPC Applications under Congestion. In Parallel
and Distributed Processing Symposium (IPDPS), 2015
IEEE International, pages 1013–1022. IEEE, 2015.

[18] Richard Gerber, James Hack, Katherine Riley, Katie An-
typas, Richard Coffey, Eli Dart, Tjerk Straatsma, Jack
Wells, Deborah Bard, Sudip Dosanjh, et al. Crosscut
Report: Exascale Requirements Reviews, March 9–10,
2017–Tysons Corner, Virginia. An Office of Science
Review Sponsored by: Advanced Scientific Computing
Research, Basic Energy Sciences, Biological and En-
vironmental Research, Fusion Energy Sciences, High
Energy Physics, Nuclear Physics. Technical report, Oak
Ridge National Lab.(ORNL), Oak Ridge, TN (United
States); Argonne . . . , 2018.

[19] Richard A Gerber and Harvey Wasserman. Large Scale
Computing and Storage Requirements for High Energy
Physics. Technical report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), 20102.

[20] Ajay Gulati, Arif Merchant, and Peter J Varman. pClock:
An Arrival Curve Based Approach for QoS Guarantees
in Shared Storage Systems. In ACM SIGMETRICS

USENIX Association 18th USENIX Conference on File and Storage Technologies 115

Performance Evaluation Review, volume 35, pages 13–
24. ACM, 2007.

[21] Ajay Gulati, Arif Merchant, and Peter J Varman.
mClock: Handling Throughput Variability for Hyper-
visor IO Scheduling. In Proceedings of the 9th USENIX
conference on Operating systems design and implemen-
tation, pages 437–450. USENIX Association, 2010.

[22] Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller,
Feiyi Wang, and Dustin Leverman. Comparative I/O
Workload Characterization of Two Leadership Class
Storage Clusters. In Proceedings of the 10th Parallel
Data Storage Workshop, pages 31–36. ACM, 2015.

[23] Jun He, Duy Nguyen, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Reducing File System Tail
Latencies with Chopper. In FAST, volume 15, pages
119–133, 2015.

[24] John Hearns, Marc A Kaplan, and Egonle Bo. Limit /
fair share of gpfs bandwidth, Jan 2018.

[25] Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW
Scogland, Marc Stearman, Mark Grondona, Jim Gar-
lick, Becky Springmeyer, and Michela Taufer. Scal-
able I/O-aware Job Scheduling for Burst Buffer Enabled
HPC Clusters. In Proceedings of the 25th ACM Inter-
national Symposium on High-Performance Parallel and
Distributed Computing, pages 69–80. ACM, 2016.

[26] M Heroux and S Hammond. MiniFE: Finite Element
Solver.

[27] Raj Jain, Arjan Durresi, and Gojko Babic. Through-
put Fairness Index: An Explanation. In ATM Forum
contribution, volume 99, 1999.

[28] Ye Jin, Xiaosong Ma, Mingliang Liu, Qing Liu, Jeremy
Logan, Norbert Podhorszki, Jong Youl Choi, and Scott
Klasky. Combining Phase Identification and Statistic
Modeling for Automated Parallel Benchmark Gener-
ation. ACM SIGMETRICS Performance Evaluation
Review, 43(1):309–320, 2015.

[29] Magnus Karlsson, Christos Karamanolis, and Xiaoyun
Zhu. Triage: Performance Differentiation for Storage
Systems using Adaptive Control. ACM Transactions on
Storage (TOS), 1(4):457–480, 2005.

[30] Seong Jo Kim. Parallel I/O Profiling and Optimization
in HPC Systems. 2014.

[31] Youngjae Kim and Raghul Gunasekaran. Understanding
I/O Workload Characteristics of a Peta-scale Storage
System. The Journal of Supercomputing, 71(3):761–
780, 2015.

[32] Michelle Koo, Wucherl Yoo, and Alex Sim. I/O Perfor-
mance Analysis Framework on Measurement Data from
Scientific Clusters. 2015.

[33] Douglas Kothe and Ricky Kendall. Computational Sci-
ence Requirements for Leadership Computing. Oak
Ridge National Laboratory, Technical Report, 2007.

[34] Samuel Lang, Philip Carns, Robert Latham, Robert Ross,
Kevin Harms, and William Allcock. I/O Performance
Challenges at Leadership Scale. In Proceedings of the
Conference on High Performance Computing Network-
ing, Storage and Analysis, page 40. ACM, 2009.

[35] Han Deok Lee, Young Jin Nam, Kyong Jo Jung,
Seok Gan Jung, and Chanik Park. Regulating I/O Per-
formance of Shared Storage with a Control Theoretical
Approach. In MSST, pages 105–117, 2004.

[36] Yan Li, Xiaoyuan Lu, Ethan L Miller, and Darrell DE
Long. Ascar: Automating Contention Management for
High-Performance Storage Systems. In Mass Storage
Systems and Technologies (MSST), 2015 31st Sympo-
sium on, pages 1–16. IEEE, 2015.

[37] Ning Liu, Jason Cope, Philip Carns, Christopher
Carothers, Robert Ross, Gary Grider, Adam Crume, and
Carlos Maltzahn. On the Role of Burst Buffers in
Leadership-Class Storage Systems. In Mass Storage
Systems and Technologies (MSST), 2012 IEEE 28th Sym-
posium on, pages 1–11. IEEE, 2012.

[38] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Automatic Identification of Ap-
plication I/O Signatures from Noisy Server-Side Traces.
In FAST, volume 14, pages 213–228, 2014.

[39] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Server-Side Log Data Analytics
for I/O Workload Characterization and Coordination on
Large Shared Storage Systems. In High Performance
Computing, Networking, Storage and Analysis, SC16: In-
ternational Conference for, pages 819–829. IEEE, 2016.

[40] Glenn K Lockwood, Wucherl Yoo, Suren Byna,
Nicholas J Wright, Shane Snyder, Kevin Harms, Zachary
Nault, and Philip Carns. UMAMI: A Recipe for Gen-
erating Meaningful Metrics Through Holistic I/O Per-
formance Analysis. In Proceedings of the 2nd Joint In-
ternational Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems, pages 55–60.
ACM, 2017.

[41] William Loewe, T McLarty, and C Morrone. IOR Bench-
mark, 2012.

116 18th USENIX Conference on File and Storage Technologies USENIX Association

[42] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky,
Ron Oldfield, Todd Kordenbrock, Karsten Schwan, and
Matthew Wolf. Managing Variability in the IO Perfor-
mance of Petascale Storage Systems. In High Perfor-
mance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, pages 1–12.
IEEE, 2010.

[43] Robin Lougee-Heimer. The Common Optimization
INterface for Operations Research: Promoting Open-
source Software in the Operations Research Community.
IBM Journal of Research and Development, 47(1):57–
66, 2003.

[44] Uri Lublin and Dror G Feitelson. The Workload on
Parallel Supercomputers: Modeling the Characteristics
of Rigid Jobs. Journal of Parallel and Distributed Com-
puting, 63(11):1105–1122, 2003.

[45] Robert Lucas. Top Ten Exascale Research Challenges.
In DOE ASCAC Subcommittee Report, 2014.

[46] Huong Luu, Marianne Winslett, William Gropp, Robert
Ross, Philip Carns, Kevin Harms, Mr Prabhat, Suren
Byna, and Yushu Yao. A Multiplatform Study of I/O Be-
havior on Petascale Supercomputers. In Proceedings of
the 24th International Symposium on High-Performance
Parallel and Distributed Computing, pages 33–44. ACM,
2015.

[47] Sandeep Madireddy, Prasanna Balaprakash, Philip
Carns, Robert Latham, Robert Ross, Shane Snyder, and
Stefan M Wild. Analysis and Correlation of Applica-
tion I/O Performance and System-Wide I/O Activity.
In Networking, Architecture, and Storage (NAS), 2017
International Conference on, pages 1–10. IEEE, 2017.

[48] George S Markomanolis, Bilel Hadri, Rooh Khurram,
and Saber Feki. Scientific Applications Performance
Evaluation on Burst Buffer. In International Confer-
ence on High Performance Computing, pages 701–711.
Springer, 2017.

[49] Deirdre N McCloskey, Stephen T Ziliak, et al. The
Standard Error of Regressions. Journal of economic
literature, 34(1):97–114, 1996.

[50] Arif Merchant, Mustafa Uysal, Pradeep Padala, Xiaoyun
Zhu, Sharad Singhal, and Kang Shin. Maestro: Quality-
of-Service in Large Disk Arrays. In Proceedings of
the 8th ACM international conference on Autonomic
computing, pages 245–254. ACM, 2011.

[51] Jamaludin Mohd-Yusof, S Swaminarayan, and TC Ger-
mann. Co-Design for Molecular Dynamics: An Exas-
cale Proxy Application, 2013.

[52] Andrey Ovsyannikov, Melissa Romanus, Brian
Van Straalen, Gunther H Weber, and David Trebotich.
Scientific Workflows at Satawarp-Apeed: Accelerated
Data-Intensive Science using NERSC’s Burst Buffer.
In Parallel Data Storage and data Intensive Scalable
Computing Systems (PDSW-DISCS), 2016 1st Joint
International Workshop on, pages 1–6. IEEE, 2016.

[53] Tirthak Patel, Suren Byna, Glenn K Lockwood, and De-
vesh Tiwari. Revisiting I/O Behavior in Large-Scale
Storage Systems: The Expected and the Unexpected. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–13, 2019.

[54] Torben Kling Petersen. HPC Storage Current Status and
Futures.

[55] Yingjin Qian, Xi Li, Shuichi Ihara, Andreas Dilger, Car-
los Thomaz, Shilong Wang, Wen Cheng, Chunyan Li,
Lingfang Zeng, Fang Wang, et al. LPCC: Hierarchical
Persistent Client Caching for Lustre. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 88.
ACM, 2019.

[56] Yingjin Qian, Xi Li, Shuichi Ihara, Lingfang Zeng, Jür-
gen Kaiser, Tim Süß, and André Brinkmann. A Con-
figurable Rule Based Classful Token Bucket Filter Net-
work Request Scheduler for the Lustre File System. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, page 6. ACM, 2017.

[57] Robert Ross, Robert Ross, Gary Grider, Gary Grider,
Evan Felix, Evan Felix, Mark Gary, Mark Gary, Scott
Klasky, Scott Klasky, et al. Storage Systems and In-
put/Output to Support Extreme Scale Science. Technical
report, Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), 2015.

[58] Robert B Ross, Rajeev Thakur, et al. Pvfs: A parallel
file system for linux clusters. In Proceedings of the 4th
annual Linux showcase and conference, pages 391–430,
2000.

[59] Frank B Schmuck and Roger L Haskin. Gpfs: A shared-
disk file system for large computing clusters. In FAST,
volume 2, 2002.

[60] Philip Schwan et al. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
symposium, volume 2003, pages 380–386, 2003.

[61] David Shue, Michael J Freedman, and Anees Shaikh.
Performance Isolation and Fairness for Multi-Tenant
Cloud Storage. In OSDI, volume 12, pages 349–362.
USENIX, 2012.

USENIX Association 18th USENIX Conference on File and Storage Technologies 117

[62] Nikolay A Simakov, Joseph P White, Robert L DeLeon,
Steven M Gallo, Matthew D Jones, Jeffrey T Palmer,
Benjamin Plessinger, and Thomas R Furlani. A Work-
load Analysis of NSF’s Innovative HPC Resources Us-
ing XDMoD. arXiv preprint arXiv:1801.04306, 2018.

[63] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross,
Glenn K Lockwood, and Nicholas J Wright. Modular
HPC I/O Characterization with Darshan. In Extreme-
Scale Programming Tools (ESPT), Workshop on, pages
9–17. IEEE, 2016.

[64] Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev
Thakur, and Samuel Lang. Server-Side I/O Coordination
for Parallel File Systems. In Proceedings of 2011 Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, page 17. ACM, 2011.

[65] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Sub-
ramani, and P Sadayappan. Characterization of Back-
filling Strategies for Parallel Job Scheduling. In Paral-
lel Processing Workshops, 2002. Proceedings. Interna-
tional Conference on, pages 514–519. IEEE, 2002.

[66] Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither,
Chris Hempel, Tommy Minyard, S Mehringer, Eric
Wernert, H Tufo, D Panda, et al. Stampede 2: The Evo-
lution of an XSEDE Supercomputer. In Proceedings
of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact,
page 15. ACM, 2017.

[67] Miklos Szeredi. FUSE: Filesystem in Userspace.
https://fuse.sourceforge.net/, 2005. Online (ac-
cessed January 10, 2019).

[68] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and
Margo Seltzer. Benchmarking File System Benchmark-
ing: It* IS* Rocket Science. In HotOS, volume 13, pages
1–5, 2011.

[69] Sagar Thapaliya, Purushotham Bangalore, Jay Lofstead,
Kathrn Mohror, and Adam Moody. IO-Cop: Managing
Concurrent Accesses to Shared Parallel File System. In
Parallel Processing Workshops (ICCPW), 2014 43rd
International Conference on, pages 52–60. IEEE, 2014.

[70] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska,
and Gregory R Ganger. Argon: Performance Insulation
for Shared Storage Servers. In FAST, volume 7, pages
5–5, 2007.

[71] Edward Walker. The Real Cost of a CPU Hour. Com-
puter, (4):35–41, 2009.

[72] Chien-Min Wang, Tse-Chen Yeh, and Guo-Fu Tseng.
Provision of Storage QoS in Distributed File Systems
for Clouds. In Parallel Processing (ICPP), 2012 41st In-
ternational Conference on, pages 189–198. IEEE, 2012.

[73] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari,
and Sudharshan S Vazhkudai. Improving Large-scale
Storage System Performance via Topology-Aware and
Balanced Data Placement. In Parallel and Distributed
Systems (ICPADS), 2014 20th IEEE International Con-
ference on, pages 656–663. IEEE, 2014.

[74] Hui Wang and Peter J Varman. Balancing Fairness and
Efficiency in Tiered Storage Systems with Bottleneck-
Aware Allocation. In FAST, volume 14, pages 229–242,
2014.

[75] Jingjing Wang, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. Controlled Contention: Balancing Contention
and Reservation in Multicore Application Schedul-
ing. In Parallel and Distributed Processing Sympo-
sium (IPDPS), 2015 IEEE International, pages 946–955.
IEEE, 2015.

[76] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato,
and Weikuan Yu. An Ephemeral Burst-buffer File Sys-
tem For Scientific Applications. In Proceedings of the In-
ternational Conference for High Performance Comput-
ing, Networking, Storage and Analysis, page 69. IEEE
Press, 2016.

[77] Teng Wang, Sarp Oral, Michael Pritchard, Bin Wang,
and Weikuan Yu. Trio: Burst Buffer Based I/O Orches-
tration. In Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, pages 194–203. IEEE,
2015.

[78] Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer,
Scott Atchley, and Weikuan Yu. Burstmem: A High-
Performance Burst Buffer System for Scientific Applica-
tions. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 71–79. IEEE, 2014.

[79] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307–320. USENIX Association,
2006.

[80] Li Xi and Zeng Lingfang. LIME: A Framework for
Lustre Global QoS Management. Lustre Administrator
and Developer Workshop, 2018.

[81] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin,
Scott Klasky, Sarp Oral, and Norbert Podhorszki. Char-
acterizing Output Bottlenecks in a Supercomputer. In
High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, pages
1–11. IEEE, 2012.

118 18th USENIX Conference on File and Storage Technologies USENIX Association

[82] Bing Xie, Yezhou Huang, Jeffrey S Chase, Jong Youl
Choi, Scott Klasky, Jay Lofstead, and Sarp Oral. Predict-
ing Output Performance of a Petascale Supercomputer.
In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing,
pages 181–192. ACM, 2017.

[83] Cong Xu, Shane Snyder, Vishwanath Venkatesan, Philip
Carns, Omkar Kulkarni, Suren Byna, Roberto Sisneros,
and Kalyana Chadalavada. DXT: Darshan eXtended
Tracing. Technical report, Argonne National Lab.(ANL),
Argonne, IL (United States), 2017.

[84] Fan Yang and Andrew A Chien. Extreme Scaling of
Supercomputing with Stranded Power: Costs and Capa-
bilities. arXiv preprint arXiv:1607.02133, 2016.

[85] Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross,
and Gabriel Antoniu. On the Root Causes of Cross-
application I/O Interference in HPC Storage Systems.
In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 750–759. IEEE, 2016.

[86] L Zeng, J Kaiser, A Brinkmann, T Süß, L Xi, Q Yingjin,
and S Ihara. Providing QoS-Mechanisms for Lustre
through Centralized Control Applying the TBF-NRS.
Lustre User Group, 2017.

[87] Joe Zerr and Randal Baker. SNAP. http://www.
nersc.gov/users/computational-systems/cori/
nersc-8-procurement/trinity-nersc-8-rfp/
nersc-8-trinity-benchmarks/snap/, 2018 (ac-
cessed January 10, 2019).

[88] Xuechen Zhang, Kei Davis, and Song Jiang. IOrches-
trator: Improving the Performance of Multi-node I/O
Systems via Inter-server Coordination. In Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and
Analysis, pages 1–11. IEEE Computer Society, 2010.

[89] Xuechen Zhang, Kei Davis, and Song Jiang. Oppor-
tunistic Data-driven Execution of Parallel Programs for
Efficient I/O Services. In Parallel & Distributed Pro-
cessing Symposium (IPDPS), 2012 IEEE 26th Interna-
tional, pages 330–341. IEEE, 2012.

[90] Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei
Tang, Jia Wang, and Zhiling Lan. I/O-Aware Batch
Scheduling for Petascale Computing Systems. In Clus-
ter Computing (CLUSTER), 2015 IEEE International
Conference on, pages 254–263. IEEE, 2015.

[91] Timothy Zhu, Michael A Kozuch, and Mor Harchol-
Balter. WorkloadCompactor: Reducing Datacenter Cost
while Providing Tail Latency SLO Guarantees. In Pro-
ceedings of the 2017 Symposium on Cloud Computing,
pages 598–610. ACM, 2017.

[92] Timothy Zhu, Alexey Tumanov, Michael A Kozuch, Mor
Harchol-Balter, and Gregory R Ganger. PriorityMeister:
Tail Latency QoS for Shared Networked Storage. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
pages 1–14. ACM, 2014.

USENIX Association 18th USENIX Conference on File and Storage Technologies 119

Scalable Parallel Flash Firmware for Many-core Architectures

Jie Zhang1, Miryeong Kwon1, Michael Swift2, Myoungsoo Jung1

Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)1, University of Wisconsin at Madison2

http://camelab.org

Abstract
NVMe is designed to unshackle flash from a traditional stor-
age bus by allowing hosts to employ many threads to achieve
higher bandwidth. While NVMe enables users to fully exploit
all levels of parallelism offered by modern SSDs, current
firmware designs are not scalable and have difficulty in han-
dling a large number of I/O requests in parallel due to its
limited computation power and many hardware contentions.

We propose DeepFlash, a novel manycore-based storage
platform that can process more than a million I/O requests
in a second (1MIOPS) while hiding long latencies imposed
by its internal flash media. Inspired by a parallel data analy-
sis system, we design the firmware based on many-to-many
threading model that can be scaled horizontally. The proposed
DeepFlash can extract the maximum performance of the un-
derlying flash memory complex by concurrently executing
multiple firmware components across many cores within the
device. To show its extreme parallel scalability, we implement
DeepFlash on a many-core prototype processor that employs
dozens of lightweight cores, analyze new challenges from par-
allel I/O processing and address the challenges by applying
concurrency-aware optimizations. Our comprehensive evalua-
tion reveals that DeepFlash can serve around 4.5 GB/s, while
minimizing the CPU demand on microbenchmarks and real
server workloads.

1 Introduction

Solid State Disks (SSDs) are extensively used as caches,
databases, and boot drives in diverse computing domains
[37, 42, 47, 60, 74]. The organizations of modern SSDs and
flash packages therein have undergone significant technology
shifts [11, 32, 39, 56, 72]. In the meantime, new storage in-
terfaces have been proposed to reduce overheads of the host
storage stack thereby improving the storage-level bandwidth.
Specifically, NVM Express (NVMe) is designed to unshackle
flash from a traditional storage interface and enable users
to take full advantages of all levels of SSD internal paral-
lelism [13, 14, 54, 71]. For example, it provides streamlined
commands and up to 64K deep queues, each with up to 64K
entries. There is massive parallelism in the backend where

requests are sent to tens or hundreds of flash packages. This
enables assigning queues to different applications; multiple
deep NVMe queues allow the host to employ many threads
thereby maximizing the storage utilization.

An SSD should handle many concurrent requests with its
massive internal parallelism [12, 31, 33, 34, 61]. However, it
is difficult for a single storage device to manage the tremen-
dous number of I/O requests arriving in parallel over many
NVMe queues. Since highly parallel I/O services require si-
multaneously performing many SSD internal tasks, such as
address translation, multi-queue processing, and flash schedul-
ing, the SSD needs multiple cores and parallel implementation
for a higher throughput. In addition, as the tasks inside the
SSD increase, the SSD must address several scalability chal-
lenges brought by garbage collection, memory/storage con-
tention and data consistency management when processing
I/O requests in parallel. These new challenges can introduce
high computation loads, making it hard to satisfy the perfor-
mance demands of diverse data-centric systems. Thus, the
high-performance SSDs require not only a powerful CPU and
controller but also an efficient flash firmware.

We propose DeepFlash, a manycore-based NVMe SSD
platform that can process more than one million I/O requests
within a second (1MIOPS) while minimizing the require-
ments of internal resources. To this end, we design a new
flash firmware model, which can extract the maximum per-
formance of hundreds of flash packages by concurrently exe-
cuting firmware components atop a manycore processor. The
layered flash firmware in many SSD technologies handles
the internal datapath from PCIe to physical flash interfaces
as a single heavy task [66, 76]. In contrast, DeepFlash em-
ploys a many-to-many threading model, which multiplexes
any number of threads onto any number of cores in firmware.

Specifically, we analyze key functions of the layered flash
firmware and decompose them into multiple modules, each is
scaled independently to run across many cores. Based on the
analysis, this work classifies the modules into a queue-gather
stage, a trans-apply stage, and a flash-scatter stage, inspired
by a parallel data analysis system [67]. Multiple threads on
the queue-gather stage handle NVMe queues, while each
thread on the flash-scatter stage handles many flash devices
on a channel bus. The address translation between logical

USENIX Association 18th USENIX Conference on File and Storage Technologies 121

block addresses and physical page numbers is simultane-
ously performed by many threads at the trans-apply stage.
As each stage can have different numbers of threads, con-
tention between the threads for shared hardware resources
and structures, such as mapping table, metadata and mem-
ory management structures can arise. Integrating many cores
in the scalable flash firmware design also introduces data
consistency, coherence and hazard issues. We analyze new
challenges arising from concurrency, and address them by
applying concurrency-aware optimization techniques to each
stage, such as parallel queue processing, cache bypassing and
background work for time-consuming SSD internal tasks.

We evaluate a real system with our hardware platform that
implements DeepFlash and internally emulates low-level
flash media in a timing accurate manner. Our evaluation re-
sults show that DeepFlash successfully provides more than
1MIOPS with a dozen of simple low-power cores for all reads
and writes with sequential and random access patterns. In
addition, DeepFlash reaches 4.5 GB/s (above 1MIOPS), on
average, under the execution of diverse real server workloads.
The main contributions of this work are summarized as below:
•Many-to-many threading firmware. We identify scalabil-
ity and parallelism opportunities for high-performance flash
firmware. Our many-to-many threading model allows future
manycore-based SSDs to dynamically shift their computing
power based on different workload demands without any hard-
ware modification. DeepFlash splits all functions from the
existing layered firmware architecture into three stages, each
with one or more thread groups. Different thread groups can
communicate with each other over an on-chip interconnection
network within the target SSD.
• Parallel NVMe queue management. While employing
many NVMe queues allows the SSD to handle many I/O
requests through PCIe communication, it is hard to coordinate
simultaneous queue accesses from many cores. DeepFlash
dynamically allocates the cores to process NVMe queues
rather than statically assigning one core per queue. Thus, a
single queue is serviced by multiple cores, and a single core
can service multiple queues, which can deliver full bandwidth
for both balanced and unbalanced NVMe I/O workloads. We
show that this parallel NVMe queue processing exceeds the
performance of the static core-per-queue allocation by 6x, on
average, when only a few queues are in use. DeepFlash also
balances core utilization over computing resources.
• Efficient I/O processing. We increase the parallel scala-
bility of many-to-many threading model by employing non-
blocking communication mechanisms. We also apply sim-
ple but effective lock and address randomization methods,
which can distribute incoming I/O requests across multiple
address translators and flash packages. The proposed method
minimizes the number of hardware core to achieve 1MIOPS.
Putting all it together, DeepFlash improves bandwidth by
3.4× while significantly reducing CPU requirements, com-
pared to conventional firmware. Our DeepFlash requires only

����� �����

�
�
�
�
��
��
�
	
�

�
�

���	

�	�

��

����	����
���	�����	��

������������	
��

���
��������	�

����
�	��	��	�

���
��������	�

�������
���

���	
��������	�

���	
���	

���	
� !

��
	
�
�
�
�
��

����� �����

������
�����	
��

����� �����

����� �����

������
�����	
��

Figure 1: Overall architecture of an NVMe SSD.
a dozen of lightweight in-order cores to deliver 1MIOPS.

2 Background

2.1 High Performance NVMe SSDs

Baseline. Figure 1 shows an overview of a high-performance
SSD architecture that Marvell recently published [43]. The
host connects to the underlying SSD through four Gen 3.0
PCIe lanes (4 GB/s) and a PCIe controller. The SSD archi-
tecture employs three embedded processors, each employing
two cores [27], which are connected to an internal DRAM
controller via a processor interconnect. The SSD employs
several special-purpose processing elements, including a low-
density parity-check (LDPC) sequencer, data transfer (DMA)
engine, and scratch-pad memory for metadata management.
All these multi-core processors, controllers, and components
are connected to a flash complex that connects to eight chan-
nels, each connecting to eight packages, via flash physical
layer (PHY). We select this multicore architecture description
as our reference and extend it, since it is only documented
NVMe storage architecture that employs multiple cores at this
juncture, but other commercially available SSDs also employ
a similar multi-core firmware controller [38, 50, 59].
Future architecture. The performance offered by these de-
vices is by far below 1MIOPS. For higher bandwidth, a future
device can extend storage and processor complexes with more
flash packages and cores, respectively, which are highlighted
by red in the figure. The bandwidth of each flash package
is in practice tens of MB/s, and thus, it requires employing
more flashes/channels, thereby increasing I/O parallelism.
This flash-side extension raises several architectural issues.
First, the firmware will make frequent SSD-internal memory
accesses that stress the processor complex. Even though the
PCIe core, channel and other memory control logic may be
implemented, metadata information increases for the exten-
sion, and its access frequency gets higher to achieve 1MIOPS.
In addition, DRAM accesses for I/O buffering can be a crit-
ical bottleneck to hide flash’s long latency. Simply making
cores faster may not be sufficient because the processors will
suffer from frequent stalls due to less locality and contention
at memory. This, in turn, makes each core bandwidth lower,
which should be addressed with higher parallelism on com-
putation parts. We will explain the current architecture and
show why it is non-scalable in Section 3.

122 18th USENIX Conference on File and Storage Technologies USENIX Association

�����������	�
�
���

�
�

�
�

���������
���������

�������	

����
��

���

���

���

����

����
��

���	�
���

�����
���

������

�����
��
���	����

���
���
���	����

����

!�

"���	���
#���		�
�

������

�$�!���� �

���
����

����

��

$��%����	����

�
	�
��
��

��
�

��
��
�
�

&
	�
��
�

��
�
�
�
�
'

$��%����	����

(

)

*

+ ,

-

.

�

�
/
!
�
��
�
�
�
�
�
��
�
��
�
�

0

#���	��������	�
�
���

��%����
�������
���

� �������
1��� ��
���

#���	1����

	������

(2

3
����
��

	������	
��

�
/
!
�
��
�
�

(a) NVMe SSD datapath.

����������	
�����
�

����
�������	
�����
�

�	��
�����	
�����
�

�����
������������
�

����������
��
���
	�	
	�

�������
��
��������� ����

!
���
"
�������	�

������"
����
��	��
����������

	
�
!��

	
�
!��

	
�
!��

�����

�����

�����

�����

�����

�����

����

�����	
���
�
�

���

(b) Flash firmware.
Figure 2: Datapath from PCIe to Flash and overview of flash firmware.

Datapath from PCIe to flash. To understand the source of
scalability problems, it requires being aware of the internal
datapath of NVMe SSDs and details of the datapath manage-
ment. Figure 2a illustrates the internal datapath between PCIe
and NV-DDR [7, 53], which is managed by NVMe [16] and
ONFi [69] protocols, respectively. NVMe employs multiple
device-side doorbell registers, which are designed to mini-
mize handshaking overheads. Thus, to issue an I/O request, ap-
plications submit an NVMe command to a submission queue
(SQ) (¶) and notify the SSD of the request arrival by writing
to the doorbell corresponding to the queue (·). After fetching
a host request from the queue (¸), flash firmware, known
as flash translation layer (FTL), parses the I/O operation,
metadata, and data location of the target command (¹). The
FTL then translates the physical page address (PPA) from
the host’s logical block address (LBA) (º). In the meantime,
the FTL also orchestrates data transfers. Once the address
translation is completed, the FTL moves the data, based on
the I/O timing constraints defined by ONFi (»). A comple-
tion queue (CQ) is always paired with an SQ in the NVMe
protocol, and the FTL writes a result to the CQ and updates
the tail doorbell corresponding to the host request. The FTL
notifies the queue completion to the host (¼) by generating
a message-signaled interrupt (MSI) (½). The host can finish
the I/O process (¾) and acknowledge the MSI by writing the
head doorbell associated with the original request (¿).

2.2 Software Support

Flash firmware. Figure 2b shows the processes of the FTL,
which performs the steps ¸ ∼ ½. The FTL manages NVMe
queues/requests and responds to the host requests by pro-
cessing the corresponding doorbell. The FTL then performs
address translations and manages memory transactions for
the flash media. While prior studies [34, 48, 49] distinguish
host command controls and flash transaction management as
the host interface layer (HIL) and flash interface layer (FIL),
respectively, in practice, both modules are implemented as
a layered firmware calling through functions of event-based
codes with a single thread [57, 65, 70]. The performance of
the layered firmware is not on the critical path as flash latency
is several orders of magnitude longer than one I/O command

processing latency. However, SSDs require a large number
of flash packages and queues to handle more than a thousand
requests per msec. When increasing the number of underlying
flash packages, the FTL requires powerful computation not
only to spread I/O requests across flash packages but also to
process I/O commands in parallel. We observe that, compute
latency keeps increasing due to non-scalable firmware and
takes 93.6% of the total I/O processing time in worst case.
Memory spaces. While the FTL manages the logical block
space and physical flash space, it also handles SSD’s internal
memory space and accesses to host system memory space (cf.
Figure 2b). SSDs manage internal memory for caching incom-
ing I/O requests and the corresponding data. Similarly, the
FTL uses the internal memory for metadata and NVMe queue
management (e.g., SQs/CQs). In addition, the FTL requires
accessing the host system memory space to transfer actual
data contents over PCIe. Unfortunately, a layered firmware
design engages in accesses to memory without any constraint
and protection mechanism, which can make the data incon-
sistent and incoherent in simultaneous accesses. However,
computing resources with more parallelism must increase
to achieve more than 1MIOPS, and many I/O requests need
processing simultaneously. Thus, all shared memory spaces
of a manycore SSD platform require appropriate concurrency
control and resource protection, similar to virtual memory.

3 Challenges to Exceeding 1MIOPS

To understand the main challenges in scaling SSD firmware,
we extend the baseline SSD architecture in a highly scalable
environment: Intel many-integrated cores (MIC) [18]. We
select this processor platform, because its architecture uses a
simple in-order and low-frequency core model, but provides
a high core count to study parallelism and scalability. The
platform internally emulates low-level flash modules with
hardware-validated software1, so that the flash complex can
be extended by adding more emulated channels and flash re-
sources: the number of flash (quad-die package, QDP) varies
from 2 to 512. Note that MIC is a prototyping platform used

1This emulation framework is validated by comparing with Samsung Z-
SSD prototype [4], multi-stream 983 DCT (Proof of Concept), 850 Pro [15]
and Intel NVMe 750 [25]. The software will be publicly available.

USENIX Association 18th USENIX Conference on File and Storage Technologies 123

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
20.0

0.2

0.4

0.6

0.8

1.0

S
S

D
 l
a
te

n
c
y
 b

re
a
k
d
o
w

n

 D
M

A

 A
d
d
r. tra

n
s

 IO
 c

a
c
h
e

 IO

 p
a
rs

e
 IO

 fe
tc

h

 F
la

s
h

Number of flash packages

0

30

60

90

120

150

180

P
e
rf

o
rm

a
n
c
e
 (

K
 I
O

P
S

)

(a) Flash scaling.

1 2 4 8
1
6

3
2

0

1

2

3

4

5

0

20

40

60

80

Number of flash cores

M
IO

P
S

 Expected

 Naive

P
e
rf

.d
e
g
ra

d
a
ti
o
n
 (

%
)

(b) Core scaling.
Figure 3: Perf. with varying flash packages and cores.

for only exploring the limit of scalability, rather than as a
suggestion for actual SSD controller.
Flash scaling. The bandwidth of a low-level flash package
is several orders of magnitude lower than the PCIe band-
width. Thus, SSD vendors integrate many flash packages over
multiple channels, which can in parallel serve I/O requests
managed by NVMe. Figure 3a shows the relationship of band-
width and execution latency breakdown with various number
of flash packages. In this evaluation, we emulate an SSD by
creating a layered firmware instance in a single MIC core, in
which two threads are initialized to process the tasks of HIL
and FTL, respectively. We also assign 16 MIC cores (one core
per flash channel) to manage flash interface subsystems. We
evaluate the performance of the configured SSD emulation
platform by testing 4KB sequential writes. For the break-
down analysis, we decompose total latency into i) NVMe
management (I/O parse and I/O fetch), ii) I/O cache,
iii) address translation (including flash scheduling), vi)
NVMe data transfers (DMA) and v) flash operations (Flash).
One can observe from the figure that the SSD performance
saturates at 170K IOPS with 64 flash packages, connected
over 16 channels. Specifically, the flash operations are the
main contributor of the total execution time in cases where
our SSD employs tens of flash packages (73% of the total
latency). However, as the number of flash packages increases
(more than 32), the layered firmware operations on a core
become the performance bottleneck. NVMe management and
address translation account for 41% and 29% of the total time,
while flash only consumes 12% of the total cycles.

There are two reasons that flash firmware turns into the
performance bottleneck with many underlying flash devices.
First, NVMe queues can supply many I/O requests to take
advantages of the SSD internal parallelism, but a single-core
SSD controller is insufficient to fetch all the requests. Second,
it is faster to parallelize I/O accesses across many flash chips
than performing address translation only on one core. These
new challenges make it difficult to fully leverage the internal
parallelism with the conventional layered firmware model.
Core scaling. To take flash firmware off the critical path in
scalable I/O processing, one can increase computing power
with the execution of many firmware instances. This approach
can allocate a core per NVMe SQ/CQ and initiate one layered
firmware instance in each core. However, we observe that
this naive approach cannot successfully address the burdens
brought by flash firmware. To be precise, we evaluate IOPS

����� ��������� 	
��
 ���� ����
��

���

����������������������� �������������

Figure 4: Many-to-many threading firmware model.
with varying number of cores, ranging from 1 to 32. Figure
3b compares the performance of aforementioned naive many-
core approach (e.g., Naive) with the system that expects per-
fect parallel scalability (e.g., Expected). Expected’s perfor-
mance is calculated by multiplying the number of cores with
IOPS of Naive built on a single core SSD. One can observe
from this figure that Naive can only achieve 813K IOPS even
with 32 cores, which exhibits 82.6% lower performance, com-
pared to Expected. This is because contention and consis-
tency management for the memory spaces of internal DRAM
(cf. Section 5.3) introduces significant synchronization over-
heads. In addition, the FTL must serialize the I/O requests to
avoid hazards while processing many queues in parallel. Since
all these issues are not considered by the layered firmware
model, it should be re-designed by considering core scaling.

The goal of our new firmware is to fully parallelize multiple
NVMe processing datapaths in a highly scalable manner while
minimizing the usage of SSD internal resources. DeepFlash
requires only 12 in-order cores to achieve 1M or more IOPS.

4 Many-to-Many Threading Firmware

Conventional FTL designs are unable to fully convert the
computing power brought by a manycore processor to storage
performance, as they put all FTL tasks into a single large block
of the software stack. In this section, we analyze the func-
tions of the traditional FTLs and decompose them into seven
different function groups: 1) NVMe queue handling (NVMQ),
2) data cache (CACHE), 3) address translation (TRANS), 4)
index lock (ILOCK), 5) logging utility (LOG), 6) background
garbage collection utility (BGC), and 7) flash command and
transaction scheduling (FCMD). We then reconstruct the key
function groups from the ground up, keeping in mind con-
currency, and deploy our reworked firmware modules across
multiple cores in a scalable manner.

4.1 Overview

Figure 4 shows our DeepFlash’s many-to-many threading
firmware model. The firmware is a set of modules (i.e.,
threads) in a request-processing network that is mapped to
a set of processors. Each thread can have a firmware opera-
tion, and the task can be scaled by instantiating into multiple
parallel threads, referred to as stages. Based on different data

124 18th USENIX Conference on File and Storage Technologies USENIX Association

���� ���

���	
 ����

���

�����

�
�
��

�����

�����

�����

�����

����� �����

����� �����

����� �����

��������
�����		
��
����

������������
���
�
��������������
����
���

���
�����

��

����
����	

������������

����	������

���	��	������

���������
��� ��!�

Figure 5: Firmware architecture.
processing flows and tasks, we group the stages into queue-
gather, trans-apply, and flash-scatter modules. The queue-
gather stage mainly parses NVMe requests and collects them
to the SSD-internal DRAM, whereas the trans-apply stage
mainly buffers the data and translates addresses. The flash-
scatter stage spreads the requests across many underlying
flash packages and manages background SSD-internal tasks
in parallel. This new firmware enables scalable and flexible
computing, and highly parallel I/O executions.

All threads are maximally independent, and I/O requests
are always processed from left to right in the thread network,
which reduces the hardware contentions and consistency prob-
lems, imposed by managing various memory spaces. For ex-
ample, two independent I/O requests are processed by two
different network paths (which are highlighted in Figure 4
by red and blue lines, respectively). Consequently, it can si-
multaneously service incoming I/O requests as many network
paths on as DeepFlash can create. In contrast to the other
threads, background threads are asynchronous with the incom-
ing I/O requests or host-side services. Therefore, they create
their own network paths (dashed lines), which perform SSD
internal tasks at background. Since each stage can process
a different part of an I/O request, DeepFlash can process
multiple requests in a pipeline manner. Our firmware model
also can be simply extended by adding more threads based on
performance demands of the target system.

Figure 5 illustrates how our many-to-many threading model
can be applied to and operate in the many-core based SSD ar-
chitecture of DeepFlash. While the procedure of I/O services
is managed by many threads in the different data processing
paths, the threads can be allocated in any core in the network,
in a parallel and scalable manner.

4.2 Queue-gather Stage

NVMe queue management. For high performance, NVMe
supports up to 64K queues, each up to 64K entries. As
shown in Figure 6a, once a host initiates an NVMe com-
mand to an SQ and writes the corresponding doorbell, the
firmware fetches the command from the SQ and decodes a
non-contiguous set of host physical memory pages by refer-
ring a kernel list structure [2], called a physical region page
(PRP) [23]. Since the length of the data in a request can vary,
its data can be delivered by multiple data frames, each of
which is usually 4KB. While all command information can
be retrieved by the device-level registers and SQ, the contents

������

�
�
��
��

�
�
�
�	

� ����

�����
����
�����

	
	�
�
�
 ���

������
��������

�
�
�

�����
��������

�

���
��������

�

(a) Data contention (1:N).

��
�
��
��
�

	
��
�
��
��
�

����
�����

����
�����

�
�
��

�
�
��

������ ������

����

	
�
	
�

(b) Unbalanced task.

����

�����

�����

�����
����

�	
�
��
��

�	
�
��
��

�
�
��

���	 ���

���� ����

(c) I/O hazard.
Figure 6: Challenges of NVMQ allocation (SQ:NVMQ).
of such data frames exist across non-contiguous host-side
DRAM (for a single I/O request). The firmware parses the
PRP and begins DMA for multiple data frames per request.
Once all the I/O services associated with those data frames
complete, firmware notifies the host of completion through
the target CQ. We refer to all the tasks, related to this NVMe
command and queue management, as NVMQ.

A challenge to employ many cores for parallel queue pro-
cessing is that, multiple NVMQ cores may simultaneously
fetch a same set of NVMe commands from a single queue.
This in turn accesses the host memory by referring a same
set of PRPs, which makes the behaviors of parallel queue
accesses undefined and non-deterministic (Figure 6a). To ad-
dress this challenge, one can make each core handle only a
set of SQ/CQ, and therefore, there is no contention, caused by
simultaneous queue processing or PRP accesses (Figure 6b).
In this “static” queue allocation, each NVMQ core fetches a
request from a different queue, based on the doorbell’s queue
index and brings the corresponding data from the host system
memory to SSD internal memory. However, this static ap-
proach requires that the host balance requests across queues
to maximize the resource utilization of NVMQ threads. In
addition, it is difficult to scale to a large number of queues.
DeepFlash addresses these challenges by introducing a dy-
namic I/O serialization, which allows multiple NVMQ threads
to access each SQ/CQ in parallel while avoiding a consistency
violation. Details of NVMQ will be explained in Section 5.1.
I/O mutual exclusion. Even though the NVMe specification
does not regulate the processing ordering of NVMe com-
mands in a range from where the head pointer indicates to
the entry that the tail pointer refers to [3], users may expect
that the SSD processes the requests in the order that users
submitted. However, in our DeepFlash, many threads can
simultaneously process I/O requests in any order of accesses.
It can make the order of I/O processing different with the
order NVMe queues (and users) expected, which may in turn
introduce an I/O hazard or a consistency issue. For example,
Figure 6c shows a potential problem brought by parallel I/O
processing. In this figure, there are two different I/O requests
from the same NVMe SQ, request-1 (a write) and request-2
(a read), which create two different paths, but target to the
same PPA. Since these two requests are processed by different
NVMQ threads, the request-2 can be served from the target
slightly earlier than the request-1. The request-1 then will be

USENIX Association 18th USENIX Conference on File and Storage Technologies 125

�����
�����	��

�����
�����

��������������

����
���

��	�

��	

���������

��������	
��	�
�

�		
���

��	�

�������
��

�����

������	
�
����

���

���

(a) Main procedure of CACHE.

����������

���	 ���
 �����
��
�
�

�
�
�
	

���

���

��������

	
�	
	 	
��

�
���� �
����

��������

����������

(b) Shards (TRANS).
Figure 7: Challenge analysis in CACHE and TRANS.

stalled, and the request-2 will be served with stale data. Dur-
ing this phase, it is also possible that any thread can invalidate
the data while transferring or buffering them out of order.

While serializing the I/O request processing with a strong
ordering can guarantee data consistency, it significantly hurts
SSD performance. One potential solution is introducing a
locking system, which provides a lock per page. However,
per-page lock operations within an SSD can be one of the
most expensive mechanisms due to various I/O lengths and
a large storage capacity of the SSD. Instead, we partition
physical flash address space into many shards, whose access
granularity is greater than a page, and assign an index-based
lock to each shard. We implement the index lock as a red-
black tree and make this locking system as a dedicated thread
(ILOCK). This tree helps ILOCK quickly identify which
lock to use, and reduces the overheads of lock acquisition
and release. Nevertheless, since NVMQ threads may access
a few ILOCK threads, it also can be resource contention.
DeepFlash optimizes ILOCK by redistributing the requests
based on lock ownership (cf., Section 5.2). Note that there is
no consistency issue if the I/O requests target different LBAs.
In addition, as most OSes manage the access control to prevent
different cores from accessing the same files [19, 41, 52], I/O
requests from different NVMe queues (mapping to different
cores) access different LBAs, which also does not introduce
the consistency issue. Therefore, DeepFlash can solve the I/O
hazard by guaranteeing the ordering of I/O requests, which
are issued to the same queue and access the same LBAs, while
DeepFlash can process other I/O requests out of order.

4.3 Trans-apply Stage

Data caching and buffering. To appropriately handle
NVMe’s parallel queues and achieve more than 1MIOPS,
it is important to utilize the internal DRAM buffer efficiently.
Specifically, even though modern SSDs enjoy the massive
internal parallelism stemming from tens or hundreds of flash
packages, the latency for each chip is orders of magnitude
longer than DRAM [22, 45, 46], which can stall NVMQ’s
I/O processing. DeepFlash, therefore, incorporates CACHE
threads that incarnate SSD internal memory as a burst buffer
by mapping LBAs to DRAM addresses rather than flash ones.
The data buffered by CACHE can be drained by striping re-
quests across many flash packages with high parallelism.

As shown in Figure 7a, each CACHE thread has its own
mapping table to record the memory locations of the buffered
requests. CACHE threads are configured with a traditional
direct-map cache to reduce the burden of table lookup or cache
replacement. In this design, as each CACHE thread has a
different memory region to manage, NVMQ simply calculates
the index of the target memory region by modulating the
request’s LBA, and forwards the incoming requests to the
target CACHE. However, since all NVMQ threads possibly
communicate with a CACHE thread for every I/O request,
it can introduce extra latency imposed by passing messages
among threads. In addition, to minimize the number of cores
that DeepFlash uses, we need to fully utilize the allocated
cores and dedicate them to each firmware operation while
minimizing the communication overhead. To this end, we
put a cache tag inquiry method in NVMQ and make CACHE
threads fully handle cache hits and evictions. With the tag
inquiry method, NVMQ can create a bypass path, which can
remove the communication overheads (cf. Section 5.3).
Parallel address translation. The FTL manages physical
blocks and is aware of flash-specific behavior such as erase-
before-write and asymmetric erase and read/write operation
unit (block vs. page). We decouple FTL address translation
from system management activities such as garbage collection
or logging (e.g., journaling) and allocate the management to
multiple threads. The threads that perform this simplified
address translation are referred to as TRANS. To translate
addresses in parallel, it needs to partition both LBA space and
PPA space and allocate them to each TRANS thread.

As shown in Figure 7b, a simple solution is to split a sin-
gle LBA space into m numbers of address chunks, where
m is the number of TRANS threads, and map the addresses
by wrapping around upon reaching m. To take advantage of
channel-level parallelism, it can also separate a single PPA
space into k shards, where k is the number of underlying
channels, and map the shards to each TRANS with arith-
metic modulo k. While this address partitioning can make
all TRANS threads operate in parallel without interference,
unbalanced I/O accesses can activate a few TRANS threads or
channels. This can introduce a poor resource utilization and
many resource conflicts and stall a request service on the fly.
Thus, we randomize the addresses when partitioning the LBA
space with simple XOR operators. This can scramble LBA
and statically assign all incoming I/O requests across different
TRANS threads in an evenly distributed manner. We also allo-
cate all the physical blocks of the PPA space to each TRANS
in a round-robin fashion. This block-interleaved virtualization
allows us to split the PPA space with finer granularity.

4.4 Flash-scatter Stage

Background task scheduling. The datapath for garbage col-
lection (GCs) can be another critical path to achieve high
bandwidth as it stalls many I/O services while reclaiming

126 18th USENIX Conference on File and Storage Technologies USENIX Association

�������

�������

��	��

	���

�
�
���

�����
�

���
�

����

�����

����

�����

� � � � � � !

��� ��� ���	 ���	

�

�

��� ���	

�

����

Figure 8: The main procedure of FCMD cores.
flash block(s). In this work, GCs can be performed in parallel
by allocating separate core(s), referred to as BGC. BGC(s)
records the block numbers that have no more entries to write
when TRANS threads process incoming I/O requests. BGC
then merges the blocks and update the mapping table of corre-
sponding TRANS in behind I/O processing. Since a thread in
TRANS can process address translations during BGC’s block
reclaims, it would introduce a consistency issue on mapping
table updates. To avoid conflicts with TRANS threads, BGC
reclaims blocks and updates the mapping table at background
when there is no activity in NVMQ and the TRANS threads
complete translation tasks. If the system experiences a heavy
load and clean blocks are running out, our approach performs
on-demand GC. To avoid data consistency issue, we only
block the execution of the TRANS thread, which is responsi-
ble for the address translation of the reclaiming flash block.
Journalling. SSD firmware requires journalling by period-
ically dumping the local metadata of TRANS threads (e.g.,
mapping table) from DRAM to a designated flash. In ad-
dition, it needs to keep track of the changes, which are not
dumped yet. However, managing consistency and coherency
for persistent data can introduce a burden to TRANS. Our
DeepFlash separates the journalling from TRANS and as-
signs it to a LOG thread. Specifically, TRANS writes the
LPN-to-PPN mapping information of a FTL page table en-
try (PTE) to out-of-band (OoB) of the target flash page [64]
in each flash program operation (along with the per-page
data). In the meantime, LOG periodically reads all metadata
in DRAM, stores them to flash, and builds a checkpoint in the
background. For each checkpoint, LOG records a version, a
commit and a page pointer indicating the physical location of
the flash page where TRANS starts writing to. At a boot time,
LOG checks sanity by examining the commit. If the latest ver-
sion is staled, LOG loads a previous version and reconstructs
mapping information by combining the checkpointed table
and PTEs that TRANS wrote since the previous checkpoint.
Parallel flash accesses. At the end of the DeepFlash net-
work, the firmware threads need to i) compose flash transac-
tions respecting flash interface timing and ii) schedule them
across different flash resources over the flash physical layer
(PHY). These activities are managed by separate cores, re-
ferred to as FCMD. As shown in Figure 8, each thread in
FCMD parses the PPA translated by TRANS (or generated
by BGC/LOG) into the target channel, package, chip and
plane numbers. The threads then check the target resources’
availability and compose flash transactions by following the
underlying flash interface protocol. Typically, memory tim-

�
�
�
�
��
�
�	
�
�

��������� 	��
��������

����

����

������ ���	
� �

�

�

�����	
��
����������

��

����������	�
������

������ ����������

���	

���	

�����	
��
������

� �����	
���������

� �����	
���������

��

������

� ������

��������

� ������

������
������

Figure 9: Dynamic I/O serialization (DIOS).
ings within a flash transaction can be classified by pre-dma,
mem-op and post-dma. While pre-dma includes operation
command, address, and data transfer (for writes), post-dma
is composed by completion command and another data trans-
fer (for reads). Memory operations of the underlying flash
are called mem-op in this example. FCMD(s) then scatters
the composed transactions over multiple flash resources. Dur-
ing this time, all transaction activities are scheduled in an
interleaved way, so that it can maximize the utilization of
channel and flash resources. The completion order of multiple
I/O requests processed by this transaction scheduling can be
spontaneously an out-of-order.

In our design, each FCMD thread is statically mapped to
one or more channels, and the number of channels that will
be assigned to the FCMD thread is determined based on the
SSD vendor demands (and/or computing power).

5 Optimizing DeepFlash

While the baseline DeepFlash architecture distributes func-
tionality with many-to-many threading, there are scalability
issues. In this section, we will explain the details of thread
optimizations to increase parallel scalability that allows faster,
more parallel implementations.

5.1 Parallel Processing for NVMe Queue
To address the challenges of the static queue allocation ap-
proach, we introduce the dynamic I/O serialization (DIOS),
which allows a variable ratio of queues to cores. DIOS de-
couples the fetching and parsing processes of NVMe queue
entries. As shown in Figure 9, once a NVMQ thread fetches
a batch of NVMe commands from a NVMe queue, other
NVMQ threads can simultaneously parse the fetched NVMe
queue entries. This allows all NVMQ threads to participate in
processing the NVMe queue entries from the same queue or
multiple queues. Specifically, DIOS allocates a storage-side
SQ buffer (per SQ) in a shared memory space (visible to all
NVMQ threads) when the host initializes NVMe SSD. If the
host writes the tail index to the doorbell, a NVMQ thread
fetches multiple NVMe queue entries and copies them (not
actual data) to the SQ buffer. All NVMQ threads then process
the NVMe commands existing in the SQ buffer in parallel.
The batch copy is performed per 64 entries or till the tail for
SQ and CQ points a same position. Similarly, DIOS creates

USENIX Association 18th USENIX Conference on File and Storage Technologies 127

a CQ buffer (per CQ) in the shared memory. NVMQ threads
update the CQ buffer instead of the actual CQ as an out of
order, and flush the NVMe completion messages from the
CQ buffer to the CQ in batch. This allows multiple threads
update an NVMe queue in parallel without a modification
of the NVMe protocol and host side storage stack. Another
technical challenge for processing a queue in parallel is that
the head and tail pointers of SQ and CQ buffers are also
shared resources, which requires a protection for simultane-
ous access. DeepFlash offers DIOS’s head (D-head) and tail
(D-tail) pointers, and allows NVMQ threads to access SQ and
CQ through those pointers, respectively. Since D-head and
D-tail pointers are managed by gcc atomic built-in function,
__sync_fetch_and_add [21], and the core allocation is per-
formed by all NVMQ threads, in parallel, the host memory
can be simultaneously accessed but at different locations.

5.2 Index Lock Optimization

When multiple NVMQ threads contend to acquire or release
the same lock due to their same target address range, it can
raise two technical issues: i) lock contention and ii) low re-
source utilization of NVMQ. As shown in Figure 10a, an
ILOCK thread sees all incoming lock requests (per page by
LBA) through its message queue. This queue sorts the mes-
sages based on SQ indices, and each message maintains thread
request structure that includes an SQ index, NVMQ ID, LBA,
and lock request information (e.g., acquire and release). Since
the order of queue’s lock requests is non-deterministic, in a
case of contention on acquisition, it must perform I/O services
by respecting the order of requests in the corresponding SQ.
Thus, the ILOCK thread infers the SQ order by referring to
the SQ index in the message queue if the target LBA with the
lock request has a conflict. It then checks the red-black (RB)
tree whose LBA-indexed node contains the lock number and
owner ID that already acquired the corresponding address.
If there is no node in the lock RB tree, the ILOCK thread
allocates a node with the request’s NVMQ ID. When ILOCK
receives a release request, it directly removes the target node
without an SQ inference process. If the target address is al-
ready held by another NVMQ thread, the lock requester can
be stalled until the corresponding I/O service is completed.
Since low-level flash latency takes hundreds of microseconds
to a few milliseconds, the stalled NVMQ can hurt overall per-
formance. In our design, ILOCK returns the owner ID for all
lock acquisition requests rather than returning simply acquisi-
tion result (e.g., false or fail). The NVMQ thread receives the
ID of the owning NVMQ thread, and can forward the request
there to be processed rather than communicating with ILOCK
again. Alternatively, the NVMQ thread can perform other
tasks, such as issuing the I/O service to TRANS or CACHE.
The insight behind this forwarding is that if another NVMQ
owns the corresponding lock of request, then forwards the re-
quest to owner and stop further communication with ILOCK.

���� ����� 	
���

�������
������ ����	����

	���
��
���

� � 	

�
��
����
�
��

�����	

��

�����	

��

����

����

����

����

����

����

����

�
��

�������
����
�����

�
���
���
�
�
���

������

������������

������

����	 ���������!���
���!"�#$%�&'

����	 ����������!"��������(��))��*'

������
����

�����������
�����������

�������

�����

���#����

$+�
$!�,�
�-'

�����#.

%/����
#.��������

�	
���	��

���	
��
����

$!�,�
#.

�������������	����
��
����

��
����

�������

��))�*�

�)*
-
�
�

�
�
�
��
�
��
�	

�

�
�

�

	
�
��

�
�
��
��
�
�

��
���

������

����

Figure 10: Optimization details.
This, in turn, can free the NVMQ thread from waiting for the
lock acquisition, which increases the parallelism of DIOS.

5.3 Non-blocking Cache

To get CACHE off the critical path, we add a direct path be-
tween NVMQ and TRANS threads and make NVMQ threads
access CACHE threads "only if" there is data in CACHE.
We allocate direct-map table(s) in a shared memory space
to accommodate the cache metadata so that NVMQ threads
can lookup the cache metadata on their own and send I/O
requests only if there is a hit. However, this simple approach
may introduce inconsistency between the cache metadata of
the direct-map table and target data of the CACHE. When a
write evicts a dirty page from the burst buffer, the metadata
of such evicted page is removed from the direct-map table
immediately. However, the target data of the evicted page
may still stay in the burst buffer, due to the long latency of
a flash write. Therefore, when a dirty page is in progress of
eviction, read requests, which target for the same page, may
access stale data from the flash. To coordinate the direct-map
table and CACHE correctly, we add “evicted LPN” field in
each map table entry that presents the page number, being in
eviction (cf. Figure 10b). In this example of the figure, we as-
sume the burst buffer is a direct mapped cache with 3 entries.
The request (Req ¶) evicts the dirty page at LPN 0x00. Thus,
NVMQ records the LPN of Req ¶ in the cached LPN field
of the direct-map table and moves the address of the evicted
page to its evicted LPN field. Later, as the LPN of Req · (the
read at 0x00) matches with the evicted LPN field, Req · is
served by CACHE instead of accessing the flash. If CACHE
is busy in evicting the dirty page at LPN 0x00, Req ¸ (the
write at 0x06) has to be stalled. To address this, we make Req
¸ directly bypass CACHE. Once the eviction successfully
completes, CACHE clears the evicted LPN field (¹).

To make this non-blocking cache more efficient, we add
a simple randomizing function to retrieve the target TRANS
index for NVMQ and CACHE threads, which can evenly
distribute their requests in a static manner. This function
performs an XOR operation per bit for all the bit groups

128 18th USENIX Conference on File and Storage Technologies USENIX Association

and generates the target TRANS index, which takes less than
20 ns. The randomization allows queue-gather stages to issue
requests to TRANS by addressing load imbalance.

6 Evaluation

Implementation platform. We set up an accurate SSD em-
ulation platform by respecting the real NVMe protocol, the
timing constraints for flash backbone and the functionality
of a flexible firmware. Specifically, we emulate a manycore-
based SSD firmware by using a MIC 5120D accelerator that
employs 60 lightweight in-order cores (4 hardware threads
per core) [28]. The MIC cores operate at 1GHz and are im-
plemented by applying low power techniques such as short
in-order pipeline. We emulate the flash backbone by mod-
elling various flash latencies, different levels of parallelism
(i.e., channel/way/flash) and the request conflicts for flash
resources. Our flash backbone consists of 16 channels, each
connecting 16 QDP flash packages [69]; we observed that
the performance of both read and write operations on the
backbone itself is not the bottleneck to achieve more than 1
MIOPS. The NVMe interface on the accelerator is also fully
emulated by wrapping Intel’s symmetric communications in-
terface (SCIF) with an NVMe emulation driver and controller
that we implemented. The host employs a Xeon 16-core pro-
cessor and 256 GB DRAM, running Linux kernel 2.6.32 [62].
It should be noted that this work uses MIC to explore the
scalability limits of the design; the resulting software can run
with fewer cores if they are more powerful, but the design
can now be about what is most economic and power efficient,
rather than whether the firmware can be scalable.
Configurations. DeepFlash is the emulated SSD platform
including all the proposed designs of this paper. Compared to
DeepFlash, BaseDeepFlash does not apply the optimization
techniques (described in Section 5). We evaluate the perfor-
mance of a real Intel customer-grade SSD (750SSD) [25]
and high-performance NVMe SSD (4600SSD) [26] for a
better comparison. We also emulate another SSD platform
(ManyLayered), which is an approach to scale up the layered
firmware on many cores. Specifically, ManyLayered statically
splits the SSD hardware resources into multiple subsets, each
containing the resources of one flash channel and running a
layered firmware independently. For each layered firmware
instance, ManyLayered assigns a pair of threads: one is used
for managing flash transaction, and another is assigned to run
HIL and FTL. All these emulation platforms use “12 cores"
by default. Lastly, we also test different flash technologies
such as SLC, MLC, TLC, each of which latency characteris-
tics are extracted from [44], [45] and [46], respectively. By
default, the MLC flash array in pristine state is used for our
evaluations. The details of SSD platform are in Table 1.
Workloads. In addition to microbenchmarks (reads and
writes with sequential and random patterns), we test diverse
server workloads, collected from Microsoft Production Server

(MPS) [35], FIU SRCMap [63], Enterprise, and FIU IOD-
edup [40]. Each workload exhibits various request sizes, rang-
ing from 4KB to tens of KB, which are listed in Table 1. Since
all the workload traces are collected from the narrow-queue
SATA hard disks, replaying the traces with the original times-
tamps cannot fully utilize the deep NVMe queues, which in
turn conceals the real performance of SSD [29]. To this end,
our trace replaying approach allocates 16 worker threads in
the host to keep issuing I/O requests, so that the NVMe queues
are not depleted by the SSD platforms.

6.1 Performance Analysis

Microbenchmarks. Figure 11 compares the throughput of
the five SSD platforms with I/O sizes varying from 4KB
to 32KB. Overall, ManyLayered outperforms 750SSD and
4600SSD by 1.5× and 45%, on average, respectively. This is
because ManyLayered can partially take the benefits of many-
core computing and parallelize I/O processing across multi-
ple queues and channels over the static resource partitioning.
BaseDeepFlash exhibits poor performance in cases that the
request size is smaller than 24KB with random patterns. This
is because threads in NVMQ/ILOCK keep tight inter-thread
communications to appropriately control the consistency over
locks. However, for large requests (32KB), BaseDeepFlash
exhibits good performance close to ManyLayered, as multiple
pages in large requests can be merged to acquire one range
lock, which reduces the communication (compared to smaller
request sizes), and thus, it achieves higher bandwidth.

We observe that ManyLayered and BaseDeepFlash have
a significant performance degradation in random reads and
random writes (cf. Figures 11b and 11d). DeepFlash, in con-
trast, provides more than 1MIOPS in all types of I/O requests;
4.8 GB/s and 4.5 GB/s bandwidth for reads and writes, respec-
tively. While those many-core approaches suffer from many
core/flash-level conflicts (ManyLayered) and lock/sync is-
sues (BaseDeepFlash) on the imbalanced random workloads,
DeepFlash scrambles the LBA space and evenly distributes
all the random I/O requests to different TRANS threads with
a low overhead. In addition, it applies cache bypass and lock
forwarding techniques to mitigate the long stalls, imposed by
lock inquiry and inter-thread communication. This can enable
more threads to serve I/O requests in parallel.

As shown in Figure 12, DeepFlash can mostly activate
6.3 cores that run 25 threads to process I/O services in paral-
lel, which is better than BaseDeepFlash by 127% and 63%
for reads and writes, respectively. Note that, for the random
writes, the bandwidth of DeepFlash is sustainable (4.2 GB/s)
by activating only 4.5 cores (18 threads). This is because al-
though many cores contend to acquire ILOCK which makes
more cores stay in idle, the burst buffer successfully over-
comes the long write latency of the flash.

Figure 12e shows the active core decomposition of
DeepFlash. As shown in the figure, reads require 23% more

USENIX Association 18th USENIX Conference on File and Storage Technologies 129

Host Workloadsets Microsoft,Production Server FIU IODedup
CPU/mem Xeon 16-core processor/256GB, DDR4 Workloads 24HR 24HRS BS CFS DADS DAP DDR cheetah homes webonline

Storage platform/firmware Read Ratio 0.06 0.13 0.11 0.82 0.87 0.57 0.9 0.99 0 0
Controller Xeon-phi, 12 cores by default Avg length (KB) 7.5 12.1 26.3 8.6 27.6 63.4 12.2 4 4 4
FTL/buffer hybrid, n:m=1:8, 1 GB/512 MB Randomness 0.3 0.4937 0.87 0.94 0.99 0.38 0.313 0.12 0.14 0.14
Flash
array

16 channels/16 pkgs per channel/1k blocks per die
512GB(SLC),1TB(MLC),1.5TB(TLC)

Workloadsets FIU SRCMap Enterprise
Workloads ikki online topgun webmail casa webresearch webusers madmax Exchange

SLC R: 25us, W: 300us, E: 2ms, Max: 1.4 MIOPS Read Ratio 0 0 0 0 0 0 0 0.002 0.24
MLC R: 53us, W: 0.9ms, E: 2.3ms, Max: 1.3 MIOPS Avg length (KB) 4 4 4 4 4 4 4 4.005 9.2
TLC R: 78us, W: 2.6ms, E: 2.3ms, Max: 1.1 MIOPS Randomness 0.39 0.17 0.14 0.21 0.65 0.11 0.14 0.08 0.84

Table 1: H/W configurations and Important workload characteristics of the workloads that we tested.

4 8 12 16 20 24 28 32
0
1
2
3
4
5

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

IO request size (KB)

 750SSD 4600SSD DeepFlash

 BaseDeepFlash ManyLayered

(a) Sequential reads.

4 8 12 16 20 24 28 32
0
1
2
3
4
5

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

IO request size (KB)

 750SSD 4600SSD DeepFlash

 BaseDeepFlash ManyLayered

(b) Random reads.

4 8 12 16 20 24 28 32
0
1
2
3
4
5

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

IO request size (KB)

 750SSD 4600SSD DeepFlash

 BaseDeepFlash ManyLayered

(c) Sequential writes.

4 8 12 16 20 24 28 32
0
1
2
3
4
5

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

IO request size (KB)

 750SSD 4600SSD DeepFlash

 BaseDeepFlash ManyLayered

(d) Random writes.
Figure 11: Performance comparison.

24HR

24HRS BS
CFS

DADS
DAP

DDR ikk
i

onlin
e

m
adm

ax

to
pgun

webm
ail

ca
sa

webre
sc

h

webuse
rs

Exc
hg

ch
eeta

h

hom
es

webonlin
e

0
1
2
3
4
5 IODedupEnterSRCMap

 750SSD 4600SSD ManyLayered BaseDeepFlash DeepFlash

MPS

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Figure 13: Overall throughput analysis.

Flash activities, compared to writes, as they are accommo-
dated in internal DRAM. In addition, NVMQ requires 1.5%
more compute resources to process write requests than pro-
cessing read requests, which can offer slightly worse band-
width on writes, compared to that of reads. Note that back-
ground activities such as garbage collection and logging are
not invoked during this evaluation as we configured the emu-
lation platform as a pristine SSD.
Server workload traces. Figure 13 illustrates the throughput
of server workloads. As shown in the figure, BaseDeepFlash
exhibits 1.6, 2.7, 1.1, and 2.9 GB/s, on average, for MPS, SR-
CMap, Enterprise and IODedup workload sets, respectively,
and DeepFlash improves those of BaseDeepFlash, by 260%,
64%, 299% and 35%, respectively. BaseDeepFlash exhibits
a performance degradation, compared to ManyLayered with
MPS. This is because MPS generates multiple lock con-
tentions, due to more small-size random accesses than other
workloads (c.f. Table 1). Interestingly, while DeepFlash out-
performs other SSD platforms in most workloads, its perfor-
mance is not as good under DDR workloads (slightly better
than BaseDeepFlash). This is because FCMD utilization is

lower than 56% due to the address patterns of DDR. However,
since all NVMQ threads parse and fetch incoming requests
in parallel, even for such workloads, DeepFlash provides 3
GB/s, which is 42% better than ManyLayered.

6.2 CPU, Energy and Power Analyses

CPU usage and different flashes. Figures 14a and 14b show
sensitivity analysis for bandwidth and power/energy, respec-
tively. In this evaluation, we collect and present the perfor-
mance results of all four microbenchmarks by employing a
varying number of cores (2∼19) and different flash technolo-
gies (SLC/MLC/TLC). The overall SSD bandwidth starts to
saturate from 12 cores (48 hardware threads) for the most case.
Since TLC flash exhibits longer latency than SLC/MLC flash,
TLC-based SSD requires more cores to reduce the firmware
latency such that it can reach 1MIOPS. When we increase
the number of threads more, the performance gains start to
diminish due to the overhead of exchanging many messages
among thread groups. Finally, when 19 cores are employed,
SLC, MLC, and TLC achieve the maximum bandwidths that
all the underlying flashes aggregately expose, which are 5.3,
4.8, and 4.8 GB/s, respectively.
Power/Energy. Figure 14b shows the energy breakdown of
each SSD stage and the total core power. The power and en-
ergy are estimated based on an instruction-level energy/power
model of Xeon Phi [55]. As shown in Figure 14b, DeepFlash
with 12 cores consumes 29 W, which can satisfy the power de-
livery capability of PCIe [51]. Note that while this power con-

20 40 60 80 100
0
3
6
9

12

Ac
tiv

e
co

re
s

Time (ms)

 BaseDeepFlash
 DeepFlash

(a) Sequential reads.

20 40 60 80 100
0
3
6
9

12

Ac
tiv

e
co

re
s

Time (ms)

 BaseDeepFlash
 DeepFlash

(b) Random reads.

20 40 60 80 100
0
3
6
9

12

Ac
tiv

e
co

re
s

Time (ms)

 BaseDeepFlash
 DeepFlash

(c) Sequential writes.

20 40 60 80 100
0
3
6
9

12

Ac
tiv

e
co

re
s

Time (ms)

 BaseDeepFlash
 DeepFlash

(d) Random writes.

SeqRd
RndRd

SeqWr
RndWr0

20
40
60
80

100

Ac
tiv

e
co

re
 b

rk
do

w
n Flash FCMD TRANS

 CACHE ILOCK NVMQ

(e) Core decomposition.
Figure 12: Dynamics of active cores for parallel I/O processing.

130 18th USENIX Conference on File and Storage Technologies USENIX Association

2 4 8 1519
0
1
2
3
4
5

Ba
nd

w
id

th
 (G

B/
s)

#Cores

 SLC
 MLC
 TLC

1MOPS

(a) Bandwidth.

2 4 8 15 19
0

20
40
60
80

100

 FCMD LOG BGC
 TRANS ILOCK
 CACHE NVMQ

En
er

gy
 b

re
ak

do
w

n

#Cores

(%
)

0
10
20
30
40
50

C
or

e
po

w
er

 (W
)

(b) Breakdown.
OoO-1.2G

OoO-2.4G
IO-1G

0
3
6
9
12

M
in

. R
eq

ui
re

d
C

or
es

0
10
20
30
40
50
60

C
or

e
po

w
er

 (W
)

(c) Cores.
Figure 14: Resource requirement analysis.

1 2 4 8 160.0
0.3
0.6
0.9
1.2

Number of SQs

IO
PS

 (M
) Static

 D
ynam

ic

(a) NVMQ performance.

Static Dynamic50
60
70
80
90

IO
PS

/th
re
ad

(K
)

 Avg.

(b) IOPS per NVMQ thread.
Figure 15: Performance on different queue allocations.

sumption is higher than existing SSDs (20∼ 30W [30,58,73]),
power-efficient manycores [68] can be used to reduce the
power of our prototype. When we break down energy con-
sumed by each stage, FCMD, TRANS and NVMQ consume
42%, 21%, and 26% of total energy, respectively, as the num-
ber of threads increases. This is because while CACHE, LOG,
ILOCK, and BGC require more computing power, most cores
should be assigned to handle a large flash complex, many
queues and frequent address translation for better scalability.
Different CPUs. Figure 14c compares the minimum number
of cores that DeepFlash requires to achieve 1MIOPS for both
reads and writes. We evaluate different CPU technologies: i)
OoO-1.2G, ii) OoO-2.4G and iii) IO-1G. While IO-1G uses
the default in-order pipeline 1GHz core that our emulation
platform employs, OoO-1.2G and OoO-2.4G employ Intel
Xeon CPU, an out-of-order execution processor [24] with 1.2
and 2.4GHz CPU frequency, respectively. One can observe
from the figure that a dozen of cores that DeepFlash uses
can be reduced to five high-frequency cores (cf. OoO-2.4G).
However, due to the complicated core logic (e.g., reorder
buffer), OoO-1.2G and OoO-2.4G consume 93% and 110%
more power than IO-1G to achieve the same level of IOPS.

6.3 Performance Analysis of Optimization

In this analysis, we examine different design choices of the
components in DeepFlash and evaluate their performance
impact on our proposed SSD platform. The following experi-
ments use the configuration of DeepFlash by default.
NVMQ. Figures 15a and 15b compare NVMQ’s IOPS and
per-thread IOPS, delivered by a non-optimized queue allo-
cation (i.e., Static) and our DIOS (i.e., Dynamic), respec-
tively. Dynamic achieves the bandwidth goal, irrespective of
the number of NVMe queues that the host manages, whereas
Static requires more than 16 NVMe queues to achieve
1MIOPS (cf. Figure 15a). This implies that the host also re-
quires more cores since the NVMe allocates a queue per host

0.0 0.5 1.00
3
6
9

12
15

N
VM

Q
 th

re
ad

s

Time (s)

 Page-lock ILOCK-base
 ILOCK-1MB ILOCK-forwd

(a) ILOCK impact.

0 1 2 4 20.0
0.5
1.0
1.5

 SeqRd SeqWr
 RndRd RndWr

Number of cache

M
IO
PS

Byp
ass2-

(b) CACHE IOPS.
Figure 16: ILOCK and CACHE optimizations.

0.0 0.1 0.2 0.3
0
2
4

Ba
nd

w
id

th
 (G

B/
s)

Time (s)

 NVMQ

0.0
0.5
1.0

 LOG BGC

(a) LOG/BGC.

24HR
24HRS BS

casa ikki

madmax
online0

2
4
6 Pristine FGC FLOG+FGC

Av
er

ag
e

ba
nd

w
id

th
(G

B/
s)

(b) BGC overhead.
Figure 17: Background task optimizations.

CPU core [10]. Furthermore, the per-thread IOPS of Dynamic
(with 16 queues) is better than Static by 6.9% (cf. Figure
15b). This is because Dynamic can fully utilize all NVMQ
threads when the loads of different queues are unbalanced;
the NVMQ performance variation of Dynamic (between min
and max) is only 12%, whereas that of Static is 48%.
ILOCK. Figure 16a compares the different locking systems.
Page-lock is a page-granular lock, while ILOCK-base is
ILOCK that has no ownership forwarding. ILOCK-forwd
is the one that DeepFlash employs. While ILOCK-base
and ILOCK-forwd use a same granular locking (256KB),
ILOCK-1MB employs 1MB for its lock range but has no
forwarding. Page-lock can activate NVMQ threads more
than ILOCK-1MB by 82% (Figure 16a). However, due to the
overheads imposed by frequent lock node operations and
RB tree management, the average lock inquiry latency of
Page-lock is as high as 10 us, which is 11× longer than that
of ILOCK-forwd. In contrast, ILOCK-forwd can activate the
similar number of NVMQ threads as Page-lock, and exhibits
0.93 us average lock inquiry latency.
CACHE. Figure 16b illustrates CACHE performance with
multiple threads varying from 0 to 4. “2-Bypass" employs the
bypass technique (with only 2 threads). Overall, the read per-
formance (even with no-cache) is close to 1MIOPS, thanks
to massive parallelism in back-end stages. However, write
performance with no-cache is only around 0.65 MIOPS, on
average. By enabling a single CACHE thread to buffer data
in SSD internal DRAM rather than underlying flash media,
write bandwidth increases by 62%, compared to the system of
no-cache. But single CACHE thread reduces read bandwidth
by 25%, on average, due to communication overheads (be-
tween CACHE and NVMQ) for each I/O service. Even with
more CACHE threads, performance gains diminish due to
communication overhead. In contrast, DeepFlash’s 2-Bypass
can be ideal as it requires fewer threads to achieve 1MIOPS.
Background activities. Figure 17a shows how DeepFlash
coordinates NVMQ, LOG and BGC threads to avoid con-
tentions on flash resources and maximize SSD performance.

USENIX Association 18th USENIX Conference on File and Storage Technologies 131

As shown in the figure, when NVMQ actively parses and
fetches data (between 0.04 and 0.2 s), LOG stops draining
the data from internal DRAM to flash, since TRANS needs
to access their meta information as a response of NVMQ’s
queue processing. Similarly, BGC also suspends the block re-
claiming since data migration (associated to the reclaim) may
cause flash-level contentions, thereby interfering NVMQ’s
activities. As DeepFlash can minimize the impact from LOG
and BGC, the I/O access bandwidth stays above 4 GB/s. Once
NVMQ is in idle, LOG and BGC reactivate their work.
STEADY-STATE performance. Figure 17b shows the
impact of on-demand garbage collection (FGC) and jour-
nalling (FLOG) on the performance of DeepFlash. The re-
sults are compared to the ideal performance of DeepFlash
(Pristine), which has no GC and LOG activities. Compared
to Pristine, the performance of FGC degrades by 5.4%,
while FLOG+FGC decreases the throughput by 8.8%, on av-
erage. The reason why there is negligible performance loss
is that on-demand GC only blocks single TRANS thread
that manages the reclaimed flash block, while the remaining
TRANS threads keep serving the I/O requests. In the mean-
time, LOG works in parallel with TRANS, but consumes the
usage of FCMD to dump data.

7 Related Work and Discussion

OS optimizations. To achieve higher IOPS, host-level opti-
mization on multicore systems [8, 36, 75] have been studied.
Bjorling et al. changes Linux block layer in OS and achieves
1MIOPS on the high NUMA-factor processor systems [8].
Zheng et al. redesigns buffer cache on file systems and rein-
vent overhead and lock-contention in a 32-core NUMA ma-
chine to achieve 1MIOPS [75]. All these systems exploit
heavy manycore processors on the host and buffer data atop
SSDs to achieve higher bandwidth.
Industry trend. To the best of our knowledge, while there
are no manycore SSD studies in literature, industry already
begun to explore manycore based SSDs. Even though they
do not publish the actual device in publicly available market,
there are several devices that partially target to 1MIOPS. For
example, FADU is reported to offer around 1MIOPS (only for
sequential reads with prefetching) and 539K IOPS (for writes)
[20]; Samsung PM1725 offers 1MIOPS (for reads) and 120K
IOPS (for writes). Unfortunately, there are no information
regarding all industry SSD prototypes and devices in terms of
hardware and software architectures. We believe that future
architecture requires brand-new flash firmware for scalable
I/O processing to reach 1MIOPS.
Host-side FTL. LightNVM [9], including CNEX solution [1],
aims to achieve high performance (∼1MIOPS) by moving
FTL to the host and optimizing user-level and host-side soft-
ware stack. But their performance are achieved by evalu-
ating only specific operations (like reads or sequential ac-
cesses). In contrast, DeepFlash reconstructs device-level soft-

ware/hardware with an in-depth analysis and offers 1MIOPS
for all microbenchmarks (read, write, sequential and random)
with varying I/O sizes. In addition, our solution is orthogonal
to (and still necessary for) host-side optimizations.
Emulation. There is unfortunately no open hardware plat-
form, employing multiple cores and flash packages. For ex-
ample, OpenSSD has two cores [59], and Dell/EMC’s Open-
channel SSD (only opens to a small and verified community)
also employs 4∼8 NXP cores on a few flash [17]. Although
this is an emulation study, we respected all real NVMe/ONFi
protocols and timing constraints for SSD and flash, and the
functionality and performance of flexible firmware are demon-
strated by a real lightweight many-core system.
Scale-out vs. scale-up options. A set of prior work proposes
to architect the SSD as the RAID0-like scale-out option. For
example, Amfeltec introduces an M.2-to-PCIe carrier card,
which can include four M.2 NVMe SSDs as the RAID0-
like scale-up solution [5]. However, this solution only offers
340K IOPS due to the limited computing power. Recently,
CircuitBlvd overcomes such limitation by putting eight car-
rier cards into a storage box [6]. Unfortunately, this scale-out
option also requires two extra E5-2690v2 CPUs (3.6GHz 20
cores) with seven PCIe switches, which consumes more than
450W. In addition, these scale-out solutions suffer from serv-
ing small-sized requests with a random access-pattern (less
than 2GB/sec) owing to frequent interrupt handling and I/O
request coordination mechanisms. In contrast, DeepFlash, as
an SSD scale-up solution, can achieve promising performance
of random accesses by eliminating the overhead imposed by
such RAID0 design. In addition, compared to the scale-out op-
tions, DeepFlash employs fewer CPU cores to execute only
SSD firmware, which in turn reduces the power consumption.

8 Conclusion

In this work, we designed scalable flash firmware inspired by
parallel data analysis systems, which can extract the max-
imum performance of the underlying flash memory com-
plex by concurrently executing multiple firmware compo-
nents within a single device. Our emulation prototype on a
manycore-integrated accelerator reveals that it simultaneously
processes beyond 1MIOPS, while successfully hiding long
latency imposed by internal flash media.

9 Acknowledgement

The authors thank Keith Smith for shepherding their
paper. This research is mainly supported by NRF
2016R1C182015312, MemRay grant (G01190170) and
KAIST start-up package (G01190015). J. Zhang and M.
Kwon equally contribute to the work. Myoungsoo Jung is
the corresponding author.

132 18th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] CNEX Labs. https://www.cnexlabs.com.

[2] Microsoft SGL Description. https://docs.
microsoft.com/en-us/windows-hardware/
drivers/kernel/using-scatter-gather-dma.

[3] Nvm express. http://nvmexpress.org/
wp-content/uploads/NVM-Express-1_
3a-20171024_ratified.pdf.

[4] Ultra-low Latency with Samsung Z-NAND SSD. http:
//www.samsung.com/us/labs/pdfs/collateral/
Samsung_Z-NAND_Technology_Brief_v5.pdf,
2017.

[5] Squid carrier board family pci express
gen 3 carrier board for 4 m.2 pcie ssd
modules. https://amfeltec.com/
pci-express-gen-3-carrier-board-for-m-2-ssd/,
2018.

[6] Cinabro platform v1. https://www.circuitblvd.
com/post/cinabro-platform-v1, 2019.

[7] Jasmin Ajanovic. PCI express 3.0 overview. In Proceed-
ings of Hot Chip: A Symposium on High Performance
Chips, 2009.

[8] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux block IO: introducing multi-
queue SSD access on multi-core systems. In Proceed-
ings of the 6th international systems and storage confer-
ence, page 22. ACM, 2013.

[9] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In FAST, pages 359–374, 2017.

[10] Keith Busch. Linux NVMe driver. https:
//www.flashmemorysummit.com/English/
Collaterals/Proceedings/2013/
20130812_PreConfD_Busch.pdf, 2013.

[11] Adrian M Caulfield, Joel Coburn, Todor Mollov, Arup
De, Ameen Akel, Jiahua He, Arun Jagatheesan, Rajesh K
Gupta, Allan Snavely, and Steven Swanson. Understand-
ing the impact of emerging non-volatile memories on
high-performance, io-intensive computing. In High Per-
formance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, pages 1–11.
IEEE, 2010.

[12] Adrian M Caulfield, Laura M Grupp, and Steven Swan-
son. Gordon: using flash memory to build fast, power-
efficient clusters for data-intensive applications. ACM
Sigplan Notices, 44(3):217–228, 2009.

[13] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and
Chita Das. Parallelizing garbage collection with i/o to
improve flash resource utilization. In Proceedings of the
27th International Symposium on High-Performance
Parallel and Distributed Computing, pages 243–254,
2018.

[14] Wonil Choi, Jie Zhang, Shuwen Gao, Jaesoo Lee, My-
oungsoo Jung, and Mahmut Kandemir. An in-depth
study of next generation interface for emerging non-
volatile memories. In Non-Volatile Memory Systems
and Applications Symposium (NVMSA), 2016 5th, pages
1–6. IEEE, 2016.

[15] cnet. Samsung 850 Pro SSD review.
https://www.cnet.com/products/
samsung-ssd-850-pro/, 2015.

[16] Danny Cobb and Amber Huffman. NVM Express and
the PCI Express SSD revolution. In Intel Developer
Forum. Santa Clara, CA, USA: Intel, 2012.

[17] Jae Do. SoftFlash: Programmable storage in
future data centers. https://www.snia.
org/sites/default/files/SDC/2017/
presentations/Storage_Architecture/
Do_Jae_Young_SoftFlash_Programmable_
Storage_in_Future_Data_Centers.pdf,
2017.

[18] Alejandro Duran and Michael Klemm. The Intel R©
many integrated core architecture. In High Performance
Computing and Simulation (HPCS), 2012 International
Conference on, pages 365–366. IEEE, 2012.

[19] FreeBSD. Freebsd manual pages: flock.
https://www.freebsd.org/cgi/man.cgi?
query=flock&sektion=2, 2011.

[20] Anthony Garreffa. Fadu unveils world’s fastest SSD,
capable of 5gb/sec. http://tiny.cc/eyzdcz,
2016.

[21] Arthur Griffith. GCC: the complete reference. McGraw-
Hill, Inc., 2002.

[22] Laura M Grupp, John D Davis, and Steven Swanson.
The bleak future of NAND flash memory. In Proceed-
ings of the 10th USENIX conference on File and Storage
Technologies, pages 2–2. USENIX Association, 2012.

[23] Amber Huffman. NVM Express, revision 1.0 c. Intel
Corporation, 2012.

[24] Intel. Intel Xeon Processor E5 2620 v3. http://
tiny.cc/a1zdcz, 2014.

[25] Intel. Intel SSD 750 series. http://tiny.cc/
qyzdcz, 2015.

USENIX Association 18th USENIX Conference on File and Storage Technologies 133

https://www.cnexlabs.com
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-scatter-gather-dma
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-scatter-gather-dma
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-scatter-gather-dma
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
http://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
http://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
http://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://amfeltec.com/pci-express-gen-3-carrier-board-for-m-2-ssd/
https://amfeltec.com/pci-express-gen-3-carrier-board-for-m-2-ssd/
https://www.circuitblvd.com/post/cinabro-platform-v1
https://www.circuitblvd.com/post/cinabro-platform-v1
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
https://www.cnet.com/products/samsung-ssd-850-pro/
https://www.cnet.com/products/samsung-ssd-850-pro/
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.freebsd.org/cgi/man.cgi?query=flock&sektion=2
https://www.freebsd.org/cgi/man.cgi?query=flock&sektion=2
http://tiny.cc/eyzdcz
http://tiny.cc/a1zdcz
http://tiny.cc/a1zdcz
http://tiny.cc/qyzdcz
http://tiny.cc/qyzdcz

[26] Intel. Intel SSD DC P4600 Series. http://tiny.
cc/dzzdcz, 2018.

[27] Xabier Iturbe, Balaji Venu, Emre Ozer, and Shidhartha
Das. A triple core lock-step (TCLS) ARM R© Cortex R©-
R5 processor for safety-critical and ultra-reliable appli-
cations. In Dependable Systems and Networks Work-
shop, 2016 46th Annual IEEE/IFIP International Con-
ference on, pages 246–249. IEEE, 2016.

[28] James Jeffers and James Reinders. Intel Xeon Phi co-
processor high-performance programming. Newnes,
2013.

[29] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND flash-
based storage systems using dynamic program and erase
scaling. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST 14), pages 61–
74, 2014.

[30] Myoungsoo Jung. Exploring design challenges in get-
ting solid state drives closer to cpu. IEEE Transactions
on Computers, 65(4):1103–1115, 2016.

[31] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,
Joonhyuk Yoo, and Mahmut T Kandemir. Hios: A
host interface i/o scheduler for solid state disks. ACM
SIGARCH Computer Architecture News, 42(3):289–300,
2014.

[32] Myoungsoo Jung and Mahmut Kandemir. Revisiting
widely held SSD expectations and rethinking system-
level implications. In ACM SIGMETRICS Performance
Evaluation Review, volume 41, pages 203–216. ACM,
2013.

[33] Myoungsoo Jung and Mahmut T Kandemir. Sprinkler:
Maximizing resource utilization in many-chip solid state
disks. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA),
pages 524–535. IEEE, 2014.

[34] Myoungsoo Jung, Ellis H Wilson III, and Mahmut Kan-
demir. Physically addressed queueing (PAQ): improving
parallelism in solid state disks. In ACM SIGARCH Com-
puter Architecture News, volume 40, pages 404–415.
IEEE Computer Society, 2012.

[35] Bruce Worthington Qi Zhang Kavalanekar, Swaroop and
Vishal Sharda. Characterization of storage workload
traces from production windows servers. In IISWC,
2008.

[36] Byungseok Kim, Jaeho Kim, and Sam H Noh. Managing
array of ssds when the storage device is no longer the
performance bottleneck. In 9th {USENIX} Workshop
on Hot Topics in Storage and File Systems (HotStorage
17), 2017.

[37] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu.
Revisiting storage for smartphones. ACM Transactions
on Storage (TOS), 8(4):14, 2012.

[38] Nathan Kirsch. Phison E12 high-performance SSD
controller. http://tiny.cc/91zdcz, 2018.

[39] Sungjoon Koh, Junhyeok Jang, Changrim Lee,
Miryeong Kwon, Jie Zhang, and Myoungsoo Jung.
Faster than flash: An in-depth study of system chal-
lenges for emerging ultra-low latency ssds. arXiv
preprint arXiv:1912.06998, 2019.

[40] Ricardo Koller et al. I/O deduplication: Utilizing content
similarity to improve I/O performance. TOS, 2010.

[41] Linux. Mandatory file locking for the linux
operating system. https://www.kernel.
org/doc/Documentation/filesystems/
mandatory-locking.txt, 2007.

[42] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Wisckey: Separating keys
from values in SSD-conscious storage. ACM Transac-
tions on Storage (TOS), 13(1):5, 2017.

[43] marvell. Marvell 88ss1093 flash memory controller.
https://www.marvell.com/storage/
assets/Marvell-88SS1093-0307-2017.
pdf, 2017.

[44] Micron. Mt29f2g08aabwp/mt29f2g16aabwp NAND
flash datasheet. 2004.

[45] Micron. Mt29f256g08cjaaa/mt29f256g08cjaab NAND
flash datasheet. 2008.

[46] Micron. Mt29f1ht08emcbbj4-
37:b/mt29f1ht08emhbbj4-3r:b NAND flash datasheet.
2016.

[47] Yongseok Oh, Eunjae Lee, Choulseung Hyun, Jongmoo
Choi, Donghee Lee, and Sam H Noh. Enabling cost-
effective flash based caching with an array of commodity
ssds. In Proceedings of the 16th Annual Middleware
Conference, pages 63–74. ACM, 2015.

[48] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: software-
defined flash for web-scale internet storage systems.
ACM SIGPLAN Notices, 49(4):471–484, 2014.

[49] Seon-yeong Park, Euiseong Seo, Ji-Yong Shin, Seun-
gryoul Maeng, and Joonwon Lee. Exploiting internal
parallelism of flash-based SSDs. IEEE Computer Archi-
tecture Letters, 9(1):9–12, 2010.

134 18th USENIX Conference on File and Storage Technologies USENIX Association

http://tiny.cc/dzzdcz
http://tiny.cc/dzzdcz
http://tiny.cc/91zdcz
https://www.kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
https://www.kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
https://www.kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
https://www.marvell.com/storage/assets/Marvell-88SS1093-0307-2017.pdf
https://www.marvell.com/storage/assets/Marvell-88SS1093-0307-2017.pdf
https://www.marvell.com/storage/assets/Marvell-88SS1093-0307-2017.pdf

[50] Chris Ramseyer. Seagate SandForce SF3500 client SSD
controller detailed. http://tiny.cc/f2zdcz,
2015.

[51] Tim Schiesser. Correction: PCIe 4.0 won’t support
up to 300 watts of slot power. http://tiny.cc/
52zdcz, 2017.

[52] Windows SDK. Lockfileex function.
https://docs.microsoft.com/
en-us/windows/win32/api/fileapi/
nf-fileapi-lockfileex, 2018.

[53] Hynix Semiconductor et al. Open NAND flash interface
specification. Technical Report ONFI, 2006.

[54] Narges Shahidi, Mahmut T Kandemir, Mohammad Ar-
jomand, Chita R Das, Myoungsoo Jung, and Anand
Sivasubramaniam. Exploring the potentials of parallel
garbage collection in ssds for enterprise storage systems.
In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, pages 561–572. IEEE, 2016.

[55] Yakun Sophia Shao and David Brooks. Energy charac-
terization and instruction-level energy model of Intel’s
Xeon Phi processor. In International Symposium on
Low Power Electronics and Design (ISLPED), pages
389–394. IEEE, 2013.

[56] Mustafa M Shihab, Jie Zhang, Myoungsoo Jung, and
Mahmut Kandemir. Revenand: A fast-drift-aware re-
silient 3d nand flash design. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 15(2):1–26,
2018.

[57] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao,
Xiong-Fei Cai, Seungryoul Maeng, and Feng-Hsiung
Hsu. FTL design exploration in reconfigurable high-
performance SSD for server applications. In Proceed-
ings of the 23rd international conference on Supercom-
puting, pages 338–349. ACM, 2009.

[58] S Shin and D Shin. Power analysis for flash memory
SSD. Work-shop for Operating System Support for Non-
Volatile RAM (NVRAMOS 2010 Spring)(Jeju, Korea,
April 2010), 2010.

[59] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-
Soo Kim. Cosmos openSSD: A PCIe-based open source
SSD platform. Proc. Flash Memory Summit, 2014.

[60] Wei Tan, Liana Fong, and Yanbin Liu. Effectiveness
assessment of solid-state drive used in big data services.
In Web Services (ICWS), 2014 IEEE International Con-
ference on, pages 393–400. IEEE, 2014.

[61] Arash Tavakkol, Juan Gómez-Luna, Mohammad
Sadrosadati, Saugata Ghose, and Onur Mutlu. MQSim:
A framework for enabling realistic studies of modern
multi-queue SSD devices. In 16th USENIX Conference
on File and Storage Technologies (FAST 18), pages
49–66, 2018.

[62] Linus Torvalds. Linux kernel repo. https://
github.com/torvalds/linux, 2017.

[63] Akshat Verma, Ricardo Koller, Luis Useche, and Raju
Rangaswami. SRCMap: Energy proportional storage
using dynamic consolidation. In FAST, volume 10, pages
267–280, 2010.

[64] Shunzhuo Wang, Fei Wu, Zhonghai Lu, You Zhou, Qin
Xiong, Meng Zhang, and Changsheng Xie. Lifetime
adaptive ecc in nand flash page management. In Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pages 1253–1556. IEEE, 2017.

[65] Qingsong Wei, Bozhao Gong, Suraj Pathak, Bharadwaj
Veeravalli, LingFang Zeng, and Kanzo Okada. WAFTL:
A workload adaptive flash translation layer with data
partition. In Mass Storage Systems and Technologies
(MSST), 2011 IEEE 27th Symposium on, pages 1–12.
IEEE, 2011.

[66] Zev Weiss, Sriram Subramanian, Swaminathan Sun-
dararaman, Nisha Talagala, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. ANViL: Advanced vir-
tualization for modern non-volatile memory devices. In
FAST, pages 111–118, 2015.

[67] Matt Welsh, David Culler, and Eric Brewer. SEDA:
an architecture for well-conditioned, scalable internet
services. In ACM SIGOPS Operating Systems Review,
volume 35, pages 230–243. ACM, 2001.

[68] Norbert Werner, Guillermo Payá-Vayá, and Holger
Blume. Case study: Using the xtensa lx4 configurable
processor for hearing aid applications. Proceedings of
the ICT. OPEN, 2013.

[69] ONFI Workgroup. Open NAND flash interface specifi-
cation revision 3.0. ONFI Workgroup, Published Mar,
15:288, 2011.

[70] Guanying Wu and Xubin He. Delta-FTL: improving
SSD lifetime via exploiting content locality. In Proceed-
ings of the 7th ACM european conference on Computer
Systems, pages 253–266. ACM, 2012.

[71] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh,
Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita
Shayesteh, and Vijay Balakrishnan. Performance analy-
sis of NVMe SSDs and their implication on real world
databases. In Proceedings of the 8th ACM International
Systems and Storage Conference, page 6. ACM, 2015.

USENIX Association 18th USENIX Conference on File and Storage Technologies 135

http://tiny.cc/f2zdcz
http://tiny.cc/52zdcz
http://tiny.cc/52zdcz
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-lockfileex
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-lockfileex
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-lockfileex
https://github.com/torvalds/linux
https://github.com/torvalds/linux

[72] Jie Zhang, Gieseo Park, Mustafa M Shihab, David
Donofrio, John Shalf, and Myoungsoo Jung. Open-
NVM: An open-sourced fpga-based nvm controller for
low level memory characterization. In 2015 33rd IEEE
International Conference on Computer Design (ICCD),
pages 666–673. IEEE, 2015.

[73] Jie Zhang, Mustafa Shihab, and Myoungsoo Jung.
Power, energy, and thermal considerations in SSD-based
I/O acceleration. In HotStorage, 2014.

[74] Yiying Zhang, Gokul Soundararajan, Mark W Storer,
Lakshmi N Bairavasundaram, Sethuraman Subbiah, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.

Warming up storage-level caches with bonfire. In FAST,
pages 59–72, 2013.

[75] Da Zheng, Randal Burns, and Alexander S Szalay. To-
ward millions of file system iops on low-cost, commod-
ity hardware. In Proceedings of the international con-
ference on high performance computing, networking,
storage and analysis, page 69. ACM, 2013.

[76] You Zhou, Fei Wu, Ping Huang, Xubin He, Changsheng
Xie, and Jian Zhou. An efficient page-level FTL to opti-
mize address translation in flash memory. In Proceed-
ings of the Tenth European Conference on Computer
Systems, page 12. ACM, 2015.

136 18th USENIX Conference on File and Storage Technologies USENIX Association

A Study of SSD Reliability in Large Scale Enterprise Storage Deployments

Stathis Maneas
University of Toronto

Kaveh Mahdaviani
University of Toronto

Tim Emami
NetApp

Bianca Schroeder
University of Toronto

Abstract
This paper presents the first large-scale field study of

NAND-based SSDs in enterprise storage systems (in contrast
to drives in distributed data center storage systems). The study
is based on a very comprehensive set of field data, covering
1.4 million SSDs of a major storage vendor (NetApp). The
drives comprise three different manufacturers, 18 different
models, 12 different capacities, and all major flash technolo-
gies (SLC, cMLC, eMLC, 3D-TLC). The data allows us
to study a large number of factors that were not studied in
previous works, including the effect of firmware versions, the
reliability of TLC NAND, and correlations between drives
within a RAID system. This paper presents our analysis,
along with a number of practical implications derived from it.

1 Introduction
System reliability is arguably one of the most important
aspects of a storage system, and as such a large body
of work exists on the topic of storage device reliability.
Much of the older work is focused on hard disk drives
(HDDs) [2, 26–28], but as more data is being stored on
solid state drives (SSDs), the focus has recently shifted to
the reliability of SSDs. In addition to a large amount of
work on SSDs in lab conditions under controlled experi-
ments [3, 5–11, 13, 18–21, 31, 32, 36], more recently, the
first field studies reporting on SSD reliability in deployed
production systems have appeared [22, 23, 29, 34]. These
studies are based on data collected at data centers at Facebook,
Microsoft, Google, and Alibaba, where drives are deployed
as part of large distributed storage systems. However, we
observe that there still are a number of critical gaps in the
existing literature that this work is striving to bridge:
• There are no studies that focus on enterprise storage
systems. The drives, workloads, and reliability mechanisms
in these systems can differ significantly from those in cloud
data centers. For example, the drives used in enterprise
storage systems include high-end drives and reliability is
ensured through (single, double or triple parity) RAID,
instead of replication or distributed storage codes.

• We also observe that existing studies do not cover some of
the most important characteristics of failures that are required
for building realistic failure models, in order to compute
metrics such as the mean time to data loss. This includes, for
example, a breakdown of the reasons for drive replacements,
including the scope of the underlying problem and the
corresponding repair action (RAID reconstruction versus
draining the drive), and most importantly, an understanding
of the correlations between drives in the same RAID group.

In this paper, we work toward closing these gaps and pro-
vide the first field study of a large population of SSDs de-
ployed in NetApp’s enterprise storage systems. Our study
is based on telemetry data for a sample of the total NetApp
SSD population over a period of 30 months. Specifically,
our study’s SSD population comprises of almost 1.4 million
drives and includes drives from three different manufacturers,
18 different models, 12 different capacities, and four differ-
ent flash technologies, i.e., SLC, cMLC (consumer-class),
eMLC (enterprise-class), and 3D-TLC. The data collected
for these drives is very rich, and includes information on
drive replacements (including reasons for replacements), bad
blocks, usage, drive age, firmware versions, drive role (e.g.,
data, parity or spare), among a number of other things. This
paper presents the results from our analysis with a focus to
close the gaps in existing work.

2 Background

2.1 Description of the Systems
The basis of our study is telemetry data from a large popu-
lation of NetApp storage systems deployed in the field. The
systems, also referred to as filers, employ the WAFL file sys-
tem [17] and NetApp’s Data ONTAP operating system [24],
which uses software RAID to provide resiliency against drive
failures. The RAID subsystem can be configured to use SSDs
in a Raid-TEC [16] (triple Parity), RAID-DP [12] (double Par-
ity), or RAID-4 [25] (single Parity) configuration. The SSDs
within a RAID group are homogeneous (same manufacturer,
model, and capacity); the drives’ deployment time can vary

USENIX Association 18th USENIX Conference on File and Storage Technologies 137

(from a few months to several years), but most SSDs within
a RAID group were deployed at the same time. Systems run
on custom Fabric-Attached Storage (FAS) hardware and use
drives manufactured by other companies. They serve data
over the network using file-based protocols such as NFS and
CIFS/SMB, and/or block-based protocols, such as iSCSI.

Filers vary widely in their hardware configurations, in
terms of CPU, memory, and number of drives. They are di-
vided into two groups: one that uses SSDs as an intermediate
write-back caching layer on top of HDDs, and another con-
sisting of flash-only systems (called All Flash FAS (AFF)).

2.2 Description of the Data
The majority of all NetApp systems in the field send weekly
NetApp Active IQ® bundles (previously called AutoSupport),
which track a very large set of system and device parame-
ters, but do not contain copies of the customers’ actual data.
This information is collected and automatically analyzed for
corrective action and for detecting potential issues.

Our study is based on mining this collection of NetApp
Active IQ messages. More precisely, our data set consists of
10 snapshots, each of which is based on parsing the entire
body of NetApp Active IQ support messages at 10 different
points in time: Jan/Jun 2017, Jan/May/Aug/Dec 2018, and
Feb/Mar/April/May 2019. Each snapshot contains monitoring
data for every filer (and its drives) and consists of all those
NetApp Active IQ messages that were collected before the
end of the corresponding month. Moreover, the data set pro-
vides information on filers and their configuration, including
information on its different RAID groups and the role of a
drive within a RAID group (data, parity, or hot spare drive).

Finally, a separate data set contains an entry for each drive
that was marked as failed during the course of our study.
These drives are being replaced (typically by a hot spare) and
sent for offline testing and diagnosis. In the remainder of the
paper, we use the terms replacement and failure interchange-
ably. The data set also contains a reason type for the majority
of SSD replacements, explaining why the drive was replaced.

3 Summary Statistics
In this section, we present baseline statistics on the character-
istics of the drives in our population and summary statistics
on various reliability metrics.

3.1 Drive characteristics and usage
The first six columns in Table 1 describe the key character-
istics of the different drive families in the SSD population,
including manufacturer and model (in anonymized form),
capacity (ranging from 200GB to 15.3TB), interface (SAS
versus SATA), flash technology (SLC, cMLC, eMLC, 3D-
TLC), lithography and the model’s program-erase (PE) cycle
limit, i.e., the maximum number of PE cycles it is rated for
(ranging from 10K to 100K). Each drive family contains a
few thousand to hundred thousand SSDs. Finally, as shown in

Table 1, the population spans a large number of configurations
that have been common in practice over the last years.

The next four columns in the table present some summary
statistics on how the different drive models have been used,
including the over-provisioning (OP) factor (i.e., what fraction
of the drive is reserved as spare capacity mostly to enable
drive-internal garbage collection), the date when the first
drive of this model was deployed, the median number of
years drives have been powered on, and the mean and median
fraction of the drives’ rated life that has been used (i.e., the
number of PE cycles the drive has experienced as a percentage
of its PE cycle limit, as reported by the drive).

3.2 Health metrics
The last three columns in Table 1 provide statistics on three
different drive health and reliability metrics. Specifically:
• Percentage of Spare Blocks Consumed: Each drive reserves
an area (which is equal to 2.5% of the total drive capacity
for the SSDs in this study) for remapping the contents of
blocks that the drive internally declares as bad, e.g., due to
an excessive error count. The Percentage of Spare Blocks
Consumed metric reports what percentage of this area has
been consumed (population mean and median).
• Number of Bad Sectors: Data ONTAP keeps track of a
drive’s defect list, known as g-list. This list is populated
with a new entry every time the operating system receives
an unrecoverable error for a block. The mean and median
length of this list are reported as the Number of Bad Sectors.
• Annual Replacement Rate (ARR): We make use of the
common Annual Replacement Rate metric, defined as number
of device failures divided by numbers of device years.

3.3 High-level observations
Below, we make a number of first observations based on
Table 1, before we delve into a more detailed analysis of our
data set in the remainder of this paper:
• The average ARR across the entire population is 0.22%, but
rates vary widely depending on the drive model, from as little
as 0.07% to nearly 1.2%. These numbers are significantly
lower than numbers previously reported for data center drives.
For example, even the worst model in our study (ARR of
1.2%) is at the low end of the range reported for SSDs in
Google’s data centers (range of 1-2.5% [29]). The rates are
also significantly lower than common numbers reported for
hard disk drives (i.e., 2-9% [26, 28]).
• Even for drive models that are very similar in their technical
specifications (e.g., same manufacturer, flash technology,
capacity, age), ARR can vary dramatically, e.g., 0.53% for
II-G 15TB drives versus 1.13% for II-C 15.3TB drives.
• The spare area reserved for bad blocks is generously
provisioned for the typical drive: even for drives that have
been in the field for several years, the percentage of consumed
spare blocks is on average less than 15%. Even the drives in
the 99th and 99.9th percentile of consumed spare blocks have

138 18th USENIX Conference on File and Storage Technologies USENIX Association

Drive characteristics Usage characteristics Reliability metrics
Manu-
fact./
Model

Cap.
(GB)

Inter-
face

Flash
Tech.

Lith. PE
Cycl.

OP First
Deploy-
ment

Drive
Power
Years

Rated Life
Used (%)

% of Sp.
Blocks
Cons.

Number
of Bad
Sectors

ARR
(%) (all)

I - A 200 SAS eMLC 2xnm 10K 28% Apr ’14 3.95 1.26 / 0 1.36 / 1 0.58 / 0 0.19
400 Apr ’14 3.93 0.52 / 0 1.54 / 1 2.96 / 0 0.16
800 Mar ’14 3.19 0.07 / 0 1.22 / 1 3.39 / 0 0.15
1600 Mar ’14 3.74 0.01 / 0 1.46 / 1 6.2 / 0 0.21

I - B 400 SAS eMLC 1xnm 10K 28% Dec ’15 2.69 3.99 / 3 2.49 / 2 0.9 / 0 0.14
800 Jan ’16 2.58 1.87 / 2 3.7 / 4 4.62 / 0 0.17
1600 Jan ’16 2.55 1.68 / 2 3.55 / 3 6.01 / 0 0.23

I - C 400 SAS eMLC 1xnm 10K 28% Jan ’17 1.7 7.48 / 7 1.83 / 2 1.86 / 0 0.12
800 Jan ’17 1.45 6.01 / 6 4.21 / 4 5.58 / 0 0.27
1600 Mar ’17 1.53 5.62 / 5 4.19 / 4 6.41 / 0 0.09
3800 Jan ’17 1.12 5.15 / 4 9.86 / 10 14.97 / 0 0.59

I - D 3800 SAS eMLC 1xnm 10K 28% Jul ’17 1.01 4.01 / 3 10.01 / 10 12.34 / 0 0.23
II - A 3840 SAS 3D-TLC V2 10K 7% Dec ’15 2.57 0.09 / 0 11.88 / 12 0.03 / 0 0.31
II - B 3800 SAS 3D-TLC V2 10K 7% Oct ’16 1.77 0.01 / 0 12.01 / 12 0.36 / 0 0.13
II - C 8000 SAS 3D-TLC V3 10K 7% Sep ’17 1.06 0.01 / 0 12.38 / 12 0.03 / 0 0.69

15300 Sep ’16 1.21 0.06 / 0 13.13 / 13 1.35 / 0 1.13
II - D 960 SAS 3D-TLC V3 10K 7% Oct ’16 1.54 0.06 / 0 16.05 / 15 0.03 / 0 0.12

3800 Oct ’16 1.8 0.01 / 0 12 0.34 / 0 0.11
II - E 400 SAS 3D-TLC V3 10K 28% Dec ’16 2.12 0.59 / 0 19.19 / 15 0.01 / 0 0.09

800 28% Jan ’17 1.7 0.08 / 0 15.33 / 15 0 / 0 0.10
3800 7% Dec ’16 2.02 0.05 / 0 12 / 12 0.26 / 0 0.13

II - F 400 SAS 3D-TLC V2 10K 28% Jan ’16 2.52 0.86 / 0 12.31 / 12 0.01 / 0 0.48
800 Feb ’16 2.55 0.19 / 0 12.19 / 12 0.01 / 0 0.36
1600 Jan ’16 2.87 0.09 / 0 11.66 / 12 0.15 / 0 0.52

II - G 800 SAS 3D-TLC V2 10K 28% Apr ’18 0.38 0.03 / 0 0 / 0 0 / 0 0.18
960 Jan ’18 0.5 0.11 / 0 0 / 0 0.03 / 0 0.18
3800 Jan ’18 2.89 0.09 / 0 11.64 / 12 0.15 / 0 0.28
8000 May ’18 0.45 0 / 0 0 / 0 0.25 / 0 0.37
15000 May ’18 0.46 0 / 0 0 / 0 0 / 0 0.53

II - H 800 SAS cMLC 1xnm 10K 28% Nov ’14 3.61 1.34 / 0 7.49 / 7 1.36 / 0 0.10
II - I 200 SAS eMLC 2xnm 30K 28% Aug ’09 4.83 5.24 / 2 6.7 / 6 0.31 / 0 0.07

400 Dec ’10 3.86 2.2 / 0 8.09 / 8 0.29 / 0 0.07
800 Dec ’10 4.66 0.69 / 0 6.94 / 7 4.53 / 0 0.11

II - J 400 SAS eMLC 1xnm 10K 28% May ’15 3.37 2.32 / 0 6.9 / 7 0.08 / 0 0.18
800 Jul ’15 3.21 0.41 / 0 6.77 / 7 0.36 / 0 0.21
1600 Jun ’15 3.36 0.13 / 0 8.59 / 9 0.49 / 0 0.38

II - K 100 SATA SLC 4xnm 100K 28% Apr ’12 0.43 1.4 / 1 3.78 / 4 3.62 / 0 0.14
II - L 100 SATA SLC 3xnm 100K 28% May ’10 5.97 2.05 / 1 3.73 / 4 0.51 / 0 0.06
II - M 100 SATA SLC 5xnm 100K 28% Jul ’10 4.23 1.63 / 1 14.82 / 13 0.18 / 0 0.11
III - A 200 SAS eMLC 2xnm 30K 28% Dec ’12 5.89 3.08 / 1 0.02 / 0 6.18 / 0 0.07

Table 1: Summary statistics describing our population of drives. Whenever a column includes two values (separated by “/”),
these correspond to the mean and median values of that population, respectively.

consumed only 17% and 33% of their spare blocks.
• The typical drive remains far from ever reaching its PE
cycle limit. Even for models where most drives have been
in the field for 2-3 years, less than two percent of the rated
life is consumed on average. Even the drives in the 99th
and 99.9th percentile of rated life used have consumed only
15% and 33% of their rated life, respectively. Hence, for
the vast majority of drives, early death due to wear-out after
prematurely reaching the PE cycle limit is unlikely.

4 Reasons for replacements
There are different reasons that can trigger the replacement of
an SSD and also different sub-systems in the storage hierarchy
which can detect issues that trigger the replacement of drives.
For example, issues might be reported by the drive itself, the

storage layer, or the file system. Table 2 describes the differ-
ent reason types that can trigger a drive replacement, along
with their frequency, the recovery action taken by the system
(i.e., copying out data from the drive to be replaced versus
reconstructing the data using RAID parities), and the scope
of the problem (i.e., risk of partial data loss, risk of complete
drive loss, or no immediate problems). In our data set, the
reason type is missing for 40% of all replacement events due
to issues with the data collection pipeline. These issues are
not related to the actual reason for the replacements. Hence,
we can assume replacements with a missing reason type to be
proportionately spread over the remaining categories. There-
fore, the frequency of each replacement type is normalized to
account for the missing data. We group the different reason
types behind SSD replacements into four categories, labelled

USENIX Association 18th USENIX Conference on File and Storage Technologies 139

Cate-
gory

Type Pct. ARR
(%)

Description Recovery
Action

Scope

A

SCSI Error 32.78% 0.055 The SCSI layer detects a hardware error reported by the SSD, that is severe
enough that immediate replacement of the drive and reconstruction of the data
is triggered. For example, these errors could be due to ECC errors originating
from the drive’s DRAM that prevent it from functioning properly.

RAID
Reconstr. Full

Unresponsive
Drive

0.60% 0.001 The drive has completely failed and become unresponsive.

B Lost Writes 13.54% 0.023 A lost write is detected when the contents of a 4K WAFL block (read from
the SSD) are inconsistent based on its signature, which includes attributes
and version number. Since there are many potential causes with the same
symptom, a heuristic is used to decide whether to fail the disk or not. If
multiple such errors occur within one SSD and no errors within any other
SSD, then the former SSD is marked as failed.

RAID
Reconstr.

Partial

Aborted
Commands

13.56% 0.023 This error is generated due to an aborted command and is reported either by
the SSD itself or the Storage Layer. For instance, this error can occur when
the host sends some write commands to the device, but the actual data never
reach the device due to an issue on the host or due to connection issues.

C

Disk Ownership
I/O Errors

3.27% 0.005 This error is related to the sub-system responsible that keeps track of which
node owns a disk. In case an error occurs during the communication with
this sub-system, then the SSD is immediately marked as failed.

RAID
Reconstr. Partial

Command
Timeouts

1.81% 0.003 SSDs internally keep track of timers and also the Storage Layer maintains its
own timers for every command sent to each SSD. This error indicates that the
operation could not be completed within the allotted time even after retries.

Predictive
Failures

12.78% 0.021 The SSD reports this error based on a pattern of recovered errors that have
occurred internally using its own thresholds and criteria, as specified by the
corresponding manufacturer.

D
Threshold
Exceeded

12.73% 0.020 The Storage Health Monitor sub-system keeps track of different parameters
for each SSD and in case a threshold (e.g., on the number of media errors) is
exceeded, the SSD is proactively replaced.

Disk Copy Zero

Recommended
Failures

8.93% 0.015 This error is reported by the system and indicates that the drive should be
replaced in the near future. This failure type is less strict and less urgent than
Threshold Exceeded failures.

Table 2: Description of reason types that can trigger a drive replacement. Disk copy operations are performed only where
possible, i.e., a spare disk must be available; otherwise, the data of the replaced drive is constructed via RAID reconstruction.

from A to D, based on their severity.
The most benign1 category is category D, which relates to

replacements that were triggered by logic either inside the
drive or at higher levels in the system, which predicts future
drive failure, for example based on previous errors, timeouts,
and a drive’s SMART statistics [33].

The most severe category is category A, which comprises
those situations where drives become completely unrespon-
sive, or where the SCSI layer detects a drive problem severe
enough to trigger immediate replacement of the drive and
RAID reconstruction of the data stored in it.

Category B refers to drive replacements that are taking
place when the system suspects the drive to have lost a write,
e.g., because it did not perform the write at all, wrote it to a
wrong location, or otherwise corrupted the write. The root
cause could be a firmware bug in the drive, although other
layers in the storage stack could be responsible as well. As
there are many potential causes, a heuristic is used to decide
whether to trigger a replacement or not; specifically, if mul-
tiple such errors occur within one SSD and no errors within
any other SSD, then the former SSD will be replaced.

Finally, in category C most of its reasons for replacements
are related to commands that were aborted or timed out.

1We call them “benign” as the drive was still operational before getting
replaced. Also, recovery is minimal (disk copy versus RAID reconstruction).

When examining the frequency at which individual replace-
ment reason types are reported, we observe that the single
most common reason type are SCSI errors, which are respon-
sible for ∼33% of all replacements and are unfortunately also
one of the most severe reason types. The other severe rea-
son for drive replacements, i.e., a drive becoming completely
unresponsive, is reported for only 0.60% of all replacements.

Fortunately, one third of all drive replacements are merely
preventative (category D) using predictions of future drive fail-
ures and are hence unlikely to have severe impact on system
reliability. A detailed investigation of predictive replacements
(not covered in the table due to space reasons) reveals that the
most common trigger behind a preventative replacement is
exceeding the threshold of consecutive timeouts.

The two remaining categories are roughly equally com-
mon and both have the potential of partial data loss if RAID
reconstruction of the affected data should turn out unsuccess-
ful. The first category (C) refers to aborted and timed out
commands, and makes up ∼19% of all reason types. The
other category (B) refers to lost writes. This is an interesting
category, since it is somewhat less clear whether it is the drive
or other layers in the stack that are to blame for the lost write.

We will come back to the different reason types for replace-
ments at various places in the remainder of the paper, when
we will, for example, consider how the frequency of different

140 18th USENIX Conference on File and Storage Technologies USENIX Association

reason types behind replacements varies depending on drive
capacity, lithography, age, or firmware version.

Finding 1: One third of replacements are associated with
one of the most severe reason types (i.e., SCSI errors), but on
the other hand, one third of drive replacements are merely
preventative based on predictions.

5 Factors impacting replacement rates
In this section, we evaluate how different factors impact the
annual replacement rate of the SSDs in our data set. We con-
duct our analysis on eMLC and 3D-TLC SSDs, and exclude
cMLC and SLC drives due to insufficient data.

5.1 Usage and Age
Usage, and the wear-out of flash cells that comes with it, is
well known to affect the reliability of flash-based SSDs; drives
are guaranteed to remain functional for only a certain number
of PE cycles. In our data set, SLC drives have a PE cycles
limit of 100K, whereas the limit of most cMLC, eMLC, and
3D-TLC drives is equal to 10K cycles, with the exception of
a few eMLC drive families with a 30K PE cycles limit.

Each drive reports the number of PE cycles it has experi-
enced as a percentage of its PE cycle limit (the “rated life
used” metric, recall Section 3.1), allowing us to study how
usage affects replacement rates. Unfortunately, the rated life
used is only reported as a truncated integer and a significant
fraction of drives report a zero for this metric, indicating less
than 1% of their rated life has been used. Therefore, our first
step is a comparison of the ARR of drives that report less
than 1% versus more than 1% of their rated life used. The
results for eMLC and 3D-TLC drives are shown in Figure 1,
which includes both overall replacement rates (“All”), and
rates broken down by their replacement category (A to D).
Throughout our paper, error bars refer to 95th percentile con-
fidence intervals and we exclude two outlier models, i.e., II-C
and I-C, with unusually high replacement rates to not obscure
trends (except for graphs involving individual drive families).

We also perform statistical tests and calculate p-values
to confirm our hypotheses (where applicable). For each test
case, we perform a two-sample z-test [1]. Since our analysis is
based on replacement rates, we need to calculate and compare
the replacement rates of the two groups in each test. For each
group, we create 1,000 random samples of replacement rates;
in each sample, the replacement rate is measured based on a
randomly chosen set of 1,000 SSDs from the corresponding
group. Finally, we perform a z-test on the two sets of samples
and report the calculated p-value associated with the test.

Figure 1 provides evidence for effects of infant mortality.
For example, for eMLC drives, the drives with less than 1%
rated life used are more likely (1.25X) to be replaced than
those with more than 1% of rated life used (the estimated
mean replacement rates of the two populations are 0.168
and 0.126 respectively, whereas the corresponding p-value is
equal to 6.3211e-45). When further breaking results down by

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

A B C D ALL
Replacement Category

A
n

n
u

a
l R

e
p

la
ce

m
e

n
t

R
a

te
 (

%
)

RLUsed

< 1%
≥ 1%

(a) 3D-TLC Drives.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

A B C D ALL
Replacement Category

A
n

n
u

a
l R

e
p

la
ce

m
e

n
t

R
a

te
 (

%
)

RLUsed

< 1%
≥ 1%

(b) eMLC Drives.

Figure 1: Annual replacement rate per flash type based on
the drives’ “rated-life-used” percentage.

reason category, we find that drives with less usage consis-
tently experience higher replacement rates for all categories.
Making conclusive claims for the 3D-TLC drives is harder
due to limited data on drives above 1% of rated life used,
resulting in wide confidence intervals. However, where we
have enough data, observations are similar to those for eMLC
drives, e.g., we see a significant drop in lost writes for drives
above 1% of rated life used.

We also looked separately at drives that are extensively
used (more than 50% of their PE cycles) and their typical
reasons for replacement. We see the trend of decreasing rates
of lost writes continues here, as we don’t observe a single
case related to lost writes among these drives. One possible
explanation is that lost writes might be related to firmware
bugs, and as firmware gets updated to improved versions over
the course of a drive’s life, rate of lost writes drops. We take
a closer look at firmware versions in Section 5.5. It’s also
possible that issues leading to lost writes typically become
evident early in a drive’s life and the drive gets replaced before
it makes it to more than 1% or 50% of its rated life.

Another interesting observation is that the heavily used
drives are more likely to be replaced due to predictive failures
compared to the overall population. This could mean that is-
sues leading to predictive failures are only exposed after some
significant usage (e.g., hardware problems that cause media
errors and bad blocks, which then trigger failure prediction,
require thoroughly exercising the NAND). Alternatively, it
could mean that after more drive usage more data is available
on the drive’s health status, which improves predictions.

We also look at replacement rates as function of a drive’s
age measured by its total months in the field. Figure 2 (top)
shows the conditional probability of a drive being replaced
in a given month of its life. i.e., the probability that the drive
will fail in month x given that it has survived month x-1.

We observe an unexpectedly long period of infant mortality
with a shape that differs from the common “bathtub” model
often used in reliability theory. The bathtub model assumes a
short initial period of high failure rates, which then quickly

USENIX Association 18th USENIX Conference on File and Storage Technologies 141

drops [14, 15, 28, 35]. Instead, we observe for both 3D-TLC
and eMLC drives, a long period (12–15 months) of increasing
failure rates, followed by a lengthy period (another 6–12
months) of slowly decreasing failure rates, before rates finally
stabilize. That means that, given typical drive lifetimes of 5
years, drives spend 20-40% of their life in infant mortality.

We wondered whether these unexpected results might just
be an artifact of our heterogeneous population, since each line
in Figure 2 (top) is computed over a population comprising
different drive families with different drive ages and charac-
teristics. We therefore plotted in Figure 2 (bottom) the same
probabilities, but this time only over a subset of drive families
with similar characteristics (e.g., age and lithography). Again,
we observe the same trends, and in fact in some aspects even
slightly more pronounced: the duration of the two phases is
similar in length and for 3D-TLC drives, the ratio of the peak
failure rate to the lowest rate is even larger (a factor of 2.5X).

It might be surprising at first that we do not observe an
increase in ARR for drives towards the end of their life. The
reason is that the majority of drives, even those deployed for
several years, do not experience a large number of PE cycles.
Their fraction even in the population of older drives is too
small to drive up the overall ARR.

Finding 2: We observe a very drawn-out period of infant
mortality, which can last more than a year and see failure
rates 2-3X larger than later in life.

5.2 Flash and drive type
The drive models in our study differ in the type of flash they
are based on, i.e., in how many bits are encoded in a single
flash cell. For instance, Single Level Cell (SLC) drives encode
only one bit per cell, while Multi-Level Cell (MLC) drives
encode two bits in one cell for higher data density and thus
a lower total cost, but potentially higher propensity to errors.
The most recent generation of flash is based on Triple Level
Cell (3D-TLC) flash with three bits per cell.

The last column in Table 1 allows a comparison of ARRs
across flash types. A cursory study of the numbers indicates
generally higher replacement rates for 3D-TLC devices com-
pared to the other flash types. Also, we observe that 3D-TLC
drives have consumed 10-15X more of their spare blocks.

For a more nuanced comparison between 3D-TLC and
eMLC we turn to Figures 1 and 4, which also take usage
and lithography into account. Figure 1 indicates that ARRs
for 3D-TLC drives are around 1.5X higher than for eMLC
drives, when comparing similar levels of usage. Figure 4
paints a more complex picture. While V2 3D-TLC drives
have a significantly higher replacement rate than any of the
other groups, the V3 3D-TLC drives are actually comparable
to 2xnm eMLC drives, and in fact have lower ARR than the
1xnm eMLC drives. So, lithography might play a larger role
than flash type alone (we take a closer look at in Section 5.4).

We are also interested in differences between the enterprise-
class eMLC drives and consumer-class cMLC drives. Unfor-

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Number of months in the field

C
o
n
d
it
io

n
a
l
P

ro
b
a
b
ili

ty
 (

%
)

o
f
fa

ilu
re

 i
n
 m

o
n
th

 x

3D−TLC eMLC

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Number of months in the field

C
o
n
d
it
io

n
a
l
P

ro
b
a
b
ili

ty
 (

%
)

o
f
fa

ilu
re

 i
n
 m

o
n
th

 x

3D−TLC eMLC

Figure 2: Conditional probability of failure based on a drive’s
age (number of months in the field) for all drive families (top)
and a subset of them (bottom), i.e., II-A, II-B, and II-F for
3D-TLC drives and I-B, I-C, I-D, and II-J for eMLC drives.

tunately our data set contains only one family of cMLC drives
(II-H). Interestingly, we find that this one family of cMLC
drives reports much lower replacement rates than eMLC fami-
lies of similar age and capacity (i.e., II-H drives vs II-J drives).
Narayanan et al. [23] report replacement rates between 0.5-
1% for their consumer class MLC drives, with the exception
of a single enterprise class model, whose replacement rate
is equal to 0.1%; however, the authors in [23] consider only
fail-stop failures. In our study, we consider different types of
failures and thus, the reported replacement rates would have
been even smaller had we considered only fail-stop failures.

Finally, we observe that SLC models are not generally
more reliable than eMLC models that are comparable in age
and capacity. For example, when we look at the ARR col-
umn of Table 1, we observe that SLC models have similar
replacement rates to two eMLC models with comparable ca-
pacities, i.e., II-I and III-A drives (their difference is small
but still statistically significant, i.e., the estimated mean re-
placement rates of the two populations are 0.112 and 0.091
respectively, with a p-value equal to 5.0841e-22). This is
consistent with the results in a field study based on drives in
Google’s data centers [29], which does not find SLC drives to
have consistently lower replacement rates than MLC drives
either. Considering that the lithography between SLC and
MLC drives can be identical, their main difference is the way
cells are programmed internally, suggesting that controller
reliability can be a dominant factor.

Finding 3: Overall, the highest replacement rates in our
study are associated with 3D-TLC SSDs. However, no single
flash type has noticeably higher replacement rates than the

142 18th USENIX Conference on File and Storage Technologies USENIX Association

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

I−
A

I−
B

I−
C

II−
C

II−
D

II−
E

II−
F

II−
I

II−
J

Drive Family

A
n

n
u

a
l R

e
p

la
ce

m
e

n
t

R
a

te
 (

%
)

Capacity

200

400

800

960

1600

3800

8000

15300

(a) 3D-TLC/eMLC Drives.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A B C D
Replacement Category

A
n

n
u

a
l R

e
p

la
ce

m
e

n
t

R
a

te
 (

%
)

Capacity

400

800

960

1600

3800|40

8000

15000

(b) 3D-TLC Drives.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

A B C D
Replacement Category

A
n

n
u

a
l R

e
p

la
ce

m
e

n
t

R
a

te
 (

%
)

Capacity

200

400

800

1600

3800|40

(c) eMLC Drives.

Figure 3: Figure 3a shows the annual replacement rates for the drive families shipped with multiple capacities. Figures 3b
and 3c show replacement rates for different capacities broken down by their replacement category, for 3D-TLC drives and eMLC
drives, respectively. In these figures, the 3800GB and 3840GB capacities have been consolidated.

other flash types studied in this work, indicating that other
factors, such as capacity or lithography, can have a bigger
impact on reliability.

5.3 Capacity
The drives in our data set range in capacity from 100GB to
15.3TB and most drive families include drives of different
capacities, which allows us to study the effect of drive capacity
on replacement rates. One would expect the rate of failures
that are due to underlying hardware issues (such as failure of
NAND cells or DRAM) would grow with capacity. On the
other hand, failures that are related to firmware bugs are not
likely to be strongly correlated with capacity (all else being
equal). In the remainder of this section, we test our hypothesis
of NAND related problems increasing with capacity.

First, we turn to the reported numbers on bad sectors in
Table 1. We observe that consistently within each drive family,
the total number of bad sectors continuously increases with
capacity. For example, for model I-C, the average number of
bad sectors per drive is growing from 1.9 to 5.6 to 6.4 to 14.97
for capacities of 400, 800, 1600 and 3800 GB, respectively.
Moreover, the percentage of drives with a non-zero count of
bad blocks continuously increases with capacity.

Figure 3a explores how overall ARRs change with capacity
by plotting the ARR of different drive families, broken down
by capacity. We make a slightly more nuanced observation
for ARR, compared to the bad sector count. For smaller
capacities, in the range of 200 to 1600 GB, the ARR shows
no clear relationship with capacity. It might be that for these
smaller capacities replacements are dominated by reasons
other than issues with the underlying NAND. The trend starts
to change around 1600GB, as for four out of the five families
that have 1600GB drives, those drives have the highest ARR.
And for larger capacities, there is a clear trend for increasing
ARRs. The 15TB drives always have higher ARR than the
other drives in the same family. The 3800GB and 8000GB

drives always have higher ARR than the drives less than
3800GB within the same family.

We also looked for differences in the reasons for replace-
ment between smaller and larger capacity drives and made
an interesting observation: for the largest capacity drives,
the rate of predictive failures is lower than for smaller capac-
ity drives. In contrast, the most severe failure reason, i.e.,
an unresponsive drive, occurs at a much higher rate for the
larger capacity drives than for the smaller capacity drives. Fig-
ures 3b and 3c illustrate this observation, as they break down
the ARR by capacity and replacement category for different
flash technologies. Among the eMLC drives, the 3800GB
and 3840GB capacities and among the 3D-TLC drives, the
8TB and 15TB capacities have very high rates of replacement
due to an unresponsive drive, compared to smaller capac-
ities. They also have a lower rate of replacements due to
predictive failures. This means that the replacement rate asso-
ciated with high capacity drives is not only bigger, but also
has potentially more severe consequences. Another potential
implication is that failures of large capacity drives are either
harder to predict or the prediction algorithms have not been
optimized for them. It may be possible that the severe fail-
ures and unpredictability of such failures is an artifact of the
larger DRAM footprint associated with large flash capacity,
rather than the flash capacity itself. Potential for such impact
could be mitigated by upcoming architectures such as Zoned
Storage (ZNS) [4, 30] that obviate the need for large Flash
Translation Layer (FTL) tables in DRAM and consequently
reducing the DRAM footprint.

Finding 4: Drives with very large capacities not only see
a higher replacement rate overall, but also see more severe
failures and fewer of the (more benign) predictive failures.

5.4 Lithography
Lithography has been shown to be highly correlated with a
drive’s raw bit error rate (RBER); models with smaller lithog-

USENIX Association 18th USENIX Conference on File and Storage Technologies 143

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

A B C D ALL
Replacement Category

A
n
n
u
a
l
R

e
p
la

c
e
m

e
n
t
R

a
te

 (
%

) Lithography

V2

V3

(a) 3D-TLC Drives.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

A B C D ALL
Replacement Category

A
n
n
u
a
l
R

e
p
la

c
e
m

e
n
t
R

a
te

 (
%

) Lithography

2xnm

1xnm

(b) eMLC Drives.

Figure 4: Annual replacement rate per flash type and lithog-
raphy broken down by replacement category.

raphy report higher RBERs according to a study based on
data center drives [29], but not necessarily higher replace-
ment rates. We explore what these trends look like for the
drives in enterprise storage systems. To separate the effect
of lithography from flash type (i.e., SLC, cMLC, eMLC, 3D-
TLC), we perform the analysis separately for each flash type.

The bar graph in Figure 4 (right) shows the ARR for eMLC
drives separated into 2xnm and 1xnm lithographies broken
down by failure category, also including one bar for replace-
ments of all categories. We observe that the higher density
1xnm drives experience almost twice the replacement rate
of 2xnm drives (the p-value is equal to 4.2365e-120). Also,
replacement rates for each of the individual reason categories
are higher for 1xnm drives than for 2xnm, with the only excep-
tion of reason category A, which corresponds to unresponsive
drives. Finally, we also observe that the 1xnm drives also have,
on average, consumed a larger percentage of spare blocks (an
indicator of developing bad blocks) and developed a larger
number of bad sectors, despite the fact that they are generally
younger than the 2xnm drives.

In contrast to eMLC drives, the 3D-TLC drives see higher
replacement rates for the lower density V2 drives, which in-
ternally have fewer layers than V3 (the corresponding z-test
returns a p-value equal to 2.7624e-275). When breaking re-
placement rates down by reason category, we observe that
consistently with the results for eMLC drives, the only cate-
gory that is not affected by lithography is category A, which
corresponds to unresponsive drives. Regarding the percent-
age of spare blocks consumed, we observe comparable values
between V2 and V3 drives (if we exclude the II-G family,
which is much younger than the others).

Finally, for SLC drives, we do not see a clear trend for
replacement rates as a function of lithography; however, we
also have limited data, with only one drive model in each
lithography for SLC drives.

Finding 5: In contrast to previous work, higher density
drives do not always see higher replacement rates. In fact,
we observe that, although higher density eMLC drives have
higher replacement rates, this trend is reversed for 3D-TLC.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

I−A I−B II−A II−B II−C II−D II−F II−H II−I II−J
Drive Family

A
nn

ua
l R

ep
la

ce
m

en
t R

at
e

(%
)

Firmware Version

FV1 FV2 FV3 FV4 FV5

Figure 5: Annual replacement rates per firmware version.

5.5 Firmware Version
Given that bugs in a drive’s firmware can lead to drive errors
or in the worst case to an unresponsive drive, we are interested
to see whether different firmware versions are associated with
a different ARR. Each drive model/family in our study expe-
riences different firmware versions over time. We name the
first firmware version of a model FV1, the next one FV2, and
so on. An individual drive’s firmware might be updated to a
new version, but we observe that the majority of drives (70%)
appear under the same firmware version in all data snapshots.

Figure 5 shows the ARR associated with different firmware
versions for each drive model. Considering that firmware
varies across drive families and manufacturers, it only makes
sense to compare the ARR of different firmware versions
within the same drive family. To avoid other confounding fac-
tors, in particular age and usage, the graph in the figure only
includes drives with rated life used of less than 1% (the ma-
jority of drives). We have also analyzed the data in different
ways, for example by including only drives that appear consis-
tently under the same firmware version in all data snapshots,
observing similar results.

We find that drive’s firmware version can have a tremen-
dous impact on reliability. In particular, the earliest versions
can have an order of magnitude higher ARR than later ver-
sions. This effect is most notable for families I-B (more than
factor 2X decrease in ARR from FV1 to FV2), II-A (factor
8X decrease from FV2 to FV3) and II-F (more than 10X de-
crease from FV2 to FV3). The corresponding z-tests return
extremely small p-values and thus, confirm our results.

We note that the effect where earlier firmware versions
have higher replacement rates persists even if we only include
drives whose firmware has never changed in our data snap-
shots, e.g., we compare drives that spend their entire lives in
FV1 and compare them to drives who only saw FV2. This pro-
vides confirmation that the effect is actually due to firmware
versions, and not due to infant mortality, where the earlier
version is used at an earlier time of a drive’s life and the later
version during a later point in life.

A likely explanation is that later firmware versions include
bug fixes and improvements over earlier versions. This expla-

144 18th USENIX Conference on File and Storage Technologies USENIX Association

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

I−
A

I−
C

I−
D

II−
D

II−
H

II−
I

II−
J

II−
L

A
LL

Drive Family

A
n

n
u

a
l
R

e
p

la
c
e

m
e

n
t

R
a

te
 (

%
)

Bad Sectors (Defect List) = 0 > 0

(a) Breakdown by drive family.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A B C D ABC
Replacement Category

A
n

n
u

a
l
R

e
p

la
c
e

m
e

n
t

R
a

te
 (

%
)

Bad Sectors (Defect List) 0 > 0

(b) 3D-TLC Drives.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A B C D ABC
Replacement Category

A
n

n
u

a
l
R

e
p

la
c
e

m
e

n
t

R
a

te
 (

%
)

Bad Sectors (Defect List) 0 > 0

(c) eMLC Drives.

Figure 6: Annual replacement rates per flash type based on the drives’ bad sectors count. Figure 6a breaks results down by drive
family and Figures 6b and 6c by replacement category.

nation is further supported by our observation that the failures
that decrease the most when moving from FV1 to later ver-
sions (e.g., for the two families with the highest decrease
in ARR, II-A and II-F) are failures in categories B and C
(lost writes and timeouts), both of which could be caused by
firmware problems.

Interestingly, we also observe cases where the ARR in-
creases with increasing version numbers, albeit not as fre-
quently. One example is family II-J, where FV5 has a signifi-
cantly higher ARR than FV2 or FV4. The difference between
FV2 and FV5 is more than factor of 10X when considering
only drives that do not change firmware version (graph omit-
ted for lack of space). One possible explanation is that as the
firmware code base evolves, it becomes more complex and
the new code also introduces new bugs.

Finding 6: Earlier firmware versions can be correlated
with significantly higher replacement rates, emphasizing the
importance of firmware updates.

5.6 All Flash FAS (AFF) Systems
We also looked at whether a drive’s type of usage, i.e., either
as part of an AFF system or as part of a caching layer, affects
its replacement rate. We find no indication that within a drive
family, replacement rates vary as a function of type of usage.

5.7 Device Role
We also studied whether drives within a RAID group have
different replacement rates, depending on their role in the
RAID group (i.e., data and parity), but found no indication
of statistically significant differences. This might indicate
that WAFL is effective at balancing load across drives and
minimizing the number of parity updates.

5.8 Over-provisioning
We also looked at the amount of over-provisioning (OP) as
a factor, but find no clear correlation between the amount of
over-provisioned space and ARR. One reason might be that
the typical drive in our population is far from reaching its en-

durance limit. Therefore, the potential endurance-increasing
effects of over-provisioning do not become relevant.

5.9 Number of bad blocks
In this section, we are exploring the relationship between
a drive developing bad blocks and replacement rates. We
consider two different metrics associated with bad blocks.

The first metric is the length of the g-list, also referred to as
defect list, which is maintained by Data ONTAP and contains
an entry for every block generated an unrecoverable error
upon access. Since the g-list is empty for a large fraction
of drives (99.04%), we distinguish between drives with an
empty and a non-empty g-list, and plot their ARR separately.
Figure 6a shows the results broken down by drive family.

We observe that drives that have experienced at least one
unrecoverable error (i.e., they have a non-empty g-list) have
significantly higher replacement rates. Part of this observa-
tion might just be an artifact of predictive drive replacements
(category D), as predictions might be based on the length of
the g-list. We therefore plot in Figures 6b and 6c the same
rates, but broken down by replacement category.

Not surprisingly, we see that there is a strong correlation
between a non-empty g-list and predictive failures (category
D); however, the more interesting observation is that also
for the other replacement reasons, there is a correlation be-
tween having a non-empty g-list and the drive being replaced.
That means developing unrecoverable errors is indicative of a
variety of future issues a drive might develop.

The second factor we consider is the number of consumed
spare blocks inside each individual SSD. While we omit full
results due to lack of space, we note that again we observe
similar correlations.

Finding 7: SSDs with a non-empty defect list have a higher
chance of getting replaced, not only due to predictive failures,
but also due to other replacement reasons as well.

Finding 8: SSDs that make greater use of their over-
provisioned space are quite likely to be replaced in the future.

USENIX Association 18th USENIX Conference on File and Storage Technologies 145

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

Time Difference (in Days)

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Median

Average

Figure 7: Time difference between
successive replacements within RAID
groups.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

3 4 5 10 11 12 16 18 19 21 22 23 24

RAID Group Size

%
 o

f
R

A
ID

 G
ro

u
p
s

(a) RAID groups that experience at
least 1 replacement.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3 4 5 10 11 12 16 18 19 21 22 23 24

RAID Group Size

%
 o

f
R

A
ID

 G
ro

u
p
s

(b) RAID groups that experience
multiple replacements.

0

1

2

3

4

5

6

7

8

9

3 5 10 11 12 16 18 21 23 24

RAID Group Size

%
 o

f
R

A
ID

 G
ro

u
p
s

(c) RAID groups with replacement
that experience at least 1 follow-up
replacement (within 1 week).

Figure 8: Statistics on replacements within RAID groups.

6 Correlations between drive failures
A key question when deriving reliability estimates, e.g., for
different RAID configurations, is how failures of drives within
the same RAID group are correlated.

As a first measure of correlation, we explore the probability
that a RAID group will experience a drive replacement fol-
lowing a prior drive replacement. More precisely, we start by
computing the empirical probability that a RAID group will
experience a drive replacement in a random week; this proba-
bility is equal to 0.0504%. Then, we compute the probability
that a RAID group will experience another drive replacement
within a week following a previous drive replacement. The
probability is equal to 9.39%, that is, more than a factor of
180X increase compared to the probability that a drive re-
placement will occur within a random week. We speculate
on a few possible reasons that could explain this. First, RAID
reconstruction imposes an additional load to the other drives
of the group and exposes latent errors, as these drives must be
fully scanned to reconstruct the data of the failed drive. Sec-
ond, shared environmental issues (e.g., overheating, power
surge), could affect multiple drives from the same group si-
multaneously, as they are all placed within the same filer.

For a more detailed understanding of correlations, we con-
sider all RAID groups that have experienced more than one
drive replacement over the course of our observation period
and plot in Figure 7, the time between consecutive drive re-
placements within the same RAID group. We observe that
very commonly, the second drive replacement follows the pre-
ceding one within a short time interval. For example, 46% of
consecutive replacements take place at most one day after the
previous replacement, while 52% of all consecutive replace-
ments take place within a week of the previous replacement.

Another important question in RAID reliability modelling
is how the chance of multiple failures grows as the number
of drives in the RAID group increases. Figure 8a presents,
for the most common RAID group sizes, the percentage of

RAID groups of that size that experienced at least one drive
replacement. As one would expect, larger RAID groups have
a higher chance of experiencing a drive replacement; yet,
the effect of a RAID group’s size on the replacement rates
saturates for RAID groups comprising more than 18 drives.

However, we make an interesting observation in Figure 8b,
when we look at the percentage of RAID groups that have
experienced at least two drive replacements (potential double
failure): this percentage is not clearly correlated with RAID
group size, except for maybe very small RAID groups of three
or four drives. The largest RAID group sizes do not have a
higher rate of double (or multiple) failures.

The reason becomes clear when we look at the conditional
probability that a RAID group will experience a replacement,
given that it has already experienced another replacement, in
Figure 8c. More precisely, for each RAID group size, we con-
sider the RAID groups that had at least one drive replacement
and compute what percentage of them had at least one more
replacement within a week. Interestingly, we observe there
is no clear trend that larger RAID group sizes have a larger
chance of one drive replacement being followed by more re-
placements. Note that, as already mentioned, the chance of
experiencing a drive failure grows with the size of the RAID
group (Figure 8b); however, the chance of correlated failures
does not show a direct relationship with the group’s size.

Finding 9: While large RAID groups have a larger number
of drive replacements, we find no evidence that the rate of
multiple failures per group (which is what can create potential
for data loss) is correlated with RAID group size. The reason
seems to be that the likelihood of a follow-up failure after a
first failure is not correlated with RAID group size.

7 Related Work
Four recent field studies have looked at failure characteristics
of SSDs in data centers at Facebook, Microsoft, Google, and
Alibaba, respectively [22, 23, 29, 34]. Our work is different

146 18th USENIX Conference on File and Storage Technologies USENIX Association

in that we focus on enterprise storage systems, rather than
distributed data center storage and is the first to report on
TLC drives, large capacity drives (8 TB and 15 TB), and
several models with 10xnm lithographies. Moreover, our
study considers a large number of factors that were not studied
in previous work, such as the effect of firmware versions and
failure correlations within a RAID group.

Where we report statistics that were also considered in
previous work, we have included a comparison in the relevant
sections of our paper. In other cases, a direct comparison with
failure rates reported in prior work is not meaningful. For
example, the Facebook [22] and Microsoft [23] studies focus
on unccorrectable errors and fail-stop events respectively,
which are different from the drive replacements considered in
our study. Furthermore, fail-stop events do not always lead
to drive replacements, and other events that might lead to
replacements are not included in the rates reported in [23].
Similarly, while the study of drives at Alibaba [34] includes
a breakdown of reason for replacement, their taxonomy is
different, with categories that do not map to ours. Moreover,
their work does not report on rates of failures (only the relative
frequency of reasons).

8 Lessons learned
• Our observations emphasize the importance of firmware
updates, as earlier firmware versions can be correlated with
significantly higher failure rates (§5.5). Yet, we observe
that 70% of drives in our study remain at the same firmware
version throughout the length of our study. Consequently,
we encourage enterprise storage vendors to make firmware
upgrades as easy and painless as possible, so that customers
apply the upgrades without worries about stability issues.
• A question that often comes up when configuring RAID
groups is how the size of a group, in terms of number of
drives, will affect its reliability. After all, intuitively, more
drives create more potential for failures. Our observations
show that larger RAID groups might not be as bad as often
thought. While large RAID groups have a higher number
of drive replacements, we have no evidence that the rate of
multiple failures per group (which is what creates potential
for data loss) is correlated with RAID group size (§6).
• Our results highlight the occurrence of temporally
correlated failures within the same RAID group (§6). This
observation indicates that single parity RAID configurations
(e.g., RAID-5), might be susceptible to data loss, and realistic
data loss analysis certainly has to consider correlated failures.
• Drives with very large capacities experience higher failure
rates overall and see more severe failures (§5.3). The higher
failure rate could stem from the larger amount of NAND and
dies on the drives, emphasizing the importance of a drive and
its system being able to handle a partial drive failure, such
as a die failure. NetApp is working toward this direction
by carving out the lost capacity of a dead die from the OP area.
• Our observation regarding the smaller rate of predictive

failures for larger capacities (§5.3) also brings up the question
whether large capacity drives require different types of failure
predictors and potentially more input from the drive on its
internal issues (e.g., a bad die or issues with DRAM).
• There is renewed concern around NAND-SSDs reliability
with the introduction of QLC NAND, whose PE cycle limit
is significantly lower than current TLC NAND. Based on our
data, we predict that for the vast majority of enterprise users,
a move towards QLC’s PE cycle limits poses no risks, as 99%
of systems use at most 15% of the rated life of their drives.
• There has been a fear that the limited PE cycles of NAND
SSDs can create a threat to data reliability in the later part of
a RAID system’s life due to correlated wear-out failures, as
the drives in a RAID group age at the same rate. Instead, we
observe that correlated failures due to infant mortality are
likely to be a bigger threat. For example, for the 3D-TLC
drives in our study, the failure rate at the peak of infant
mortality is 2.5X larger than later in life (§5.1).
• We observe unexpected behavior for failure rates as a
function of age (§5.1). In contrast to the “bathtub” shape
assumed by classical reliability models, we observe no
signs of failure rate increases at end of life and also a very
drawn-out period of infant mortality, which can last more
than a year and see failure rates 2-3X larger than later in
life. This brings up the question what could be done to
reduce these effects. One might consider, for example, an
extended, more intense burn-in period before deployment,
where drives are subjected to longer periods of high read
and write loads. Given the low consumption of PE cycles
that drives see in the field (99% of drives do not even use
up 1% of their PE cycle limit), there seems to be room
to sacrifice some PE cycles in the burn-in process. More
detailed recommendations would require a more thorough
understanding of the relationship between PE cycles and
failure rates; we are currently working on collecting such data.
• When choosing among drive types/models, our results indi-
cate that from a reliability point of view, flash type (i.e., eMLC
versus 3D-TLC) seems to play a smaller role than lithography
(i.e., 1xnm versus 2xnm eMLC) or capacity (§5.2–5.4).

9 Acknowledgements
We would like to acknowledge several people at NetApp
for their contributions to this work; Rodney Dekoning,
Saumyabrata Bandyopadhyay, and Anita Jindal for their early
support and encouragement, Aziz Htite, who helped cross-
validate our data and assumptions along the way. The internal
reviewers within the ATG, ONTAP WAFL, and RAID groups,
whose careful feedback made this a better paper. A very
special thank you to Biren Fondekar’s Active IQ team in Ban-
galore; Asha Gangolli, Kavitha Degavinti, and finally Vinay
N. who spent countless late nights on the phone with us,
as we cleaned and curated the foundational data sets of this
paper. We also thank our reviewers and our shepherd, Devesh
Tiwari, for their detailed feedback and valuable suggestions.

USENIX Association 18th USENIX Conference on File and Storage Technologies 147

References
[1] Alan T. Arnholt and Ben Evans. BSDA: Basic Statistics

and Data Analysis, 2017. R package version 1.2.0.

[2] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis
of latent sector errors in disk drives. In Proceedings of
the 2007 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS ’07), pages 289–300, 2007.

[3] Hanmant P Belgal, Nick Righos, Ivan Kalastirsky, Jeff J
Peterson, Robert Shiner, and Neal Mielke. A new reli-
ability model for post-cycling charge retention of flash
memories. In Proceedings of the 40th Annual Inter-
national Reliability Physics Symposium, pages 7–20.
IEEE, 2002.

[4] Matias Bjørling. From Open-Channel SSDs to Zoned
Namespaces. In Linux Storage and Filesystems Confer-
ence (Vault 19), 2019.

[5] Simona Boboila and Peter Desnoyers. Write Endurance
in Flash Drives: Measurements and Analysis. In Pro-
ceedings of the 8th USENIX Conference on File and Stor-
age Technologies (FAST ’10), pages 115–128. USENIX
Association, 2010.

[6] Adam Brand, Ken Wu, Sam Pan, and David Chin. Novel
read disturb failure mechanism induced by FLASH cy-
cling. In Proceedings of the 31st Annual International
Reliability Physics Symposium, pages 127–132. IEEE,
1993.

[7] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Error patterns in MLC NAND flash memory: Measure-
ment, Characterization, and Analysis. In Proceedings
of the Conference on Design, Automation and Test in
Europe, pages 521–526. EDA Consortium, 2012.

[8] Yu Cai, Yixin Luo, Erich F Haratsch, Ken Mai, and Onur
Mutlu. Data retention in MLC NAND flash memory:
Characterization, optimization, and recovery. In 21st In-
ternational Symposium on High Performance Computer
Architecture (HPCA), pages 551–563. IEEE, 2015.

[9] Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken Mai.
Program interference in MLC NAND flash memory:
Characterization, modeling, and mitigation. In 31st
International Conference on Computer Design (ICCD),
pages 123–130. IEEE, 2013.

[10] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F Haratsch,
Adrian Cristal, Osman S Unsal, and Ken Mai. Flash
correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In 30th Interna-
tional Conference on Computer Design (ICCD), pages
94–101. IEEE, 2012.

[11] Paolo Cappelletti, Roberto Bez, Daniele Cantarelli, and
Lorenzo Fratin. Failure mechanisms of Flash cell in
program/erase cycling. In Proceedings of the IEEE
International Electron Devices Meeting, pages 291–294.
IEEE, 1994.

[12] Peter Corbett, Bob English, Atul Goel, Tomislav Gr-
canac, Steven Kleiman, James Leong, and Sunitha
Sankar. Row-diagonal parity for double disk failure
correction. In Proceedings of the 3rd USENIX Con-
ference on File and Storage Technologies (FAST ’05),
pages 1–14. USENIX Association, 2004.

[13] Robin Degraeve, F Schuler, Ben Kaczer, Martino Loren-
zini, Dirk Wellekens, Paul Hendrickx, Michiel van Du-
uren, GJM Dormans, Jan Van Houdt, L Haspeslagh, et al.
Analytical percolation model for predicting anomalous
charge loss in flash memories. IEEE Transactions on
Electron Devices, 51(9):1392–1400, 2004.

[14] Jon G Elerath. AFR: problems of definition, calcu-
lation and measurement in a commercial environment.
In Annual Reliability and Maintainability Symposium.
2000 Proceedings. International Symposium on Prod-
uct Quality and Integrity (Cat. No. 00CH37055), pages
71–76. IEEE, 2000.

[15] Jon G Elerath. Specifying reliability in the disk drive
industry: No more MTBF’s. In Annual Reliability and
Maintainability Symposium. 2000 Proceedings. Inter-
national Symposium on Product Quality and Integrity
(Cat. No. 00CH37055), pages 194–199. IEEE, 2000.

[16] Atul Goel and Peter Corbett. RAID triple parity. ACM
SIGOPS Operating Systems Review, 46(3):41–49, 2012.

[17] Dave Hitz, James Lau, and Michael A Malcolm. File
System Design for an NFS File Server Appliance. In
USENIX Winter, volume 94, 1994.

[18] S Hur, J Lee, M Park, J Choi, K Park, K Kim, and
K Kim. Effective program inhibition beyond 90nm
NAND flash memories. Proc. NVSM, pages 44–45,
2004.

[19] Seok Jin Joo, Hea Jong Yang, Keum Hwan Noh,
Hee Gee Lee, Won Sik Woo, Joo Yeop Lee, Min Kyu
Lee, Won Yol Choi, Kyoung Pil Hwang, Hyoung Seok
Kim, et al. Abnormal disturbance mechanism of sub-
100 nm NAND flash memory. Japanese journal of
applied physics, 45(8R):6210, 2006.

[20] Myoungsoo Jung and Mahmut Kandemir. Revisiting
Widely Held SSD Expectations and Rethinking System-
level Implications. In Proceedings of the 2013 ACM
SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS

’13), pages 203–216, 2013.

148 18th USENIX Conference on File and Storage Technologies USENIX Association

[21] Jae-Duk Lee, Chi-Kyung Lee, Myung-Won Lee, Han-
Soo Kim, Kyu-Charn Park, and Won-Seong Lee. A
new programming disturbance phenomenon in NAND
flash memory by source/drain hot-electrons generated by
GIDL current. In Non-Volatile Semiconductor Memory
Workshop, 2006. IEEE NVSMW 2006. 21st, pages 31–
33. IEEE, 2006.

[22] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu.
A Large-Scale Study of Flash Memory Failures in the
Field. In Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS ’15), pages
177–190, 2015.

[23] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD Failures in Datacenters: What? When? And Why?
In Proceedings of the 9th ACM International on Systems
and Storage Conference (SYSTOR ’16), pages 7:1–7:11,
2016.

[24] NetApp Inc. Data ONTAP 9. http://www.netapp.
com/us/products/platform-os/ontap/.

[25] David A. Patterson, Garth Gibson, and Randy H. Katz.
A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’88, page 109–116, New York, NY, USA, 1988.
Association for Computing Machinery (ACM).

[26] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André
Barroso. Failure Trends in a Large Disk Drive Popu-
lation. In Proceedings of the 5th USENIX Conference
on File and Storage Technologies (FAST ’07), volume 7,
pages 17–23, 2007.

[27] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.
Understanding Latent Sector Errors and How to Protect
Against Them. ACM Transactions on storage (TOS),
6(3):9:1–9:23, September 2010.

[28] Bianca Schroeder and Garth A Gibson. Disk failures
in the real world: What does an MTTF of 1,000,000
hours mean to you? In Proceedings of the 5th USENIX

Conference on File and Storage Technologies (FAST
’07), volume 7, pages 1–16, San Jose, CA, 2007.

[29] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies (FAST ’16),
pages 67–80, Santa Clara, CA, 2016. USENIX Associa-
tion.

[30] Zoned Storage. NVMe Zoned Namespaces. https://
zonedstorage.io/introduction/zns/. Accessed:
2019-09-21.

[31] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-
Ki Kim, Young-Joon Choi, Yong-Nam Koh, Sung-Soo
Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum,
et al. A 3.3 V 32 Mb NAND flash memory with incre-
mental step pulse programming scheme. IEEE Journal
of Solid-State Circuits, 30(11):1149–1156, 1995.

[32] Hung-Wei Tseng, Laura Grupp, and Steven Swanson.
Understanding the Impact of Power Loss on Flash Mem-
ory. In Proceedings of the 48th Design Automation
Conference (DAC ’11), pages 35–40, San Diego, CA,
2011.

[33] Wikipedia. S.M.A.R.T. https://en.wikipedia.
org/wiki/S.M.A.R.T. Accessed: 2019-09-12.

[34] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng
Wu. Lessons and actions: What we learned from 10k
ssd-related storage system failures. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
961–976, Renton, WA, July 2019. USENIX Associa-
tion.

[35] Jimmy Yang and Feng-Bin Sun. A comprehensive re-
view of hard-disk drive reliability. In Annual Reliability
and Maintainability. Symposium. 1999 Proceedings
(Cat. No. 99CH36283), pages 403–409. IEEE, 1999.

[36] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-
ridge. Understanding the Robustness of SSDs Under
Power Fault. In Proceedings of the 11th USENIX Con-
ference on File and Storage Technologies (FAST ’13),
pages 271–284, San Jose, CA, 2013. USENIX Associa-
tion.

USENIX Association 18th USENIX Conference on File and Storage Technologies 149

http://www.netapp.com/us/products/platform-os/ontap/
http://www.netapp.com/us/products/platform-os/ontap/
https://zonedstorage.io/introduction/zns/
https://zonedstorage.io/introduction/zns/
https://en.wikipedia.org/wiki/S.M.A.R.T
https://en.wikipedia.org/wiki/S.M.A.R.T

Making Disk Failure Predictions SMARTer!
Sidi Lu

Wayne State University
Bing Luo

Wayne State University
Tirthak Patel

Northeastern University

Yongtao Yao
Wayne State University

Devesh Tiwari
Northeastern University

Weisong Shi
Wayne State University

Abstract
Disk drives are one of the most commonly replaced
hardware components and continue to pose challenges
for accurate failure prediction. In this work, we present
analysis and findings from one of the largest disk failure
prediction studies covering a total of 380,000 hard drives
over a period of two months across 64 sites of a large
leading data center operator. Our proposed machine
learning based models predict disk failures with 0.95
F-measure and 0.95 Matthews correlation coefficient
(MCC) for 10-days prediction horizon on average.

1 Introduction
Hard disk drives (HDDs) continue to be a key driving

factor behind enabling modern enterprise computing
and scientific discovery — residing in large-scale data
centers. Unfortunately, HDDs are not only the most
frequently replaced hardware components of a data
center; they are also the main reason behind server fail-
ures [82]. The failure of HDDs can result in data loss,
service unavailability, increases in operational cost and
economic loss [42, 76]. Consequently, the storage com-
munity has invested a significant amount of effort in
making disks reliable and, in particular, predicting disk
failures [4, 9, 19, 23, 24, 36, 41, 51, 54, 58, 59, 85, 89, 92]. Al-
though widely-investigated, effective hard disk failure
prediction still remains challenging [83, 88] and hence,
the storage community benefits from the disk reliability
field-studies [8, 37, 44, 53, 55, 60, 65, 77, 83, 88]. Unfortu-
nately, such field studies are not published often enough
and are limited in sample size [8,9,28,30,37,60,83,88,89].

To bridge this gap, we perform large-scale disk failure
analysis, covering 380,000 hard disks and five disk man-
ufacturers distributed across 10,000 server racks and 64
data center sites over two months, hosted by an enter-
prise data center operator — one of the largest disk fail-
ure analysis studies reported in the literature [4,9,51,83].

For the first time, this paper demonstrates that disk fail-
ure predictions can be made highly accurate by combining
disk performance and disk location data with disk monitor-
ing data (Self-Monitoring, Analysis, and Reporting Technol-
ogy — SMART data). Traditionally, disk failure predic-
tion works have largely focused on using SMART data
for predicting disk failures — this is based on in-the-
field evidence that SMART attributes (e.g., correctable

30

70

110

Lo
ad

/U
nl

oa
d

C
yc

le
 C

ou
nt

Days before Actual Failure

Failed Disk

4050 30 20 10 00

150

300

450

R
ea

llo
ca

te
d

Se
ct

or
sC

ou
nt

40 0

Failed Disk

Healthy Disks

Days before Actual Failure
20

Figure 1: SMART attributes of healthy vs. failed disks
prior to disk failures.

0

2

4

6

R
ea

dW
or

kI
te

m
_P

ro
ce

ss
Ti

m
e

Days before Actual Failure

Failed Disk

60 3045 015

x104

0

20

40

60

80

2040 0

R
ea

dW
or

kI
te

m
_S

uc
ce

ss
Q

ps
Days before Actual Failure

Failed Disk

Figure 2: Performance metrics of healthy vs. failed disks
prior to disk failures.

errors, temperature, disk spin-up time, etc.) are corre-
lated with the disk health and indicative of eventual
failure. While this conventional wisdom holds true as
shown by previous works, we found that SMART at-
tributes do not always have the strong predictive ca-
pability of making disk failure predictions at longer
prediction horizon windows for all disks (i.e, predicting
disk failures a few days before the actual failure instead
of a few hours). This is primarily because the value
of SMART attributes often does not change frequently
enough during the period leading up to the failure, and
the change is often noticeable only a few hours before
the actual failure, especially in hard-to-predict cases.

On the other hand, the value of performance met-
rics may exhibit more variations much before the actual
drive failure. A small example is shown in Figure 1
and Figure 2. We observe that the performance metrics
of failed disk drives may indeed show distinguishable
behavior from healthy disks (Figure 2) while SMART
attributes do not (Figure 1). In Figure 1, the SMART at-
tributes of healthy disks show the same value or similar
pattern as failed disks located on the same server until
the time of disk failure. For the performance metrics
shown in Figure 2, although the trends of failed disks
are close to healthy disks, failed disks may report mul-
tiple sharp impulses before they actually fail. Only a
subset of SMART attributes are shown in the plot, but
others also show similar behavior (our methodology is

USENIX Association 18th USENIX Conference on File and Storage Technologies 151

-1.2

-0.7

-0.2

0.3

0.8

480 420 360 300 240 180 120 60 0

N
or

m
al

iz
ed

 V
al

ue

Hours Before Failure

SMART Data (once per hour) #1
#3
#5
#7
#9
#187
#189
#194
#195
#197
#5R
#197R

Figure 3: Values of SMART attributes before a hard disk
failure, collected on an hourly basis, extracted from the
open-source Baidu dataset [40]. The legend on the right
shows the IDs of disk SMART attributes as defined by
the industry standard [3], and "R" represents the raw
value of an attribute.

covered in Section 2). We note that this example evi-
dence does not suggest that all failed disk drives show
variation in performance metrics leading up to the fail-
ure, or that SMART attributes do not change for any
failed disks. Instead, it shows that performance metrics,
when combined with a traditional approach of using
SMART attributes, may be more powerful than using
SMART attributes alone, especially for hard-to-predict
failures.

One could argue that SMART attributes not exhibit-
ing distinct patterns between healthy and failed disks is
specific to this data center under study. To test this hy-
pothesis, we plotted the normalized value of SMART at-
tributes of failed and healthy disks from a publicly avail-
able disk failure dataset released by Baidu in 2016 [40].
Figure 3 shows that the normalized values of 12 SMART
attributes of a randomly selected failed disk do not vary
noticeably leading up to the failure — 477 hours before
its actual failure. This observation is particularly no-
table, especially, given that the SMART attributes for
this dataset are collected at much finer-granularity (one
hour) as opposed to traditional per-day granularity (e.g.,
Backblaze public dataset [46]). Thus, SMART attributes
alone may not be able to predict all disk failures.

Intuitively, the addition of performance metrics to-
ward disk failure prediction increases the predictive
power because it increases our coverage in capturing
the workload characteristics accessing the storage sys-
tem, beyond what SMART attributes cover. The nature
of workloads running on a system often affects the fail-
ure rates of different system components, not only disks.
But, it’s much more challenging to obtain and incorpo-
rate workload related information due to the business-
sensitive nature of data center workloads. As shown in
Section 5, performance metrics can act as a good proxy
for workload characteristics for disk failure prediction.

Finally, this paper shows that disk failure prediction
can be further improved by incorporating the location
information of disk drives in the data center — an aspect
that has not been explored in the previous disk failure
prediction works because typically data center logs do
not include location and organization of disks by de-
fault. Intuitively, the addition of location information
toward disk failure prediction increases the predictive
power because it increases our coverage of the operating
conditions of data center disks.

Disks in close spatial neighborhoods are more likely
to be affected by the same environmental factors, such
as relative humidity and temperature, which are respon-
sible for accelerating disk component failures [55, 73].
Notably, disks with physical proximity are likely to ex-
perience similar vibration levels. Although vibration
is not a part of the SMART attributes or performance
metrics, it is known to affect the reliability of disk drives
[56, 65]. Therefore, adding location information can cap-
ture disks operating under similar environmental or
operating conditions which can experience similar fail-
ure characteristics. Our evaluation (Section 5) shows
that adding location information to SMART attribute
information indeed improves the failure prediction qual-
ity, although as expected, the effects are not as large as
adding performance metrics to SMART.

While using the combination of SMART attributes,
performance metrics, and location information is likely
to improve disk failure prediction quality, the types of
attributes, and the raw amount of combined information
is almost unmanageable. It is unclear what attributes
should be selected and how they should be used. Tra-
ditional rule-based or analytical models are not likely
to exploit the hidden interactions among different at-
tributes of the same type (e.g., SMART) and different
types (e.g., performance vs. SMART). Therefore, to in-
crease the effectiveness of our approach, we take advan-
tage of machine learning (ML) models for leveraging
such hidden interactions, as done in several previous
disk failure prediction works [9, 51, 54, 65, 89].

Our core contributions are not in the development
of machine learning based models, built on top of well-
understood and mature models such as naive Bayes
classifier (Bayes) [36], random forest (RF) [52], gradient
boosted decision tree (GBDT) [29, 91], and long short-
term memory networks (LSTM) [23, 38]. Instead, the
core usefulness of our study is in providing action-
able insights, trade-off lessons learned in applying these
models, and assessment of model robustness. Addition-
ally, we develop and evaluate a new hybrid deep neural
networks model, convolutional neural network long
short-term memory (CNN-LSTM) [2] for disk failure
prediction that achieves close to the best prediction qual-
ity in most of the test cases.

152 18th USENIX Conference on File and Storage Technologies USENIX Association

Summary of Our Contributions:

? This paper presents findings from one of the largest
disk failure prediction studies covering 380,000 hard drives
over a period of two months across 64 sites of a leading
data center operator. Our disk failure prediction frame-
work and the dataset used in this study including per-
formance, SMART, and location attributes is hosted at
http://codegreen.cs.wayne.edu/wizard.
? This paper provides experimental evidence to establish

that performance and location attributes are effective in im-
proving the disk failure prediction quality. We show that, as
expected, machine learning based models can be use-
ful in predicting disk failures. But, as we discover and
discuss in this paper, there are several trade-offs in the
model selection. We also understand, discuss, and ex-
plain the limitations of these models. This paper pro-
vides details of an experimental and evaluation method-
ology for effective disk failure prediction.
? Overall, our evaluation shows that no single machine

learning model is a winner across all scenarios, although
CNN-LSTM is fairly effective across different situations. We
achieve up to 0.95 F-measure [66] and 0.95 MCC (Matthews
correlation coefficient) [10, 35, 43, 71] score for a 10-day lead-
time prediction horizon (Refer to Section 4 for the definitions
of F-measure and MCC). We show that combining SMART
attributes, performance metrics, and location records
enables us to do disk failure prediction with long lead-
times, although the prediction quality changes with the
lead time window size.

2 Background and Methodology

This study covers the disk and server data measured
and collected at a large data center. Over, the dataset
spans over 64 data center sites, 10,000 server racks and
380,000 hard disks for roughly 70 days. This corre-
sponds to roughly 2.6 million device hours [4, 9, 51, 83].
We note that during this period, the data center housed
more than two million hard disks, but not all of them are
included in our study because we only focus on those
disks that have logged data in all three aspects: SMART,
performance, and location. Collection and storage of
both performance and SMART data are not enabled for
all disks due to performance overhead and business-
sensitivity concerns.

Next, we assess the types of disk events recorded
at the data center sites and describe our definition of
disk failure. Then, we discuss all three types of data
collected and analyzed for this study: (1) disk SMART
attributes (most commonly used for disk failure predic-
tion by other studies [4, 19, 79, 87], (2) performance data,
and (3) spatial location data of disks.

Table 1: SMART attributes for disk failure analysis.
ID Attribute Names ID Attribute Names
1 Read Error Rate 7 Seek Error Rate
9 Power-On Hours 192 Power-off Retract Count
10 Spin Retry Count 193 Load/Unload Cycle Count
3 Spin-Up Time 194 Temperature
12 Power Cycle Count 197 Current Pending Sector Count
4 Start/Stop Count 198 Uncorrectable Sector Count
5 Reallocated Sectors Count 199 UltraDMA CRC Error Count

2.1 Definition of Disk Failure
Given the complexity of disk failures, there is no com-

mon, agreed-upon universal definition of a disk fail-
ure [53]. Latent sector errors (LSEs) are typically consid-
ered to be one of the most common disk errors which
cause disk failures. However, a large-scale study of disk
failures [75] shows that a small number of LSEs alone do
not necessarily indicate that a disk failure has occurred
or is imminent, but LSEs may cause performance degra-
dation that could eventually lead to a "failure" — where
error messages such as "the system cannot connect to
the disk" or "disk operation exceeded the prescribed
time limit" are treated as disk failures and warrant disk
replacement. In this paper, we consider a disk to be
failed when the production data center operator deems
a disk necessary to be replaced. The IT operators of the
production data center we study deem it appropriate for
a disk to be replaced or repaired when there is a failed
read/write operation and the disk cannot function prop-
erly upon restart. All other disks are considered healthy.

2.2 Disk SMART Data
SMART attributes values are produced and logged

under the Self-Monitoring, Analysis and Reporting
Technology (SMART) monitoring system for hard disks,
which detects and reports various indicators of drive re-
liability [3]. The number of available SMART attributes
is more than 50, but not all disks log all of the attributes
at all times. For our study, we select 14 SMART attributes
(Table 1) as features for our training models using the
method described in Section 3. More than 97% of our
disks reported these attributes, and these attributes also
overlap with the widely used attributes for disk fail-
ure prediction by other studies [9, 51, 54, 65, 89]. In our
study, these SMART attributes are collected continu-
ously and reported at per-day granularity during the
whole duration of the data collection period, similar to
previous works [37, 54, 54]. As discussed earlier, more
frequent SMART reporting did not necessarily improve
the prediction quality at the start of this study and hence,
once-a-day reporting was employed.

In our study, we consider two values corresponding
to each SMART attribute in Table 1: (1) raw value of
the attribute, and (2) normalized value of the attribute.
Raw values are collected directly by the sensors or in-

USENIX Association 18th USENIX Conference on File and Storage Technologies 153

Table 2: Selected disk-level performance metrics.
ID Metrics ID Metrics

1 DiskStatus 7 Background_Checksum_ReadFailQps
2 IOQueueSize 8 TempFile_WriteWorkItem_SuccessQps
3 ReadSuccess_Throughput 9 TempFile_WriteSuccess_Throughput
4 ReadWorkItem_QueueTime 10 NormalFile_WriteWorkItem_SuccessQps
5 ReadWorkItem_SuccessQps 11 NormalFile_WriteWorkItem_QueueTime
6 ReadWorkItem_ProcessTime 12 NormalFile_WriteSuccess_Throughput

ternal software in disks, and their interpretation can be
specific to the disk manufacturer. Normalized values
are obtained by mapping the related raw value to one
byte using vendor-specific methods. Higher normalized
value usually indicates a healthier status, except in the
case of head load and unload cycles and temperature.
We note that whether a higher (or lower) raw value is
better often depends on the attribute itself. For example,
a higher value of "Reallocated Sectors Count" represents
that more failed sectors have been found and reallo-
cated (worse case), while a lower value of "Throughput
Performance" indicates a possibility of a disk failure.

2.3 Performance Data

In our study, we measure and collect two types of
performance metrics maintained by the OS kernel, i.e.,
disk-level performance metrics and server-level perfor-
mance metrics. Disk-level performance metrics include
IOQueue size, throughput, latency, the average waiting
time for I/O operations, etc. Server-level performance
metrics include CPU activity, page in and out activities,
etc. Performance metrics are reported at per-hour gran-
ularity because we found that hourly granularity was
effective in improving the prediction quality. However,
the storage overhead of all performance metrics can be-
come significant at scale and over time, and it can incur
significant operational costs. Therefore, as described in
Section 3, we use a simple method to down-select the
number of metrics used by our ML models to manage
prediction quality with low storage overhead.

2.3.1 Disk-level Performance Metrics

In our study, we measure and collect 12 disk-level
performance metrics in total; all of these metrics are
used in this paper. Table 2 shows the 12 metrics related
to individual disks.

The distinct value of "DiskStatus" represents dif-
ferent disk working statuses. For example, 0, 1, 2, 4,
8, 16, 32, 64 and 128 indicate healthy, initial, busy, er-
ror, hang, only read, shutdown, repair, and complete
repair states, respectively. "IOQueueSize" shows the
number of items in the IO worker queue. "Normal-
File/TempFile_WriteSuccess_Throughput" represents
the throughput of normal/temp files successfully writ-
ten to disks. "NormalFile/TempFile_WriteWorkItem_
SuccessQps" and "ReadWorkItem_SuccessQps" stand
for the number of normal/temp files successfully

Table 3: Selected server-level performance metrics and
the corresponding categories.

Categories Metrics Categories Metrics
disk_util max udp_stat udp_outdatagrams

tcp_segs_stat tcp_outsegs disk_sys_read_write read
page_activity page_in net_pps_summary net_pps_receive

disk_summary total_disk_read net_summary receive_speed
disk_throughput read page_activity page_out

disk_util avg udp_stat udp_indatagrams
memory_summary mem_res disk_summary total_disk_write

tcp_currestab NONE net_pps_summary net_pps_transmit
cpu_summary cpu_kernel tcp_segs_stat tcp_insegs

written/read by the disk per second. Similarly, "Nor-
malFile_WriteWorkItem_QueueTime" indicates the av-
erage waiting time for disks to write. "ReadSuc-
cess_Throughput," "ReadWorkItem_ProcessTime," and
"ReadWorkItem_QueueTime" indicate the throughput,
process time, and the average waiting time through the
reading process of disks.

2.3.2 Server-level Performance Metrics
As to the server-level metrics, we have 154 metrics

categorized into 54 categories; each category has a dif-
ferent number of metrics. We first extract the most com-
mon pairs of category-metrics and make sure that more
than 97% of servers have these server-level metrics. We
down-select the number of metrics to 18 that we feed to
our machine learning model to manage prediction qual-
ity vs. storage overhead via a simple method described
in Section 3. Table 3 lists the 18 server-level performance
metrics and their corresponding categories.

"Tcp_outsegs" displays the total number of the disk
storage segments that have been sent, including those
on current connections but excluding those containing
only retransmitted octets. Similarly, "tcp_insegs" shows
the total number of disk storage segments received, and
"tcp_currestab" represents the number of TCP connec-
tions for which the current state is either established
or close-wait. "Udp_outdatagrams" displays the total
number of the disk storage UDP datagrams that have
been sent. "Page_in" represents the number of transfer-
ring data from a disk to the memory per second. Sim-
ilarly, "page_out" occurs when the data is transferred
from the memory to a disk. Packets per second (PPS) is
a measure of throughput for network devices. Hence,
"net_pps_receive" and "net_pps_transmit" indicate the
rate of successfully receiving and transmitting messages
over a communication channel, respectively. Note that
the performance data also includes network-related
(TCP/UDP) metrics some of which appear in the se-
lected server-level performance metrics; this suggests
that network- and disk- activity might be correlated and
may be predictive of disk failures when combined.

2.4 Disk Spatial Location Data
As noted in Table 4, our disks are spread over more

than 50 sites and 10,000 racks. All disks are directly

154 18th USENIX Conference on File and Storage Technologies USENIX Association

Table 4: Numbers of sites, rooms, racks, and servers.
of Sites # of Rooms # of Racks # of Servers

Total 64 199 10,440 120,000

attached to a server. Each disk has four levels of location
markers associated with it: site, room, rack, and server.
One server may host multiple disks. Multiple servers
could be on the same rack. A room has multiple racks,
and a site may host several rooms. Location markers
are used for both healthy and failed disks. Note that
these location markers do not explicitly indicate the
actual physical proximity between two disks, since the
physical distance between two sites or rooms is not
captured by our location coordinates, and they do not
indicate the physical proximity within a room.

2.5 Other Methodological Considerations

Our disk failure prediction study is carefully designed
to ensure that it is not prone to experimental pitfalls.
For example, we verified that the disk failure rate is
roughly similar over time across all 64 sites because
if most disk failures happen during the same week it
can skew the prediction quality. Similarly, we ensured
that the concentration of disk failures in space is not
skewed. Although failures in space have non-uniform
distribution, we have verified that the density of failures
in space changes over time. Our annual disk failure rate
of ≈1.36% is consistent with failure rates observed at
other data centers [47–49].

We note that missing SMART or performance data is
a possibility and can itself be indicative of the system’s
health. For example, if failed disks observe a higher de-
gree of missing data than healthy disks and the failed
disks have been missing data continuously for a long
period (e.g., more than the prediction horizon), then
this feature alone could predict disk failure with high
success rate. However, in our case, we observed that
healthy and failed disks do not have an imbalance in
terms of missing data. Furthermore, the length of con-
tinuous missing data is less than one day in most cases
because we have multiple types of data: performance
and SMART. The likelihood of missing all samples from
both groups simultaneously is low — and if data is miss-
ing, it often points to an abrupt disk/server failure or
other infrastructure-related issues.

We also ensure that disk failures are not concentrated
on a particular manufacturer only, or limited to only old-
aged drives. Although our datset has multiple vendors
and drives of different ages, we verified that failure pre-
diction does not reduce to trivially knowing the vendor
name or age of the disk — although these features are
used by our machine learning models to improve the
quality of prediction. We explored training and build-
ing vendor-specific ML models, but we found that this

leads to multiple problems: (1) overfitting to a particular
vendor, (2) lack of portability across sites and vendors,
(3) managing multiple models, and (4) lower prediction
quality than the approach taken in this paper (normaliz-
ing the attributes across vendors and disks as discussed
in Section 3).

3 Selection of SMART and Performance
Attributes

In this section, we present a simple method to down-
select SMART and performance metrics. These down-
selected metrics are then fed to our machine learning
models as input features. Unless otherwise noted, we
use this method for selecting important features and
use the resulting features to present evaluation results.
However, one could argue that machine learning mod-
els can automatically infer important features out of all
the input features. The reason for performing this step is
to demonstrate that down-selecting features using a sim-
ple method does not compromise the prediction quality,
as we evaluate in Section 5. The benefit of this step is
the saving in storage overhead. Although our study
needed to store all the features (over 100) to demon-
strate the effectiveness of down-selection, in the future,
data center operators can use the method to save storage
space and reduce processing overhead. Since the range
of values for different attributes across different disks
and vendors varies widely, it is hard to perform mean-
ingful comparisons. Thus, we pre-process the SMART
and performance metrics using a min-max normaliza-
tion to facilitate a fair comparison between them as per
equation: xnorm = (x− xmin)/(xmax − xmin). Here, x is
the original value of a feature, xmin is the minimum
and xmax is the maximum value of the feature (over all
observations). We use 0 to represent the NULL value,
and we label constant features as 0. Next, we leverage
Youden’s J index (also named as J-Index) [27, 74] for the
down-selection of features.

3.1 How does J-Index (JIC) work?

After features are normalized to the scale of 0-1, we
set a series of threshold candidates for each feature with
a step of 0.01, starting from 0 until 1. For each threshold
candidate t, we calculate the value of the corresponding
J-Index [6]. We define J-Index classification (JIC) as:

J-Index = True Positive Rate + True Negative Rate− 1

=
TP

TP+FN
+

TN
TN+FP

− 1

Here T and F indicate whether the prediction result
is correct; P and N denote the disk is classified as failed
(positive) or healthy (negative). TP denotes the number
of actually failed disks that are correctly predicted as

USENIX Association 18th USENIX Conference on File and Storage Technologies 155

FN=57.89%

TP=42.11%

TN=78.70%
FP=21.30%

Threshold Candidate = 0.58

Normalized Value

Pr
ob

ab
ilit

y
D

en
si

ty
SMART Attribute: Power-On Hours

Failed disk
Healthy disk

Figure 4: An example of J-Index classification (JIC): Dis-
tinguishing failed disks from healthy disks. The upper
curve represents the failed disk, and the lower curve
indicates the healthy disk.

failed, and TN denotes the number of healthy disks that
are correctly predicted as healthy. Similarly, FP denotes
the number of healthy disks that are falsely predicted as
failed, and FN denotes the number of failed disks that
are falsely predicted as healthy.

More specifically, suppose the input feature is Power-
On Hours, and the distribution looks like Figure 4 for
the current threshold candidate t (t = 0.58 as an example
here). We calculate the percentage of failed disks that are
distributed on the left-hand part of t, which is 42.11%,
i.e., TP = 42.11%. Similarly, we have FN = 57.89%, FP =
21.30%, and TN = 78.70%. It is intuitive that we predict
a disk is healthy if its value is greater than 0.58 or it is
otherwise failed. We also calculate the corresponding
J-Index based on the above definition. Following this
method, for a specific feature, we have a series of thresh-
old candidates and their corresponding J-Indexes. The
range of J-Indexes is 0 to 1. A higher J-Index means the
corresponding threshold candidate is more distinguish-
able to identify failed disks from healthy disks. There-
fore, the threshold candidate with the highest J-Index is
selected as the best (final) threshold for a feature.

Intuitively, J-Index classification is a low-overhead
and practical method for IT operators to adopt and per-
form feature selection on their datsets.

Table 5 shows the J-Indexes (greater than 0.1) for
SMART attributes. The fourth and sixth columns (yel-
low color) represent the percentages of disks that are
smaller than the threshold, while the fifth and last
columns (blue color) show the percentages of disks that
are greater than the threshold. For each attribute, the
first bold font indicates the true positive rate, and the sec-
ond bold font denotes the true negative rate. Since fail-
ures are not always supposed to be values that are less
than the threshold, i.e., there are upper-bound thresh-
olds and lower-bound thresholds for failed disks, the

Table 5: Highest J-Indexes for SMART attributes (R rep-
resents raw value, N denotes normalized value).

ID Threshold J-Index % of failed disks % of healthy disks
9R 0.58 0.21 42% 58% 21% 79%
9N 0.54 0.19 52% 48% 72% 28%
3R 0.72 0.18 80% 20% 98% 2%
5R 0.49 0.18 18% 82% 0% 100%

194N 0.50 0.18 45% 55% 27% 73%
194R 0.50 0.15 96% 4% 81% 19%

1R 0.38 0.14 28% 72% 14% 86%
12N 0.04 0.14 65% 35% 79% 21%
4N 0.01 0.13 64% 36% 77% 23%
5N 0.01 0.13 87% 13% 100% 0%
3N 0.59 0.13 77% 23% 90% 10%

Table 6: Highest J-Indexes for performance metrics.
ID Threshold J-Index % of failed disk % of healthy disk
2 0.13 0.45 100% 0% 55% 45%
3 0.11 0.44 2% 98% 46% 54%
7 0.10 0.40 8% 92% 48% 52%

11 0.16 0.40 8% 92% 49% 51%
6 0.15 0.38 12% 88% 50% 50%
9 0.12 0.31 25% 75% 56% 44%
8 0.10 0.30 27% 73% 56% 44%

bold values for the true positive rate and true negative
rate span multiple columns.

Similar to SMART attribute analysis, we would like
to see if performance metrics could be the indicators
of disk failures. Table 6 shows a part of the highest J-
Indexes for performance metrics following the same for-
matting guide as Table 5. By employing the JIC method,
we figure out a set of most informative disk-level and
server-level performance metrics that are indicative of
impending disk failures, i.e., we select the metrics that
have the highest J-Indexes (greater than 0.1). We also
present the best (final) thresholds of some of the selected
metrics in Table 5 and Table 6.

Contrary to SMART attributes, performance metrics tend
to have a higher true positive rate and a lower true negative
rate. We observe that although a single performance metric is
not perfect to distinguish failed disks from healthy disks, it has
an overall higher J-Index than most of the SMART attributes
based on our dataset. This indicates that performance met-
rics are likely to be predictive for disk failures.

Next, we show that performance metrics of failed
disks may show different distinguishing patterns before
failure compared to the healthy disks. Recall that there
are 12 disk-level performance metrics in total. For each
server that contains one or more failed disks (failed
server), we extract these 12 metrics of each disk within
240 hours before disks are reported to be failed. If there
is only one failed disk on a specific failed server, we keep
the raw value of the failed disk (RFD) and calculate the
average value of all healthy disks (AHD) for every time
point. Then, we get the difference between RFD and
AHD, which indicates the real-time difference between
the signatures of failed disks and healthy disks on the

156 18th USENIX Conference on File and Storage Technologies USENIX Association

× 104 × 106

× 105

× 106

Hours before Actual Failure

Hours before Actual Failure

Hours before Actual Failure

Hours before Actual Failure

D
iff

er
en

ce
 b

et
w

ee
n

R
FD

 a
nd

 A
H

D

D
iff

er
en

ce
 b

et
w

ee
n

D
iff

er
en

ce
 b

et
w

ee
n

D
iff

er
en

ce
 b

et
w

ee
n

R
FD

 a
nd

 A
H

D

R
FD

 a
nd

 A
H

D

R
FD

 a
nd

 A
H

D

Figure 5: Different types of patterns of performance
metrics observed 240 hours before disks failure.

same server. If there are N (N ≥ 2) failed disks, then
for each failed disk, we calculate the difference between
RFD and AHD for every time point.

Figure 5 shows representative samples of the differ-
ence between RFD and AHD curves for different per-
formance attributes on different servers. To reveal the
patterns more intuitively, we use the raw values of met-
rics to calculate the difference between RFD and AHD
rather than the normalized values in Figure 5. All disks
on the same server have the same value of server-level
performance metrics, and hence, 18 selected server-level
performance metrics are not shown in the plot. The top
two graphs of Figure 5 illustrate that some failed disks
have a similar value to healthy disks at first, but then
their behavior becomes unstable as the disk nears the
impending failure. The bottom two graphs of Figure 5
show that some failed disks report a sharp impulse be-
fore they fail, as opposed to a longer erratic behavior.
These sharp impulses may even repeat multiple times.
We did not find such patterns for SMART attributes so
far before the failure of this selected example. The diver-
sity of patterns demonstrates that disk failure prediction
using performance metrics is non-trivial.

4 ML Problem Formulation and Solution

Problem Definition. We formulate the problem of pre-
dicting disk failures as a classification problem. Specifi-
cally, we use T =

{
(inputi, labeli)

}n
i=1 to represent our

training dataset, in which inputi ∈ I denotes all input
features. Here, labeli ∈ {0,1} is a binary response vari-
able for each disk i: 0 indicates healthy state and 1 indi-
cates failed state. Our goal is to employ the best method
to learn the function f : I→{0,1}, which minimizes the
loss function ` (h (input) ; label), a measurement of the
difference between the desired output and the actual
output of the current model, such that the trained model
is able to predict disk failures (labeli = 1) over a specific

prediction horizon with high accuracy.
More specifically, during the training process, assume

we only use one attribute a as an input feature. For
each disk, we have multiple readings of the attribute:
a1, a2,..., an (j is the time in aj), and we treat {a1, ...,an}
as a sample. Since the input of a machine learning al-
gorithm should be a fixed length of the observation
period for each sample, n should be a fixed number.
Our goal is to predict disk failure in advance, so aj in
{a1, ...,an} should be the value of healthy states (of the
healthy disks or healthy states prior to failures), i.e., aj
in {a1, ...,an} does not contain failed state data. Note
that we aim to predict if the disk will fail and not the
exactly when the disk will fail in the next ten days.

Effective Measurements. To evaluate the effectiveness
of our prediction approaches, we use Precision, Recall,
F-measure, and Matthews correlation coefficient (MCC)
to measure the wellness of our prediction approaches.
Precision [22] indicates the proportion of TP among
all predicted failures. Recall that the true positive rate
(TPR) [81] represents the proportion of TP within all
actually failed disks. Since our binary classification
is largely imbalanced — there are many more healthy
disks than failed disks — we also use F-measure [39, 69]
and MCC [10] as our evaluation metrics. F-measure is
the harmonic average of precision and recall and ranges
between 0 and 1 (higher is better). We use MCC because
it is a more balanced measure than F-measure, especially suit-
able for imbalanced data. It ranges from 1 (perfect prediction)
to -1 (inverse prediction). These metrics are defined as:

Precision = TP
TP+FP

Recall (TPR) = TP
TP+FN

F-measure = 2∗Precision∗Recall
Precision+Recall

MCC = TP×TN−FP×FN√
(TP+FN)(TP+FP)(TN+FP)(TN+FN))

Prior ML Models and Our Models. Previous works
have focused on leveraging fundamental classifica-
tion and regression techniques for disk failure predic-
tion [4, 9, 51]. These methods include naive Bayes clas-
sifier (Bayes) [69], random forests (RF) [52], gradient
boosted decision trees (GBDT) [29, 91] and long short-
term memory networks (LSTM) [23, 38]. Bayes is a fam-
ily of probabilistic classifiers based on applying Bayes’
theorem. RF and GBDT are types of traditional ma-
chine learning (ML) ensemble methods, while LSTM is
a class of deep neural networks (DNNs). Since previous
works have not considered performance and location
features for disk failure prediction, we implement and

USENIX Association 18th USENIX Conference on File and Storage Technologies 157

tune Bayes, RF, GBDT, and LSTM models to use them
as a proxy for prior learning based disk failure predic-
tion models. In addition, we consider a convolutional
neural network with long short-term memory (CNN-
LSTM) based model [72]. We implement our models in
Python, using TensorFlow 1.5.0 [1], Keras 2.1.5 [34], and
Scikit-learn libraries [64] for model building.

Brief Model Background and Intuitions. Bayes [69] is
a probabilistic machine learning model used for classi-
fication tasks. RF [52] and GBDT [29, 91] are both en-
semble methods that are constructed by a multitude
of individual trees (called base learners or weak learn-
ers) and consider the conclusions of all trees to make
accurate predictions through averaging or max voting.

The difference between RF and GBDT is that RF gener-
ates trees in a parallel manner (bagging algorithm) [52],
while GBDT grows tress sequentially (boosting algo-
rithms) [29,91]. More specifically, the bagging algorithm
randomly takes data samples with replacement from
the original dataset to train every weak learner, which
means that the training stage of generating multiple
learners is parallel (i.e., each learner is built indepen-
dently). Boosting algorithm, however, uses all data to
train each learner and builds the new learner in a se-
quential manner, and it assigns more weight to the mis-
classified samples to pay more attention to improving
their predictability them during the training phase.

On the other hand, LSTM [23,38] is capable of address-
ing the long-term back-propagation problem (iteratively
adjusting the weights of network connections to reduce
the value of the loss function). LSTM includes a memory
cell which tends to preserve information for a relatively
long time. Hence, LSTM is effective for sequential data
modeling, and employing LSTM to predict disk failure
has been explored previously [23]. To further improve
the performance of LSTM in the disk failure prediction,
we integrate CNN and LSTM as a unified CNN-LSTM
model (a CNN at the front and an LSTM network at
the rear), since CNN and LSTM are complementary in
the modeling capabilities — CNN offers advantages in
selecting better features, while LSTM is effective at learn-
ing sequential data [2]. The choice of combining CNN
and LSTM is inspired by the analysis presented by Pas-
canu et al. [63] — suggesting that the performance of
LSTM could be further improved by taking better fea-
tures as the input, which could be provided by CNN
through dimensionality reduction [68]. Therefore, we
include the CNN-LSTM approach to explore its effec-
tiveness in the field of disk failure prediction.

Model Training and Testing Methodology. We use 5-
fold cross-validation [50], which is a validation tech-
nique to assess the predictive performance of machine

learning models, judge how models perform to an un-
seen dataset (testing dataset) [70] and avoid the over-
fitting issue. More specifically, our dataset is randomly
partitioned into five equal-sized sub-samples. We take
one sub-sample as the testing dataset at a time and take
the remaining four sub-samples as the training dataset.
We fit a model on the training dataset, evaluate it on
the testing dataset, and calculate the evaluation scores.
After that, we retain the evaluation scores and discard
the current model. The process is then repeated five
times with different combinations of sub-samples, and
we use the average of the five evaluation scores as the
final result for each method.

Tuning Hyperparameters of Models. We search for the
best values of hyperparameters for all models using the
hold-out method [45], which splits our original train-
ing phase data further into the hyperparameter train-
ing dataset (80% of the original training phase data)
and the validation dataset (20% of the original train-
ing phase data). The biggest difference between the
hold-out method and k-fold cross-validation approach
(k refers to the number of sub-samples) is that the train-
ing and validation process of the hold-out approach
only needs to be run once, while k-fold cross-validation
needs to be run k times. In the hyperparameter tuning
phase, we conduct a grid search to build and evaluate
models for each combination of hyperparameters, and
the goal is to find the best combination with the highest
performance. For example, for RF and GBDT, we run
experiments with different numbers of trees (estima-
tors), and we settle on using 2000 trees in the RF model,
and 1000 trees in the GBDT model, since using more
than 2000 and 1000 trees, respectively, does not have
significant improvements in practice. Using a similar
method, the additive Lidstone smoothing parameter (α)
of Bayes [20] was set to 2.

For LSTM-based models, after conducting a grid
search on the values of hyperparameters to find the
best combinations, we build an LSTM model with four
layers and 128 nodes. For CNN-LSTM, in the CNN
sub-module, we employ 1 one-dimensional convolu-
tional layer at the front followed by one max-pooling
layer and one flatten layer (shown in Figure 6). The 1D
convolutional layer contains 128 filters which interpret
snapshots based on the input. The max-pooling layer
is responsible for consolidating and abstracting the in-
terpretation to get a two-dimensional matrix of features.
The flatten layer transforms the matrix into a vector,
which is fed into the next classifier. The LSTM module
consists of two LSTM layers and one dense layer (fully
connected layer). We empirically set the same learning
rate of 0.001 for the LSTM and CNN-LSTM models, and
we set the drop-out rate to 0.25.

158 18th USENIX Conference on File and Storage Technologies USENIX Association

Input

Conv1D Layer

MaxPooling1D

Layer

Flatten Layer

CNN

LSTM Layer

Dense layer

LSTM

LSTM Layer Output

Figure 6: Structure of CNN-LSTM.

(a)

0.000

0.005

0.010

0.015

0.020

0.025

1 6 11

M
ea

n
Sq

ua
re

d
Er

ro
r

(M
SE

)

MSE
Derivative of MSE

Prediction horizon (days)

(b)

Figure 7: (a) The validation loss reaches its minimum
value at 32 epochs for LSTM; thereafter it increases. (b)
The mean squared error (MSE) and its derivative in-
creases at a prediction horizon beyond 10 days.

Avoiding Overfitting of the Models. As far as LSTM
and CNN-LSTM are concerned, one of the most impor-
tant factors is the epoch [32], which indicates the num-
ber of iterations of processing the input dataset during
the training process. A higher epoch value will reduce
the error on training data; however, at a crucial tipping
point, the network begins to over-fit the training data.
Hence, finding the best value of the epoch is essential
to avoid overfitting. Figure 7(a) shows the change in
the value of the training and validation loss functions
(the smaller, the better) as the epoch increases. Initially,
the values of the two loss functions are decreasing with
increasing epoch values; but after 32 epochs, the value
of the validation loss function slowly increases (higher
than the training loss), which indicates the over-fitting
issue. Therefore, we choose 32 epochs for LSTM. Simi-
larly, we choose 200 epochs for CNN-LSTM.

Feature Group Sets. We consider different input
datasets to evaluate the effectiveness of different fea-
tures: SMART attributes (S), performance metrics (P),
and location markers (L). We construct six groups using
different feature combinations: SPL, SL, SP, PL, S, and P.
Table 7 shows the input features for these groups.

Prediction Horizon Selection. The first step in evalu-
ating the ML model is to determine how long the pre-
diction horizon should be. We choose 10 days as our
prediction horizon, i.e., we aim to detect if a given disk
will fail within the next 10 days, similar to previous
studies [4, 9]. The 10-day horizon is long enough for IT
operators to conduct early countermeasures. We also
conduct a sensitivity study showing the change in the
value of mean squared error (MSE) of different metrics

Table 7: Input features for six experimental groups. For
performance metrics, the first column (red color) repre-
sents disk-level metrics, and the last two columns (yel-
low cells) represent server-level metrics.

SMART Performance Location
SPL

Group
28

attributes
12

metrics
18 metric
categories

18
metrics 1 marker

SL
Group

28
attributes NONE 1 marker

SP
Group

28
attributes

12
metrics

18 metric
categories

18
metrics NONE

PL
Group NONE 12

metrics
18 metric
categories

18
metrics 1 marker

S
Group

28
attributes NONE NONE

P
Group NONE 12

metrics
18 metric
categories

18
metrics NONE

for different lengths of prediction horizon, as shown in
Figure 7(b) (using "ReadSuccessThroughput" as a rep-
resentative example), where MSE indicates the average
squared difference between the predicted values and
the actual values [86]. We note that the derivative of
MSE remains low for up to ten days, but it increases
after ten days. This behavior can have slight variations
across different features. Our prediction horizon is 10
days unless otherwise stated in our evaluation. We also
evaluate the models’ sensitivity with regard to predic-
tion horizon (Section 5).

5 Results and Analysis

In this section, we present and analyze the results of
various ML models, their sensitivity toward different
feature groups, their limitations, robustness, and porta-
bility. Our discussion includes supporting evidence and
reasons to explain observed trends, and implications
of observed trends for data centers. First, we present
the key prediction quality measures for all models and
feature sets (Figure 8). We make several interesting ob-
servations as following:

1. We observe that the SPL feature group performs the
best across all ML models, confirming our hypothesis
that performance and location features are critical for
improving the effectiveness of disk failure prediction,
beyond traditional SMART attribute based approaches.

2. Adding location information improves the prediction
quality across models, but the improvement is limited
in absolute degree (e.g., less than 10% for CNN-LSTM
in terms of MCC score). Interestingly, the effect of loca-
tion information is pronounced only in the presence of
performance features. The disk performance metrics are
potentially correlated with disks’ location information,
Therefore, adding location markers may help ML mod-

USENIX Association 18th USENIX Conference on File and Storage Technologies 159

Bayes RF GBDT LSTM CNN-
LSTM Mean

Precision 0.41 0.72 0.60 0.66 0.82 0.64
Recall 0.39 0.99 0.92 0.91 0.90 0.82
F-measure 0.40 0.82 0.71 0.74 0.85 0.71
MCC 0.35 0.83 0.72 0.75 0.85 0.70

0.00
0.25
0.50
0.75
1.00

SP Group
Precision Recall F-measure MCC

Bayes RF GBDT LSTM CNN-
LSTM Mean

Precision 0.26 0.76 0.94 0.68 0.87 0.70
Recall 0.30 0.99 0.96 0.74 0.89 0.78
F-measure 0.26 0.86 0.95 0.69 0.87 0.73
MCC 0.22 0.86 0.94 0.67 0.87 0.71

0.00
0.25
0.50
0.75
1.00

P Group
Precision Recall F-measure MCC

Bayes RF GBDT LSTM CNN-
LSTM Mean

Precision 0.38 0.61 0.52 0.54 0.57 0.52
Recall 0.12 0.48 0.58 0.40 0.58 0.43
F-measure 0.19 0.54 0.55 0.46 0.58 0.46
MCC 0.11 0.50 0.51 0.39 0.54 0.41

0.00
0.25
0.50
0.75
1.00

S Group
Precision Recall F-measure MCC

Bayes RF GBDT LSTM CNN-
LSTM Mean

Precision 0.53 0.61 0.57 0.58 0.72 0.60
Recall 0.16 0.61 0.64 0.43 0.57 0.48
F-measure 0.25 0.61 0.61 0.49 0.63 0.52
MCC 0.20 0.58 0.57 0.42 0.60 0.48

0.00
0.25
0.50
0.75
1.00

SL Group
Precision Recall F-measure MCC

Bayes RF GBDT LSTM CNN-
LSTM Mean

Precision 0.26 0.77 0.93 0.77 0.93 0.73
Recall 0.29 0.99 0.96 0.63 0.94 0.76
F-measure 0.26 0.86 0.94 0.67 0.93 0.74
MCC 0.22 0.86 0.94 0.66 0.93 0.72

0.00
0.25
0.50
0.75
1.00

PL Group
Precision Recall F-measure MCC

Bayes RF GBDT LSTM CNN-
LSTM Mean

Precision 0.38 0.66 0.67 0.65 0.95 0.66
Recall 0.39 0.94 0.89 0.89 0.95 0.81
F-measure 0.36 0.77 0.76 0.74 0.95 0.72
MCC 0.32 0.77 0.76 0.74 0.95 0.71

0.00
0.25
0.50
0.75
1.00

SPL Group
Precision Recall F-measure MCC

Figure 8: Model prediction quality with different groups of SMART (S), performance (P), and location (L) features.

Figure 9: Model false positive rate (FPR = FP/(FP + TN)) and false negative rate (FNR = FN/(TP + FN)).

els amplify the hidden patterns in performance metrics.

3. While there is no single model winner across differ-
ent feature groups, CNN-LSTM performs close to the
best in all the situations, achieving an MCC score of 0.95
for the SPL group, compared to 0.77 MCC score for RF
(next best method) for the SPL group. Further, we plot
the false positive and false negative rates for different
ML models for different feature groups (Figure 9). Fig-
ure 9 reveals interesting trends. First, SMART-attribute-
based models have a very high false negative rate or
FNR (failed disks predicted healthy) across all models.
Adding performance and location features decreases
the FNR significantly and hence, the prediction quality
improves. It also decreases the false positive rate, but
the scope for reduction is already limited.

Second, there is a trade-off between FPR and FNR in
terms of cost (cost of disk failure vs. replacing healthy
disks conservatively). Depending on the estimated costs
of these factors, data center operators could choose be-
tween different models. For example, for the SPL group,
GBDT provides lower FPR but higher FNR. Similarly,
Figure 9 also shows that in the S group, such trade-offs
exist between the RF and LSTM models.

4. Finally, we observe a trade-off between models with
respect to the different availability of feature sets. Fig-
ure 8 shows that when a data center operator does not
collect or have access to the performance features, tra-
ditional tree-based ML models (RF and GBDT) can per-
form roughly as well as complex neural network based
models such as CNN-LSTM or LSTM. In fact, RF and
GBDT models may even beat the LSTM model in ab-
sence of P and L features — this is similar to what a
recent work has also shown which does not consider
performance metrics [4].

Our work shows that adding performance and
location features leads to a different and new outcome.
Also, we note that the CNN-LSTM model takes much
longer to train compared to simple tree-based models
(up to four hours in our case for one training progress);
therefore, in absence of performance and location
features, RF and GBDT models can provide equally
accurate predictions, and they might be preferred for
building models based on the SMART data only due to
the relatively lesser training time.

Next, we investigate when and how ML models fail to
achieve high prediction accuracy over space and time.

160 18th USENIX Conference on File and Storage Technologies USENIX Association

1

30

>0 0.2 0.4 0.6 0.8 1

Failed Disk Percents

1
2
3

!

"
6
7

8

9

Sites

j

i

Racks1 49

Rooms

Figure 10: Mispredicted failures (blue) tend to occur in
the locations where there is a low failure rate for all
models. Each row stands for a room, and each column
refers to a rack. i.e., the pixel of the j-th column and the
i-th row represents the j-th rack of the i-th room. The
color of each pixel indicates the failed disk percentage
on the rack (pixel).

Where do ML models perform relatively poorly and
why? Figure 10 shows that ML models are somewhat
less effective at predicting with high accuracy and recall
in areas where the concentration of failures is relatively
lower. This is reasonable since ML models are not able
to collect enough failed disk samples. ML models are
by definition less effective for cases they have not been
trained or situations they have not encountered before.
This observation is important for data center operators
as it emphasizes the need for adding location markers
in disk failure prediction models.

When do ML models fail to predict and why? To un-
derstand the limitations of ML models better, we investi-
gate the false positive (healthy disks predicted as failed)
and false negative (failed disks predicted as healthy)
predictions. Figure 11(a) shows the false positives cate-
gorized in 20-day windows for the CNN-LSTM model
(other models produce similar trends). The number of
false positives is very low initially as it predicts many
disks as healthy though they eventually fail in that win-
dow — and, this is why the false negatives are high (Fig-
ure 11(b)). This can be explained by the lack of sufficient
training data — the ML model does not have enough
data and (conservatively) predicts that disks are healthy.
This trend indeed reverses over time. Although the frac-
tion of false positives appears to be very high toward
the last window, we note that the actual number of false
positives is quite low (Figure 9). This observation indi-
cates the need for sufficiently long testing periods before
concluding the prediction quality of ML models.

Is the prediction model portable across data center
sites? Data centers operators often increase their num-
ber of sites over time, and it takes time to build models at

predicted to be
failed within
61-67 day

predicted
to be failed
within 41-60 day

predicted to be
failed within 1-20 day

predicted to be
failed within
21-40 day

24%

8%

39%

29%

(a)

69%
19%

11%
1%

faile nihtiw d
1-2

0 day

faile nihtiw d
21-4

0 day

faile d within
61-6 7 day

faile d within
41-6 0 day

(b)

Figure 11: (a) Temporal distribution of CNN-LSTM
model’s false positives. (b) Temporal distribution of
CNN-LSTM model’s false negatives.

Table 8: Prediction quality on unseen Site A.
Precision Recall F-measure MCC

Bayes 0.35 0.37 0.36 0.31
RF 0.66 0.94 0.78 0.78

GBDT 0.65 0.89 0.75 0.74
LSTM 0.66 0.88 0.75 0.74

CNN-LSTM 0.93 0.94 0.94 0.93

new sites and in some cases, model training at new sites
may not be possible due to strict business-sensitivity
reasons. Therefore, we want to test if machine learning
based disk failure models are unsuitable to a large de-
gree for porting across data center sites? One can expect
the operating conditions and workload characteristics
to change across data center sites and hence, the disk
failure prediction model may not work at all.

As expected, this is true if we simply try to train on
one data center site and port it to another data center site
(i.e., test on another unseen site) — the MCC score can
drop significantly. However, we found that training on
multiple data sites before testing on a new unseen data
site provides reasonable accuracy. We tested on two un-
seen data center sites A and B, while training our model
on the rest of the 62 sites (Table 8 shows results for site
A; site B has similar results). Our results show that the
prediction quality still remains reasonably high (e.g.,
>0.90 MCC score for a 10-day prediction horizon using
CNN-LSTM model and SPL group features). We did not
find a significant drop in prediction quality for any ML
model; however, with some traditional ML models (RF
and GBDT) the prediction quality does not remain high
(more than 15% drop in some cases). Data center opera-
tors should be careful in porting ML-based prediction
models as-is across sites without sufficiently training on
multiple sites and should prefer CNN-LSTM models if
portability is a requirement.

Is the prediction model effective at different predic-
tion horizon (lead time)? To test this, we plotted MCC
values for different ML models at different lead times
(2-15 days). Figure 12 presents MCC scores of Bayes, RF,
GBDT, LSTM, and CNN-LSTM for the SPL group, when
the prediction horizon is 2 days, 5 days, 10 days and 15
days. As expected, the prediction quality indeed goes

USENIX Association 18th USENIX Conference on File and Storage Technologies 161

0.2
0.4
0.6
0.8

1

2 4 6 8 10 12 14

M
C

C
 V

al
ue

Prediction Horizon (Day)

SPL Group
Bayes RF GBDT LSTM CNN-LSTM

Figure 12: MCC scores of all ML models with SPL group
features for different lengths of prediction horizon.

0.95
0.90

0.95 0.98 0.95 0.94 0.95 0.93

0.0

0.2

0.4

0.6

0.8

1.0

CNN-LSTM with JIC CNN-LSTM without JIC

E
v
a
lu

a
ti
o
n
 S

c
o
re

s

Precision Recall F-measure MCC

Figure 13: Prediction quality comparison among all
features with and without J-Index classification (CNN-
LSTM model on SPL group features).

down with increasing prediction horizon window (the
MCC score for a 15-day window is 0.89), but the rate of
decrease is not steep for any model — SPL group feature
based ML models are effective even at sufficiently large
prediction horizons.

Does J-Index classification for feature selection de-
grade the overall prediction accuracy compared to
models trained with all features? Recall that we em-
ployed J-Index classification choosing the features (dif-
ferent performance and location metrics) for training
our models. We compared the prediction quality for
models using all the features (Figure 13). Our results
show that manually selecting a subset of features using
J-Index provides similar quality results, although it does
affect the precision and recall trade-offs slightly. This
notable observation suggests that data center operators
can use J-Index to manage the storage overhead of stor-
ing attributes from thousands of disks without risking
the prediction quality significantly.

6 Related Work

To the best of our knowledge, prior works do not con-
sider all three types of data: SMART, performance, and
location data for failure prediction. Instead, previous
works rely only on SMART attributes [4, 19, 36, 41, 59,
79, 87]. We analyze large-scale field data collected from
one of the biggest e-commerce sites, while most of the
previous works propose prediction methods based on
the publicly available Backblaze data [4, 5, 7, 9, 62, 80].
Also, the datasets analyzed were of limited in size, types
of vendors, and were often closed-source [8, 9, 24, 28, 30,
31, 36, 37, 41, 51, 53, 58–60, 77, 83, 85, 88, 89, 92].

Much of previous work with disk failure predic-
tion is limited to the detection of incipient failures

[9, 41, 59, 67, 84, 85]. Although Lima et al. [23] proposed
an approach to predict disk failures in long- and short-
term, they are also limited to SMART attributes. Studies
by Sandeep et al. [25, 26, 78] enable a qualitative un-
derstanding of factors that affect disk drive reliability.
Yang et al. [90] and Gerry Cole [21] both achieve re-
liability predictions based on accelerated life tests. In
addition, non-parametric statistical tests [58], Markov
Models [24, 92], and Mahalanobis distance [85] have
been proposed to predict disk failures. Hughes et al. [41]
applied the multivariate rank-sum test and achieved a
60% failure detection rate (FDR).

In our study, we focus on HDDs, and some previous
works have focused on solid-state drives (SSDs). Three
typical studies of SSDs are based on data collected by
Facebook [57], Google [77], and Alibaba Cloud [88]. Fur-
thermore, Grupp et al. [33] examined the reliability of
flash memory. Ouyang et al. [61] studied programmable
SSD controllers at a web services company. A number
of studies by Cai et al. [11–18] explored different pat-
terns of Multi-Level Cell (MLC) flash chip failure. Ma
et al. [53] found the accumulation of reallocated sectors
would deteriorate disk reliability. Narayanan et al. [60]
proposed machine learning based approaches to answer
what, when and why of SSD failures.

Overall, few studies have separately employed ML [4,
36, 54, 79] and DNN techniques [4, 23] to predict disk
failures. Our work explores and compares three classic
ML methods with two DNNs using six feature groups
to predict disk failures. This kind of extensive analysis
helps us derive insights such as there is no need to
employ complex DNNs when only SMART data are
available. In fact, we are also the first to demonstrate
the cross-site portability of different models.

7 Conclusion

We conducted a field study of HDDs based on a large-
scale dataset collected from a leading e-commerce pro-
duction data center, including SMART attributes, perfor-
mance metrics, and location markers. We discover that
performance metrics are good indicators of disk failures.
We also found that location markers can improve the ac-
curacy of disk failure prediction. Lastly, we trained ma-
chine learning models including neural network mod-
els to predict disk failures with 0.95 F-measure and 0.95
MCC for 10 days prediction horizon.

Acknowledgement

The authors are very thankful to the reviewers and
our shepherd, Kimberly Keeton, for their constructive
comments and suggestions. This work is supported in
part by the National Science Foundation (NSF) grants
CCF-1563728 and 1753840.

162 18th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: a system for large-scale machine
learning. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), volume 16, pages 265–283, 2016.

[2] Abdulaziz M Alayba, Vasile Palade, Matthew Eng-
land, and Rahat Iqbal. A combined CNN and
LSTM model for arabic sentiment analysis. In
International Cross-Domain Conference for Machine
Learning and Knowledge Extraction, pages 179–191.
Springer, 2018.

[3] Bruce Allen. Monitoring hard disks with SMART.
Linux Journal, (117):74–77, 2004.

[4] Preethi Anantharaman, Mu Qiao, and Divyesh Ja-
dav. Large scale predictive analytics for hard disk
remaining useful life estimation. In Proceedings
of the 2018 IEEE International Congress on Big Data
(BigData Congress), pages 251–254. IEEE, 2018.

[5] Nicolas Aussel, Samuel Jaulin, Guillaume Gandon,
Yohan Petetin, Eriza Fazli, and Sophie Chabridon.
Predictive models of hard drive failures based on
operational data. In Proceedings of the 16th IEEE
International Conference on Machine Learning and Ap-
plications (ICMLA), pages 619–625. IEEE, 2017.

[6] Viv Bewick, Liz Cheek, and Jonathan Ball. Statistics
review 13: receiver operating characteristic curves.
Critical care, 8(6):508, 2004.

[7] Shivam Bhardwaj, Akshay Saxena, and Achal Nay-
yar. Exploratory data analysis on hard drive failure
statistics and prediction. International Journal, 6(6),
2018.

[8] Richard Black, Austin Donnelly, Dave Harper,
Aaron Ogus, and Anthony Rowstron. Feeding the
pelican: Using archival hard drives for cold storage
racks. In 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2016.

[9] Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina
Bogojeska, and Dorothea Wiesmann. Predicting
disk replacement towards reliable data centers. In
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 39–48, 2016.

[10] Sabri Boughorbel, Fethi Jarray, and Mohammed
El-Anbari. Optimal classifier for imbalanced data
using matthews correlation coefficient metric. PloS
one, 12(6):e0177678, 2017.

[11] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitiga-
tion, and recovery in flash-memory-based solid-
state drives. Proceedings of the IEEE, 105(9):1666–
1704, 2017.

[12] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken
Mai. Error patterns in MLC NAND flash mem-
ory: Measurement, characterization, and analysis.
In Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE), pages 521–526. EDA
Consortium, 2012.

[13] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Threshold voltage distribution in MLC NAND
flash memory: Characterization, analysis, and mod-
eling. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), pages 1285–
1290. IEEE, 2013.

[14] Yu Cai, Yixin Luo, Erich F Haratsch, Ken Mai, and
Onur Mutlu. Data retention in MLC NAND flash
memory: Characterization, optimization, and re-
covery. In Proceedings of the 21st International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 551–563. IEEE, 2015.

[15] Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken
Mai. Program interference in MLC NAND flash
memory: Characterization, modeling, and mitiga-
tion. In Proceedings of the 31st International Con-
ference on Computer Design (ICCD), pages 123–130.
IEEE, 2013.

[16] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F
Haratsch, Adrian Crista, Osman S Unsal, and Ken
Mai. Error analysis and retention-aware error man-
agement for NAND flash memory. Intel Technology
Journal, 17(1), 2013.

[17] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F
Haratsch, Adrian Cristal, Osman S Unsal, and Ken
Mai. Flash correct-and-refresh: Retention-aware
error management for increased flash memory life-
time. In Proceedings of the 30th International Con-
ference on Computer Design (ICCD), pages 94–101.
IEEE, 2012.

[18] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F
Haratsch, Osman Unsal, Adrian Cristal, and Ken
Mai. Neighbor-cell assisted error correction for
MLC NAND flash memories. In ACM SIGMET-
RICS Performance Evaluation Review (SIGMETRICS),
volume 42, pages 491–504. ACM, 2014.

[19] Iago C Chaves, Manoel Rui P de Paula, Lucas GM
Leite, Joao Paulo P Gomes, and Javam C Machado.

USENIX Association 18th USENIX Conference on File and Storage Technologies 163

Hard disk drive failure prediction method based
on a Bayesian network. In Proceedings of the 2018
International Joint Conference on Neural Networks
(IJCNN), pages 1–7. IEEE, 2018.

[20] Stanley F Chen and Joshua Goodman. An empir-
ical study of smoothing techniques for language
modeling. Computer Speech and Language, 13(4):359–
394, 1999.

[21] Gerry Cole. Estimating drive reliability in desk-
top computers and consumer electronics systems.
Seagate Technology Paper TP, 338, 2000.

[22] Jesse Davis and Mark Goadrich. The relationship
between Precision-Recall and ROC curves. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pages 233–240. ACM, 2006.

[23] Fernando Dione dos Santos Lima, Gabriel
Maia Rocha Amaral, Lucas Goncalves
de Moura Leite, João Paulo Pordeus Gomes,
and Javam de Castro Machado. Predicting failures
in hard drives with LSTM networks. In Proceedings
of the 2017 Brazilian Conference on Intelligent Systems
(BRACIS), pages 222–227. IEEE, 2017.

[24] Ben Eckart, Xin Chen, Xubin He, and Stephen L
Scott. Failure prediction models for proactive fault
tolerance within storage systems. In Proceedings of
the 2008 IEEE International Symposium on Modeling,
Analysis and Simulation of Computers and Telecom-
munication Systems (MASCOTS), pages 1–8. IEEE,
2008.

[25] Jon G Elerath and Sandeep Shah. Disk drive re-
liability case study: dependence upon head fly-
height and quantity of heads. In Proceedings of the
2003 Annual Reliability and Maintainability Sympo-
sium (RAMS), pages 608–612. IEEE, 2003.

[26] Jon G Elerath and Sandeep Shah. Server class disk
drives: how reliable are they? In Proceedings of the
2004 Annual Reliability and Maintainability Sympo-
sium (RAMS), pages 151–156. IEEE, 2004.

[27] Ronen Fluss, David Faraggi, and Benjamin Reiser.
Estimation of the Youden Index and its associated
cutoff point. Biometrical Journal: Journal of Mathe-
matical Methods in Biosciences, 47(4):458–472, 2005.

[28] Daniel Ford, François Labelle, Florentina Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso,
Carrie Grimes, and Sean Quinlan. Availability in
globally distributed storage systems. 2010.

[29] Jerome H Friedman. Stochastic gradient boosting.
Computational Statistics and Data Analysis, 38(4):367–
378, 2002.

[30] Peter Garraghan, Paul Townend, and Jie Xu. An
empirical failure-analysis of a large-scale cloud
computing environment. In IEEE 15th International
Symposium on High-Assurance Systems Engineering,
pages 113–120. IEEE, 2014.

[31] Moises Goldszmidt. Finding soon-to-fail disks in a
haystack. In HotStorage, 2012.

[32] Alex Graves and Jürgen Schmidhuber. Framewise
phoneme classification with bidirectional LSTM
and other neural network architectures. Neural
Networks, 18(5-6):602–610, 2005.

[33] Laura M Grupp, John D Davis, and Steven Swan-
son. The bleak future of NAND flash memory. In
Proceedings of the 10th USENIX conference on File
and Storage Technologies (FAST), pages 2–2. USENIX
Association, 2012.

[34] Antonio Gulli and Sujit Pal. Deep Learning with
Keras. Packt Publishing Ltd, 2017.

[35] Chongomweru Halimu, Asem Kasem, and
SH Newaz. Empirical comparison of area under
roc curve (AUC) and matthews correlation
coefficient (MCC) for evaluating machine learning
algorithms on imbalanced datasets for binary
classification. In Proceedings of the 3rd International
Conference on Machine Learning and Soft Computing,
pages 1–6. ACM, 2019.

[36] Greg Hamerly, Charles Elkan, et al. Bayesian ap-
proaches to failure prediction for disk drives. In
Proceedings of the Eighteenth International Conference
on Machine Learning (ICML), volume 1, pages 202–
209, 2001.

[37] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A Chien, and
Haryadi S Gunawi. The tail at store: A revelation
from millions of hours of disk and SSD deploy-
ments. In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST), pages 263–
276, 2016.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[39] George Hripcsak and Adam S Rothschild. Agree-
ment, the F-measure, and reliability in information
retrieval. Journal of the American Medical Informatics
Association, 12(3):296–298, 2005.

[40] Song Huang, Song Fu, Quan Zhang, and Weisong
Shi. Characterizing disk failures with quantified
disk degradation signatures: An early experience.

164 18th USENIX Conference on File and Storage Technologies USENIX Association

In Proceedings of the 2015 IEEE International Sympo-
sium on Workload Characterization (IISWC), pages
150–159. IEEE, 2015.

[41] Gordon F Hughes, Joseph F Murray, Kenneth
Kreutz-Delgado, and Charles Elkan. Improved
disk-drive failure warnings. IEEE transactions on
reliability, 51(3):350–357, 2002.

[42] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou,
and Arkady Kanevsky. Are disks the dominant
contributor for storage failures?: A comprehensive
study of storage subsystem failure characteristics.
ACM Transactions on Storage (TOS), 4(3):7, 2008.

[43] Giuseppe Jurman, Samantha Riccadonna, and Ce-
sare Furlanello. A comparison of MCC and cen
error measures in multi-class prediction. PloS one,
7(8):e41882, 2012.

[44] Saurabh Kadekodi, KV Rashmi, and Gregory R
Ganger. Cluster storage systems gotta have heart:
improving storage efficiency by exploiting disk-
reliability heterogeneity. In Proceedings of the 17th
USENIX Conference on File and Storage Technologies
(FAST), pages 345–358, 2019.

[45] Ji-Hyun Kim. Estimating classification error rate:
Repeated cross-validation, repeated hold-out and
bootstrap. Computational statistics and data analysis,
53(11):3735–3745, 2009.

[46] Andy Klein. What SMART stats tell us about hard
drives. https://www.backblaze.com/blog/what-
smart-stats-indicate-hard-drive-failures/, October
2016.

[47] Andy Klein. Backblaze hard drive stats for
2017. https://www.backblaze.com/blog/hard-
drive-stats-for-2017/, February 2018.

[48] Andy Klein. Backblaze hard drive stats for
2018. https://www.backblaze.com/blog/hard-
drive-stats-for-2018/, January 2019.

[49] Andy Klein. Backblaze hard drive stats Q3 2019.
https://www.backblaze.com/blog/backblaze-
hard-drive-stats-q3-2019/, November 2019.

[50] Ron Kohavi et al. A study of cross-validation and
bootstrap for accuracy estimation and model selec-
tion. In International Joint Conference on Artificial
Intelligence (IJCAI), volume 14, pages 1137–1145,
1995.

[51] Jing Li, Xinpu Ji, Yuhan Jia, Bingpeng Zhu, Gang
Wang, Zhongwei Li, and Xiaoguang Liu. Hard

drive failure prediction using classification and re-
gression trees. In Proceedings of the 44th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 383–394. IEEE,
2014.

[52] Andy Liaw, Matthew Wiener, et al. Classification
and regression by randomForest. R news, 2(3):18–
22, 2002.

[53] Ao Ma, Rachel Traylor, Fred Douglis, Mark Cham-
ness, Guanlin Lu, Darren Sawyer, Surendar Chan-
dra, and Windsor Hsu. RAIDShield: characteriz-
ing, monitoring, and proactively protecting against
disk failures. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST),
volume 11, page 17, 2015.

[54] Farzaneh Mahdisoltani, Ioan Stefanovici, and
Bianca Schroeder. Proactive error prediction to
improve storage system reliability. In Proceedings of
the 2017 USENIX Annual Technical Conference (ATC).
Santa Clara, CA, pages 391–402, 2017.

[55] Ioannis Manousakis, Sriram Sankar, Gregg McK-
night, Thu D Nguyen, and Ricardo Bianchini. En-
vironmental conditions and disk reliability in free-
cooled datacenters. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies
(FAST), pages 53–65, 2016.

[56] Brian S Merrow. Vibration isolation within disk
drive testing systems, November 6 2012. US Patent
8,305,751.

[57] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur
Mutlu. A large-scale study of flash memory fail-
ures in the field. In ACM SIGMETRICS Performance
Evaluation Review, volume 43, pages 177–190. ACM,
2015.

[58] Joseph F Murray, Gordon F Hughes, and Kenneth
Kreutz-Delgado. Hard drive failure prediction us-
ing non-parametric statistical methods. In Proceed-
ings of the International Conference on Artificial Neural
Networks (ICANN), 2003.

[59] Joseph F Murray, Gordon F Hughes, and Ken-
neth Kreutz-Delgado. Machine learning methods
for predicting failures in hard drives: A multiple-
instance application. Journal of Machine Learning
Research, 6(May):783–816, 2005.

[60] Iyswarya Narayanan, Di Wang, Myeongjae Jeon,
Bikash Sharma, Laura Caulfield, Anand Sivasubra-
maniam, Ben Cutler, Jie Liu, Badriddine Khessib,
and Kushagra Vaid. SSD failures in datacenters:

USENIX Association 18th USENIX Conference on File and Storage Technologies 165

What? When? and Why? In Proceedings of the 9th
ACM International on Systems and Storage Conference
(SYSTOR), page 7. ACM, 2016.

[61] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: software-
defined flash for web-scale internet storage sys-
tems. In ACM SIGARCH Computer Architecture
News (ASPLOS), volume 42, pages 471–484. ACM,
2014.

[62] Jehan-François Pâris, SJ Thomas Schwarz,
SJ Ahmed Amer, and Darrell DE Long. Protecting
RAID arrays against unexpectedly high disk
failure rates. In Proceedings of the IEEE 20th
Pacific Rim International Symposium on Dependable
Computing (PRDC), pages 68–75. IEEE, 2014.

[63] Razvan Pascanu, Caglar Gulcehre, Kyunghyun
Cho, and Yoshua Bengio. How to construct
deep recurrent neural networks. arXiv preprint
arXiv:1312.6026, 2013.

[64] Fabian Pedregosa, Gaël Varoquaux, Alexandre
Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in Python. Journal of machine
learning research, 12(Oct):2825–2830, 2011.

[65] Eduardo Pinheiro, Wolf-Dietrich Weber, and
Luiz André Barroso. Failure trends in a large disk
drive population. In Proceedings of the 5th USENIX
Conference on File and Storage Technologies (FAST),
volume 7, pages 17–23, 2007.

[66] David Martin Powers. Evaluation: from preci-
sion, recall and F-measure to ROC, informedness,
markedness and correlation. Bioinfo Publications.
2011.

[67] Lucas P Queiroz, Francisco Caio M Rodrigues, Joao
Paulo P Gomes, Felipe T Brito, Iago C Chaves, Ma-
noel Rui P Paula, Marcos R Salvador, and Javam C
Machado. A fault detection method for hard disk
drives based on mixture of Gaussians and non-
parametric statistics. IEEE Transactions on Industrial
Informatics, 13(2):542–550, 2017.

[68] Oren Rippel, Jasper Snoek, and Ryan P Adams.
Spectral representations for convolutional neural
networks. In Advances in neural information process-
ing systems, pages 2449–2457, 2015.

[69] Irina Rish et al. An empirical study of the naive
bayes classifier. In IJCAI 2001 workshop on empirical
methods in artificial intelligence, volume 3, pages 41–
46, 2001.

[70] Juan D Rodriguez, Aritz Perez, and Jose A Lozano.
Sensitivity analysis of K-fold cross validation in
prediction error estimation. IEEE transactions on
pattern analysis and machine intelligence (TPAMI),
32(3):569–575, 2010.

[71] Kunal Roy, Supratik Kar, and Rudra Narayan Das.
Understanding the basics of QSAR for applications
in pharmaceutical sciences and risk assessment. Aca-
demic press, 2015.

[72] Tara N Sainath, Oriol Vinyals, Andrew Senior, and
Haşim Sak. Convolutional, long short-term mem-
ory, fully connected deep neural networks. In Pro-
ceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
4580–4584. IEEE, 2015.

[73] Sriram Sankar, Mark Shaw, and Kushagra Vaid. Im-
pact of temperature on hard disk drive reliability
in large datacenters. In Proceedings of IEEE/IFIP the
41st International Conference on Dependable Systems
and Networks (DSN), pages 530–537. IEEE, 2011.

[74] Enrique F Schisterman, Neil J Perkins, Aiyi Liu,
and Howard Bondell. Optimal cut-point and its
corresponding Youden Index to discriminate indi-
viduals using pooled blood samples. Epidemiology,
pages 73–81, 2005.

[75] Bianca Schroeder, Sotirios Damouras, and Phillipa
Gill. Understanding latent sector errors and how to
protect against them. ACM Transactions on storage
(TOS), 6(3):9, 2010.

[76] Bianca Schroeder and Garth A Gibson. Disk fail-
ures in the real world: What does an MTTF of 1,
000, 000 hours mean to you? In Proceedings of the 5th
USENIX Conference on File and Storage Technologies
(FAST), volume 7, pages 1–16, 2007.

[77] Bianca Schroeder, Raghav Lagisetty, and Arif Mer-
chant. Flash reliability in production: The expected
and the unexpected. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST), pages 67–80, 2016.

[78] Sandeep Shah and Jon G Elerath. Reliability anal-
ysis of disk drive failure mechanisms. In Proceed-
ings of the 2005 Annual Reliability and Maintainability
Symposium (RAMS), pages 226–231. IEEE, 2005.

[79] Jing Shen, Jian Wan, Se-Jung Lim, and Lifeng Yu.
Random-forest-based failure prediction for hard
disk drives. International Journal of Distributed Sen-
sor Networks, 14(11), 2018.

166 18th USENIX Conference on File and Storage Technologies USENIX Association

[80] Chuan-Jun Su and Shi-Feng Huang. Real-time
big data analytics for hard disk drive predictive
maintenance. Computers and Electrical Engineering,
71:93–101, 2018.

[81] Yoshimasa Tsuruoka and Jun’ichi Tsujii. Boost-
ing precision and recall of dictionary-based pro-
tein name recognition. In Proceedings of the ACL
2003 workshop on Natural language processing in
biomedicine-Volume 13, pages 41–48. Association for
Computational Linguistics, 2003.

[82] Kashi Venkatesh Vishwanath and Nachiappan Na-
gappan. Characterizing cloud computing hard-
ware reliability. In Proceedings of the 1st ACM sym-
posium on Cloud computing (SoCC), pages 193–204.
ACM, 2010.

[83] Guosai Wang, Lifei Zhang, and Wei Xu. What can
we learn from four years of data center hardware
failures? In Proceedings of the 47th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), pages 25–36. IEEE, 2017.

[84] Yu Wang, Eden WM Ma, Tommy WS Chow, and
Kwok-Leung Tsui. A two-step parametric method
for failure prediction in hard disk drives. IEEE
Transactions on industrial informatics, 10(1):419–430,
2014.

[85] Yu Wang, Qiang Miao, Eden WM Ma, Kwok-Leung
Tsui, and Michael G Pecht. Online anomaly detec-
tion for hard disk drives based on Mahalanobis
distance. IEEE Transactions on Reliability, 62(1):136–
145, 2013.

[86] Zhou Wang and Alan C Bovik. Mean squared error:
Love it or leave it? a new look at signal fidelity
measures. IEEE signal processing magazine, 26(1):98–
117, 2009.

[87] Jiang Xiao, Zhuang Xiong, Song Wu, Yusheng Yi,
Hai Jin, and Kan Hu. Disk failure prediction in data
centers via online learning. In Proceedings of the
47th International Conference on Parallel Processing,
page 35. ACM, 2018.

[88] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesh-
eng Wu. Lessons and actions: What we learned
from 10K SSD-related storage system failures. In
Proceedings of 2019 USENIX Annual Technical Con-
ference (ATC), pages 961–976, 2019.

[89] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu
Zhang, Qingwei Lin, Yingnong Dang, Peng Li, Ke-
ceng Jiang, Wenchi Zhang, Jian-Guang Lou, et al.
Improving service availability of cloud systems
by predicting disk error. In Proceedings of 2018
USENIX Annual Technical Conference (ATC), pages
481–494, 2018.

[90] Jimmy Yang and Feng-Bin Sun. A comprehensive
review of hard-disk drive reliability. In Proceedings
of Annual Reliability and Maintainability Symposium
(RAMS), pages 403–409. IEEE, 1999.

[91] Jerry Ye, Jyh-Herng Chow, Jiang Chen, and Zhao-
hui Zheng. Stochastic gradient boosted distributed
decision trees. In Proceedings of the 18th ACM con-
ference on Information and knowledge management,
pages 2061–2064. ACM, 2009.

[92] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin
Zheng. Predicting disk failures with HMM-and
HSMM-based approaches. In Proceedings of the
2010 Industrial Conference on Data Mining (ICDM),
pages 390–404, 2010.

USENIX Association 18th USENIX Conference on File and Storage Technologies 167

An Empirical Guide to the Behavior and Use of Scalable Persistent Memory

Jian Yang∗†, Juno Kim†, Morteza Hoseinzadeh†, Joseph Izraelevitz§, and Steven Swanson†

{jianyang, juno, mhoseinzadeh, swanson}@eng.ucsd.edu† joseph.izraelevitz@colorado.edu§

†UC San Diego §University of Colorado, Boulder

Abstract
After nearly a decade of anticipation, scalable nonvolatile

memory DIMMs are finally commercially available with the
release of Intel’s Optane DIMM. This new nonvolatile DIMM
supports byte-granularity accesses with access times on the or-
der of DRAM, while also providing data storage that survives
power outages.

Researchers have not idly waited for real nonvolatile
DIMMs (NVDIMMs) to arrive. Over the past decade, they
have written a slew of papers proposing new programming
models, file systems, libraries, and applications built to exploit
the performance and flexibility that NVDIMMs promised to
deliver. Those papers drew conclusions and made design de-
cisions without detailed knowledge of how real NVDIMMs
would behave or how industry would integrate them into com-
puter architectures. Now that Optane NVDIMMs are actually
here, we can provide detailed performance numbers, concrete
guidance for programmers on these systems, reevaluate prior
art for performance, and reoptimize persistent memory soft-
ware for the real Optane DIMM.

In this paper, we explore the performance properties and
characteristics of Intel’s new Optane DIMM at the micro and
macro level. First, we investigate the basic characteristics of
the device, taking special note of the particular ways in which
its performance is peculiar relative to traditional DRAM or
other past methods used to emulate NVM. From these obser-
vations, we recommend a set of best practices to maximize the
performance of the device. With our improved understanding,
we then explore and reoptimize the performance of prior art
in application-level software for persistent memory.

1 Introduction

Over the past ten years, researchers have been anticipating
the arrival of commercially available, scalable non-volatile
main memory (NVMM) technologies that provide “byte-
addressable” storage that survives power outages. With the ar-
rival of Intel’s Optane DC Persistent Memory Module (which
we refer to as Optane DIMMs), we can start to understand
the real capabilities, limitations, and characteristics of these
memories and start designing systems to fully leverage them.

We have characterized the performance and behavior of
Optane DIMMs using a wide range of microbenchmarks,
benchmarks, and applications. The data we have collected
demonstrate that many of the assumptions that researchers

∗Now at Google

have made about how NVDIMMs would behave and per-
form are incorrect. The widely expressed expectation was
that NVDIMMs would have behavior that was broadly sim-
ilar to DRAM-based DIMMs but with lower performance
(i.e., higher latency and lower bandwidth). These assumptions
are reflected in the methodology that research studies used to
emulate NVDIMMs, which include specialized hardware plat-
forms [21], software emulation mechanisms [12,32,36,43,47],
exploiting NUMA effects [19, 20, 29], and simply pretending
DRAM is persistent [8, 9, 38].

We have found the actual behavior of Optane DIMMs to
be more complicated and nuanced than the “slower, persis-
tent DRAM” label would suggest. Optane DIMM perfor-
mance is much more strongly dependent on access size, ac-
cess type (read vs. write), pattern, and degree of concurrency
than DRAM performance. Furthermore, Optane DIMM’s per-
sistence, combined with the architectural support that Intel’s
latest processors provide, leads to a wider range of design
choices for software designers.

This paper presents a detailed evaluation of the behavior
and performance of Optane DIMMs on microbenchmarks and
applications and provides concrete, actionable guidelines for
how programmers should tune their programs to make the
best use of these new memories. We describe these guidelines,
explore their consequences, and demonstrate their utility by
using them to guide the optimization of several NVMM-aware
software packages, noting that prior methods of emulation
have been unreliable.

The paper proceeds as follows. Section 2 provides archi-
tectural details on our test machine and the Optane DIMM.
Section 3 presents experiments on basic microarchitectural pa-
rameters, and Section 4 focuses on how Optane DIMM is dif-
ferent from DRAM and other emulation techniques. Section 5
uses these results to posit best practices for programmers on
the Optane DIMM. In this section, we first justify each guide-
line with a microbenchmark demonstrating the root cause. We
then present one or more case studies where guideline influ-
ences a previously proposed Optane-aware software system.
Section 6 provides discussion as to how our guidelines extend
to future generations of NVM. Section 7 describes related
work in this space, and Section 8 concludes.

2 Background and Methodology

In this section, we provide background on Intel’s Optane
DIMM, describe the test system, and then describe the con-
figurations we use throughout the rest of the paper.

USENIX Association 18th USENIX Conference on File and Storage Technologies 169

LLC cache

CPU

Core Core

LLC cache

iMC iMC

Optane DIMMController

3D-XPoint Media .

DRAM
AIT Cache

DRAM

DRAM

XPLine: 256B

(b) Optane DIMM Overview

DRAM

Optane DIMM

Optane DIMM

Optane DIMM

Far Mem Near Mem

DRAM

DRAM

DRAM

Optane DIMM

Optane DIMM

Optane DIMM

AppDirect Mode

Direct-mapped Cache
(4KB Block)

Memory Mode

In
te
rl
ea
ve
d

(a) Optane Platform Modes (Memory and AppDirect)

Core Core
Core Core

L1 & L2 L1 & L2

Mesh Interconnect

iMC

AIT

LLC cache
Queues

From CPU

WPQ:

Buffer:

DDR-T
Cacheline: 64B

Optane DIMM #3

Optane DIMM #4

Optane DIMM #5

CPU

Core Core

LLC cache

iMC iMC

Core CoreCore CoreOptane DIMM #0

Optane DIMM #1

Optane DIMM #2

PhyAddr Offset:

#2
0

#3
0

#1
0

#5
0

#0
0

#4
0

#2
4K

#3
4K

...

0

DIMM:

DIMM Addr:

24KB

4KB
Interleaving Size

Stripe Size

(c) Interleaved Optane DIMMs

ADR Domain

Figure 1: Overview of (a) Optane platform, (b) Optane DIMM and (c) how Optane memories interleave across channels
Optane DIMM can work as either volatile far memory with DRAM as cache (memory mode), or persistent memory with DRAM
as main memory (AppDirect mode).

2.1 Optane Memory

The Optane DIMM is the first scalable, commercially avail-
able NVDIMM. Compared to existing storage devices (in-
cluding the Optane SSDs) that connect to an external interface
such as PCIe, the Optane DIMM has lower latency, higher
read bandwidth, and presents a memory address-based inter-
face instead of a block-based NVMe interface. Compared to
DRAM, it has higher density and persistence. At its debut,
the Optane DIMM is available in three different capacities:
128, 256, and 512 GB.

2.1.1 Intel’s Optane DIMM

Like traditional DRAM DIMMs, the Optane DIMM sits on
the memory bus, and connects to the processor’s integrated
memory controller (iMC) (Figure 1(a)). Intel’s Cascade Lake
processors are the first (and only) CPUs to support Optane
DIMM. On this platform, each processor contains one or two
processor dies which comprise separate NUMA nodes. Each
processor die has two iMCs, and each iMC supports three
channels. Therefore, in total, a processor die can support a
total of six Optane DIMMs across its two iMCs.

To ensure persistence, the iMC sits within the asynchronous
DRAM refresh (ADR) domain — Intel’s ADR feature ensures
that CPU stores that reach the ADR domain will survive a
power failure (i.e., will be flushed to the NVDIMM within
the hold-up time, < 100 µs) [42]. The iMC maintains read
and write pending queues (RPQs and WPQs) for each of
the Optane DIMMs (Figure 1(b)), and the ADR domain in-
cludes WPQs. Once data reaches the WPQs, the ADR ensures
that the iMC will flush the updates to 3D-XPoint media on
power failure. The ADR domain does not include the proces-
sor caches, so stores are only persistent once they reach the
WPQs.

The iMC communicates with the Optane DIMM using the
DDR-T interface in cache-line (64-byte) granularity, which
shares a mechanical and electrical interface with DDR4 but
uses a different protocol that allows for asynchronous com-
mand and data timing.

Memory accesses to the NVDIMM (Figure 1(b)) arrive
first at the on-DIMM controller (referred as XPController
in this paper), which coordinates access to the Optane me-
dia. Similar to SSDs, the Optane DIMM performs an internal
address translation for wear-leveling and bad-block manage-
ment, and maintains an address indirection table (AIT) for
this translation [7].

After address translation, the actual access to storage me-
dia occurs. As the 3D-XPoint physical media access gran-
ularity is 256 bytes (referred as XPLine in this paper), the
XPController translates smaller requests into larger 256-byte
accesses, causing write amplification as small stores become
read-modify-write operations. The XPController has a small
write-combining buffer (referred as XPBuffer in this paper),
to merge adjacent writes.

It is important to note that all updates that reach the XP-
Buffer are already persistent since XPBuffer resides within
the ADR. Consequently, the NVDIMM can buffer and merge
updates regardless of ordering requirements that the program
specifies with memory fences.

2.1.2 Operation Modes

Optane DIMMs can operate in two modes (Figure 1(a)): Mem-
ory and App Direct.

Memory mode uses Optane to expand main memory capac-
ity without persistence. It combines an Optane DIMM with
a conventional DRAM DIMM on the same memory channel
that serves as a direct-mapped cache for the NVDIMM. The
cache block size is 64 B, and the CPU’s memory controller
manages the cache transparently. The CPU and operating
system simply see the Optane DIMM as a larger (volatile)
portion of main memory.

App Direct mode provides persistence and does not use
a DRAM cache. The Optane DIMM appears as a separate,
persistent memory device. A file system or other management
layer provides allocation, naming, and access to persistent
data.

In both modes, Optane memory can be (optionally) inter-
leaved across channels and DIMMs (Figure 1(c)). On our

170 18th USENIX Conference on File and Storage Technologies USENIX Association

platform, the only supported interleaving size is 4 kB, which
ensures that accesses to a single page fall into a single DIMM.
With six DIMMs, an access larger than 24 kB will access all
the DIMMs.

2.1.3 ISA Support

In App Direct mode, applications and file systems can access
the Optane DIMMs with CPU instructions. The extended In-
struction Set Architecture (ISA) offers programmers a number
of options to control store ordering.

Applications access the Optane DIMM’s content using
store instructions, and those stores will, eventually, become
persistent. The cache hierarchy, however, can reorder stores,
making recovery after a crash challenging [12, 28, 33, 40, 49].
Current Intel ISA provides clflush and clflushopt instruc-
tions to flush cache lines back to memory with clflushopt
having weaker ordering constraints, and clwb can write back
(but not evict) cache lines. Alternatively, software can use
non-temporal stores (e.g., ntstore) to bypass the cache hier-
archy and write directly to memory. All these instructions are
non-blocking, so the program must issue an sfence to ensure
that a previous cache flush, cache write back, or non-temporal
store is complete and persistent.

2.2 System Description
We performed our experiments on a dual-socket evaluation
platform provided by Intel Corporation. The CPUs are 24-
core Cascade Lake engineering samples with the similar spec
as the previous-generation Xeon Platinum 8160. Each CPU
has two iMCs and six memory channels (three channels per
iMC). A 32 GB Micron DDR4 DIMM and a 256 GB Intel
Optane DIMM are attached to each of the memory chan-
nels. Thus the system has 384 GB (2 socket × 6 channel ×
32 GB/DIMM) of DRAM, and 3 TB (2 socket × 6 channel
× 256 GB/DIMM) of NVMM. Our machine runs Fedora 27
with Linux kernel version 4.13.0 built from source.

2.3 Experimental Configurations
As the Optane DIMM is both persistent and byte-addressable,
it can fill the role of either a main memory device (i.e., replac-
ing DRAM) or a persistent device (i.e., replacing disk). In this
paper, we focus on the persistent usage, and defer discussion
on how our results apply to using Optane DIMM as volatile
memory to Section 6.

Linux manages persistent memory by creating pmem
namespaces over a contiguous span of physical memory. A
namepace can be backed by interleaved or non-interleaved
Optane memory, or emulated persistent memory backed by
DRAM. In this study, we configure Optane memory in App
Direct mode and create a namespace for each type of memory.

Our baseline (referred as Optane) exposes six Optane
DIMMs from the same socket as a single interleaved names-

pace. In our experiments, we used local accesses (i.e., from
the same NUMA node) as the baseline to compare with one
or more other configurations, such as access to Optane mem-
ory on the remote socket (Optane-Remote) or DRAM on the
local or remote socket (DRAM and DRAM-Remote). To better
understand the raw performance of Optane memory without
interleaving, we also create a namespace consisting of a single
Optane DIMM and denote it as Optane-NI.

3 Performance Characterization

In this section, we measure Optane’s performance along mul-
tiple axes to provide the intuition and data that programmers
and system designers will need to effectively utilize Optane.
We find that Optane’s performance characteristics are sur-
prising in many ways, and more complex than the common
assumption that Optane behaves like slightly-slower DRAM.

3.1 LATTester

Characterizing Optane memory is challenging for two rea-
sons. First, the underlying technology has major differences
from DRAM but publicly-available documentation is scarce.
Secondly, existing tools measure memory performance pri-
marily as a function of locality and access size, but we have
found that Optane performance depends strongly on memory
interleaving and concurrency as well. Persistence adds an ad-
ditional layer of complexity for performance measurements.

To fully understand the behavior of the Optane memory,
we built a microbenchmark toolkit called LATTester. To accu-
rately measure the CPU cycle count and minimize the impact
from the virtual memory system, LATTester runs as a dummy
file system in the kernel and accesses pre-populated (i.e., no
page-faults) kernel virtual addresses of Optane DIMMs. LAT-
Tester also pins the kernel threads to fixed CPU cores and dis-
ables IRQ and cache prefetcher. In addition to simple latency
and bandwidth measurements, LATTester collects a large set
of hardware counters at both the CPU and NVDIMM.

Our investigation of Optane memory behavior proceeds in
two phases. First, we performed a broad, systematic “sweep”
over Optane configuration parameters including access pat-
terns (random vs. sequential), operations (loads, stores, fences,
etc.), access size, stride size, power budget, NUMA config-
uration, and address space interleaving. Using this data, we
designed targeted experiments to investigate anomalies and
verify or disprove our hypotheses about the underlying causes.
Between our initial sweep and the follow-up tests, we col-
lected over ten thousand data points. The program and dataset
are available at https://github.com/NVSL/OptaneStudy.

3.2 Typical Latency

Read and write latencies are key memory technology parame-
ters. We measured read latency by timing the average latency

USENIX Association 18th USENIX Conference on File and Storage Technologies 171

https://github.com/NVSL/OptaneStudy

Read
Sequential

Read
Random

Write
(ntstore)

Write
(clwb)

0

100

200

300

Id
le

 L
at

en
cy

 (n
s)

81 101 86 57

169

305

90 62

DRAM
Optane

Figure 2: Best-case latency An experiment showing random
and sequential read latency, as well as write latency using
cached write with clwb and ntstore instructions. Error bars
show one standard deviation.

for individual 8-byte load instructions to sequential and ran-
dom memory addresses. To eliminate caching and queuing
effects, we empty the CPU pipeline and issue a memory fence
(mfence) between measurements (mfence serves the purpose
of serialization for reading timestamps). For writes, we load
the cache line into the cache and then measure the latency of
one of two instruction sequences: a 64-bit store, a clwb, and
an mfence; or a non-temporal store followed by an mfence.

These measurements reflect the load and store latency as
seen by software rather than those of these underlying mem-
ory devices. For loads, the latency includes the delay from the
on-chip interconnect, iMC, XPController and the actual 3D-
XPoint media. Our results (Figure 2) show the read latency for
Optane is 2×–3× higher than DRAM. We believe most of this
difference is due to Optane’s longer media latency. Optane
memory is also more pattern-dependent than DRAM. The
random-vs-sequential gap is 20% for DRAM but 80% for Op-
tane memory, and this gap is a consequence of the XPBuffer.
For stores, the memory store and fence instructions commit
once the data reaches the ADR at the iMC, so both DRAM
and Optane show a similar latency. Non-temporal stores are
more expensive than writes with cache flushes (clwb).

In general, the latency variance for Optane is extremely
small, save for an extremely small number of “outliers”, which
we investigate in the next section. The sequential read laten-
cies for Optane DIMMs have higher variances, as the first
cache line access loads the entire XPLine into XPBuffer, and
the following three accesses read data in the buffer.

3.3 Tail Latency
Memory and storage system tail latency critically affects re-
sponse times and worst-case behavior in many systems. In
our tests, we observed a very consistent latency for loads and
stores except a few “outliers”, which increase in number for
stores when accesses are concentrated in a “hot spot”.

Figure 3 measures the relationship between tail latency
and access locality. The graph shows the 99.9th, 99.99th, and
maximal latencies as a function of hot spot size. We allocate a
circular buffer with each hot spot size, and use a single thread
to issue 20 million 64-byte writes. The number of outliers

256B 2K 16K 128K 1M 8M 64M
Hotspot Region

0.1

1

10

50

La
te

nc
y

(m
icr

os
ec

)

99.99%
99.999%
Max

Figure 3: Tail latency An experiment showing the tail latency
of writing to a small area of memory (hotspot) sequentially.
Optane memory has rare “outliers” where a small number of
writes take up to 50 µs to complete (an increase of 100× over
the usual latency).

(especially for the ones over 50µs) reduces as the hotspot size
increases and do not exist for DRAM. These spikes are rare
(0.006% of the accesses), but their latency are 2 orders of
magnitude higher than a common case Optane access. We
suspect this effect is due to remapping for wear-leveling or
thermal concerns, but we cannot be sure.

3.4 Bandwidth
Detailed bandwidth measurements are useful to application
designers as they provide insight into how a memory tech-
nology will impact overall system throughput. First, we
measured Optane and DRAM bandwidth for random and
sequential reads and writes under different levels of concur-
rency.

Figure 4 shows the bandwidth achieved at different thread
counts for sequential accesses with 256 B access granular-
ity. We show loads and stores (Write(ntstore)), as well as
cached writes with flushes (Write(clwb)). All experiments
use AVX-512 instructions. The left-most graph plots perfor-
mance for interleaved DRAM, while the center and right-most
graphs plot performance for non-interleaved and interleaved
Optane. In the non-interleaved measurements all accesses hit
a single DIMM.

Figure 5 shows how performance varies with access size.
The graphs plot aggregate bandwidth for random accesses
of a given size. We use the best-performing thread count for
each curve (given as “<load thread count>/<ntstore thread
count>/<store+clwb thread count>” in the figure). Note that
the best performing thread count for Optane(Read) varies with
different access sizes for random accesses, where 16 threads
show good performance consistently.

The data shows that DRAM bandwidth is both higher
than Optane and scales predictably (and monotonically) with
thread count until it saturates the DRAM’s bandwidth, which
is mostly independent of access size.

The results for Optane are wildly different. First, for a sin-
gle DIMM, the maximal read bandwidth is 2.9× of the maxi-

172 18th USENIX Conference on File and Storage Technologies USENIX Association

0 5 10 15 20 25
Threads

0

50

100

Ba
nd

wi
dt

h
(G

B/
s)

DRAM

Read
Write(ntstore)
Write(clwb)

0 5 10 15 20 25
Threads

0

2

4

6

8
Optane-NI

0 5 10 15 20 25
Threads

0

10

20

30

40
Optane

Figure 4: Bandwidth vs. thread count An experiment showing the maximal bandwidth as thread count increases (from left to
right) on local DRAM, non-interleaved and interleaved Optane memory. All threads use a 256 B access size. (Note the difference
in vertical scales).

mal write bandwidth (6.6 GB/s and 2.3 GB/s, respectively),
where DRAM has a smaller gap (1.3×) between read and
write bandwidth. Second, with the exception of interleaved
reads, Optane performance is non-monotonic with increas-
ing thread count. For the non-interleaved (i.e., single-DIMM)
cases, performance peaks at between one and four threads and
then tails off. Interleaving pushes the peak to twelve threads
for store+clwb. We will return to the negative impact of
rising thread count on performance in Section 5.1. Third, Op-
tane bandwidth for random accesses under 256 B is poor. This
“knee” corresponds to XPLine size. DRAM bandwidth does
not exhibit a similar “knee” at 8 kB (the typical DRAM page
size), because the cost of opening a page of DRAM is much
lower than accessing a new page of Optane.

Interleaving (which spreads accesses across all six DIMMs)
adds further complexity: Figure 4 (right) and Figure 5 (right)
measure bandwidth across six interleaved NVDIMMs. Inter-
leaving improves peak read and write bandwidth by 5.8×
and 5.6×, respectively. These speedups match the number of
DIMMs in the system and highlight the per-DIMM bandwidth
limitations of Optane. The most striking feature of the graph is
a dip in performance at 4 kB — this dip is an emergent effect
caused by contention at the iMC, and it is maximized when
threads perform random accesses close to the interleaving
size. We further discuss this issue in Section 5.3.

4 Comparison to Emulation

Non-volatile memory research has been popular in recent
years (e.g. [9, 18, 28, 31, 32, 36, 38, 40, 43, 49, 51, 54, 56, 60]).
However, since scalable NVDIMMs have not been available,
most of the NVM based systems have been evaluated on emu-
lated NVM. Common ways to emulate NVM include adding
delays to memory accesses in software [32,36,49], using soft-
ware emulators [43,47], using software simulation [12,31,40],
using hardware emulators such as Intel’s Persistent Memory
Emulator Platform (PMEP) [21] to limit latency and band-
width [54, 55, 60], using DRAM on a remote socket (DRAM-
Remote) [19,20,29], underclocking DRAM [28] or just using
plain DRAM [9, 34, 38, 56] or battery-backed DRAM [18].

Below, we compare these emulation techniques to real Optane
using microbenchmarks and then provide a case study in how
those differences can affect research results.

4.1 Microbenchmarks in Emulation

Figure 6 (left) shows the write latency/bandwidth curves
for NVM emulation mechanisms (e.g. PMEP, DRAM-
Remote, DRAM) in comparison to real Optane memory. Fig-
ure 6 (right) shows the bandwidth with respect to the number
of reader/writer threads (all experiments use a fixed number
of threads that give maximum bandwidth). Our PMEP config-
uration adds a 300 ns latency on load instructions and throttles
write bandwidth at 1/8 of DRAM bandwidth as this configu-
ration is the standard used in previous works [54, 55, 59, 60].
Note that PMEP is a specialized hardware platform, so its per-
formance numbers are not directly comparable to the system
we used in our other experiments.

The data in these figures shows that none of the emulation
mechanisms captures the details of Optane’s behavior — all
methods deviate drastically from real Optane memory. They
fail to capture Optane memory’s preference for sequential ac-
cesses and read/write asymmetry, and give wildly inaccurate
guesses for device latency and bandwidth.

4.2 Case Study: Optimizing RocksDB

The lack of emulation fidelity can have a dramatic effect on
the performance of software. Results may be misleading, es-
pecially those based on simple DRAM. In this section, we
revisit prior art in NVM programming in order to demon-
strate that emulation is generally insufficient to capture the
performance of Optane DIMMs and that future work should
be validated on real hardware.

RocksDB [22] is a high-performance embedded key-value
store, designed by Facebook and inspired by Google’s Lev-
elDB [16]. RocksDB’s design is centered around the log-
structured merge tree (LSM-tree), designed for block-based
storage devices, which absorbs random writes and converts
them to sequential writes to maximize disk bandwidth.

USENIX Association 18th USENIX Conference on File and Storage Technologies 173

64B 512B 4KB 32KB 256KB 2MB
Access Size (bytes)

0

50

100

Ba
nd

wi
dt

h
(G

B/
s)

DRAM (24/24/24)

Read
Write(ntstore)
Write(clwb)

64B 512B 4KB 32KB 256KB 2MB
Access Size (bytes)

0

2

4

6

8
Optane-NI (4/1/2)

64B 512B 4KB 32KB 256KB 2MB
Access Size (bytes)

0

10

20

30

40
Optane (16/4/12)

Figure 5: Bandwidth over access size An experiment showing maximal bandwidth over different access sizes on (from left to
right) local DRAM, interleaved and non-interleaved Optane memory. Graph titles include the number of threads used in each
experiment (Read/Write(ntstore)/Write(clwb)).

0 20 40
Bandwidth (GB/s)

100

1000

La
te

nc
y

(n
s)

Seq. write latency/BW

DRAM
DRAM-Remote
Optane
PMEP

All Wr. 1:1
Wr.:Rd.

All Rd.
0

20

40

60

80

Ba
nd

wi
dt

h
(G

B/
s)

BW/Thread Mix

Figure 6: Microbenchmarks under emulation The emu-
lation mechanisms used to evaluate many projects do not
accurately capture the complexities of Optane performance.

A recent study [53] compared two strategies for adapt-
ing RocksDB to use persistent memory. The first used
a fine-grained persistence approach to migrate RockDB’s
“memtable” to persistent memory, eliminating the need for
a file-based write-ahead log. The second approach moved
the write-ahead log to persistent memory and used a simpler
acceleration technique called FLEX to improve logging per-
formance. The study used DRAM as a stand-in for Optane,
and found that fine-grained persistence offered 19% better
performance.

We replicated these experiments on real Optane DIMMs.
We used the RocksDB test db_bench on SET throughput
with 20-byte key size and 100-byte value size, and sync’ed
the database after each SET operation; the results are shown in
Figure 7. With real Optane, the result is the opposite: FLEX
performs better than fine-grained persistence by 10%. These
results are not surprising given Optane memory’s preference
for sequential accesses and its problem with small random
writes.

5 Best Practices for Optane DIMMs

Section 3 highlights the many differences between Optane and
conventional storage and memory technologies, and Section 4
shows how these differences can manifest to invalidate macro-
level results. These differences mean that existing intuitions

WAL
POSIX

WAL
FLEX

Persistent
memtable

0

200

400

600

Th
ro

ug
hp

ut
 (K

Op
s/

s)

(a) DRAM

WAL
POSIX

WAL
FLEX

Persistent
memtable

0

200

400

600
(b) Optane DIMM

Figure 7: Migrating RocksDB to Optane Memory Optane
memory is sufficiently different from DRAM to invert prior
conclusions. Using a persistent memtable works best for
DRAM emulating persistent memory, but on real Optane
memory the conclusion is reversed.

about how to optimize software for disks and memory do not
apply directly to Optane. This section distills the results of
our characterization experiments into a set of four principles
for how to build and tune Optane-based systems.

1. Avoid random accesses smaller than 256 B.

2. Use non-temporal stores when possible for large
transfers, and control cache evictions.

3. Limit the number of concurrent threads accessing
an Optane DIMM.

4. Avoid NUMA accesses (especially read-modify-write
sequences).

Below, we describe the guidelines in detail, give examples
on how to implement them, and provide case studies in their
application.

5.1 Avoid small random accesses

Internally, Optane DIMMs update Optane contents at a 256 B
granularity. This granularity, combined with a large internal
store latency, means that smaller updates are inefficient since

174 18th USENIX Conference on File and Storage Technologies USENIX Association

0 1
0

1

2

3

Ba
nd

wi
dt

h
(G

B/
s)

Device BW

r2 = 0.97
slope= 1.03

NT Store

0 1
Effective Write Ratio (EWR)

0

1

2

3
Device BW

r2 = 0.60
slope= 0.76

Store

0 1
0

1

2

3
Device BW

r2 = 0.74
slope= 0.67

Store+clwb

Figure 8: Relationship between EWR and throughput on
a single DIMM Each dot represents an experiment with dif-
ferent access size, thread count and power budget configura-
tions. Note the correlation between the metrics.

they require the DIMM to perform an internal read-modify-
write operation causing write amplification. The less locality
the accesses exhibit, the more severe the performance impact.

To characterize the impact of small stores, we performed
two experiments. First, we quantify the inefficiency of small
stores using a metric we have found useful in our study of
Optane DIMMs. The Effective Write Ratio(EWR) is the ra-
tio of bytes issued by the iMC divided by the number of
bytes actually written to the 3D-XPoint media (as measured
by the DIMM’s hardware counters). EWR is the inverse of
write amplification. EWR values below one indicate the Op-
tane DIMM is operating inefficiently since it is writing more
data internally than the application requested. The EWR can
also be greater than one, due to write-combining at the XP-
Buffer. In Memory Mode, DRAM caching may also introduce
a higher EWR.

Figure 8 plots the strong correlation between EWR and
effective device bandwidth for a single DIMM for all the mea-
surements in our systematic sweep of Optane performance.
Based on this relationship, we conclude that working to maxi-
mize EWR is a good way to maximize bandwidth.

In general, small stores exhibit EWR’s less than one. For
example, when using a single thread to perform non-temporal
stores to random accesses, it achieves an EWR of 0.25 for
64-byte accesses and 0.98 for 256-byte accesses.

Notably, 256-byte updates are efficient, even though the
iMC only issues 64 B to accesses the DIMM — the XPBuffer
is responsible for buffering and combining 64 B accesses into
256 B internal writes. As a consequence, Optane DIMMs
can efficiently handle small stores, if they exhibit sufficient
locality. To understand how much locality is sufficient, we
crafted an experiment to measure the size of the XPBuffer.
First, we allocate a contiguous region of N XPLines. During
each “round” of the experiment, we first update the first half
(128 B) of each XPLine in turn. Then, we update the second
half of each XPLine. We measured the EWR for each round.
Figure 9 shows the results. Below N = 64 (that is, a region size
of 16 kB), the EWR is near unity, suggesting that the accesses
to the second halves are hitting in the XPBuffer. Above N =
64, write amplification jumps, indicating a sharp rise in the

64B 512B 4KB 32KB 256KB 2MB
Region size

1.0

1.5

2.0

W
rit

e
Am

pl
ifi

ca
tio

n

Figure 9: Inferring XPBuffer capacity The data shows that
the Optane DIMM can use the XPBuffer to coalesce writes
spread across up to 64 XPLines.

preallocated spacepage 0
offset 0

64B 64B

embed write entrywrite entry NVMM data

page 0
offset 100

page 0

4KB read order

File log

New tail

Figure 10: NOVA-datalog mechanism Sequentially embed-
ding data along with metadata turns random writes into se-
quential writes. This figure illustrates how NOVA-datalog
appends two 64 B random writes (at 0 and 100, respectively)
into the log of a 4 kB file.

miss rate. This result implies the XPBuffer is approximately
16 kB in size. Further experiments demonstrate that reads also
compete for space in the XPBuffer.

Together these results provide a specific guidance for max-
imizing Optane store efficiency: Avoid small stores, but if
that is not possible, limit the working set to 16 kB per Optane
DIMM.

5.1.1 Case Study: RocksDB

The correlation between EWR bandwidth explains the results
for RocksDB seen in Section 4 and Figure 7. The persistent
memtable resulted in many small stores with poor locality,
leading to a low EWR of 0.434. In contrast, the FLEX-based
optimization of WAL uses sequential (and larger) stores, re-
sulting in an EWR of 0.999.

5.1.2 Case Study: The NOVA filesystem

NOVA [54, 55] is a log-structured, NVMM file system that
maintains a separate log for each file and directory, and uses
copy-on-write for file data updates to ensure data consistency.
The original NOVA studies used emulated NVMM for their
evaluations, so NOVA has not been tuned for Optane.

The original NOVA design has two characteristics that de-
grade performance on Optane. First, the log entries NOVA
appends for each metadata update are small – 40-64 B, and
since NOVA uses many logs, log updates exhibit little locality,

USENIX Association 18th USENIX Conference on File and Storage Technologies 175

Overwrite
64B

Overwrite
256B

0
2
4
6
8

10
12
14

La
te

nc
y

(m
icr

os
ec

) 40 57

XFS-DAX-sync
XFS-DAX

Ext4-DAX-sync
Ext4-DAX

NOVA
NOVA-datalog

Read
4KB

0
1
2
3
4
5

Figure 11: File IO latency NOVA-datalog significantly
speeds up small random writes, but adds a slight overhead in
the read path. Like NOVA and unlike Ext4 or XFS, NOVA-
datalog still provides data consistency.

especially when the file system is under load. Second, NOVA
uses copy-on-write to 4 kB pages for file data updates, result-
ing in useless stores. This inefficiency occurs regardless of
the underlying memory technology, but Optane’s poor store
performance exacerbates its effect.

We address both problems by increasing the size of log
entries and avoiding some copy-on-write operations. Our
modified version of NOVA – NOVA-datalog – embeds write
data for sub-page writes into the log (Figure 10). Unlike the
log’s normal write entry, which contains a pointer to a new
copy-on-write 4 kB page and its offset within the file, an
embed write entry contains a page offset, an address within
the page, and is followed by the actual contents of the write.
This optimization requires several subsidiary changes to the
original NOVA design. In particular, NOVA must merge sub-
page updates into the target page before memory-mapping or
reading the file.

Figure 11 shows the latencies of random overwrites and
reads for three file systems with different modes. For XFS-DAX
and Ext4-DAX (the two NVM-based file systems included in
Linux), we measured both normal write and write followed
by fsync (labeled with “-sync”). NOVA-datalog improves
write performance significantly compared to the original de-
sign (by 7×, 6.5× for 64 byte, 256 byte writes, respectively)
and meets (for 256 B) or exceeds (for 64 B) performance
for the other file systems (which do not provide data con-
sistency). Read latency increases slightly compared to the
original NOVA. EWR measurements generally mirror the
performance gains.

5.2 Use non-temporal stores for large writes
The choice of how programs perform and order updates to
Optane has a large impact on performance. When writing to
persistent memory, programmers have several options. Af-
ter a regular store, programmers can either evict (clflush,
clflushopt) or write back (clwb) the cache line to move the
data into the ADR and eventually the Optane DIMM. Alter-
natively, the ntstore instruction writes directly to persistent
memory, bypassing the cache hierarchy. For all these instruc-

64B 256B 1K 4K
Access Size (bytes)

0

5

10

15

Ba
nd

wi
dt

h
(6

 th
re

ad
s)

 (G
B/

s)

ntstore
store+clwb
store

64B 256B 1K 4K
Access Size (bytes)

0.1

0.5

1

2

La
te

nc
y

(m
icr

os
ec

) ntstore
store+clwb

Figure 12: Performance achievable with persistence in-
structions Flush instructions have lower latency for small
accesses, but ntstore has better latency for larger accesses.
Using ntstore also avoids an additional read of the cache
line from Optane memory, resulting in higher bandwidth.

tions, a subsequent sfence ensures that the effects of prior
evictions, write backs, and non-temporal stores are persistent.

In Figure 12, we compared achieved bandwidth (left) and
latency (right) for sequential accesses using AVX-512 stores
with three different instruction sequences: ntstore, store +
clwb, and store, followed by a sfence. Our bandwidth test
used six threads as it gives good results for all instructions.
The data show that flushing after each 64 B store improves
the bandwidth for accesses larger than 64 B. We believe this
occurs because letting the cache naturally evict cache lines
adds nondeterminism to the access stream that reaches the
Optane DIMM. Proactively cleaning the cache ensures that ac-
cesses remain sequential. The EWR correlates this hypothesis:
Adding flushes increases EWR from 0.26 to 0.98.

The data also shows that non-temporal stores have lower
latency than store + clwb for accesses over 512 B. Non-
temporal stores also have highest bandwidth for accesses over
256 B. Here, the performance boost is due to the fact that a
store + clwb must load the cache line into the CPU’s local
cache before executing store, thereby using up some of the
Optane DIMMs bandwidth. As ntstores bypass the cache,
they will avoid this extraneous read and can achieve higher
bandwidth.

In Figure 13, we show how sfences affect performance.
We used a single thread to issue sequential writes of different
sizes on Optane-NI. We issued clwb during the write of each
cache line (every 64B), or after the entire write (write size).
At the end of the write we issued a single sfence to ensure
the entire write is persistent (we call this entire operaton an
“sfence interval”). The result shows the bandwidth peaks
when the write size is 256 B. This peak is a consequence of
the semantics of clflushopt which is tuned for moderately
sized writes [1]. Flushing during or after a medium sized
write (beyond 1 kB) does not affect the bandwidth, but when
the write size is over 8 MB, flushing after the write causes
performance degradation as we incurred cache capacity inval-
idations and a higher EWR.

176 18th USENIX Conference on File and Storage Technologies USENIX Association

64B 4KB 256KB 16MB
sfence interval (write size)

0

1

2

Ba
nd

wi
dt

h
(G

B/
s)

clwb(every 64B)
clwb(write size)

ntstore

Figure 13: Bandwidth over sfence intervals. The band-
width of Optane memory decreases when sfence interval
increases, causing implicit cache evictions.

64B 128B 256B 512B 1KB 2KB 4KB 8KB
Object Size

1

5

10

La
te

nc
y

(m
icr

os
ec

) PGL-NT
PGL-CLWB

Figure 14: Persistence instructions for micro-buffering Us-
ing ntstores for large writes, and using clwb for small ones
can improve performance even at macro-level. (Y-axis is in
log scale)

5.2.1 Case Study: Micro-buffering for PMDK

Our analysis of the relative merits of non-temporal versus nor-
mal stores provides an opportunity to optimize existing work.
For example, recent work proposed the “micro-buffering” [58]
technique for transactionally updating persistent objects. That
work modified the Intel’s PMDK [14] transactional persistent
object library to copy objects from Optane to DRAM at the
start of a transaction rather than issuing loads directly to Op-
tane. On transaction commit, it writes back the entire object
at once using non-temporal stores.

The original paper only used non-temporal stores, but our
analysis suggests micro-buffering would perform better if
it used normal stores for small objects as long as it flushed
the affected cache lines immediately after updating them.
Figure 14 compares the latency of a no-op transaction for
objects of various sizes for unmodified PMDK and micro-
buffering with non-temporal and normal store-based write
back. The crossover between normal stores and non-temporal
stores for micro-buffering occurs at 1 kB.

5.3 Limit the number of concurrent threads
accessing a Optane DIMM

Systems should minimize the number of concurrent threads
targeting a single DIMM simultaneously. An Optane DIMM’s
limited store performance and limited buffering at the iMC

64B 256B 1K 4K
Access Size (bytes)

10

20

30

40

Ba
nd

wi
dt

h
(G

B/
s)

Read

64B 256B 1K 4K

4

6

8

10

12

Write(ntstore)

6 Threads
3 Threads
2 Threads
1 Thread

Figure 15: Plotting iMC contention. With a fixed number of
6 threads, as the number of DIMMs accessed by each thread
grows, the bandwidth drops. For maximal bandwidth, threads
should be pinned to DIMMs.

and on the DIMMs combine to limit its ability to handle
accesses from multiple threads simultaneously. We have iden-
tified two distinct mechanisms that contribute to this effect.

Contention in the XPBuffer Contention for space in the
XPBuffer will lead to increased evictions and write backs to
3D-XPoint media, which will drive down EWR. Figure 4 (cen-
ter) shows this effect in action: the performance does not scale
with higher thread counts. For example, having 8 threads issu-
ing sequential non-temporal stores achieves an EWR of 0.62
and 69% bandwidth compared to a single thread, which has
an EWR of 0.98.

Contention in the iMC Figure 15 illustrates how limited
queue capacity in the iMC also hurts performance when mul-
tiple cores target a single DIMM. The figure shows an experi-
ment that uses a fixed number of threads (24 for read and 6
for ntstore) to read/write data to 6 interleaved Optane DIMMs.
We let each thread access N DIMMs (with even distribution
across threads) randomly. As N rises, the number of writers
targeting each DIMM grows, but the per-DIMM bandwidth
drops. A possible culprit is the limited capacity of the XP-
Buffer, but EWR remains very close to 1, so the performance
problem must be in the iMC.

On our platform, the WPQ buffer queues up to 256 B data
issued from a single thread. Our hypothesis is that, since
Optane DIMMs are slow, they drain the WPQ slowly, which
leads to head-of-line blocking effects. Increasing N increases
contention for the DIMMs and the likelihood that any given
processor will block waiting for stores ahead of it to complete.

Figure 5 (right) shows another example of this phenomenon
— Optane bandwidth falls drastically when doing random
4 kB accesses across interleaved Optane DIMMs. Optane
memory interleaving is similar to RAID-0 in disk arrays: The
chunk size is 4 kB and the stripe size is 24 kB (Across the 6
DIMMs on the socket, each gets a 4 kB contiguous block).
The workload in Figure 5 (right) spreads accesses across these
interleaved DIMMs, and will lead to spikes in contention for
particular DIMMs.

Thread starvation occurs more often as the access size

USENIX Association 18th USENIX Conference on File and Storage Technologies 177

Read
Sequential

Read
Random

0

10

20

30

40

Ba
nd

wi
dt

h
(G

B/
s)

30
.0

19
.1

32
.8

25
.7

25
.6

22
.226

.3

25
.5

FIO Read

Write
Sequential

Write
Random

0

5

10

15

8.
6

7.
09.

2

8.
5

6.
7

6.
0

8.
2

7.
5

FIO Write
I,sync NI,sync I,async NI,async

Figure 16: Multi-DIMM NOVA We make NOVA multi-
DIMM aware by evenly loading the NVDIMMs, and get
improve performance by an average of 17% on the FIO bench-
mark.

grows, reaching maximum degradation at the interleaving size
(4 kB). For accesses larger than the interleaving size, each
core starts spreading their accesses across multiple DIMMs,
evening out the load. The write data also show small peaks
at 24 kB and 48 kB where accesses are perfectly distributed
across the six DIMMs.

This degradation effect will occur whenever 4 kB accesses
are distributed non-uniformly across the DIMMs. Unfortu-
nately, this is probably a common case in practice. For in-
stance, a page buffer with 4 kB pages would probably perform
poorly in this configuration.

5.3.1 Case Study: Multi-NVDIMM NOVA

The original NOVA design did not attempt to limit the num-
ber of writers per DIMM. In fact, it tends to allocate pages
for a file from contiguous regions which, via interleaving,
tends to spread those pages across the DIMMs. To fix this
issue, we configured our machine to pin writer threads to non-
interleaved Optane DIMMs. This configuration ensures an
even matching between threads and NVDIMMs, thereby lev-
eling the load and maximizing bandwidth at each NVDIMM.

Figure 16 shows the result. Our experiment uses the FIO
benchmark [6] to test the optimization and uses 24 threads.
We plot the bandwidth of each file operation with two differ-
ent IO engines: sync and libaio (async). By being Multi-
NVDIMM aware, our optimization improves NOVA’s band-
width by between 3% and 34%.

5.4 Avoid mixed or multi-threaded accesses to
remote NUMA nodes

NUMA effects for Optane are much larger than they are for
DRAM, so designers should work even harder to avoid cross-
socket memory traffic. The cost is especially steep for ac-
cesses that mix load and stores and include multiple threads.
Between local and remote Optane memory, the typical read
latency difference is 1.79× (sequential) and 1.20× (random),
respectively. For writes, remote Optane’s latency is 2.53×

R R:W (4:1) R:W (3:1) R:W (2:1) R:W (1:1) W
0.0
2.5
5.0
7.5

10.0
12.5
15.0

Ba
nd

wi
dt

h
(G

B/
s)

Optane-1
Optane-Remote-1

Optane-4
Optane-Remote-4

Figure 17: Memory bandwidth on Optane and Optane-
Remote This chart shows bandwidth as we varied the mix of
accesses for one and four threads. Pure reads or pure writes
perform better on NUMA than mixed workloads, and in-
creased thread count generally hurts NUMA performance.

(ntstore) and 1.68× higher compared to local. For bandwidth,
remote Optane can achieve 59.2% and 61.7% of local read
and write bandwidth at optimal thread count (16 for local read,
10 for remote read, and 4 for local and remote write).

The performance degradation ratio above is similar to re-
mote DRAM to local DRAM. However, the bandwidth of
Optane memory is drastically degraded when either the thread
count increases or the workload is read/write mixed. Based
on the results from our systematic sweep, the bandwidth gap
between local and remote Optane memory for the same work-
load can be over 30×, while the gap between local and remote
DRAM is, at max, only 3.3×.

In Figure 17, we show how the bandwidth changes for Op-
tane on both local and remote CPUs by adjusting the read
and write ratio. We show the performance of a single thread
and four threads, as local Optane memory performance in-
creases with thread count up to four threads for all the access
patterns tested. Single-threaded bandwidth is similar for lo-
cal and remote accesses. For multi-threaded accesses, remote
performance drops off more quickly as store intensity rises,
leading to lower performance relative to the local case.

5.4.1 Case Study: PMemKV

Intel’s Persistent Memory Key-Value Store (PMemKV [15])
is an NVMM-optimized key-value data-store. It implements
various index data structures and uses PMDK [14] to manage
its persistent data. We used the concurrent hash map (cmap) in
our tests as it is the only structure that supports concurrency.

To test the effect of Optane’s NUMA imbalance on
PMemKV, we varied the location of the server relative to
the pmem pool; Figure 18 shows the result on an included
benchmark with mixed workload (overwrite) that repeat-
edly performs read-modify-write operations. In this test, using
a remote Optane DIMM drops the application’s performance
beyond two threads. Optane performance is far more impacted
by the migration (loss of 75%) than DRAM (loss of 8%).

178 18th USENIX Conference on File and Storage Technologies USENIX Association

0 4 8 12
Thread Count

2

4

6

8

10

Ba
nd

wi
dt

h
(G

B/
s)

DRAM
DRAM-Remote

Optane
Optane-Remote

Figure 18: NUMA degradation for PmemKV Optane
memory experiences greater NUMA-based degradation than
DRAM. Migrating to a remote Optane node reduces
PmemKV performance by up to 4.5× (18× vs. DRAM).

6 Discussion

The guidelines in Section 5 provide a starting point for build-
ing and tuning Optane-based systems. By necessity, they re-
flect the idiosyncrasies of a particular implementation of a
particular persistent memory technology, and it is natural to
question how applicable the guidelines will be to both other
memory technologies and future versions of Intel’s Optane
memory. It is also important to note that we have only studied
the guidelines in the context of App Direct mode, since the
large DRAM cache that Memory Mode provides mitigates
most or all of the effects they account for. We believe that our
guidelines will remain valuable both as Optane evolves and
as other persistent memories come to market.

The broadest contribution of our analysis and the result-
ing guidelines is that they provide a road map to potential
performance problems that might arise in future persistent
memories and the systems that use them. Our analysis shows
how and why issues like interleaving, buffering on and off
the DIMM, instruction choice, concurrency, and cross-core
interference can affect performance. If future technologies are
not subject the precisely the same performance pathologies
as Optane, they may be subject to similar ones.

Ultimately it is unclear how scalable persistent memories
will evolve. Several of our guidelines are the direct product
of (micro)architectural characteristics of the current Optane
incarnation. The size of the XPBuffer and iMC’s WPQ might
change in future implementations which would limit the im-
portance of minimizing concurrent threads and reduce the
importance of the 256 B write granularity. However, expand-
ing these structures would increase the energy reserves re-
quired to drain the ADR during a power failure. Despite this,
there are proposals to extend the ADR down to the last-level
cache [37, 61] which would eliminate the problem. An even
more energy-intensive change would be to make the DRAM
cache that Optane uses in Memory mode persistent.

Increasing or decreasing the 256 B internal write size is
likely to be expensive. It is widely believed that Optane is

phase-change memory and the small internal page size has
long been a hallmark of the phase change memory [2] due
to power limitations. Smaller internal page sizes are unlikely
because the resulting memories are less dense.

A different underlying memory cell technology (e.g., spin-
torque MRAM) would change things more drastically. Indeed,
battery-backed DRAM is a well-known and widely deployed
(although not very scalable or cost-effective) persistent mem-
ory technology. For it, most of our guidelines are unnecessary,
though non-temporal stores are still more efficient for large
transfers due to restrictions in the cache coherency model.

7 Related Work

With the release of the Optane DIMM in April 2019, early re-
sults on the devices have begun to be published. For instance,
Van Renan et al. [44] have explored logging mechanisms for
the devices. We expect additional results to be published in
the near future as the devices become more widely available.

Prior art in persistent memory programming has spanned
the system stack, though until very recently these results were
untested on real Optane memory. A large body of work has ex-
plored transactional memory-type abstractions for enforcing
a consistent persistent state [5,9,12,25,26,28,33,49]. Various
authors have built intricate NVM data structures for logging,
data storage, and transaction processing [3,4,10,11,17,23,24,
27,30,35,38,39,41,45,46,50,57]. Custom NVM file systems
have also been explored [13, 21, 34, 48, 52, 54–56, 62].

8 Conclusion

This paper has described the performance of Intel’s new Op-
tane DIMMs across micro- and macro-level benchmarks. In
doing so, we have extracted actionable guidelines for program-
mers to fully utilize these devices’ strengths. The devices have
performance characteristics that lie in-between traditional
storage and memory devices, yet they also present interesting
performance pathologies. We believe that the devices will be
useful in extending the quantity of memory available and in
providing low-latency storage.

Acknowledgments

We thank our shepherd, Ric Wheeler and the reviewers for
their insightful comments and suggestions. We are thankful
to Subramanya R. Dulloor, Sanjay K. Kumar and Karthik B.
Sukumar from Intel for their support and help with accessing
the test platform. We would like to thank Jiawei Gao, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang,
Yi Xu and Lu Zhang for suggestions on improving the the
experiments and writing. This work was supported in part by
CRISP, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

USENIX Association 18th USENIX Conference on File and Storage Technologies 179

References

[1] Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual. 2019.

[2] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Ra-
jesh K. Gupta, and Steven Swanson. Onyx: A protoype
phase change memory storage array. In Proceedings of
the 3rd USENIX Conference on Hot Topics in Storage
and File Systems, HotStorage’11, Berkeley, CA, USA,
2011.

[3] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas,
and Per-Ake Larson. BzTree: A high-performance latch-
free range index for non-volatile memory. Proc. VLDB
Endow., 11(5):553–565, January 2018.

[4] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dul-
loor. Let’s talk about storage: Recovery methods for
non-volatile memory database systems. In SIGMOD,
Melbourne, Australia, 2015.

[5] Hillel Avni and Trevor Brown. Persistent hybrid trans-
actional memory for databases. Proc. VLDB Endow.,
10(4):409–420, November 2016.

[6] Jens Axboe. Flexible I/O Tester, 2017. https://github.
com/axboe/fio.

[7] Brian Beeler. Intel Optane DC persistent memory
module (PMM). https://www.storagereview.com/intel_
optane_dc_persistent_memory_module_pmm. Ac-
cessed 1/1/2020.

[8] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J
Boehm. Makalu: Fast recoverable allocation of non-
volatile memory. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 677–694, 2016.

[9] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging locks for non-volatile
memory consistency. In Proceedings of the 2014 ACM
International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA ’14,
pages 433–452, New York, NY, USA, 2014. ACM.

[10] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D.
Viglas. REWIND: Recovery write-ahead system for
in-memory non-volatile data-structures. Proc. VLDB
Endow., 8(5):497–508, January 2015.

[11] Shimin Chen and Qin Jin. Persistent B+-trees in non-
volatile main memory. Proc. VLDB Endow., 8(7):786–
797, February 2015.

[12] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile mem-
ories. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’11, pages
105–118, New York, NY, USA, 2011. ACM.

[13] Jeremy Condit, Edmund B. Nightingale, Christopher

Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better I/O through byte-addressable, per-
sistent memory. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles,
SOSP ’09, pages 133–146, New York, NY, USA, 2009.
ACM.

[14] Intel Corporation. Persistent Memory Development Kit.
http://pmem.io/pmdk/.

[15] Intel Corporation. pmemkv: key/value datastore for
persistent memory. https://github.com/pmem/pmemkv.

[16] Jeffrey Dean and Sanjay Ghemawat. LevelDB. https:
//github.com/google/leveldb.

[17] Justin DeBrabant, Joy Arulraj, Andrew Pavlo, Michael
Stonebraker, Stan Zdonik, and Subramanya R. Dulloor.
A prolegomenon on OLTP database systems for non-
volatile memory. Proc. VLDB Endow., 7(14), 2014.

[18] Mingkai Dong and Haibo Chen. Soft updates made sim-
ple and fast on non-volatile memory. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
719–731, Santa Clara, CA, 2017. USENIX Association.

[19] Mingkai Dong, Qianqian Yu, Xiaozhou Zhou, Yang
Hong, Haibo Chen, and Binyu Zang. Rethinking bench-
marking for NVM-based file systems. In Proceedings
of the 7th ACM SIGOPS Asia-Pacific Workshop on Sys-
tems, APSys ’16, pages 20:1–20:7, New York, NY, USA,
2016. ACM.

[20] Z. Duan, H. Liu, X. Liao, and H. Jin. HME: A
lightweight emulator for hybrid memory. In 2018 De-
sign, Automation Test in Europe Conference Exhibition
(DATE), pages 1375–1380, March 2018.

[21] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 15:1–15:15,
New York, NY, USA, 2014. ACM.

[22] Facebook. RocksDB, 2017. http://rocksdb.org.
[23] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang.

High performance database logging using storage class
memory. In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 1221–1231, April
2011.

[24] Michal Friedman, Maurice Herlihy, Virendra Marathe,
and Erez Petrank. A persistent lock-free queue for non-
volatile memory. In Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’18, pages 28–40, New York, NY,
USA, 2018. ACM.

[25] Eric R. Giles, Kshitij Doshi, and Peter Varman. Soft-
WrAP: A lightweight framework for transactional sup-
port of storage class memory. In 2015 31st Symposium
on Mass Storage Systems and Technologies (MSST),
pages 1–14, May 2015.

[26] Terry Ching-Hsiang Hsu, Helge Bruegner, Indrajit Roy,
Kimberly Keeton, and Patrick Eugster. NVthreads: Prac-

180 18th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/axboe/fio
https://github.com/axboe/fio
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm
http://pmem.io/pmdk/
https://github.com/pmem/pmemkv
https://github.com/google/leveldb
https://github.com/google/leveldb
http://rocksdb.org

tical persistence for multi-threaded applications. In Pro-
ceedings of the 12th ACM European Systems Confer-
ence, EuroSys 2017, Belgrade, Republic of Serbia, 2017.

[27] Jian Huang, Karsten Schwan, and Moinuddin K.
Qureshi. NVRAM-aware logging in transaction sys-
tems. In Proceedings of the VLDB Endowment, 2014.

[28] Joseph Izraelevitz, Terence Kelly, and Aasheesh
Kolli. Failure-Atomic Persistent Memory Updates via
JUSTDO Logging. In Proceedings of the Twenty-First
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’16, pages 427–442, New York, NY, USA,
2016. ACM.

[29] Sudarsun Kannan, Ada Gavrilovska, and Karsten
Schwan. pVM: Persistent virtual memory for efficient
capacity scaling and object storage. In Proceedings of
the Eleventh European Conference on Computer Sys-
tems, EuroSys ’16, pages 13:1–13:16, New York, NY,
USA, 2016. ACM.

[30] Hideaki Kimura. FOEDUS: OLTP engine for a thousand
cores and NVRAM. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 691–706, New York, NY,
USA, 2015. ACM.

[31] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley,
S. Liu, P. M. Chen, and T. F. Wenisch. Delegated persist
ordering. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13,
Oct 2016.

[32] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 460–477, New York, NY, USA, 2017. ACM.

[33] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee,
Michael L. Scott, Sam H. Noh, and Changhee Jung.
iDO: Compiler-directed failure atomicity for nonvolatile
memory. In 51st IEEE/ACM International Symposium
on Microarchitecture, MICRO ’18, October 2018.

[34] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 773–785, Santa Clara,
CA, 2017. USENIX Association.

[35] Virendra J. Marathe, Margo Seltzer, Steve Byan, and
Tim Harris. Persistent memcached: Bringing legacy
code to byte-addressable persistent memory. In 9th
USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), Santa Clara, CA, 2017.
USENIX Association.

[36] Iulian Moraru, David G. Andersen, Michael Kamin-
sky, Niraj Tolia, Parthasarathy Ranganathan, and Nathan
Binkert. Consistent, durable, and safe memory manage-
ment for byte-addressable non volatile main memory. In
Proceedings of the First ACM SIGOPS Conference on

Timely Results in Operating Systems, TRIOS ’13, pages
1:1–1:17, New York, NY, USA, 2013. ACM.

[37] Dushyanth Narayanan and Orion Hodson. Whole-
system persistence with non-volatile memories. In Sev-
enteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS 2012). ACM, March 2012.

[38] Faisal Nawab, Joseph Izraelevitz, Terence Kelly,
Charles B. Morrey, Dhruva Chakrabarti, and Michael L.
Scott. Dalí: A periodically persistent hash map. In
31st International Symposium on Distributed Comput-
ing, DISC ’17, October 2017.

[39] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A hybrid
SCM-DRAM persistent and concurrent B-tree for stor-
age class memory.

[40] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.
Memory persistency. In Proceeding of the 41st An-
nual International Symposium on Computer Architec-
ture, ISCA ’14, pages 265–276, Piscataway, NJ, USA,
2014. IEEE Press.

[41] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and
Bill Bridge. Storage management in the NVRAM era.
In Proc. VLDB Endow., October 2014.

[42] Andy Rudoff. Deprecating the PCOMMIT instruc-
tion. https://software.intel.com/en-us/blogs/2016/09/
12/deprecate-pcommit-instruction, 2016. Accessed
1/1/2020.

[43] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok
Nam, and Sam H. Noh. Failure-atomic slotted paging for
persistent memory. In Proceedings of the Twenty-Second
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’17, pages 91–104, New York, NY, USA, 2017.
ACM.

[44] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas
Neumann, and Alfons Kemper. Persistent memory I/O
primitives. arXiv:1904.01614, 2019.

[45] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy Campbell. Consistent and durable
data structures for non-volatile byte-addressable mem-
ory. In Proceedings of the 9th USENIX Conference on
File and Storage Technologies, FAST ’11, San Jose, CA,
USA, February 2011. USENIX Association.

[46] Stratis D Viglas. Write-limited sorts and joins for per-
sistent memory. Proc. VLDB Endow., 7(5):413–424,
2014.

[47] Haris Volos, Guilherme Magalhaes, Ludmila
Cherkasova, and Jun Li. Quartz: A lightweight
performance emulator for persistent memory software.
In Proceedings of the 16th Annual Middleware Confer-
ence, Middleware ’15, pages 37–49, New York, NY,
USA, 2015. ACM.

[48] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and

USENIX Association 18th USENIX Conference on File and Storage Technologies 181

https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction

Michael M. Swift. Aerie: Flexible file-system interfaces
to storage-class memory. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, EuroSys ’14,
pages 14:1–14:14, New York, NY, USA, 2014. ACM.

[49] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In ASP-
LOS ’11: Proceeding of the 16th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, New York, NY, USA,
2011. ACM.

[50] Tianzheng Wang and Ryan Johnson. Scalable logging
through emerging non-volatile memory. Proc. VLDB
Endow., 7(10):865–876, June 2014.

[51] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo
Chen, Binyu Zang, and Haibing Guan. Espresso: Brew-
ing java for more non-volatility with non-volatile mem-
ory. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, pages
70–83, New York, NY, USA, 2018. ACM.

[52] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A
file system for storage class memory. In Proceedings of
2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 39:1–39:11, New York, NY, USA, 2011. ACM.

[53] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven
Swanson. Finding and fixing performance pathologies
in persistent memory software stacks. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, pages 427–439, New
York, NY, USA, 2019. ACM.

[54] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016. USENIX Association.

[55] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 478–496, New York,
NY, USA, 2017. ACM.

[56] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A distributed file system for non-volatile main
memory and RDMA-capable networks. In Proceedings
of the 17th USENIX Conference on File and Storage
Technologies (FAST ’19), 2019.

[57] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. NV-Tree: Reduc-
ing consistency cost for NVM-based single level sys-
tems. In 13th USENIX Conference on File and Storage
Technologies, FAST ’15, pages 167–181, Santa Clara,
CA, February 2015. USENIX Association.

[58] Lu Zhang and Steven Swanson. Pangolin: A fault-
tolerant persistent memory programming library. In
2019 USENIX Annual Technical Conference (USENIX
ATC 19), pages 897–912, Renton, WA, July 2019.

[59] Yiying Zhang and Steven Swanson. A study of ap-
plication performance with non-volatile main memory.
In Proceedings of the 2015 IEEE Symposium on Mass
Storage Systems and Technologies (MSST’15), 2015.

[60] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and
Steven Swanson. Mojim: A reliable and highly-available
non-volatile memory system. In Proceedings of the
Twentieth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 3–18, New York, NY, USA,
2015. ACM.

[61] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and
Norman P. Jouppi. Kiln: Closing the performance gap
between systems with and without persistence support.
In Proceedings of the 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-46,
pages 421–432, New York, NY, USA, 2013. ACM.

[62] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A tiered file system for non-volatile
main memories and disks. In 17th USENIX Confer-
ence on File and Storage Technologies (FAST 19), pages
207–219, Boston, MA, 2019. USENIX Association.

182 18th USENIX Conference on File and Storage Technologies USENIX Association

DC-Store: Eliminating Noisy Neighbor Containers using Deterministic I/O
Performance and Resource Isolation

Miryeong Kwon1, Donghyun Gouk1, Changrim Lee1, Byounggeun Kim2,
Jooyoung Hwang2, Myoungsoo Jung1

Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)1, Samsung2

http://camelab.org

Abstract
We propose DC-store, a storage framework that offers de-
terministic I/O performance for a multi-container execution
environment. DC-store’s hardware-level design implements
multiple NVM sets on a shared storage pool, each providing a
deterministic SSD access time by removing internal resource
conflicts. In parallel, software support of DC-Store is aware
of the NVM sets and enlightens Linux kernel to isolate noisy
neighbor containers, performing page frame reclaiming, from
peers. We prototype both hardware and software counterparts
of DC-Store and evaluate them in a real system. The eval-
uation results demonstrate that containerized data-intensive
applications on DC-Store exhibit 31% shorter average ex-
ecution time, on average, compared to those on a baseline
system.

1 Introduction
Docker container technology is applied to diverse comput-
ing domains such as datacenter, serverless, cloud, and high-
performance computing thanks to its predictable develop-
ment and efficient resource isolation [1–7]. Docker can iso-
late the execution of specific applications from running other
applications as Sandbox [8]. Specifically, users can explic-
itly set a resource limit for each service by using control
groups (cgroups [9]) and namespace [10]. Therefore, dif-
ferent services can be free from conflicting dependencies
and resource contention. Since this consistent environment
supports completely isolated tenants, it is used to improve
computing utilization and portability [11, 12]. For example,
LEMP (Linux, Nginx, MySQL, & PHP) in the Google cloud
platform can create multiple tenants per node, each running
a separate web server (Nginx), fast CGI (PHP-FPM), and
database (MySQL) [13].

While Docker is one of the best options to increase the com-
puting utilization by sharing and/or isolating its resources,
it does not yet well manage underlying storage [14–16].
Docker’s virtualized environment enables multiple container

executions atop the host-side kernel directly, which is different
from hardware stack virtualization of the conventional virtual
machines (VMs) [17]. Because of this OS-level virtualization,
launching a container is much faster and lighter than executing
a VM [14, 18, 19]. However, the multiple containers and host
kernel often share the persistent states on a solid-state drive
(SSD), which can unfortunately interfere with their executions
and I/O services of any peers at a device-level. As modern
SSDs in practice exploit internal parallelism to enhance per-
formance [20–26], such interference introduces many storage
resource conflicts, thereby degrading the performance. To
manage the storage resource, ones may utilize proportional
bandwidth of the blkio cgroup adopted by Docker [27] and
assign different proportions to each of multiple containers,
individually. However, this approach cannot address the inter-
ference issue for multi-container execution due to two root
causes. First, even though the blkio cgroup throttles the target
I/O queue with different proportions [28], the flash-level re-
source conflicts cannot be resolved as the host is unaware of
the physical layout of the underlying SSD [29, 30]. Second,
metadata I/O services, including page frame reclaiming, are
not taken by I/O throttling of the blkio cgroup.

In this paper, we introduce DC-Store, a storage framework
that supports deterministic I/O performance and resource iso-
lation for the multi-container execution environment. DC-
Store consists of two major components, called Divided SSD
and I/O Tacker. Generally speaking, Divided SSD addresses
I/O interference at the hardware-level, thereby offering de-
terministic performance per volume. At the same time, I/O
Tacker isolates I/O requests of noisy neighbors from the exe-
cution of other peers by considering each container’s volume
ownership at the software-level. We design and implement
Divided SSD, which separates physical flash channels and
internal resources to support multiple NVM sets, which were
very recently included by NVMe workgroup (NVMe 1.4 [31]).
In specific, we statically partition the computing and hard-
ware resources per NVM set such that different I/O requests

USENIX Association 18th USENIX Conference on File and Storage Technologies 183

heading across different NVM sets can have no or minor
flash-level resource conflicts. The proposed Divided SSD can
provide an independent environment, which allows multiple
containers to operate without the device-level I/O interference.
It also enables us to use a large size of shared storage with
better utilization per node, which is in typical required by
modern data centers [32, 33].

Nevertheless, when multiple containers mount each of dif-
ferent NVM sets (provided by our Divided SSD), we still
observe that the user experience of some containerized appli-
cations degrades from an execution time angle. Even though
Linux cgroups and namespaces can limit/split the CPU, mem-
ory, and blkio subsystems for different containers, if there is
a noisy container that unintentionally issues page-out I/O re-
quests imposed by a low on virtual memory, the performance
of other peers is severely interfered and degraded. Since
Docker is not involved in metadata I/O management (and
Linux treats containers as just like other processes), it can-
not fully support the consistent environment for completely
isolated tenants.

To address this shortcoming, the proposed I/O Tacker mod-
ifies Linux kernel in order to enable per-container page frame
reclaiming by considering the container ownership and ex-
posed NVM set organization. The current version of Linux ap-
plies the same page-in/out procedures to all processes and con-
tainers, which can introduce container-level performance in-
terference. In contrast, our I/O Tacker assigns a per-container
swap area and informs its the swap location to the kernel by
modifying the kernel memory controller. Therefore, the noisy
neighbor performs page in/out only from/to its own NVM
sets. To this end, we also revise the Docker stack for users to
pass through the swap-pinning information from the Docker
client to the container engine. The I/O Tacker’s swap pinning
mechanism being aware of the container ownership can iso-
late noisy neighbors from other containers, thereby addressing
the performance degradation of all containers running on the
shared storage.

To the best of our knowledge, this paper is the first work
that implements multiple NVM sets in real hardware as well
as isolates the low on virtual memory impact from the execu-
tion environment of containers. Our results show that, even
though the average latency of our Divided SSD prototype
is worse than a baseline NVMe SSD for a single volume
accesses (with a specific pattern), it provides better and deter-
ministic I/O performance under concurrent storage accesses.
When we co-run containerized data-intensive applications
with memory-hungry containers (e.g., LEMP), the proposed
DC-Store improves user-level experiences of the applications
by 31%, on average, without degrading the performance of
such memory hungry noisy neighbors.

0 30 60 90 120
0

400

800

1200
 Partition 1 (Read)

La
te

nc
y

(u
s)

Time (sec)

No interfer-
ence period

Writes on
partition 2

Writes on
partitions 2&3

Writes on
partitions 2~4

Figure 1: Interference in storage sharing.

2 Divided SSD: Hardware Level Design

Challenges in storage sharing. For better storage utilization
and parallel accesses, a simple solution to allocate multiple
containers to a shared SSD is creating multiple disk partitions
on the storage; each partition can be mounted to a specific
container for its I/O services. However, concurrent SSD ac-
cesses for the logically partitioned storage volumes can intro-
duce many flash-level resource conflicts, thereby degrading
performance per partition. To be precise, we perform I/O in-
terference tests on a high-performance NVMe SSD, and the
results are shown in Figure 1. In this evaluation, we split a
2TB SSD (whose device configuration is explained in Table
1) into four disk partitions. We execute a Facebook-like work-
load (interspersing bursty writes into sustained reads [33])
as a representative I/O access pattern of cloud environment
by executing four containerized FIO applications [34] on the
different disk partitions. We measure the read latency on a
partition while all peer partitions are in serving bursty writes;
the writes on each peer partition are started with every 30 secs
(to understand the I/O interference impact). One can observe
from the figure is that the random read latency is around 280
us and very sustainable at the first 30 secs period. However,
once the bursty writes on another partition begin, the latency
increases as high as 400 us (1.42 times longer). When all
other partitions are dedicated to handling the bursty writes,
the latency on the read service is 4.5 times higher than the
normal operations.
Overview. To address the performance degradation in stor-
age sharing, our Divided SSD physically partitions all SSD
resources in the datapath. Figure 2a illustrates a high-level
organization of the proposed Divided-SSD. Even though there
exists a single PCIe SSD device connected to the host, our
Divided SSD exposes multiple storage volumes; each has
its own flash firmware such as flash translation layer (FTL)
and block address space. These multiple volumes (of our Di-
vided SSD) are visible from the host as “physically” separated
NVM sets. Thus, the host need to employ completely different
storage stack instances across multiple NVM sets, which can
be mounted to each of the different containers.
Hardware design. Figure 2b shows the internal design of
an ideal Divided SSD. Specifically, the proposed Divided
SSD employs multiple low-power cores, each having instruc-
tion/data memory (I-cache/D-cache). These cores have their

184 18th USENIX Conference on File and Storage Technologies USENIX Association

���������������

�����
��	
��

�����

����

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

	

���������

���������

���������

���������

���

���

���

���

�

�

�

�

�

�

(a) High-level view of Divided SSD.

�

���

�

�����

��������	��	
�

�

�����

���

�������

�

�

�

�

�

�

�

�

�

�

	

�

�

	

�

�

�

�

����

���

���

���
�
��
����

��������	

����

����

������

�

�

�

�

�

�

�

�

�

�

�

�

(b) SSD internal architecture. (c) HW prototype.

Figure 2: NVM set design and implementation (Divided SSD).

own scratchpad memory for latency-sensitive and/or shared
data accesses. The cores are all connected to a global DRAM
through LPDDR4, which are also accessed by a direct mem-
ory access (DMA). The DRAM can buffer the host requests
and manage the mapping information of FTLs. Each core
can have one or more flash memory controllers (FMCs), each
being also connected to flash buses, called channels. Each
channel employs multiple flash dies, which operate in parallel
as well, called ways [35].

To offer multiple and physically separated storage volumes
(which can address the resource conflicts), we statically split
the all SSD internal resources in the datapath per NVM set.
Specifically, as shown in Figure 2b, the global DRAM’s mem-
ory address space is partitioned and independently allocated to
each core at design time. As we disable the shared last-level
cache, flash firmware instances, operating across different
cores do not interfere with each other. In addition, each core
exposes the independent flash address space of its own un-
derlying channel(s) to the corresponding NVMe controller.
The design of our static partitions makes multi-core manage-
ment easier and enables flash firmware to operate on different
DRAM and storage regions in a separate way as well as work
entirely in parallel. Thus, in our design, each FTL (assigned
to each of statically partitioned DRAMs and cores) indepen-
dently performs the address translation between logical to
physical flash pages per NVM set.
NVM set control. To connect the underlying cores and
firmware to the host processor(s), the device requires employ-
ing multiple PCIe physical functions (PFs). Note that, while
the ideal design of Divided SSD can employ as many NVMe
PFs as the number of NVM sets, the number of PFs that an
SSD exploits in a real-world scenario would be limited; it can
even be smaller than the number of cores. To address this prac-
tical challenge, we introduce an NVM set-aware command
arbitrator (SACA) for each PF. SACA employs an NVMe
command queue per NVM set (and core). SACA distributes
all the incoming NVMe commands, associated with differ-
ent NVM sets, to the appropriate NVMe command queue by
fetching the commands from a specific NVMe submission
queue (SQ) in a round-robin fashion. This design can make

the firmware on each core (statically assigned to different
NVM sets) separately perform I/O processing on the desig-
nated NVM set (even with a limited number of PFs). Even
though different host CPUs/cores of the host can in parallel
issue the NVMe commands for the different NVM sets per
SQ, SACA can appropriately serve them atop physically parti-
tioned different flash channels (per NVM set). To manage the
I/O completion, SACA collects the I/O completion messages
(coming from different cores) and puts them into the target
NVMe completion queue (CQ), which is associated with the
submission queue. Thus, SACA can handle I/O requests, tar-
geting to different NVM sets but being enqueued in the same
SQ/CQ, with a design of limited PFs.
Prototype. Figure 2c shows the current Divided SSD that
we prototyped. The prototype hardware has a front-side and
back-end PCBs, each containing four flash channels and eight
ways. In total, our prototype hardware employs 64 flash dies,
each using 64 layered triple-level cell (TLC) flash technology.
We connect them to four cores that run four different flash
firmware instances. All these set-related cores are intercon-
nected to 3GB LPDDR global memory (physically partitioned
to each core). Thus, the prototype exposes four independent
NVM sets (2 channels per set) over one PF, which is capable
of storing 2TB data into the single storage pool of the device.

3 I/O Tacker: System Level Support
Page-frame reclaiming interference. While our Divided
SSD physically separates its shared storage space into multi-
ple NVM sets, each being mounted to different containers, the
I/O interference, caused by noisy neighbors, can degrade the
performance of peer containers. To be precise, we issue ran-
dom reads to the first NVM set using FIO configured with the
Facebook-like workload used in Section 2, while executing a
memory hungry application on the other NVM sets. The con-
figuration of such application, LEMP, is described in Section
4. Figures 3a and 3b respectively show the amount of storage
accesses (footprint) and latency of the first NVM set when
we increase the number of LEMP instances, each mounting
different NVM sets. Even though there is no instance working
on the first NVM set except for FIO, the storage footpoint

USENIX Association 18th USENIX Conference on File and Storage Technologies 185

increases as the number of LEMP increases by 15.8% at most
(Figure 3a). As shown in Figure 3b, this unfortunately makes
the average and worst-case latency of random reads as high
as 22% and 931%, respectively. The reason why we can ob-
serve the performance degradation on Divided SSD is that
the memory subsystem of LEMP containers introduces extra
I/O requests, targeting to the storage area, mounted to the first
NVM set. In Linux, containers are treated just as processes,
the I/O requests, caused by demand paging, are all together
heading to the swap disk or file that the host OS designates,
which cannot be solely addressed by device-level performance
isolation.
Overview of ownership-based I/O isolation. To remove the
impact of the memory-hungry container(s) from other peers,
our I/O Tacker pins the swap area to the target NVM set based
on container ownership. Note that, while cgroups’ memory
subsystem is configured by users (when the target container
is created), page frame reclaiming is performed by the host
kernel. Thus, we modify several data structures of kernel
and cgroup to link the kernel and cgroup by being aware of
the container ownership. In addition, we modify the Docker
stack to inform our per-container swap area information to the
Docker container engine. Putting it all together, noisy neigh-
bors running page-out and page-in operations are dedicated
their own NVM sets, which do not interfere with other peer
containers.
Cgroup and kernel modification. To redesign the swap
operations (related demand paging), we modify the kernel
memory controller (linux/mm/memcontrol.c) and define
the read and write actions of memory subsystem’s cgroup.
The actions are declared by our new function that modifies the
memory cgroup structure (mem_cgroup). As shown in Figure
3c, we add two swap information to the mem_cgroup, one
for swap type (swap_type) and another for swap destination
(swap_dst). While the swap type explains whether the cur-
rent cgroup uses a default page frame reclaiming method or
our per-container demand paging technique, the swap destina-
tion includes the index of swap information list (swap_info).
An entry of the swap information list (swap_info_struct)
contains the actual swap disk or swap file information. Thus,
when the host kernel evicts a page frame, it will only page
in/out from the designated location, if the swap type indi-
cates the per-container demand paging. We also modify the
eviction-related kernel function, get_swap_pages(), to ap-
propriately refer the target index of swap information list by
referring our modified mem_cgroup.

Note that all page frames (page_struct) contain a pointer
indicating mem_cgroup, associated with the owner processes
(container as well). Thus, when the host kernel selects
a victim page frame by looking up the page table at
get_swap_pages(), the function can retrieve the index of
swap information of mem_cgroup. In get_swap_pages(),
we forward the retrieved index to scan_swap_map() such
that it will update the corresponding page table entry (PTE)

SS
D

Capacity 2TB DRAM LPDDR4
channel 8 # die 64

core for sets 4 NAND 64 Layered TLC

Te
st

be
d CPU Xeon E5-2690 v3 (48 cores)

Nginx 1.17.1 DRAM DDR4 256GB
MySQL 8.0.16 Linux 5.0.7+

PHP 7.2 Docker 18.09.7+

Table 1: Important parameters of our device and system.

with swp_entry_t that consists of the retrieved index and the
specific offset within the swap area target. Once the kernel
puts the victim page to its swap cache, which will page out
to the backend storage, the kernel can check a specific swap
destination location from swap_info_struct using the list
index and perform per-container demand paging.
Docker stack modification. In Docker stack, we modify
the container engine (containerd) to write our pinned
swap information parameter (indicated by mem.pinned)
to mem_cgroup. Specifically, the modified containerd
will update the swap type and destination fields of
mem_cgroup by collaborating with our kernel memory con-
troller. As shown in Figure 3d, when users create a
container, containerd generates the file of mem.pinned
under the corresponding container’s memory subsystem
directory (sys/fs/cgroup/memory/docker/<container-
ID>/mem.pinned). In the file creation process, it will jump
to our function and update mem_cgroup (associated with the
host kernel) in indicating a specific NVM set, explained
by swap_info_struct. Once this cgroup update is com-
pleted, containerd changes the processor control block
(task_struct) to link the mem.pinned with the structure
of cgroups. Thus, the host kernel can be aware of the swap
information that the users designate.

Since the proposed I/O Tacker takes mem.pinned infor-
mation when creating a container, we also modify Docker
stack to deliver such new parameter from Docker client
(docker-cli), Docker daemon (dockerd), to containerd,
as shown in Figure 3e. As Docker modules in the stack
communicate with docker-cli through HTTP, the modi-
fied docker-cli delivers the mem.pinned information by
packing it into containerConfig structure using a JSON
format [36]. Docker engine (dockerd) atop containerd
then parses such parameter information and forwards it to
containerd using a Google remote procedure call (gRPC).
Therefore, containerd can access the mem.pinned informa-
tion and create the container that uses per-container page
frame reclaiming.

4 Evaluation

We prepare two real NVMe SSD hardware devices, one for a
high-performance NVMe SSD and another for our Divided
SSD prototype; the hardware configuration of those two is

186 18th USENIX Conference on File and Storage Technologies USENIX Association

0 1 2 31.
8x

10
8
2.

0x
10

8
2.

2x
10

8

Am
ou

nt
 o

f s
tro

ag
e

ac
ce

ss
es

The # of LEMP instances

 extra I/O app I/O

(a) Storage footprint.

0 1 2 310
0

20
0

30
0

50
06

00
Av

g
la

t.o
f f

irs
t N

VM
 s

et
(m

s)

The # of LEMP instances

(b) Degradation.

��������������	

����������
��	

��������	

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

�

�

�

��
���	����

�	�
�

��������

�

�

�

�

� � �

�

�

�

�

�

�

��� ������

�

�	
��������	�����

��
���	���

(c) Per-container demand paging.

�����
����

	��
��
����

���������	

���������	

����

�������	�
�

��
��

�����

���

������

(d) Container engine modif.

���������	

�

�

�

�

�

�

�

�

�

�

����

������

�����	

�����
���

�		

��

�����

(e) Docker stack modif.

Figure 3: Overview of system-level support (I/O Tacker).

exactly same (e.g., the same number of cores, controllers,
channels and flash devices). We connect each device into
our testbeds; each of them employs two processors (total 48
cores), 256 GB DDR4 DRAM and uses PCIe 3.0 4 lanes for
the SSD prototype connections. In the Baseline testbed, we
connect the NVMe SSD and logically partition it into four
(each offering 480 GB), while the DC-Store testbed uses four
NVM sets of Divided SSD with I/O Tacker (modified by the
same version of Linux kernel 5.0.7 that Baseline installs).
All our testbeds use EXT4 as their file system. We use grep,
wordcount (wc), minmax for containerized data-intensive ap-
plications, while sort is evaluated for a compute-intensive
application. All the containerized applications generate their
outputs by examining a set of randomly generated data vec-
tors, stored to 630,000 files on EXT4. For noisy neighbors, we
prepare LEMP, consisting of one Nginx, two PHP-FPM, and
one MySQL per container. The important device information
is summarized in Table 1.

Overall performance. Figure 4a shows the execution time
of Baseline and DC-Store by co-running containerized appli-
cations with a LEMP stack. For the scenario of co-running
data-intensive containers with LEMP, DC-Store finishes the
applications in 174 secs, on average, which is 31% shorter
than Baseline. Since LEMP performs demand paging, the cor-
responding I/O requests are sporadically issued to the NVMe
volume that the data-intensive containers operate, which in
turn degrades the performance of Baseline. In contrast, since
Divided SSD completely splits the NVMe volumes through
different channels, and I/O Tacker isolates the page frame re-
claiming from the peer NVMe volumes in processing the data,
the performance degradation is not observed with DC-Store.
Specifically, grep, wc and minmax on DC-Store shorten the
container-level execution times (compared to those of Base-
line) by 29.2%, 29.2%, and 33.9%, on average, respectively.
On the other hand, sort (compute-intensive) exhibits similar
performance between Baseline and DC-Store (7.8% better
than Baseline). Since most of the sort executions are involved
in CPU processing (for data comparisons for sorting), the
I/O requests from the containerized sort occasionally occur.
We will dig deeper the performance of Divided SSD and I/O

Tacker in Sections 4.2 and 4.3, respectively.
Note that LEMP itself shows negligible performance dif-

ference (under 0.16%, on average) for all the co-running sce-
narios. Even though the degree of internal parallelism per
NVM set would be lower than that of Baseline’s NVMe SSD,
LEMP’s writes related to demand paging can be enqueued
and buffered by the host-side memory. Thus, the LEMP execu-
tion can be tolerable at some extent. Specifically, we observe
that, compared to Baseline, the target NVM set’s I/O depth
increases by 56%, on average. However, since the swap cache
issues such I/O requests with long intervals (60 ms in av-
erage), all the requests are served within the long intervals
thereby being invisible to the users.
Different levels of interference. We increase the number of
LEMP containers from one to three to analyze the differ-
ent levels of interference, imposed by noisy neighbors; each
LEMP mounts different NVM sets, and all remaining sets
are used for the containerized applications. Figure 4b shows
the application execution time of DC-Store, normalized to
that of Baseline. We observe that DC-Store exhibits all simi-
lar execution time behaviors, which have no impact with the
varying numbers of noisy neighbors. However, as Baseline
performance gets worse (except for grep) due to extra reads
and writes brought by demand paging, the performance of
DC-Store looks get better in this normalization comparison.
For Baseline, we observe that grep is a bit more sensitive on
the access pattern that other grep instances generate. As in-
creasing the number of LEMP (and relatively decreasing the
number of running grep instances), Baseline shortens grep’s
completion time by 20 secs. Since DC-Store provides deter-
ministic performance, which does not have impact on other
peer NVM sets, the benefits on grep are only around by 21%
compare to Baseline, on average (the right most of Figure 4b).
Time series analysis. Figure 5 shows a time series analysis
of grep and sort as the representative of data- and compute-
intensive applications, respectively. One can observe from
Figure 5a, that the latency of containerized grep fluctuates as
much as LEMP generates page frame reclaiming related I/O
services. In contrast, DC-Store shows highly predictable and
sustainable latency, irrespective of LEMP’s page frame re-

USENIX Association 18th USENIX Conference on File and Storage Technologies 187

grep wc minmax sort
100

150

200

250

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

 Baseline DC-Store

(a) Execution time comparison.

1 2 3

0.6

0.8

1.0

N
or

m
al

iz
ed

Ex
ec

ut
io

nT
im

e

Noisy nabr.

 g
re
p

 w
c

 m
in
ma
x

 s
or
t

(b) Sensitivity.

Figure 4: DC-Store performance analysis.

claiming activities. This is because paging in/out of LEMP’s
memory subsystem occurs only to the NVM set that LEMP
owns. In contrast, such I/O services of DC-Store (at the device-
level) are completely isolated from other NVM sets. The stor-
age latency of Baseline is shorter than DC-store when there is
no interference from LEMP. This is because, unlike Divided
SSD, Baseline NVMe SSD can utilize the internal DRAM
optimized for sequential accesses. Note that the reason why
there is no I/O from LEMP between 0 and 1 sec in Figure
5a is that all I/Os during this period were absorbed by the
DRAM. We will further analyze this behavior in Section 4.2.
For the containerized sort, it exhibits a different performance
characteristic. Since the performance of sort is dominated
by the host computing power, sort introduces I/O requests
sparsely (Figure 5b). Nevertheless, its latency trend of Base-
line still fluctuates, which is similar to that of LEMP’s page
frame reclaiming activities. This, in turn, makes the containers
on Baseline in overall show 35% performance degradation,
compared to the execution time with no I/O interference.

4.1 Eliminating Noisy Neighbors

4.2 Device-level Analysis
Figures 6a and 6b respectively show the level of I/O deter-
minism for sequential and random access patterns in terms
of latency. The evaluation is performed by the same scenario
of flash workloads from Facebook [33] (read-intensive with
bursty writes); the latency values are the read performance of
the first NVM set while writing data into other NVM sets for
every 30 secs. There are two insights observed in this evalu-
ation. At the first test epoch (∼30 secs), Divided SSD is, on
average, 5.8 times slower than Baseline NVMe for the sequen-
tial accesses (Figure 6a) while it exhibits better performance
on random accesses (157% faster, on average). As Divided
SSD physically partitions the underlying flash channels, it can-
not take the full advantage of internal parallelism; Baseline’s
NVMe SSD reads data across all eight different channels in
parallel, whereas Divided SSD only uses two channels. More
importantly, this parallelism can increase if DRAM buffer is
sufficiently large as the firmware can perform a read-ahead by
enabling all the underlying channels. Divided SSD splits the
internal DRAM region and assigns to each core, it exhibits

0 1 2 3
0

200
0

200

400

La
te

nc
y

(u
s)

Relative Time (sec)

Noisy neighbors

DC-Store
neighbors

Baseline

Noisy

(a) Data-intensive (grep).

0 1 2 3
0

200
0

200

400

La
te

nc
y

(u
s)

Relative Time (sec)

Noisy neighbors

DC-Store
Noisy neighbors

Baseline

(b) Compute-intensive (sort).

Figure 5: Timeline analysis.

the performance degradation per NVM set on the sequential
accesses. In contrast, the latency on random accesses is diffi-
cult to take a full benefit of the read-ahead and parallelism;
for the random, the resource conflict can be higher, and there
is a low spatial locality, which makes the latency of Divided
SSD shorter than Baseline’s NVMe SSD (Figure 6b).

Note that the key benefit of hardware-level NVM set im-
plementation is to remove I/O interference and provide deter-
ministic performance. As shown in the figure 6a, Baseline’s
NVMe SSD increases the latency for the remaining epochs
and shows as high as 14.8 times longer latency, compared to
the first epoch test. In contrast, Divided SSD exhibits 55%,
83%, and 86% shorter latency than Baseline’s NVMe SSD
for 2nd, 3rd and 4th epochs, on average, respectively. The
main reason why Divided SSD offers deterministic I/O per-
formance is to statically split all SSD resources per set such
that the requests on other NVM sets cannot interfere the I/O
services on the first NVM set.

4.3 I/O Tacker Performance Impact
We evaluate different methods of demand paging on multiple
NMVe sets to see the performance benefits solely brought by
I/O Tacker. Default uses the default demand paging configura-
tion of kernel and Round pages in/out across different NVM
sets in a round-robin fashion. In contrast, Private employs the
per-container page frame reclaiming technique of I/O Tacker,
which pins the swap area to a specific NVM set that LEMP
owns. In this test, only a single containerized LEMP stack is
executed, but it generates demand paging related I/O requests
more than the test performed in Section 4.1 by double. The
user-level execution time of all containers is shown in Figure
7a. Default requires 251, 260, 215 and 239 secs to execute
grep, wc, minmax and sort (by co-running with LEMP), re-
spectively. In contrast, Private requires 193, 197, 148 and 206
secs to complete their task, on average; Private for the data-
intensive applications is faster than those on Default by 23%
on average. Round also shows some benefits, compared to
Default, but it is still slower than Private by 10%, on average.

Figure 7b shows the results of time series analysis for the
containerized grep (as the representative of data-intensive
applications). The latency of Default and Round fluctuates
when the reads and writes related to demand paging occur

188 18th USENIX Conference on File and Storage Technologies USENIX Association

0 30 60 90 120
0

400
800

1200

 Baseline DC-Store

La
te

nc
y

(u
s)

Time (sec)
(a) Seqential reads.

0 30 60 90 120
0

400
800

1200

 Baseline DC-Store

La
te

nc
y

(u
s)

Time (sec)
(b) Random reads.

Figure 6: Read-intensive with bursty writes.

even with Divided SSD. This is because even though Divided
SSD implements hardware-level NVM sets with static re-
source partitioning, the I/O requests for demand paging are
managed without the consideration of container ownership. In
contrast, Private keeps the predictable and sustainable latency
while serving such I/O requests by pinning the swap area to
the NVM set that LEMP operates on. Importantly, we observe
that the execution time of LEMP with Private is 60% and
22% shorter than those with Default and Round, respectively
as well. This is because Private removes the serialized I/O
requests on a specific NVM set for the page in/out of LEMP.

5 Related Work
There exist several studies that virtualize an SSD by isolat-
ing its channels or flash dies [37–39]. [37] proposed an over-
provisioning space isolation to reduce garbage collection over-
heads, and similarly, [40] proposed an SSD-aware host-level
I/O scheduler to improve proportionality on a shared storage
system. [38] partitioned the flash resources of Open-Channel
SSD (OCSSD) [41, 42] with a kernel-level modification to
enhance the storage lifetime. In similar, [39] changed kernel
driver(s) to make OCSSD support multi-tenants with artificial
intermixed block-level I/O traces. While the prior work virtu-
alizes the SSD with software support or performs simulation-
based studies, we split all internal resources, including flash,
buffer, and core, as well as memory subsystem (demand pag-
ing) in real hardware. Our prototype of DC-Store successfully
achieves deterministic I/O performance and resource isola-
tion.

On the other hand, some prior works [40, 43, 44] that tried
to make the underlying SSD be aware of different degrees
of QoS are unfortunately agnostic to container-level infor-
mation and Docker storage stack. There are a few OS-level
virtualization studies that attempt to satisfy different levels of
QoS requirements of multiple applications in a shared storage
system. Specifically, [28] and [45] modify a block layer and
page cache in an attempt to utilize proportional bandwidth by
being aware of per-container I/O weight. Unfortunately, these
prior researches cannot address the storage-level interference
issues for multi-container execution environment because the
block layer and page cache that throttle the bandwidth (based

grep wc minmaxsort120

160

200

240

Ti
m

e
(s

ec
)

 Default Round Private

(a) Execution time.

0
400

0
400

0 1 2 3
0

400

La
te

nc
y

(u
s)

 N
br

's
 rd

.
 g
re
p

 N
br

's
 w

r.

Default

Private

Relative Time (sec)

Round

(b) Time series analysis (grep).

Figure 7: I/O Tacker performance analysis.

on per-container I/O weight) are not aware of the physical
layout of SSDs and cannot split metadata I/O services from
their I/O throttling.

6 Discussion

The number of NVMe set per device can be greater or smaller
than the number of user applications running on Docker as
the current prototype of our Divided SSD statically partitions
all the internal resources at design time. While we consider
designing different hardware platforms to dynamically allo-
cate the different number of NVMe sets as future work, there
are still several alternatives to map between different numbers
of user applications and NVMe sets. In cases where users
want to fully utilize all the bandwidth of Divided SSD with a
small number of containers, it is possible to group multiple
NVMe sets into a single shared storage partition using a con-
ventional RAID scheme. In contrast, if there are containerized
applications greater than the NVMe sets offered by Divided
SSD, we can classify the applications based on the read and
write ratios and then allocate them in homogenous groups
to different NVMe sets. Even though this approach may not
be optimal, it can provide a significant benefit by protecting
read-intensive applications from the interference of heavy
writes (requested by other containerized applications).

7 Conclusion

In this paper, we proposed DC-Store to offer deterministic
I/O performance for a multi-container execution environment.
We prototyped both hardware (Divided SSD) and software
(I/O Tacker) modules of our DC-Store, and evaluate them in
a real system, which shortens the data-intensive applications
by 31%, on average, compared to those on a baseline system.

Acknowledgements

This research is mainly supported by NRF
2016R1C182015312, KAIST Start-up package (G01190015)
and Samsung grant (G01190271). The authors thank John
Bent of Seagate Technology for shepherding their paper.
Myoungsoo Jung is the corresponding author.

USENIX Association 18th USENIX Conference on File and Storage Technologies 189

References
[1] A. Eivy, “Be wary of the economics of "serverless" cloud

computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 6–
12, 2017.

[2] D. Bernstein, “Containers and cloud: From lxc to docker
to kubernetes,” IEEE Cloud Computing, vol. 1, no. 3,
pp. 81–84, 2014.

[3] J. Higgins, V. Holmes, and C. Venters, “Orchestrating
docker containers in the hpc environment,” in Interna-
tional Conference on High Performance Computing,
pp. 506–513, Springer, 2015.

[4] D. M. Jacobsen and R. S. Canon, “Contain this, un-
leashing docker for hpc,” Proceedings of the Cray User
Group, 2015.

[5] M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and
N. Thoai, “Using docker in high performance comput-
ing applications,” in 2016 IEEE Sixth International Con-
ference on Communications and Electronics (ICCE),
pp. 52–57, IEEE, 2016.

[6] D. Merkel, “Docker: Lightweight linux containers for
consistent development and deployment,” Linux Journal,
vol. 2014, no. 239, p. 2, 2014.

[7] C. Boettiger, “An introduction to docker for reproducible
research,” ACM SIGOPS Operating Systems Review,
vol. 49, no. 1, pp. 71–79, 2015.

[8] J. Shukla, “Application sandbox to detect, remove, and
prevent malware,” Jan. 17 2008. US Patent App.
11/769,297.

[9] “cgroup-v1.” https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt.

[10] “Linux namespace.” http://man7.org/linux/
man-pages/man7/namespaces.7.html.

[11] A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell,
“A tale of two systems: Using containers to deploy hpc
applications on supercomputers and clouds,” in 2017
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 74–81, IEEE,
2017.

[12] B. P. Rimal and M. Maier, “Workflow scheduling in
multi-tenant cloud computing environments,” IEEE
Transactions on Parallel and Distributed Systems
(TPDS), vol. 28, no. 1, pp. 290–304, 2016.

[13] S. Sakr, “Cloud-hosted databases: technologies, chal-
lenges and opportunities,” Cluster Computing, vol. 17,
no. 2, pp. 487–502, 2014.

[14] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay, “Con-
tainers and virtual machines at scale: A comparative
study,” in Proceedings of the 17th International Middle-
ware Conference (Middleware), p. 1, ACM, 2016.

[15] S. McDaniel, S. Herbein, and M. Taufer, “A two-tiered
approach to i/o quality of service in docker containers,”
in 2015 IEEE International Conference on Cluster Com-
puting (Cluster), pp. 490–491, IEEE, 2015.

[16] J. Bhimani, Z. Yang, N. Mi, J. Yang, Q. Xu, M. Awasthi,
R. Pandurangan, and V. Balakrishnan, “Docker container
scheduler for i/o intensive applications running on nvme
ssds,” IEEE Transactions on Multi-Scale Computing
Systems (TMSCS), vol. 4, no. 3, pp. 313–326, 2018.

[17] “VirtualBox.” https://www.virtualbox.org/.

[18] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors
vs. lightweight virtualization: a performance compari-
son,” in 2015 IEEE International Conference on Cloud
Engineering (IC2E), pp. 386–393, IEEE, 2015.

[19] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization
vs containerization to support paas,” in 2014 IEEE In-
ternational Conference on Cloud Engineering (IC2E),
pp. 610–614, IEEE, 2014.

[20] S. Park, E. Seo, J. Shin, S. Maeng, and J. Lee, “Exploit-
ing internal parallelism of flash-based ssds,” IEEE Com-
puter Architecture Letters (CAL), vol. 9, no. 1, pp. 9–12,
2010.

[21] E. H. Nam, B. S. J. Kim, H. Eom, and S. L. Min, “Ozone
(o3): An out-of-order flash memory controller architec-
ture,” IEEE Transactions on Computers (TC), vol. 60,
no. 5, pp. 653–666, 2010.

[22] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren,
“Exploring and exploiting the multilevel parallelism in-
side ssds for improved performance and endurance,”
IEEE Transactions on Computers (TC), vol. 62, no. 6,
pp. 1141–1155, 2012.

[23] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang,
“Performance impact and interplay of ssd parallelism
through advanced commands, allocation strategy and
data granularity,” in Proceedings of the International
Conference on Supercomputing (ICS), pp. 96–107,
ACM, 2011.

[24] M. Jung and M. T. Kandemir, “Sprinkler: Maximizing
resource utilization in many-chip solid state disks,” in
2014 IEEE 20th International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 524–535,
IEEE, 2014.

190 18th USENIX Conference on File and Storage Technologies USENIX Association

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.virtualbox.org/

[25] M. Jung, W. Choi, S. Srikantaiah, J. Yoo, and M. T. Kan-
demir, “Hios: A host interface i/o scheduler for solid
state disks,” ACM SIGARCH Computer Architecture
News, vol. 42, no. 3, pp. 289–300, 2014.

[26] M. Jung, E. H. Wilson III, and M. Kandemir, “Physically
addressed queueing (paq) improving parallelism in solid
state disks,” ACM SIGARCH Computer Architecture
News, vol. 40, no. 3, pp. 404–415, 2012.

[27] “cgroup-v1 blkio.” https://www.kernel.org/doc/
Documentation/cgroup-v1/blkio-controller.
txt.

[28] S. Ahn, K. La, and J. Kim, “Improving i/o resource
sharing of linux cgroup for nvme ssds on multi-core
systems,” in 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2016.

[29] M. Jung, “Exploring parallel data access methods in
emerging non-volatile memory systems,” IEEE Trans-
actions on Parallel and Distributed Systems (TPDS),
vol. 28, no. 3, pp. 746–759, 2016.

[30] S. Koh, C. Lee, M. Kwon, and M. Jung, “Exploring
system challenges of ultra-low latency solid state drives,”
in 10th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage), 2018.

[31] “NVM Express Base Specification Revision 1.4.”
https://nvmexpress.org/wp-content/uploads/
NVM-Express-1_4-2019.06.10-Ratified.pdf.

[32] C. Petersen and A. Huffman, “Solving latency chal-
lenges with nvm express ssds at scale,” Flash Memory
Summit, 2017. https://www.flashmemorysummit.
com/English/Collaterals/Proceedings/2017/
20170809_SIT6_Petersen.pdf.

[33] C. Petersen, W. Zhang, and A. Naberezhnov, “Enabling
nvme i/o determinism at scale,” Flash Memory
Summit, 2018. https://www.flashmemorysummit.
com/English/Collaterals/Proceedings/2018/
20180807_INVT-102A-1_Petersen.pdf.

[34] J. Axboe, “Flexible i/o tester.” https://github.com/
axboe/fio.

[35] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S.
Kim, M. Kandemir, and M. Jung, “Amber: Enabling pre-
cise full-system simulation with detailed modeling of
all ssd resources,” in 2018 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
pp. 469–481, IEEE, 2018.

[36] “Docker engine.” https://docs.docker.com/
engine/api/v1.24/.

[37] J. Kim, D. Lee, and S. H. Noh, “Towards slo complying
ssds through ops isolation,” in 13th USENIX Conference
on File and Storage Technologies (FAST), pp. 183–189,
2015.

[38] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta,
B. Sharma, and M. K. Qureshi, “Flashblox: Achieving
both performance isolation and uniform lifetime for
virtualized ssds,” in 15th USENIX Conference on File
and Storage Technologies (FAST), pp. 375–390, 2017.

[39] J. González and M. Bjørling, “Multi-tenant i/o isola-
tion with open-channel ssds,” in Nonvolatile Memory
Workshop (NVMW), 2017.

[40] J. Kim, E. Lee, and S. H. Noh, “I/o scheduling schemes
for better i/o proportionality on flash-based ssds,” in
2016 IEEE 24th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), pp. 221–230, IEEE, 2016.

[41] M. Bjørling, J. González, and P. Bonnet, “Lightnvm: The
linux open-channel ssd subsystem,” in 15th USENIX
Conference on File and Storage Technologies (FAST),
pp. 359–374, 2017.

[42] “Open-Channel Solid State Drives Specification Re-
vision 2.0.” http://lightnvm.io/docs/OCSSD-2_
0-20180129.pdf.

[43] W. Shin, M. Kim, K. Kim, and H. Y. Yeom, “Providing
qos through host controlled flash ssd garbage collection
and multiple ssds,” in 2015 International Conference on
Big Data and Smart Computing (BIGCOMP), pp. 111–
117, IEEE, 2015.

[44] H. Park, S. Yoo, C.-H. Hong, and C. Yoo, “Storage sla
guarantee with novel ssd i/o scheduler in virtualized data
centers,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 27, no. 8, pp. 2422–2434, 2015.

[45] K. Oh, J. Park, and Y. I. Eom, “Weight-based page cache
management scheme for enhancing i/o proportionality
of cgroups,” in 2019 IEEE International Conference on
Consumer Electronics (ICCE), pp. 1–3, IEEE, 2019.

USENIX Association 18th USENIX Conference on File and Storage Technologies 191

https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_SIT6_Petersen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_SIT6_Petersen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_SIT6_Petersen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2018/20180807_INVT-102A-1_Petersen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2018/20180807_INVT-102A-1_Petersen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2018/20180807_INVT-102A-1_Petersen.pdf
https://github.com/axboe/fio
https://github.com/axboe/fio
https://docs.docker.com/engine/api/v1.24/
https://docs.docker.com/engine/api/v1.24/
http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf
http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf

GoSeed: Generating an Optimal Seeding Plan for Deduplicated Storage

Aviv Nachman, Gala Yadgar
Computer Science Department, Technion

Sarai Sheinvald
Braude College of Engineering

Abstract
Deduplication decreases the physical occupancy of files in a

storage volume by removing duplicate copies of data chunks,
but creates data-sharing dependencies that complicate stan-
dard storage management tasks. Specifically, data migration
plans must consider the dependencies between files that are
remapped to new volumes and files that are not. Thus far, only
greedy approaches have been suggested for constructing such
plans, and it is unclear how they compare to one another and
how much they can be improved.

We set to bridge this gap for seeding—migration in which
the target volume is initially empty. We present GoSeed, a
formulation of seeding as an integer linear programming (ILP)
problem, and three acceleration methods for applying it to real-
sized storage volumes. Our experimental evaluation shows that,
while the greedy approaches perform well on “easy” problem
instances, the cost of their solution can be significantly higher
than that of GoSeed’s solution on “hard” instances, for which
they are sometimes unable to find a solution at all.

1 Introduction
Data deduplication is one of the most effective ways to reduce
the size of data stored in large scale systems. Deduplication
consists of identifying duplicate data chunks in different files,
storing a single copy of each unique chunk, and replacing the
duplicate chunks with pointers to this copy. Deduplication
reduces the total physical occupancy, but increases the com-
plexity of management aspects of large-scale systems such as
capacity planning, quality of service, and chargeback [53].

Another example, which is the focus of this study, is data
migration—the task of moving a portion of a physical vol-
ume’s data to another volume—typically performed for load
balancing and resizing. Deduplication complicates the task of
determining which files to migrate: the physical capacity freed
on the source volume, as well as the physical capacity occupied
on the target volume, both depend on the amount of deduplica-
tion within the set of migrated files, as well as between them
and files outside the set (i.e., files that remain on the source
volume and files that initially reside on the target volume). An
efficient migration plan will free the required space on the
source volume while minimizing the space occupied on the tar-
get. However, as it turns out, even seeding, in which the target
volume is initially empty, is a computationally hard problem.

Data migration in deduplicated systems and seeding in par-
ticular are the subject of several recent studies, each focusing on
a different aspect of the problem. Harnik et al. [32] address ca-
pacity estimation for general migration between volumes, while
Duggal et al. [25] describe seeding a cloud-tier for an existing
system. Rangoli [49] is designed for space reclamation—an
equivalent problem to seeding. These studies propose greedy
algorithms for determining the set of migrated files, but the
efficiency of their resulting migration plans has never been
systematically compared. Furthermore, in the absence of the-
oretical studies of this problem, it is unclear whether and to
what extent they can be improved.

We present GoSeed, a new approach that bridges this gap
for the seeding and, consequently, space reclamation problems.
GoSeed consists of a formulation of seeding as an integer
linear programming (ILP) problem, providing a theoretical
framework for generating an optimal plan by minimizing its
cost—the amount of data replicated. Although ILP is known
to be NP-Hard, commercial optimizers can solve it efficiently
for instances with hundreds of thousands of variables [1–4, 6].
At the same time, ILP instances representing real-world stor-
age systems may consist of hundreds of millions of variables
and constraints—too large even for the most efficient optimiz-
ers, that may require prohibitively long time to process these
instances. Thus, GoSeed also includes three practical accel-
eration methods, each presenting a different tradeoff between
runtime and optimality.

The first method, solver timeout, utilizes the optimizer’s
ability to return a feasible suboptimal solution when its runtime
exceeds a predetermined threshold. A larger timeout value
allows the optimizer to continue its search for the optimal
solution, but increasing the timeout may yield diminishing
returns. The second method, fingerprint sampling, is similar to
the sketches used in [32], and generates an ILP instance from
a probabilistically sampled subset of the system’s chunks. An
optimal seeding plan generated on a sample will not necessarily
be optimal for the original system. Thus, increasing the sample
size may reduce the plan’s cost, but will necessarily increase
the required processing time of the solver.

Our third method, container aggregation, generates an ILP
instance in terms of containers—the basic unit of storage and
I/O in many deduplication systems. Containers typically store
several hundreds of chunks, where chunks in the same con-
tainer likely belong to the same files. When they do, containers

USENIX Association 18th USENIX Conference on File and Storage Technologies 193

represent the same data sharing constraints as their chunks. In
addition to reducing the problem size, migrating entire con-
tainers can be done without decompressing them, and without
increasing the system’s fragmentation. At the same time, a
container-based ILP instance may introduce “false” sharing
between files, resulting in a suboptimal plan.

We implement GoSeed with the Gurobi [2] commercial op-
timizer, and with the three acceleration methods. We generate
seeding plans for volumes based on deduplication snapshots
from two public repositories [7, 47]. Our evaluation reveals the
limitations of the greedy algorithms proposed for seeding thus
far—while they successfully generate good plans for “easy”
problems (with modest deduplication), GoSeed generates bet-
ter solutions for the harder problems, for which the greedy
approaches sometimes return no solution.

Our analysis further demonstrates the efficiency of the accel-
eration methods in GoSeed. It shows that (1) the suboptimal
solution returned by GoSeed after a timeout is often better than
the greedy solutions, (2) fingerprint sampling “hides” some
of the data sharing in volumes with modest deduplication, but
provides an accurate representation of systems with substantial
deduplication, and (3) GoSeed’s container-based solutions are
optimal if entire containers are migrated. Our results suggest
several rules of thumb for applying and combining these three
methods in practical settings.

The rest of this paper is organized as follows. Section 2 pro-
vides background on deduplication and ILP, as well as related
previous work. We present the ILP formulation of GoSeed
in Section 3, and its acceleration methods in Section 4. Our
experimental setup and evaluation are described in Section 5,
with a discussion in Section 6. Section 7 concludes this work.

2 Background and Related Work
2.1 Deduplication
The smallest unit of data in a deduplication system is a chunk,
which typically consists of 8-64KB. The incoming data is
split into chunks of fixed or variable size, and the fingerprint
of each chunk is used to identify duplicates and to replace
them with pointers to existing copies. In many systems, new
chunks are written to durable storage in containers, which
are the system’s I/O unit, and typically consist of hundreds of
chunks [20,29,38,41,68]. New chunks are added to containers
in a log structure. Thus, chunks belonging to the same file
will likely reside in adjacent containers. Designs that do not
employ containers typically also persist the chunks in a log
structure, and thus adjacent chunks will likely belong to the
same files [16, 18, 24, 54].

To recover a file, all the containers pointed to by the file
recipe are fetched into memory, after which the file’s chunks
are collected. The efficiency of this process, in terms of I/O and
memory usage, strongly depends on the file’s fragmentation:
the physical location of the different containers and the portion
of the container’s chunks that belong to the requested file [50].
Some systems reduce the amount of fragmentation by limiting

the number of containers a file may point to, or their age [28,
40].

Over the last decade, numerous studies addressed the var-
ious aspects of deduplication system design, such as char-
acterizing and estimating the system’s deduplication poten-
tial [27, 33, 46, 47, 57, 61], efficient chunking and fingerprint-
ing [9,44,48,63,64], indexing and lookups [10,54,68], restore
performance [28, 36, 40, 67], compression [42, 65], and secu-
rity [14, 34, 39, 55]. Their success (among others) has made
it possible to use deduplication for primary storage and not
just for archives. Additional studies explored ways to adapt
the concept of deduplication to related domains such as page
caching [35, 38], minimizing network bandwidth [9, 48], man-
agement of memory resident VM pages [17, 31, 62], and mini-
mizing flash writes [16, 26, 30, 38, 52, 60].

Recently, Shilane et al. [53] described the “next” challenge
in the design of deduplication systems: providing these sys-
tems with a set of management functions that are available in
traditional enterprise storage systems, one of which is capacity
management in deduplicated systems, and specifically, fast and
effective data migration.

2.2 Data migration
Data migration is typically performed in the background, ac-
cording to a migration plan specifying which data is moved
to which new location. Typical objectives when generating a
migration plan include minimizing the amount of data trans-
ferred, optimizing load balancing, or minimizing its effect on
ongoing jobs.

The effectiveness of data migration and the resources it
consumes may greatly affect the system’s performance. Thus,
efforts have been made to optimize its various aspects in-
cluding service down-time, geolocation, provisioning, memory
consumption, and system-specific performance requirements
and constraints [43, 45, 56, 59]. Hippodrome [12] and Ergas-
tulum [13] formulated the storage allocation problem as an
instance of bin-packing, while Anderson et al. [11] experimen-
tally evaluated several theoretical algorithms, concluding that
their theoretical bounds are overly pessimistic.

The distinction between logical and physical capacity in
deduplicated systems introduces additional complexity to the
data migration problem. For optimal read and restore perfor-
mance, the physical copies of a file’s chunks must reside on
the same storage volume. Thus, when migrating a file from
one volume to another, this file’s chunks that also belong to
another file must be copied (duplicated), rather than moved. As
a result, migrating data from a full volume to an empty one
is likely to increase the total physical capacity of the system.
Migrating data between two non-empty volumes can either
increase or decrease the total physical capacity, depending on
the degree of duplication between the migrated data and the
data on the target volume. Intuitively, to optimize the system’s
overall storage utilization, a migration plan should minimize
the amount of data that is duplicated as a result.

194 18th USENIX Conference on File and Storage Technologies USENIX Association

Deduplication complicates other related tasks in a similar
manner. Garbage collection must consider the logical as well as
the physical relationships between chunks, files, and containers.
Unfortunately, specific approaches for optimizing garbage col-
lection are not directly applicable to data migration [23,28,40].
As another example, online assignment of streams to servers in
distributed systems must consider both content similarity and
load balancing. Current solutions distribute data to servers in
the granularity of individual chunks [24], super-chunks [21],
files [15], or users [22], considering server load as a secondary
objective. These online solutions are based on partial knowl-
edge of the data in the system, and may result in suboptimal
plans if applied directly to data migration.

2.3 Existing data migration approaches
A recent paper describes the Data Domain Cloud Tier, in
which customers maintain two tightly connected deduplica-
tion domains, in an on-premises system and in a remote object
store [25]. They dedicate special attention to the process of
seeding the cloud-tier—migrating a portion of the on-premises
system into an initially empty object store. While the choice
of the exact files to migrate is deferred to the client, the gen-
eral use-case is to keep older backups in the cloud-tier and
newer ones on-premises. The authors refer to “many days or
weeks possibly required to transfer a large dataset to the cloud”,
strongly motivating our goal to minimize the amount of data
replicated during migration.

Rangoli is a greedy algorithm for space reclamation in a
deduplicated system [49]. Although it predates [25] by several
years, its problem formulation is equivalent: choose a set of
files for migration from an existing volume to a new empty vol-
ume. Rangoli constructs a migration plan by greedily grouping
files into roughly equal-sized bins according to the blocks they
share, and then chooses for migration the bin whose files have
the least amount of data shared with other bins. The migration
objective is specified as the number of bins.

In another recent paper, Harnik et al. address migration in the
broader context of load balancing [32]. Their system consists
of several non-empty volumes, each operating as an indepen-
dent deduplication domain. The goal is to estimate the amount
of deduplication between files on different volumes, to deter-
mine the potential occupancy reduction achieved by migrating
files between volumes.1 The focus of the study is a sketching
technique that facilitates this estimation. In their evaluation,
the authors propose a greedy algorithm that iteratively migrates
files from one volume to another, with the goal of minimizing
the overall physical occupancy in the system.

Capacity planning and space reclamation in deduplicated
systems are relatively new challenges. Current solutions are
either naïve—migrating backups according to their age—or
greedy. At the same time, migration carries significant costs in

1In the original paper, migration is described in terms of moving logical
volumes between physical servers. Thus, their volumes are equivalent to what
we refer to as files, for simplicity.

terms of physical capacity and bandwidth consumption, and it
is unclear whether and how much the greedy solutions can be
improved upon. This gap is the main motivation of our study.

2.4 Integer linear programming (ILP)

Integer linear programming (ILP) is a well-known optimiza-
tion problem. The input to ILP is a set Ax of linear con-
straints, each of the form a0x0+a1x1 · · ·+an−1xn−1 ≤ c, where
a1, . . . ,an,c ∈ Z, and an objective function of the form T x =
t0x0 + t1x1 + · · ·+ tn−1xn−1. The problem is finding, given Ax
and T x, an integer assignment to x0,x1, . . . ,xn that satisfies Ax
and maximizes T x. There is no known efficient algorithm for
solving ILP. In particular, when the variables are restricted to
Boolean assignments (0 or 1), then merely deciding whether Ax
has a solution has been long known to be NP-Complete [37].

Nevertheless, ILP is used in various fields for modeling a
wide range of problems [8, 51, 66, 69]. This wide use has been
made possible by efficient ILP solvers—designated heuristic-
based tools that can handle and solve very large instances.
Thus, despite its theoretical hardness, ILP can in many cases
be solved in practice for instances that contain hundreds of
thousands and even millions of variables and constraints.

Most ILP solvers are based on the Simplex algorithm [19],
which efficiently solves linear programming where the vari-
ables are not necessarily integers. They then search for an
optimal integer solution, starting the search at the vicinity of
the non-integer one. The wide variety of ILP solvers includes
open-source solvers such as SYMPHONY [6], lp_solve [4],
and GNU LP Kit [3]. Industrial tools include IBM CPLEX [1]
and the Gurobi optimizer [2]. In this research, we take advan-
tage of these highly-optimized solvers for finding the optimal
migration plan in a deduplicated storage system.

3 GoSeed ILP optimization
We formulate the goal of generating a migration plan as follows.
Move physical data of size M from one volume to another, while
minimizing R, the total size of the physical data that must be
copied (replicated) as a result. In a seeding plan, the target
volume is initially empty. We refer to R as the cost of the
migration. Note that in a seeding plan, minimizing R minimizes
the total capacity of the system, as well as the amount of data
transferred between volumes during the migration.

Problem definition. For a storage volume V , let BV =
{b0,b1, . . . ,bm−1} be the set of unique blocks stored on V , and
let s(b) be the size of block b. The storage cost of the volume is
the total size of the blocks stored on it, i.e., s(V) = Σbi∈BV s(bi).
Let FV = { f0, f1, . . . , fn−1} be the set of files mapped to V , and
let IV ⊆ BV ×FV be an inclusion relation, where (b, f) ∈ IV
means that block b is included in file f . We intentionally disre-
gard the order of blocks in a file, or blocks that appear several
times in one file. While this information is required for restor-
ing the original file, it is irrelevant for the allocation of blocks
to volumes.

USENIX Association 18th USENIX Conference on File and Storage Technologies 195

(1) 0≤ x0,x1,x2,m0,m1,m2,r0,r1,r2 ≤ 1
(2) m0 ≤ x0, m0 ≤ x1, m1 ≤ x1, m1 ≤ x2, m2 ≤ x2

(3) x0 ≤ m0 + r0, x1 ≤ m0 + r0, x1 ≤ m1 + r1,
x2 ≤ m1 + r1, x2 ≤ m2 + r2

(4) 4 ·m0 +3 ·m1 +3 ·m2 = 3

Goal: minimize 4 · r0 +3 · r1 +3 · r2

Figure 1: Example system and its formulation as an ILP problem,
where the goal is to migrate 30% of the physical space (M = 3).

We require that all the blocks included in a file are stored on
the volume this file is mapped to. Thus, if a file f is remapped
from V1 to V2, then every block that is included in f must be
either migrated to V2 or replicated. Similarly, if we migrate a
block b from volume V1 to volume V2, then every file f such
that (b, f) ∈ IV1 must be remapped from V1 to V2.

The seeding problem is to decide, given a source volume V1
with BV1 ,FV1 , IV1 , an empty destination volume V2, a target size
M and a threshold size R, whether there exists a set B′ ⊆ BV1 of
blocks whose total size is M, that can be migrated from V1 to V2,
such that the total size of blocks that are replicated is at most
R. In practice, we are interested in the respective optimization
problem. Namely, the seeding optimization problem is to find
such a set B′ while minimizing R. A solution to the seeding
optimization problem is a migration plan: the list of files that
are remapped, the list of blocks that are replicated, and B′—the
list of blocks that are migrated from V1 to V2.

We prove that the seeding problem is NP-hard using a reduc-
tion from the Clique problem (omitted due to space consider-
ations). Intuitively, the relationship between files and blocks
influences the quality of the solution, because the decision
whether to migrate a specific block depends on the decision
regarding other blocks. In this aspect, seeding is similar to
many other set-selection problems such as Set Cover, Vertex
Cover, and Hitting Set, that are known to be NP-hard [37].

ILP formulation. We model the seeding optimization prob-
lem as an ILP problem as follows. For every file fi ∈ FV1 we
allocate a Boolean variable xi. Assigning 1 to xi means that fi
is remapped from V1 to V2. For every block bi ∈ BV1 we allocate
two Boolean variables, mi,ri. Assigning 1 to mi means that bi
is migrated from V1 to V2, and assigning 1 to ri means that bi
is replicated and will be stored in both V1 and V2.

We model the problem constraints as a set of linear inequali-
ties, as follows.
1. All variables are Boolean: 0 ≤ x j ≤ 1, 0 ≤ mi ≤ 1, and

0≤ ri ≤ 1 for every f j ∈ FV1 and bi ∈ BV1 .
2. If a block b is migrated, then every file that b is included in

is remapped: mi ≤ x j for every i, j such that (bi, f j) ∈ IV1 .

· Block b2 is migrated: m2 = 1
· File f2 is remapped: x2 = 1
· Block b1 is replicated: r1 = 1
· The remaining files and blocks are untouched:

x0 = x1 = m0 = m1 = r0 = r2 = 0
· The total cost is R = 3 · r1 = 3

Figure 2: The system from Figure 1 after applying the optimal mi-
gration plan with M = 3.

3. If a file f is rempapped, then every block that is included
in f is either migrated or replicated: x j ≤ mi + ri for every
i, j such that (bi, f j) ∈ IV1 .

4. The total size of migrated blocks is M:
Σbi∈BV1

s(bi) ·mi = M.
The objective function minimizes the total size of blocks that
are replicated: minimize Σbi∈BV1

s(bi) · ri.
Another intuitive constraint is that a block cannot be mi-

grated and replicated at the same time: mi + ri ≤ 1 for every
bi ∈ BV1 . This constraint will be satisfied implicitly in any opti-
mal solution—if a block is migrated (mi = 1) then replicating
it will only increase the value of the objective function, and
thus ri will remain 0. This is also true for all the solutions in
the space defined by the Simplex algorithm, and consequently
for suboptimal solutions returned when the solver times out.

A solution to the ILP instance is an assignment of values to
the Boolean variables. We note, however, that such an assign-
ment does not necessarily exist. If a solution does not exist,
Simplex-based solvers will return quickly—we observed a few
minutes in our evaluation. If a solution to the ILP instance
exists, we find B′ by returning every block bi such that mi = 1,
and the list of replicated blocks by returning every block bi
such that ri = 1. The list of files to remap is given by every file
fi such that xi = 1.

Figure 1 shows an example of a simple deduplicated sys-
tem, and the formulation as an ILP instance of the respective
seeding optimization problem with M = 3. The optimal solu-
tion, depicted in Figure 2, is to migrate b2, replicate b1, and
remap f2, which yields R = 3. Another feasible solution is to
migrate b1, whose size is also 3. However, migrating b1 results
in replicating both b0 and b2, which yields R = 7.

Refinements. The requirement to migrate blocks whose to-
tal size is exactly M may severely limit the possibility of finding
a solution. Fortunately, in real settings, there is some range of
acceptable migrated capacities. For example, for the file system
in Figure 1, a solution exists for M = 3 but not for M = 2. In
realistic systems, feasible solutions may be easier to find but
their cost, R, might be unnecessarily high. Thus, we redefine

196 18th USENIX Conference on File and Storage Technologies USENIX Association

Figure 3: A migration plan with an orphan block. The goal is to
migrate 30% (M = 3) of the system in (a). b2 is the orphan—it was
duplicated when f2 was remapped (b).

our problem by adding a slack value, ε, as follows.
For a given BV1 ,FV1 , IV1 , target size M, and slack value ε, the

seeding optimization problem with slack is to find B′ ⊆ BV1

of blocks whose total size is M′, M− ε ≤ M′ ≤ M + ε, that
can be migrated from V1 to V2. In the formulation as an ILP
problem, we require that the total size of migrated blocks is
M±ε: M−ε≤ Σbi∈BV1

s(bi) ·mi ≤M+ε. For example, for the
system in Figure 1, the optimal solution for M = 2 and ε = 1,
is the solution given above for M = 3.

Another refinement in the problem formulation is required
to prevent “leftovers” on the source volume V1. An orphan
block is copied because a file it is included in is remapped,
but no other file that includes it remains in V1. For example,
consider the system in Figure 3(a), with a migration objective
of M = 3. For simplicity, assume that ε = 0. The only feasible
solution is depicted in Figure 3(b), where b1 is migrated, f1 and
f2 are remapped, and b2 is replicated. b2 cannot be migrated
because this would exceed the target migration size, M = 3.
Replicating b2 leaves an extra copy of this block in V1, where
it is not contained in any file.

Although a migration plan with orphan blocks represents
a feasible solution to the ILP problem, it is an inefficient one.
For example, b2 in Figure 3(b) consists of 20% of the system’s
original capacity. Orphans can be eliminated by garbage col-
lection, or even as part of the migration process [25]. This is
essentially equivalent to migrating the orphan blocks, rather
than replicating them, resulting in a migrated capacity which
exceeds the original objective. For example, removing b2 from
volume V2 in Figure 3(b) is equivalent to a migration plan with
M = 5, rather than the intended M = 3.

We eliminate such solutions by adding the following con-
straint: if a block b is copied, then at least one file it is in-
cluded in is not remapped: ri ≤ Σ{ j|(bi, f j)∈IV1}

(1− x j) for every
bi ∈ BV1 . This additional constraint may result in the solver
returning without a solution. Such cases should be addressed
by increasing ε or modifying M. Nevertheless, the decision
whether to prevent orphan blocks in the migration plan or to
eliminate them during its execution is a design choice that can
easily be realized by adding or removing the above constraint.

Complexity. The number of constraints in the ILP formu-
lation is linear in the size of IV —the number of pointers from
files to blocks in the system. Although the size of IV can be at
most |BV | · |FV |, it is likely considerably smaller in practice: the
majority of the files are small, and the majority of the blocks

are included in a small number of files [47].
In general, the time required for an ILP solver to find an

optimal solution depends on many factors, including the num-
ber of variables, the connections between them (represented by
the constraints), and the number of feasible solutions. In our
context, the size of the problem is determined by the number
of files and blocks, and its complexity depends on the dedupli-
cation ratio and on the pattern of data sharing between the files.
It is difficult to predict how each of these factors will affect
the solving time in practice. Furthermore, small changes in the
target migration size and in the slack value may significantly
affect the solver’s performance. We evaluate the sensitivity of
GoSeed to these parameters in Section 5.

4 GoSeed Acceleration Methods
The challenge in applying ILP solvers to realistic migration
problems is their size. In a system with an average chunk size
of 8KB, there will be approximately 130M chunks in each
TB of physical capacity. Thus, the runtime for generating a
migration plan for a source volume with several TBs of data
would be unacceptably long. In this section, we present three
methods for reducing this generation time. We describe their
advantages and limitations and the ways in which they may be
combined, and evaluate their effectiveness in Section 5.

4.1 Solver timeout
The runtime of an ILP solver can be limited by specifying a
timeout value. When a timeout is reached before the optimal
solution is found, the solver will halt and return the best feasible
solution found thus far. This approach has the advantage of
letting the solver process the unmodified problem. It does not
require any preprocessing, and, theoretically, the solver may
succeed in finding the optimal solution. The downside is that
when the solver is timed out, we cannot necessarily tell how
far the suboptimal solution is from the optimal one.

4.2 Fingerprint sampling
Sampling is a standard technique for handling large problems,
and has been used in deduplication systems to increase the
efficiency of the deduplication process [15, 16, 41], to route
streams to servers [21], for estimating deduplication ratios [33],
and for managing volume capacities [32]. We use sampling
in the same way it is used in [32]. Given a sampling degree
k, we include in our sample all the chunks whose fingerprint
contains k leading zeroes, and all the files containing those
chunks. When the fingerprint values are uniformly distributed,
the sample will include 1

2k chunks. Harnik et al. show in [32]
that k = 13 guarantees small enough errors for estimating the
capacity of deduplicated volumes larger than 100GB.

Sampling reduces the size of the ILP instance by a pre-
dictable factor: incrementing the sampling degree k by one
reduces the number of blocks by half. Combining sampling and
timeouts presents an interesting tradeoff: a smaller sampling
factor results in a larger ILP instance that more accurately rep-
resents the sampled system. However, solving a larger instance

USENIX Association 18th USENIX Conference on File and Storage Technologies 197

Figure 4: The system from Figure 1 with container aggregation.

is more likely to time out and return a suboptimal solution. It
is not clear which combination will result in a better migration
plan—a suboptimal solution on a large instance, or an optimal
solution on a small instance. Our analysis in Section 5 shows
how the answer depends on the original (unsampled) instance
and on the length of the timeout.

4.3 Container-based aggregation

Aggregation is often employed as a first step in analysing large
datasets. In deduplication systems, containers are a natural
basis for aggregation. Containers are often compressed be-
fore being written to durable storage, and are decompressed
when they are fetched into memory for retrieving individual
chunks. Thus, generating and executing a migration plan in
the granularity of containers holds the advantage of avoiding
decompression as well as an increase in the fragmentation in
the system by migrating individual chunks from containers.

To formulate the migration problem with containers we
coalesce chunks that are stored in the same container into a
single block, and remove parallel edges, i.e., pointers from the
same file to different chunks in the same container. Figure 4
shows the container view of the volume from Figure 1. In a real
system, formulating the migration problem with containers is
more efficient than with chunks: when processing file recipes,
we can ignore the chunk fingerprints and use only the container
IDs for generating the variables and constraints.

In a system that stores chunks in containers, the container-
based migration problem accurately represents the system’s
original constraints. At the same time, we can further leverage
container-based aggregation as an acceleration method by arti-
ficially increasing the container size beyond the size used by
the system. With aggregation degree K, we coalesce every K
adjacent containers into one, like we do for chunks. Thus, a
system with 4MB containers can be represented as one with
4K-MB containers by coalescing every K original containers.
Containers typically store hundreds of chunks, which means
that the size of the resulting ILP problem will be smaller by sev-
eral orders of magnitude. Furthermore, containers are allocated
as fixed-size extents, which further reduces the ILP problem
complexity: the optimization goal of minimizing the total size
of migrated blocks becomes a simpler goal of minimizing their
number.

A container-based seeding plan can be obtained more
quickly than a chunk-based one. Thus, if aggregation is com-
bined with solver timeouts, a container-based suboptimal so-
lution will likely be closer to the optimal (container-based)
solution than in an execution solving the chunk-based instance.
At the same time, container-based aggregation (like any aggre-

gation method) reduces the granularity of the solution, which
affects its efficiency as an acceleration method for the origi-
nal chunk-based problem. Namely, an optimal container-based
migration plan is not necessarily optimal if the migration is
executed in the granularity of chunks.

Consider a migration plan generated with containers, and let
FV2 be the set of files that are remapped to V2 as a result of that
plan. FV1 is the set of files that remain on V1. If a container is not
part of the migration plan, this means that all of its chunks are
contained only in files from FV1 . When a container is marked for
migration, this means that all of its chunks are contained only
in files from FV2 . When a container includes at least one chunk
that is contained in a file from FV1 as well as in a file from FV2 ,
the entire container is marked for replication. However, this
container may also contain some “false positives”—chunks
that are contained only in files from FV1 (and should not be
part of the migration), or only in files from FV2 (and should be
migrated rather than replicated).

These false positives increase the cost of the container-based
solution, and can be eliminated by performing the actual migra-
tion in the granularity of chunks, as done in [25]. However, this
would eliminate the advantages of migrating entire containers,
and may cause the solver to “miss” the migration plan that
would have been optimal for the chunk-based ILP instance. We
observe this effect in Section 5

5 Evaluation
The goal of our experimental evaluation is to answer the fol-
lowing questions:
• What is the difference, in terms of cost, between the ILP-
based migration plan and the greedy ones?
• How do the ILP instance parameters (its size, M, and ε)
affect it’s complexity, indicated by the solver’s runtime?
• How does timing out the solver affect the quality (cost) of
the returned solution?
• How do the sampling and aggregation degrees affect the
solver’s runtime and the cost of the migration plan?

5.1 Experimental setup
Deduplication snapshots. We use static file system snapshots
from two publicly available repositories. The UBC dataset [47]
includes file systems of 857 Microsoft employees available via
SNIA IOTTA [5]. The FSL dataset [7] includes daily snapshots
of a Mac OS X Snow Leopard server and of student home
directories at the File System and Storage Lab (FSL) at Stony
Brook University [57, 58]. The snapshots include, for each file,
the fingerprints calculated for each of its chunks, as well as the
chunk size in bytes. Each snapshot file represents one entire
file system, which is the migration unit in our model, and is
represented as one file in our ILP instance.

To obtain a mapping between files and unique chunks, we
emulate the ingestion of each snapshot into a simplified dedu-
plication system. We assume that all duplicates are detected and
eliminated. We emulate the assignment of chunks to containers

198 18th USENIX Conference on File and Storage Technologies USENIX Association

Volume Files Chunks Dedupe Containers Logical
UBC-50 50 27M 0.59 122K 807 GB

UBC-100 100 73M 0.34 317K 3.5 TB
UBC-200 200 138M 0.32 570K 6.7 TB
UBC-500 500 382M 0.31 1.6M 19.5 TB

Homes 81 19M 0.13 295K 8.9 TB
MacOS-Week 102 6M 0.02 93K 20 TB
MacOS-Daily 200 6.3M 0.01 99K 43 TB

Table 1: Volume snapshots in our evaluation. The container size
is 4MB. Dedupe is the deduplication ratio—the ratio between the
physical and logical size of each volume. Logical is the logical size.

by assuming that unique chunks are added to containers in the
order of their appearance in the original snapshot file. We cre-
ate snapshots of entire volumes by ingesting several file-system
snapshots one after the other, thus eliminating duplicates across
individual snapshots. The resulting volume snapshot represents
an independent deduplication domain.

The volume snapshots used in our experiments are detailed
in Table 1. The UBC-X volumes contain the first X file sys-
tems in the UBC dataset. These snapshots were created with
variable-sized chunks with Rabin fingerprints, whose speci-
fied average chunk size is 64KB. In practice, however, many
chunks are 4KB or less. The FSL snapshots were also generated
with Rabin fingerprints and average chunk size of 64KB.2 The
MacOS-Daily volume contains all available daily snapshots
of the server between May 14, 2015 and May 8, 2016, while
the MacOS-Week volume contains weekly snapshots, which
we emulate by ingesting the snapshots from all the Fridays
in repository. The Homes volume contains weekly snapshots
of nine users between August 28 and October 23, 2014 (nine
weeks in total).

GoSeed Implementation. We use the commercial Gurobi
optimizer [2] as our ILP solver, and use its C++ interface to
define our problem instances. The problem variables (xi, mi, ri)
are declared as Binary and represented by the GRBVar data type.
The constraints and objective are declared as linear expressions.
M and ε are given in units of percents of the physical capacity.
We specify three parameters for each execution: a timeout
value, the parallelism degree (number of threads), and a random
seed. These parameters do not affect the optimality of the
solution, but they do affect the solver’s runtime. Specifically,
the starting point for the search for an integer solution is chosen
at random, which may lead some executions to complete earlier
than others. If the solver times out, different executions might
return solutions with slightly different costs. In our evaluation,
we solve each ILP instance in three separate executions, each
with a different random seed, and present the average of their
execution times and costs. Our wrapper program for converting
a volume snapshot into an ILP instance in Gurobi consists of
approximately 400 lines of code.3

We ran our experiments on a server running Ubuntu 18.04.3,

2Due to technical issues in our preprocessing step, we had to represent
all the chunks in the FSL snapshots as chunks of exactly 64KB. The chunk
fingerprints and the deduplication between them is unchanged.

3Code available at https://github.com/avivnachman1/GoSeed

equipped with 64GB DDR4 RAM (with 2666 MHz bus speed),
Intel R© Xeon R© Silver 4114 CPU (with hyper-threading func-
tionality) running at 2.20GHz, one Dell R© T1WH8 240GB
TLC SATA SSD, and one Micron 5200 Series 960GB 3D TLC
NAND Flash SSD. We let Gurobi use 38 CPUs, and specify
a timeout of six hours, to allow for experiments with a wide
range of setup and problem parameters.

Comparison to existing approaches. We use our volume
snapshots to evaluate the quality of the migration plans gener-
ated by the existing approaches described in Section 2.3. We
implement Rangoli according to the original paper [49]. We
convert our migration objective M into a number of bins B,
such that B = 1

M . We modified Rangoli to comply with the
restriction that the migrated capacity is between M− ε and
M+ ε: when choosing one of B bins for migration, our version
of Rangoli chooses only from those bins whose capacity is
within the specified bounds.

For evaluation purposes, we implemented a seeding version
of the greedy load balancer that was used for evaluating the ca-
pacity sketches in [32]. We refer to this algorithm as SGreedy.
In each iteration, SGreedy chooses one file from V1 to remap
to V2. The remapped file is the one which yields the best space-
saving ratio, i.e., the ratio between the space freed from V1
and that added to V2. The iterations continue until the migrated
capacity is at least M−ε, and if, at this point, it does not exceed
M+ ε, a solution is returned. SGreedy returns a seeding plan
in the form of a list of files that are remapped from V1 to V2.
We then use a dedicated “cost calculator” to derive the cost of
the migration plan on the original (unsampled) system.

Our calculator creates an array of the volume’s chunks and
their sizes, and two bit indicators, V1 and V2, that are initial-
ized to FALSE for each chunk. It then traverses the files in the
volume snapshot and updates the indicators of their blocks as
follows. If a file is remapped, then the V2 indicators of all its
chunks are set to TRUE. If a file is not remapped, then the V1
indicators of all its chunks are set to TRUE. A final pass over
the chunk array calculates the replication cost by summing the
sizes of all the chunks whose V1 and V2 indicators are both
TRUE. The migrated capacity is the sum of the sizes of all the
chunks whose V2 indicator is TRUE and V1 indicator is FALSE.

5.2 Results
Comparison of different algorithms. We first analyze the mi-
gration cost incurred by the different algorithms on the various
volume snapshots. Figure 5 shows our results with three values
of M (10,20,33) and ε = 2. A missing bar of an algorithm indi-
cates that it did not find a solution for that instance. GoSeed-K
and SGreedy-K depict the results obtained by these algorithms
running on a snapshot created with sampling degree K (the
cost was calculated on the original snapshot).

Rangoli does not perform well on most of the volume snap-
shots. It incurs the highest replication cost on the UBC snap-
shots, except UBC-100 with M = 33, for which it does not find
a solution. On the FSL snapshots, it finds a good solution only

USENIX Association 18th USENIX Conference on File and Storage Technologies 199

https://github.com/avivnachman1/GoSeed

10 20 33
M (%)

0

1

2

3

4

5

6

Co
st

 (%
 re

pl
ica

te
d)

(a) UBC-50

10 20 33
M (%)

0

1

2

3

Co
st

 (%
 re

pl
ica

te
d)

(b) UBC-100

10 20 33
M (%)

0

1

2

3

Co
st

 (%
 re

pl
ica

te
d)

(c) UBC-200

10 20 33
M (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
st

 (%
 re

pl
ica

te
d)

(d) UBC-500

10 20 33
M (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
st

 (%
 re

pl
ica

te
d)

~28.3

(e) Homes

10 20 33
M (%)

0

10

20

30

40

50

60

Co
st

 (%
 re

pl
ica

te
d)

(f) MacOS-Week

10 20 33
M (%)

0

10

20

30

40

50

60

Co
st

 (%
 re

pl
ica

te
d)

(g) MacOS-Daily

Rangoli
SGreedy
SGreedy-12
SGreedy-13
GoSeed-12
GoSeed-13

Figure 5: Replication cost of
seeding plans. Missing bars indi-
cate a solution was not found.

for the Homes volume (with M = 10 and M = 33), but not for
the remaining instances. The backups on the MacOS volumes
share most of their data, with a very low deduplication ratio.
In these circumstances, Rangoli fails because it is unable to
partition the files into separate bins of the required size.

SGreedy returns a solution in all but two instances (UBC-50
with M = 10 and Homes with M = 33). For the UBC snap-
shots, the cost of its solution is 37%-87% lower than the cost
of Rangoli’s solution. When SGreedy is applied to a sampled
snapshot, as it was originally intended, this cost increases by
as much as 28% and 27%, for sample degrees 12 and 13, re-
spectively. This increase is expected, as the sampled snapshot
“hides” some of the data sharing in the real system. However,
the increase is smaller in most instances. It is also interesting
to note a few cases where SGreedy returns a better solution
(with a lower replication cost) on the sampled snapshot than on
the original one, such as for UBC-50 with M = 33. These situ-
ations can happen when “hiding” some of the sharing helps the
greedy process find a solution that it wouldn’t find otherwise.

We can now classify our volumes into three rough categories.
We refer to the UBC volumes as easy—their data sharing is
modest and the greedy algorithms find good solutions for them.
We refer to the Homes volume as hard—its data sharing is
substantial and the greedy algorithms mostly return solutions
with high costs (up to 29%), or don’t find a solution at all.
We consider the MacOS volumes to be very hard because of
their exceptionally high degree of sharing between files. This
sharing prevents Rangoli from finding any solution, and incurs
very high costs (up to 60%) in the plan generated by SGreedy.

GoSeed cannot find a solution for the full snapshots, which
translate to ILP instances with hundreds of millions of con-
straints. We thus use fingerprint sampling to apply GoSeed

to the volume snapshots, with two sampling degrees, 12 and
13. Our results show that GoSeed finds a solution for all the
volumes and all values of M. It generates slightly better plans
with a smaller sampling degree, when more of the system’s
constraints are manifested in the ILP instance.

In the easy (UBC) volumes, the cost of GoSeed’s migration
plan is similar to that of SGreedy’s plan on the sampled snap-
shots. It is higher for four instances (UBC-50 with M = 20,33,
and for UBC-100 and UBC-200 with M = 10) and equal or
lower for the rest. This shows that greedy solutions may suffice
for volumes with modest data sharing between files.

The picture is different for the hard volumes. For Homes,
GoSeed consistently finds a better migration plan, while each
of the greedy algorithms finds a solution for some values of M
but fails to find one for others. The biggest gap between the
greedy and optimal solutions occurs for M = 20: SGreedy (with
and without sampling) replicates 27%-28% of the volume’s
capacity, while the replication cost of the plan generated by
GoSeed is only 1%. This demonstrates a known property of
greedy algorithms—their solutions are good enough most of
the time, but very bad in the worst case.

Finally, for the very hard (MacOS) volumes, GoSeed finds
similar or better solutions than SGreedy, with or without sam-
pling. Although more than 50% of the volume is replicated
in all of the migration plans, the replication cost of GoSeed
for MacOS-Weekly with M = 10 and M = 20 is 14% and 8%
lower than that of SGreedy, respectively. The exceptionally
high degree of sharing in this volume indicates that better so-
lutions likely do not exist. This conclusion was supported in
our attempt to apply the “user’s” migration plan from [25],
remapping the oldest backups (files, in our case) to a new tier.
In MacOS-Weekly and MacOS-Daily, remapping the single

200 18th USENIX Conference on File and Storage Technologies USENIX Association

10 20 33
M (%)

100

101

102

Ti
m

e
(s

ec
)

(a) UBC-50

10 20 33
M (%)

100

101

102

103

Ti
m

e
(s

ec
)

(b) UBC-100

10 20 33
M (%)

100

101

102

103

Ti
m

e
(s

ec
)

(c) UBC-200

10 20 33
M (%)

100

101

102

103

104

Ti
m

e
(s

ec
)

6 hours

(d) UBC-500

10 20 33
M (%)

100

101

102

103

Ti
m

e
(s

ec
)

(e) Homes

10 20 33
M (%)

100

101

102

103

Ti
m

e
(s

ec
)

(f) MacOS-Week

10 20 33
M (%)

100

101

102

103

104

Ti
m

e
(s

ec
)

6 hours

(g) MacOS-Daily

Rangoli
SGreedy
SGreedy-12
SGreedy-13
GoSeed-12
GoSeed-13

Figure 6: Runtime of seeding al-
gorithms. For GoSeed, we present
the average of three runs, with er-
ror bars indicating the maximum
runtime.

10
-1

10
-2

10
-4

20
-1

20
-2

20
-4

25
-1

25
-2

25
-4

33
-1

33
-2

33
-4

50
-1

50
-2

50
-4

0

1

2

3

4

Co
st

 (%
 re

pl
ica

te
d)

UBC-100

10
-1

10
-2

10
-4

20
-1

20
-2

20
-4

25
-1

25
-2

25
-4

33
-1

33
-2

33
-4

50
-1

50
-2

50
-4

Homes

M(%)-Epsilon(%)
Figure 7: GoSeed plans generated with sampling degree K=12.

oldest backup to a new volume resulted in migrating 0.2% and
0.3% of the volume’s capacity, and replicating 49% and 55%
of it, respectively.

Figure 6 shows the runtime of the different algorithms. The
runtime of GoSeed is longer than that of SGreedy on the sam-
pled snapshot, but shorter than that of SGreedy and Rangoli
on the original snapshots. GoSeed timed out at six hours only
in one execution (UBC-500 and K = 12). The rest of the in-
stances were solved by GoSeed in less than one hour (UBC) or
five minutes (FSL). We note, though, that GoSeed utilizes 38
threads, while the greedy algorithms use only one. For a migra-
tion plan transferring several TBs of data across a wide area
network or a busy interconnect, these runtimes and resources
are acceptable.

Effect of ILP parameters. We first investigate how M and
ε affect the solver’s ability to find a good solution. We compare
the cost of the plan generated by GoSeed with five values of
M (used in [49]) and three values of ε on an easy (UBC-100)
volume and on a hard one (Homes). The results in Figure 7
show that in the easy volume, higher values of M result in a

higher cost, and that this cost can be somewhat reduced by
increasing ε, which increases the number of feasible solutions.
We observe a similar effect in Homes, but to a much smaller
extent. We note that this effect is also shared by the greedy
algorithms (not shown for lack of space), for which differences
in ε often make a difference between finding a feasible solu-
tion or returning without one. Increasing M also exponentially
increases the runtime of the solver—migrating more blocks
results in more feasible solutions in the search space. We omit
the runtimes of this experiment, but the effect can be observed
in Figure 6.

We next investigate how the size of the snapshot affects the
time required to solve the ILP instance. We compare prob-
lems with similar constraints and different sizes by generating
sampled snapshots with K between 7 and 13 of the above two
volumes. Figure 8 shows the average runtime of GoSeed on
these snapshots with M = 20 and ε = 2. Error bars mark the
minimum and maximum runtimes. Note that both axes are
log-scaled—incrementing K by one doubles the number of
blocks in the ILP instance. As we expected, the time increases
exponentially with the number of blocks. The figure also shows
that the runtime of the same instance with one random seed
can be as much as 1.45× longer than with another seed. We
discuss the implications of this difference below.

Effect of solver timeout. To evaluate the effect of timeouts
on the cost of the generated plan, we generate a volume snap-
shot by sampling UBC-100 with K = 8, for which the solver’s
execution time is approximately four hours. We repeatedly
solve this instance (with the same random seed) with increas-
ing timeout values. We set the timeouts to fixed portions of the
full runtime, after having measured the complete execution. We
repeat this process for three different seeds. To eliminate the

USENIX Association 18th USENIX Conference on File and Storage Technologies 201

7 8 9 10 11 12 13
101

102

103

104

Ti
m

e
(s

ec
)

UBC-100

7 8 9 10 11 12 13

Homes

K
Figure 8: Solving time increases exponen-
tially with instance size (gray bars indicate
that the solver timed out).

1
16

2
16

3
16

4
16

6
16

8
16

12
16

16
16

Portion of runtime

0

1

2

3

4

Co
st

 (%
 re

pl
ica

te
d)

UBC-100

Figure 9: Migration cost decreases when
timeout increases (costs are shown for three
random seeds).

7 8 9 10 11 12 130

2

4

6

8

10

Co
st

 (%
 re

pl
ica

te
d)

UBC-100

7 8 9 10 11 12 13

Homes

K

25.24120

Figure 10: Cost is hardly affected by
the sampling degree, unless the instance be-
comes too large.

effect of sampling, we present the cost of migration assuming
the sample represents the entire system.

The results in Figure 9 show that the most substantial cost
reduction occurs in the first half of the execution, after which
the quality of the solution does not improve considerably. The
three processes converge to the same optimal solution at differ-
ent speeds, corresponding to the different runtimes in Figure 8.
At the same time, we note that the largest differences in cost
occur between suboptimal solutions returned in the first half
of the execution, when the solver makes most of its progress.
The cost difference is relatively small and does not exceed 22%
(at 6

16)—a much smaller difference than the difference in time
required to find the optimal solution.

Gurobi provides an interface for querying the solver for
intermediate results without halting its execution. We did not
use this interface because it might compromise the accuracy of
our time measurements. However, it can be used to periodically
check the rate at which the intermediate solution improves.
When the rate decreases and begins to converge, continuing
the execution yields diminishing returns, and it can be halted.

Effect of fingerprint sampling. We evaluate the effect of
the sampling degree on the cost of the solution by calculating
the costs of the plans generated for UBC-100 and Homes with
M = 20, ε = 2, and K between 7 and 13. Figure 10 shows
that the difference between the cost of optimal solutions is
very small. However, when the solver times out, the cost of the
suboptimal solution can be as much as 24× higher.

Our results for varying the ILP instance parameters and sam-
pling degrees suggest the following straightforward heuristic
for obtaining the best seeding plan within a predetermined time
frame. Generate a sample of the system with degree between
10 and 13—smaller degrees are better for smaller systems. If
the solver times out, increase the sampling degree by one. If
the solver completes and there is still time, solve instances with
increasing values of ε until the end of the time frame is reached.
This process results in a set of solutions that form a Pareto
frontier—their cost decreases as their migrated capacity is far-
ther from the original objective M. The final solution should
be chosen according to the design objectives of the system.

Efficiency of container-based plans. The container-based
aggregation generates a reduced ILP instance which is an accu-

rate representation of the connections between files and contain-
ers. This representation can also be used to generate container-
based migration plans with Rangoli and SGreedy. Thus, our
next experiment compares the costs of GoSeed and the greedy
algorithms on the same instances. Our results in Figure 11
show that in these circumstances, GoSeed can reduce the mi-
gration cost obtained by Rangoli and SGreedy by as much as
87% and 66%, respectively. These results are not surprising
given the size of the ILP instances—they consist of several
hundred thousand variables, well within Gurobi’s capabilities.
As a result, even in experiments in which Gurobi times out
(indicated by the small triangles in the figure), its suboptimal
solutions are considerably better than the greedy ones. The
costs with aggregated containers (GoSeed-C×2) are higher
because of the false dependencies described in Section 4.3.

We used our cost calculator to compare the chunk-level
cost of the container-based migration plan to the greedy plans
generated for the original system (figures omitted due to space
considerations). For the MacOS volumes and for UBC-50,
GoSeed’s container-based plan outperforms Rangoli and is
comparable to SGreedy. However, for the larger UBC volumes
and for Homes, SGreedy and Rangoli find solutions with as
much as 7.6× and 13.6× lower cost, respectively. On these
instances, Gurobi returned a suboptimal solution which was
close to the container-based optimum, but far from the chunk-
based optimum, due to the reasons described in Section 4.3.
We therefore recommend using GoSeed with container-based
aggregation if the migration is to be performed with entire
containers, and with fingerprint sampling otherwise.

6 Discussion
Data migration within a large-scale deduplicated system can
reallocate tens of terabytes of data. This data is possibly trans-
ferred over a wide area network or a busy interconnect, and
some of it might be replicated as a result. The premise of our
research is that the potentially high costs of data migration
justify solving a complex optimization problem with the goal
of minimizing these costs.

Thus, in contrast to existing greedy heuristics to this hard
problem, GoSeed attempts to solve it. By formulating data mi-
gration as an ILP instance, GoSeed can “hide” its complexity

202 18th USENIX Conference on File and Storage Technologies USENIX Association

10 20 330.0

2.5

5.0

7.5

10.0

12.5

(a) UBC-50
10 20 330.0

2.5

5.0

7.5

10.0

12.5

▾
▾

▾

▾

▾

(b) UBC-100
10 20 330.0

2.5

5.0

7.5

10.0

12.5

▾

▾

▾

▾

▾
▾

(c) UBC-200
10 20 330.0

2.5

5.0

7.5

10.0

12.5

▾

▾
▾

▾

▾
▾

(d) UBC-500
10 20 330

20

40

60

▾
▾

▾

▾

▾

▾

(e) Homes
10 20 330

20

40

60 ▾

▾ ▾
▾ ▾

(f) Mac-Week
10 20 330

20

40

60

80

▾ ▾ ▾

▾

▾
▾

(g) Mac-Daily

Rangoli
SGreedy
GoSeed-C
GoSeed-Cx2

Figure 11: Replication cost of container-based migration plans. For GoSeed, we present the average of three runs (error bars indicate the
maximum cost). Triangles indicate experiments in which the solver timed out. GoSeed outperforms the greedy solutions by as much as 87%.

by leveraging off-the-shelf highly optimized solvers. This ap-
proach is independent of specific design and implementation
details of the deduplication system or the ILP solver. However,
it introduces an inherent tradeoff between the time spent gener-
ating a seeding plan, and the cost of executing it. As this cost
depends on the system’s characteristics, such as network speed,
cost of storage, and read and restore workload, the potential
for cost saving by GoSeed is system dependent as well.

Our evaluation showed that the benefit of GoSeed is high in
two scenarios. The first is when the problem’s size allows the
solver to find the optimal (or near optimal) solution within the
allocated time. Container-based migration is an example of this
case, where GoSeed significantly reduced the migration cost of
the greedy algorithms. The second case is when a high degree
of data sharing in the system makes it hard for the greedy solu-
tions to find a good migration plan, causing them to produce
a costly solution or no solution at all. At the same time, for
systems with low or exceptionally high degrees of data sharing,
the greedy solutions and that of GoSeed are comparable.

Accurately identifying the large instances for which GoSeed
would significantly improve on the greedy solution is not
straightforward, and requires further research. Fortunately, a
simple hybrid approach can provide ‘the best of both worlds’:
one can run the greedy algorithm, followed by GoSeed, and
execute the migration plan whose cost is lower.

Generalizations. Seeding is the simplest form of data mi-
gration in large systems. A natural next step to this work is to
generalize our ILP-based approach to more complex migration
scenarios, such as migration into a non-empty volume, and mi-
gration where both source and target volumes are chosen as part
of the plan. Each generalization introduces additional aspects,
and might require reformulating not only the ILP constraints,
but also its objective function.

For example, when the destination volume is not empty, the
optimal migration plan can be the one that minimizes the total
storage capacity on the source and destination volumes com-
bined. An alternative formulation might minimize the total
amount of data that must be transferred from the source vol-
ume to the destination. In the most general case, generating
the migration plan also entails determining either the source or
the destination volume, or both, such that the migration goal

is achieved and the objective is optimized. Data migration in
general introduces additional objectives, such load balancing
between volumes, or optimizing the migration process under
certain network conditions and limitations. The problem can be
further extended by allowing some files to be split between vol-
umes, introducing a new tradeoff between the cost of migration
and that of file access.

The ILP formulation of these problems will result in con-
siderably more complex instances than those of the seeding
problem. As a result, we might need to apply our acceleration
methods more aggressively, e.g., by increasing the fingerprint
sampling degree, or construct new methods. Thus, each general-
ization of the seeding problem introduces non-trivial challenges
as well as additional tradeoffs between the solving time and
the cost of migration.

7 Conclusions
We presented GoSeed, an algorithm for generating theoretically
optimal seeding plans in deduplicated systems, and three ac-
celeration methods for applying it to realistic storage volumes.
Our evaluation demonstrated the effectiveness of the acceler-
ation methods: GoSeed can produce an optimal seeding plan
on a sample of the system in less than an hour, even in cases
where the greedy solutions do not find a feasible solution to
the problem. When executed on the original system, GoSeed’s
solution is not theoretically optimal, but it can substantially
reduce the cost of the greedy solutions.

Finally, our formulation of data migration as an ILP prob-
lem, combined with the availability of numerous ILP solvers,
opens up new opportunities for additional contributions in this
domain, and for making data migration more efficient.

Acknowledgments
We thank our shepherd, Dalit Naor, and the anonymous re-
viewers, for their helpful comments. We thank Sharad Malik
for his insightful suggestions, and Yoav Etsion for his invalu-
able help with the evaluation infrastructure. We thank Polina
Manevich, Michal Amsterdam, Nadav Levintov, Benny Lod-
man, Matan Levy, Yoav Zuriel, Shai Zeevi, Eliad Ben-Yishai,
Maor Michaelovitch, Itai Barkav, and Omer Hemo for their
help with the implementation and with processing the traces.

USENIX Association 18th USENIX Conference on File and Storage Technologies 203

References
[1] CPLEX Optimizer. https://www.ibm.com/

analytics/cplex-optimizer. Accessed: 2019-
12-29.

[2] The fastest mathematical programming solver. http:
//www.gurobi.com/. Accessed: 2019-12-29.

[3] GLPK (GNU Linear Programming Kit). https://www.
gnu.org/software/glpk/. Accessed: 2019-12-29.

[4] Introduction to lp_solve 5.5.2.5. http://lpsolve.
sourceforge.net/5.5/. Accessed: 2019-12-29.

[5] SNIA IOTTA Repository. http://iotta.snia.org/
tracetypes/6. Accessed: 2019-12-29.

[6] SYMPHONY development home page. https://
projects.coin-or.org/SYMPHONY. Accessed: 2019-
12-29.

[7] Traces and snapshots public archive. http://tracer.
filesystems.org/. Accessed: 2019-12-29.

[8] Jeph Abara. Applying integer linear programming to the
fleet assignment problem. Interfaces, 19(4):20–28, 1989.

[9] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula
Balachandran, Pushkar Chitnis, Chitra Muthukrishnan,
Ramachandran Ramjee, and George Varghese. EndRE:
An end-system redundancy elimination service for enter-
prises. In 7th USENIX Conference on Networked Systems
Design and Implementation (NSDI 10), 2010.

[10] Yamini Allu, Fred Douglis, Mahesh Kamat, Ramya Prab-
hakar, Philip Shilane, and Rahul Ugale. Can’t we all get
along? Redesigning protection storage for modern work-
loads. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018.

[11] Eric Anderson, Joseph Hall, Jason D. Hartline, Michael
Hobbs, Anna R. Karlin, Jared Saia, Ram Swaminathan,
and John Wilkes. An experimental study of data mi-
gration algorithms. In 5th International Workshop on
Algorithm Engineering (WAE 01), 2001.

[12] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan
Spence, Mustafa Uysal, and Alistair Veitch. Hippodrome:
Running circles around storage administration. In 1st
USENIX Conference on File and Storage Technologies
(FAST 02), 2002.

[13] Eric Anderson, Mahesh Kallahalla, Susan Spence, Ram
Swaminathan, and Qiang Wan. Ergastulum: quickly find-
ing near-optimal storage system designs. HP Laborato-
ries, June 2002.

[14] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fer-
nando André, and Paulo Sousa. DepSky: Dependable and
secure storage in a cloud-of-clouds. ACM Transactions
on Storage, 9(4):12:1–12:33, November 2013.

[15] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long,
and Mark Lillibridge. Extreme binning: Scalable, parallel
deduplication for chunk-based file backup. In IEEE Inter-
national Symposium on Modeling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS
09), 2009.

[16] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL:
A content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In 9th
USENIX Conference on File and Stroage Technologies
(FAST 11), 2011.

[17] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen,
Haiyang Pan, and Yungang Bao. CMD: Classification-
based memory deduplication through page access charac-
teristics. In 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 14),
2014.

[18] Austin T. Clements, Irfan Ahmad, Murali Vilayannur, and
Jinyuan Li. Decentralized deduplication in SAN cluster
file systems. In 2009 Conference on USENIX Annual
Technical Conference (USENIX 09), 2009.

[19] George B. Dantzig. Linear programming and extensions.
Rand Corporation Research Study. Princeton Univ. Press,
Princeton, NJ, 1963.

[20] Biplob Debnath, Sudipta Sengupta, and Jin Li.
ChunkStash: Speeding up inline storage deduplication
using flash memory. In 2010 USENIX Conference on
USENIX Annual Technical Conference (USENIX ATC
10), 2010.

[21] Wei Dong, Fred Douglis, Kai Li, Hugo Patterson, Saz-
zala Reddy, and Philip Shilane. Tradeoffs in scalable
data routing for deduplication clusters. In 9th USENIX
Conference on File and Stroage Technologies (FAST 11),
2011.

[22] Fred Douglis, Deepti Bhardwaj, Hangwei Qian, and
Philip Shilane. Content-aware load balancing for dis-
tributed backup. In 25th International Conference on
Large Installation System Administration (LISA 11),
2011.

[23] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony
Wong, Shiqin Yan, and Fabiano Botelho. The logic of
physical garbage collection in deduplicating storage. In
15th USENIX Conference on File and Storage Technolo-
gies (FAST 17), 2017.

204 18th USENIX Conference on File and Storage Technologies USENIX Association

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/
http://www.gurobi.com/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
http://iotta.snia.org/tracetypes/6
http://iotta.snia.org/tracetypes/6
https://projects.coin-or.org/SYMPHONY
https://projects.coin-or.org/SYMPHONY
http://tracer.filesystems.org/
http://tracer.filesystems.org/

[24] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal
Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak,
Jerzy Szczepkowski, Cristian Ungureanu, and Michal
Welnicki. HYDRAstor: A scalable secondary storage. In
7th Conference on File and Storage Technologies (FAST
09), 2009.

[25] Abhinav Duggal, Fani Jenkins, Philip Shilane, Ramprasad
Chinthekindi, Ritesh Shah, and Mahesh Kamat. Data
Domain Cloud Tier: Backup here, backup there, dedupli-
cated everywhere! In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019.

[26] EMC Corporation. INTRODUCTION TO THE EMC
XtremIO STORAGE ARRAY (Ver. 4.0), rev. 08 edition,
April 2015.

[27] Jingxin Feng and Jiri Schindler. A deduplication study for
host-side caches in virtualized data center environments.
In 29th IEEE Symposium on Mass Storage Systems and
Technologies (MSST 13), 2013.

[28] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Fangting Huang, and Qing Liu. Accelerating
restore and garbage collection in deduplication-based
backup systems via exploiting historical information. In
2014 USENIX Annual Technical Conference (USENIX
ATC 14), 2014.

[29] Fanglu Guo and Petros Efstathopoulos. Building a high-
performance deduplication system. In 2011 USENIX
Conference on USENIX Annual Technical Conference
(USENIX ATC 11), 2011.

[30] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and
Anand Sivasubramaniam. Leveraging value locality in
optimizing NAND flash-based SSDs. In 9th USENIX
Conference on File and Stroage Technologies (FAST 11),
2011.

[31] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan
Savage, Alex C. Snoeren, George Varghese, Geoffrey M.
Voelker, and Amin Vahdat. Difference engine: Harnessing
memory redundancy in virtual machines. In 8th USENIX
Conference on Operating Systems Design and Implemen-
tation (OSDI 08), 2008.

[32] Danny Harnik, Moshik Hershcovitch, Yosef Shatsky,
Amir Epstein, and Ronen Kat. Sketching volume capaci-
ties in deduplicated storage. In 17th USENIX Conference
on File and Storage Technologies (FAST 19), 2019.

[33] Danny Harnik, Ety Khaitzin, and Dmitry Sotnikov. Esti-
mating unseen deduplication-from theory to practice. In
14th Usenix Conference on File and Storage Technologies
(FAST 16), 2016.

[34] Danny Harnik, Benny Pinkas, and Alexandra Shulman-
Peleg. Side channels in cloud services: Deduplication in
cloud storage. IEEE Security Privacy, 8(6):40–47, Nov
2010.

[35] Charles B. Morrey III and Dirk Grunwald. Content-based
block caching. In 23rd IEEE Symposium on Mass Storage
Systems and Technologies (MSST 06), 2006.

[36] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kil-
ian, and Cezary Dubnicki. Reducing impact of data frag-
mentation caused by in-line deduplication. In Proceed-
ings of the 5th Annual International Systems and Storage
Conference (SYSTOR 12), 2012.

[37] R. Karp. Reducibility among combinatorial problems.
In R. Miller and J. Thatcher, editors, Complexity of Com-
puter Computations, pages 85–103. Plenum Press, 1972.

[38] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim,
Stephen Smaldone, and Grant Wallace. Nitro: A capacity-
optimized SSD cache for primary storage. In 2014
USENIX Annual Technical Conference (USENIX ATC
14), 2014.

[39] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li,
Patrick PC Lee, and Wenjing Lou. Secure deduplication
with efficient and reliable convergent key management.
IEEE Transactions on Parallel and Distributed Systems,
25(6):1615–1625, June 2014.

[40] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat.
Improving restore speed for backup systems that use in-
line chunk-based deduplication. In 11th USENIX Confer-
ence on File and Storage Technologies (FAST 13), 2013.

[41] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat,
Vinay Deolalikar, Greg Trezise, and Peter Camble. Sparse
indexing: Large scale, inline deduplication using sam-
pling and locality. In 7th Conference on File and Storage
Technologies (FAST 09), 2009.

[42] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and
Grant Wallace. Migratory compression: Coarse-grained
data reordering to improve compressibility. In 12th
USENIX Conference on File and Storage Technologies
(FAST 14), 2014.

[43] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes.
Aqueduct: Online data migration with performance guar-
antees. In 1st USENIX Conference on File and Storage
Technologies (FAST 02), 2002.

[44] Udi Manber. Finding similar files in a large file system.
In USENIX Winter 1994 Technical Conference (WTEC
94), 1994.

USENIX Association 18th USENIX Conference on File and Storage Technologies 205

[45] Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shi-
nagawa. The quick migration of file servers. In 11th ACM
International Systems and Storage Conference (SYSTOR
18), 2018.

[46] Dirk Meister, Jürgen Kaiser, Andre Brinkmann, Toni
Cortes, Michael Kuhn, and Julian Kunkel. A study on
data deduplication in HPC storage systems. In Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis (SC 12), 2012.

[47] Dutch T. Meyer and William J. Bolosky. A study of
practical deduplication. In 9th USENIX Conference on
File and Stroage Technologies (FAST 11), 2011.

[48] Athicha Muthitacharoen, Benjie Chen, and David Maz-
ières. A low-bandwidth network file system. In 18th ACM
Symposium on Operating Systems Principles (SOSP 01),
2001.

[49] P. C. Nagesh and Atish Kathpal. Rangoli: Space manage-
ment in deduplication environments. In 6th International
Systems and Storage Conference (SYSTOR 13), 2013.

[50] Youngjin Nam, Guanlin Lu, Nohhyun Park, Weijun Xiao,
and David H. C. Du. Chunk fragmentation level: An
effective indicator for read performance degradation in
deduplication storage. In 2011 IEEE International Con-
ference on High Performance Computing and Communi-
cations (HPCC 11), 2011.

[51] A. Richards and J. P. How. Aircraft trajectory planning
with collision avoidance using mixed integer linear pro-
gramming. In Proceedings of the 2002 American Control
Conference (IEEE Cat. No.CH37301), volume 3, pages
1936–1941, May 2002.

[52] Prateek Sharma and Purushottam Kulkarni. Singleton:
System-wide page deduplication in virtual environments.
In 21st International Symposium on High-Performance
Parallel and Distributed Computing (HPDC 12), 2012.

[53] Philip Shilane, Ravi Chitloor, and Uday Kiran Jonnala.
99 deduplication problems. In 8th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 16),
2016.

[54] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kalad-
har Voruganti. iDedup: Latency-aware, inline data dedu-
plication for primary storage. In 10th USENIX Confer-
ence on File and Storage Technologies (FAST 12), 2012.

[55] Mark W. Storer, Kevin Greenan, Darrell D.E. Long, and
Ethan L. Miller. Secure data deduplication. In ACM Inter-
national Workshop on Storage Security and Survivability
(StorageSS ’08), 2008.

[56] John D. Strunk, Eno Thereska, Christos Faloutsos, and
Gregory R. Ganger. Using utility to provision storage
systems. In 6th USENIX Conference on File and Storage
Technologies (FAST 08), 2008.

[57] Zhen Sun, Geoff Kuenning, Sonam Mandal, Philip Shi-
lane, Vasily Tarasov, Nong Xiao, and Erez Zadok. A
long-term user-centric analysis of deduplication patterns.
In 32nd Symposium on Mass Storage Systems and Tech-
nologies (MSST 16), 2016.

[58] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shi-
lane, Geoff Kuenning, and Erez Zadok. Generating real-
istic datasets for deduplication analysis. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012.

[59] Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakr-
ishnan. Online migration for geo-distributed storage sys-
tems. In 2011 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC 11), 2011.

[60] Carl A. Waldspurger. Memory resource management in
VMware ESX server. ACM SIGOPS Operating Systems
Review - OSDI ’02, 36(SI):181–194, December 2002.

[61] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shi-
lane, Stephen Smaldone, Mark Chamness, and Windsor
Hsu. Characteristics of backup workloads in production
systems. In 10th USENIX Conference on File and Storage
Technologies (FAST 12), 2012.

[62] Nai Xia, Chen Tian, Yan Luo, Hang Liu, and Xiaoliang
Wang. UKSM: Swift memory deduplication via hierar-
chical and adaptive memory region distilling. In 16th
USENIX Conference on File and Storage Technologies
(FAST 18), 2018.

[63] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and
Yukun Zhou. Ddelta: A deduplication-inspired fast delta
compression approach. Performance Evaluation, 79:258
– 272, 2014. Special Issue: Performance 2014.

[64] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua,
Yuchong Hu, Qing Liu, and Yucheng Zhang. FastCDC: A
fast and efficient content-defined chunking approach for
data deduplication. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), 2016.

[65] Zhichao Yan, Hong Jiang, Yujuan Tan, and Hao Luo.
Deduplicating compressed contents in cloud storage en-
vironment. In 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 16), 2016.

[66] Yanhua Zhang, X. Sun, and Baowei Wang. Efficient
algorithm for k-barrier coverage based on integer linear
programming. China Communications, 13(7):16–23, July
2016.

206 18th USENIX Conference on File and Storage Technologies USENIX Association

[67] zhichao Cao, Hao Wen, Fenggang Wu, and David H.C.
Du. ALACC: Accelerating restore performance of data
deduplication systems using adaptive look-ahead window
assisted chunk caching. In 16th USENIX Conference on
File and Storage Technologies (FAST 18), 2018.

[68] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding
the disk bottleneck in the Data Domain deduplication file

system. In 6th USENIX Conference on File and Storage
Technologies (FAST 08), 2008.

[69] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad
Malik. Coverage-based trace signal selection for fault
localisation in post-silicon validation. In Hardware and
Software: Verification and Testing - 8th International

Haifa Verification Conference (HVC 12), 2012.

USENIX Association 18th USENIX Conference on File and Storage Technologies 207

Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads
at Facebook

Zhichao Cao†‡ Siying Dong‡ Sagar Vemuri‡ David H.C. Du†

†University of Minnesota, Twin Cities ‡Facebook

Abstract

Persistent key-value stores are widely used as building
blocks in today’s IT infrastructure for managing and storing
large amounts of data. However, studies of characterizing
real-world workloads for key-value stores are limited due to
the lack of tracing/analyzing tools and the difficulty of collect-
ing traces in operational environments. In this paper, we first
present a detailed characterization of workloads from three
typical RocksDB production use cases at Facebook: UDB (a
MySQL storage layer for social graph data), ZippyDB (a dis-
tributed key-value store), and UP2X (a distributed key-value
store for AI/ML services). These characterizations reveal sev-
eral interesting findings: first, that the distribution of key and
value sizes are highly related to the use cases/applications;
second, that the accesses to key-value pairs have a good lo-
cality and follow certain special patterns; and third, that the
collected performance metrics show a strong diurnal pattern
in the UDB, but not the other two.

We further discover that although the widely used key-value
benchmark YCSB provides various workload configurations
and key-value pair access distribution models, the YCSB-
triggered workloads for underlying storage systems are still
not close enough to the workloads we collected due to ig-
norance of key-space localities. To address this issue, we
propose a key-range based modeling and develop a bench-
mark that can better emulate the workloads of real-world
key-value stores. This benchmark can synthetically generate
more precise key-value queries that represent the reads and
writes of key-value stores to the underlying storage system.

1 Introduction

In current IT infrastructure, persistent key-value stores (KV-
stores) are widely used as storage engines to support various
upper-layer applications. The high performance, flexibility,
and ease of use of KV-stores have attracted more users and
developers. Many existing systems and applications like file
systems, object-based storage systems, SQL databases, and
even AI/ML systems use KV-stores as backend storage to
achieve high performance and high space efficiency [10, 16,
28, 36].

However, tuning and improving the performance of KV-

stores is still challenging. First, there are very limited studies
of real-world workload characterization and analysis for KV-
stores, and the performance of KV-stores is highly related
to the workloads generated by applications. Second, the an-
alytic methods for characterizing KV-store workloads are
different from the existing workload characterization stud-
ies for block storage or file systems. KV-stores have simple
but very different interfaces and behaviors. A set of good
workload collection, analysis, and characterization tools can
benefit both developers and users of KV-stores by optimizing
performance and developing new functions. Third, when eval-
uating underlying storage systems of KV-stores, it is unknown
whether the workloads generated by KV-store benchmarks
are representative of real-world KV-store workloads.

To address these issues, in this paper, we characterize,
model, and benchmark workloads of RocksDB (a high-
performance persistent KV-store) at Facebook. To our knowl-
edge, this is the first study that characterizes persistent KV-
store workloads. First, we introduce a set of tools that can
be used in production to collect the KV-level query traces,
replay the traces, and analyze the traces. These tools are
open-sourced in RocksDB release [20] and are used within
Facebook for debugging and performance tuning KV-stores.
Second, to achieve a better understanding of the KV work-
loads and their correlations to the applications, we select
three RocksDB use cases at Facebook to study: 1) UDB,
2) ZippyDB, and 3) UP2X. These three use cases are typi-
cal examples of how KV-stores are used: 1) as the storage
engine of a SQL database, 2) as the storage engine of a dis-
tributed KV-store, and 3) as the persistent storage for artificial-
intelligence/machine-learning (AI/ML) services.

UDB is the MySQL storage layer for social graph data at
Facebook, and RocksDB is used as its backend storage engine.
Social graph data is maintained in the MySQL tables, and
table rows are stored as KV-pairs in RocksDB. The conver-
sion from MySQL tables to RocksDB KV-pairs is achieved
by MyRocks [19, 36]. ZippyDB is a distributed KV-store that
uses RocksDB as the storage nodes to achieve data persis-
tency and reliability. ZippyDB usually stores data like photo
metadata and the metadata of objects in storage. In this paper,
the workloads of ZippyDB were collected from shards that
store the metadata of an object storage system at Facebook

USENIX Association 18th USENIX Conference on File and Storage Technologies 209

(called ObjStorage in this paper). The key usually contains
the metadata of an ObjStorage file or a data block, and the
value stores the corresponding object address. UP2X is a spe-
cial distributed KV-store based on RocksDB. UP2X stores the
profile data (e.g., counters and statistics) used for the predic-
tion and inferencing of several AI/ML services at Facebook.
Therefore, the KV-pairs in UP2X are frequently updated.

Based on a set of collected workloads, we further explore
the specific characteristics of KV-stores. From our analyses,
we find that 1) read dominates the queries in UDB and Zip-
pyDB, while read-modify-write (Merge) is the major query
type in UP2X; 2) key sizes are usually small and have a
narrow distribution due to the key composition design from
upper-layer applications, and large value sizes only appear in
some special cases; 3) most KV-pairs are cold (less accessed),
and only a small portion of KV-pairs are frequently accessed;
4) Get, Put, and Iterator have strong key-space localities (e.g.,
frequently accessed KV-pairs are within relatively close loca-
tions in the key-space), and some key-ranges that are closely
related to the request localities of upper-layer applications
are extremely hot (frequently accessed); and 5) the accesses
in UDB explicitly exhibit a diurnal pattern, unlike those in
ZippyDB and UP2X, which do not show such a clear pattern.

Benchmarks are widely used to evaluate KV-store perfor-
mance and to test underlying storage systems. With real-world
traces, we investigate whether the existing KV benchmarks
can synthetically generate real-world-like workloads with
storage I/Os that display similar characteristics. YCSB [11]
is one of the most widely used KV benchmarks and has be-
come the gold standard of KV-store benchmarking. It provides
different workload models, various query types, flexible con-
figurations, and supports most of the widely used KV-stores.
YCSB can help users simulate real-world workloads in a con-
venient way. However, we find that even though YCSB can
generate workloads that have similar key-value (KV) query
statistics as shown in ZippyDB workloads, the RocksDB stor-
age I/Os can be quite different. This issue is mainly caused
by the fact that the YCSB-generated workloads ignore key-
space localities. In YCSB, hot KV-pairs are either randomly
allocated across the whole key-space or clustered together.
This results in an I/O mismatch between accessed data blocks
in storage and the data blocks associated with KV queries.
Without considering key-space localities, a benchmark will
generate workloads that cause RocksDB to have a bigger read
amplification and a smaller write amplification than those in
real-world workloads.

To develop a benchmark that can more precisely emu-
late KV-store workloads, we propose a workload modeling
method based on the hotness of key-ranges. The whole key-
space is partitioned into small key-ranges, and we model the
hotness of these small key-ranges. In the new benchmark,
queries are assigned to key-ranges based on the distribution
of key-range hotness, and hot keys are allocated closely in
each key-range. In our evaluation, under the same configura-

tion, YCSB causes at least 500% more read-bytes and delivers
only 17% of the cache hits in RocksDB compared with real-
world workloads. The workloads generated by our proposed
new benchmark have only 43% more read-bytes and achieve
about 77% of the cache hits in RocksDB, and thus are much
closer to real-world workloads. Moreover, we use UDB as
an example to show that the synthetic workloads generated
by the new benchmark have a good fit of the distributions in
key/value sizes, KV-pair accesses, and Iterator scan lengths.

This paper is organized as follows. First, we introduce
RocksDB and the system background of three RocksDB use
cases in Section 2. We describe our methodology and tools in
Section 3. The detailed workload characteristics of the three
use cases including the general query statistics, key and value
sizes, and KV-pair access distributions are presented in 4, 5,
and 6 respectively. In Section 7, we present the investigation
results of the storage statistics of YCSB, and describe the
proposed new modeling and benchmarking methods. We also
compare the results of YCSB with those of the new bench-
mark. Related work is described in Section 8, and we conclude
the paper in Section 9.

2 Background
In this section, we first briefly introduce KV-stores and

RocksDB. Then, we provide background on three RocksDB
use cases at Facebook, UDB, ZippyDB, and UP2X, to promote
understanding of their workloads.

2.1 Key-Value Stores and RocksDB
KV-store is a type of data storage that stores and accesses

data based on {key, value} pairs. A key uniquely identifies the
KV-pair, and the value holds the data. KV-stores are widely
used by companies as distributed hash tables (e.g., Ama-
zon Dynamo [14]), in-memory databases (e.g., Redis [39]),
and persistent storage (e.g., BigTable [8] from Google and
RocksDB [15, 21] from Facebook).

RocksDB is a high-performance embedded persistent KV-
store that was derived from LevelDB [23] by Facebook
[15, 21] and was optimized for fast storage devices such as
Solid State Drives. RocksDB is also used by many large web-
sites, like Alibaba [44], Yahoo [37], and LinkedIn [24]. At
Facebook, RocksDB is used as the storage engine for sev-
eral data storage services, such as MySQL [19, 36], Laser [9],
Cassandra [16], ZippyDB [1], and AI/ML platforms.

RocksDB supports KV interfaces like Get, Put, Delete,
Iterator (scan), SingleDelete, DeleteRange, and Merge. Get,
Put, and Delete are used to read, write, and delete a KV-pair
with certain key respectively. Iterator is used to scan a set of
consecutive KV-pairs beginning with a start-key. The scan
direction can be either forward (calling Nexts) or backward
(calling Prevs). SingleDelete can only be used to delete a
KV-pair that has not been overwritten [22]. DeleteRange is
used to delete a range of keys between [start, end) (the end-
key is excluded from the deletion). RocksDB encapsulates

210 18th USENIX Conference on File and Storage Technologies USENIX Association

MemtableImmutable
Memtable

SST SST

SST SST SST

SST SST

……

……
……

Level 0

Level 1

Level 2

Column Family X Column Family Y

MemtableImmutable
Memtable

SST SST

SST SST

SST SST

……

……

Block
Cache

Manifest

Write Ahead
Log

Shared Data

Flush Flush
Memory

Persistent
Storage

SST ……

Figure 1: The basic architecture of RocksDB.

the semantics for read-modify-write into a simple abstract
interface called Merge [17], which avoids the performance
overhead of a random Get before every Put. Merge stores
the delta of the write to RocksDB, and these deltas can be
stacked or already combined. This incurs a high read overhead
because a Get to one key requires finding and combining
all the previously stored deltas with the same key inserted
by a Merge. The combine function is defined by users as a
RocksDB plugin.

RocksDB adopts a Log-Structured Merge-Tree [38] to
maintain the KV-pairs in persistent storage (e.g., file systems).
The basic architecture of RocksDB is shown in Figure 1. One
RocksDB maintains at least one logical partition called Col-
umn Family (CF), which has its own in-memory write buffer
(Memtable). When a Memtable is full, it is flushed to the file
system and stored as a Sorted Sequence Table (SST) file. SST
files persistently store the KV-pairs in a sorted fashion and
are organized in a sequence of levels starting from Level-0.
When one level reaches its limit, one SST file is selected
to be merged with the SST files in the next level that have
overlapping key-ranges, which is called compaction. Detailed
information about RocksDB is described in [15, 21]

2.2 Background of Three RocksDB Use Cases

We discuss three important and large-scale production use
cases of RocksDB at Facebook: 1) UDB; 2) ZippyDB; and 3)
UP2X. Sharding is used in all three use cases to achieve load
balancing. Therefore, the workloads are very similar among
all shards, and we randomly select three RocksDB instances
from each use case to collect the traces.

UDB: Social graph data at Facebook is persistently stored
in UDB, a sharded MySQL database tier [4]. The cache read
misses and all writes to social graph data are processed by
UDB servers. UDB relies on the MySQL instance to han-
dle all queries, and these queries are converted to RocksDB
queries via MyRocks [19, 36]. Much of the social graph data
is presented as objects and associations, and is maintained
in different MySQL tables following the model introduced
in [4]. RocksDB uses different Column Families (CFs) to
store object- and association-related data.

There are 6 major CFs in UDB: Object, Assoc,
Assoc_count, Object_2ry, Assoc_2ry, and Non_SG.
Object stores social graph object data and Assoc stores

social graph association data, which defines connections
between two objects. Assoc_count stores the number
of associations of each object. Association counters are
always updated with new values and do not have any
deletions. Object_2ry and Assoc_2ry are the CFs that
maintain the secondary indexes of objects and associations,
respectively. They are also used for the purpose of ETL
(Extract, Transform, and Load data from databases). Non_SG
stores data from other non-social graph related services.

Because the UDB workload is an example of KV queries
converted from SQL queries, some special patterns exist. We
collected the traces for 14 days. Since the workload character-
istics of three UDB servers are very similar, we present only
one of them. The total trace file size in this server is about 1.1
TB. For some characteristics, daily data is more important.
Thus, we also analyzed the workload of the last day in the
14-day period (24-hour trace) separately.

ZippyDB: A high-performance distributed KV-store called
ZippyDB was developed based on RocksDB and relies on
Paxos [29] to achieve data consistency and reliability. KV-
pairs are divided into shards, and each shard is supported by
one RocksDB instance. One of the replicas is selected as the
primary shard, and the others are secondary. The primary
shard processes all the writes to a certain shard. If strong
consistency is required for reads, read requests (e.g., Get and
Scan) are only processed by the primary shard. One ZippyDB
query is converted to a set of RocksDB queries (one or more).

Compared with the UDB use case, the upper-layer queries
in ZippyDB are directly mapped to the RocksDB queries, and
so the workload characteristics of ZippyDB are very different.
We randomly selected three primary shards of ZippyDB and
collected the traces for 24 hours. Like UDB, we present only
one of them. This shard stores the metadata of ObjStorage,
which is an object storage system at Facebook. In this shard,
a KV-pair usually contains the metadata information for an
ObjStorage file or a data block with its address information.

UP2X: Facebook uses various AI/ML services to support
social networks, and a huge number of dynamically changing
data sets (e.g., the statistic counters of user activities) are used
for AI/ML prediction and inferencing. UP2X is a distributed
KV-store that was developed specifically to store this type of
data as KV-pairs. As users use Facebook services, the KV-
pairs in UP2X are frequently updated, such as when counters
increase. If UP2X called Get before each Put to achieve a read-
modify-write operation, it would have a high overhead due to
the relatively slow speed of random Gets. UP2X leverages the
RocksDB Merge interface to avoid Gets during the updates.

KV-pairs in UP2X are divided into shards supported by
RocksDB instances. We randomly selected three RocksDB
instances from UP2X and then collected and analyzed the
24-hour traces. Note that the KV-pairs inserted by Merge are
cleaned during compaction via Compaction Filter, which uses
custom logic to delete or modify KV-pairs in the background
during compaction. Therefore, a large number of KV-pairs

USENIX Association 18th USENIX Conference on File and Storage Technologies 211

are removed from UP2X even though the delete operations
(e.g., Delete, DeleteRange, and SingleDelete) are not used.

3 Methodology and Tool Set
To analyze and characterize RocksDB workloads from

different use cases and to generate synthetic workloads, we
propose and develop a set of KV-store tracing, replaying,
analyzing, modeling, and benchmarking tools. These tools
are already open-sourced in RocksDB release [20]. In this
section, we present these tools and discuss how they are used
to characterize and generate KV-store workloads.

Tracing The tracing tool collects query information at
RocksDB public KV interfaces and writes to a trace file as
records. It stores the following five types of information in
each trace record: 1) query type, 2) CF ID, 3) key, 4) query
specific data, and 5) timestamp. For Put and Merge, we store
the value information in the query-specific data. For Itera-
tor queries like Seek and SeekForPrev, the scan length (the
number of Next or Prev called after Seek or SeekForPrev) is
stored in the query-specific data. The timestamp is collected
when RocksDB public interfaces are called with microsecond
accuracy. In order to log the trace record of each query in a
trace file, a lock is used to serialize all the queries, which will
potentially incur some performance overhead. However, ac-
cording to the performance monitoring statistics in production
under the regular production workloads, we did not observe
major throughput degradation or increased latency caused by
the tracing tool.

Trace Replaying The collected trace files can be replayed
through a Replayer tool implemented in db_bench (special
plugins like MergeOperator or Comparator are required if they
are used in the original RocksDB instance). The replay tool
issues the queries to RocksDB based on the trace record infor-
mation, and the time intervals between the queries follow the
timestamps in the trace. By setting different fast forward and
multithreading parameters, RocksDB can be benchmarked
with workloads of different intensities. However, query order
is not guaranteed with multithreading. The workloads gener-
ated by Replayer can be considered as real-world workloads.

Trace Analyzing Using collected traces for replaying has
its limitations. Due to the potential performance overhead of
workload tracing, it is difficult to track large-scale and long-
lasting workloads. Moreover, the content of trace files is sen-
sitive and confidential for their users/owners, so it is very hard
for RocksDB users to share the traces with other RocksDB
developers or developers from third-party companies (e.g.,
upper-layer application developers or storage vendors) for
benchmarking and performance tuning. To address these lim-
itations, we propose a way of analyzing RocksDB workloads
that profiles the workloads based on information in the traces.

The trace analyzing tool reads a trace file and provides the
following characteristics: 1) a detailed statistical summary
of the KV-pairs in each CF, query numbers, and query types;
2) key size and value size statistics; 3) KV-pair popularity;

4) the key-space locality, which combines the accessed keys
with all existing keys from the database in a sorted order; and
5) Queries Per Second (QPS) statistics.

Modeling and Benchmarking We first calculate the Pear-
son correlation coefficients between any two selected vari-
ables to ensure that these variables have very low correlations.
In this way, each variable can be modeled separately. Then,
we fit the collected workloads to different statistical models to
find out which one has the lowest fitting error, which is more
accurate than always fitting different workloads to the same
model (like Zipfian). The proposed benchmark can then gen-
erate KV queries based on these probability models. Details
are discussed in Section 7.

4 General Statistics of Workloads

In this section, we introduce the general workload statistics
of each use case including query composition in each CF,
KV-pair hotness distributions, and queries per second.

4.1 Query Composition

By analyzing query composition, we can figure out query
intensity, the ratio of query types in different use cases, and
the popularity of queries. We find that: 1) Get is the most
frequently used query type in UDB and ZippyDB, while
Merge dominates the queries in UP2X, and 2) query com-
position can be very different in different CFs.

UDB In this UDB server, over 10.2 billion queries were
called during the 14-day period, and there were about 455
million queries called during the last 24 hours. There are six
CFs being used in UDB as discussed in 2.2. Although those
CFs are stored in the same RocksDB database, the workloads
are very different. It is difficult to analyze and model such a
mixed workload without the separation of different CFs. The
query composition in each CF is shown in Figure 2. Get, Put,
and Iterator are three major query types in UDB, especially
in Object, Assoc, and Non_SG. Get does not show up in the
secondary indexes of objects (Object_2ry) and associations
(Assoc_2ry). Object_2ry is built for the purpose of ETL,
so Iterator is the major query type. Assoc mostly checks the
existence of an association between two objects via Get, while
the secondary index (Assoc_2ry) lists the objects that are as-
sociated with one target object. Since KV-pairs in Assoc_2ry
have no repeating updates, SingleDelete is used in this CF to
delete the invalid KV-pairs. In other CFs, regular Delete is
called to remove the invalid KV-pairs. Assoc_count stores
the number of associations of each object. Therefore, Get and
Put are the major query types used in this CF to read and
update the counters.

ZippyDB There is only one CF being used in ZippyDB.
Get, Put, Delete, and Iterator_seek (forward Iterator) are the
four query types that are used. Over the 24-hour period, there
were about 420 million queries called in this shard. The ratios
of each query type are: 78% Get, 13% Put, 6% Delete, and 3%

212 18th USENIX Conference on File and Storage Technologies USENIX Association

0

1000

2000

3000

4000

Object Object_2ry Assoc Assoc_2ry Assoc_count Non_SG

Q
ue

ri
es

 (m
ill

io
n)

Column Family

Get Put Delete Single_delete Iterator_Seek Iterator_SeekForPrev

Figure 2: Distribution of different query types in 14 days.

(a) The KV-pair access count CDF by Get (b) The KV-pair access count CDF by Put

Figure 3: The KV-pair access count distribution queried by
Get and Put in each CF during 24 hours.

Iterator, respectively. Get is the major query type in ZippyDB,
which aligns with the read-intensive workload of ObjStorage.

UP2X Over the 24-hour period, the RocksDB instance
received 111 million queries. Among them, about 92.53% of
the queries are Merge, 7.46% of them are Get, and fewer than
0.01% of the queries are Put. The query composition is very
different from the UDB and ZippyDB use cases, which are
read dominated. About 4.71 million KV-pairs were accessed
by Merge, 0.47 million by Get, and 282 by Put. Read-and-
modify (Merge) is the major workload pattern in UP2X.

4.2 KV-Pair Hotness Distribution
To understand the hotness of KV-pairs in each use case, we

count how many times each KV-pair was accessed during the
24-hour tracing period and show them in cumulative distribu-
tion function (CDF) figures. The X-axis is the access count,
and the Y-axis is the cumulative ratio between 0 and 1. We
find that in UDB and ZippyDB, most KV-pairs are cold.

UDB We plot out the KV-pair access count CDFs for Get
and Put. For Iterator, we show the start-key access count
distribution and the scan length distribution. The CDFs of
Get and Put are shown in Figure 3. Looking at Figure 3(a),
more than 70% of the KV-pairs in Assoc are Get requests
that occurred at least 2 times. In contrast, this ratio in other
CFs is lower than 40%. It indicates that read misses of Assoc
happen more frequently than the others. As shown in 3(b),
in all CFs, more than 75% of the KV-pairs are Put only one
time and fewer than 2% of the KV-pairs are Put more than 10
times. The majority of the KV-pairs are rarely updated.

We plot out the access count CDF of the start-keys of Itera-
tors over the 24-hour period, as shown in Figure 4(a). Most of
the start-keys are used only once, which shows a low access lo-
cality. Fewer than 1% of the start-keys are used multiple times

(a) The Iterator start-key access count
CDF distribution

(b) The Iterator scan length CDF distribu-
tion

Figure 4: The Iterator scan length and start-key access count
CDF of four CFs during 24 hours.

by Iterators. The scan length of more than 60% of the Itera-
tors is only 1 across all CFs, as shown in Figure 4(b). About
20% of the Iterators in Assoc scan more than 100 consecutive
keys, while the ratios for Assoc_2ry and Non_SG are about
10% and 5%, respectively. A very large scan length (higher
than 10,000) is very rare, but we can still find some exam-
ples of this type in Non_SG and Assoc. The configured range
query limit in MySQL creates some special scan lengths. For
example, there is a jump at 200 in both Assoc and Non_SG.

We also count the number of unique keys being accessed
in different time periods. As shown in Table 1, during the last
24 hours, fewer than 3% of the keys were accessed. During
the 14-day period, the ratio is still lower than 15% for all CFs.
In general, most of the keys in RocksDB are “cold" in this use
case. On one hand, most read requests are responded to by
the upper cache tiers [5, 7]. Only the read misses will trigger
queries to RocksDB. On the other hand, social media data
has a strong temporal locality. People are likely accessing the
most recently posted content on Facebook.

ZippyDB The average access counts per accessed KV-pair
of the four query types (Get, Put, Delete, and Iterator_seek)
are: 15.2, 1.7, 1, and 10.9, respectively. Read queries (Get and
Iterator_seek) show very good locality, while the majority of
the KV-pairs are only Put and Deleted once in the last 24-hour
period. The access count distribution is shown in Figure 5.
For about 80% of the KV-pairs, Get requests only occur once,
and their access counts show a long tail distribution. This
indicates that a very small portion of KV-pairs have very large
read counts over the 24-hour period. About 1% of the KV-
pairs show more than 100 Get requests, and the Gets to these
KV-pairs are about 50% of the total Gets that show strong
localities. In contrast, about 73% of the KV-pairs are Put only
once, and fewer than 0.001% of the KV-pairs are Put more
than 10 times. Put does not have as clear a locality as Get does.
The CDF of Iterator_seek start-key access counts has a special
distribution that we can observe very clearly through the 4
“steps" in the figure. About 55% of the KV-pairs are used as
the start-key of Iterator_seek 1 time, 6% of the KV-pairs 11
times, 11% of the KV-pairs 12 times, 5% of the KV-pairs 13
times, 10% of the KV-pairs 23 times, and 10% of the KV-pairs
46 times. The special access count distribution of start-keys is
caused by the metadata scanning requests in ObjStorage. For

USENIX Association 18th USENIX Conference on File and Storage Technologies 213

Table 1: The ratios of KV-pairs among all existing KV-pairs being accessed during different time periods in UDB
CF name Object Object_2ry Assoc Assoc_2ry Assoc_count Non_SG
24 hours 2.72% 0.62% 1.55% 1.75% 0.77% 1.38%
14 days 14.14% 6.10% 13.74% 10.37% 14.05% 11.29%

Figure 5: The KV-pair access count distribution of ZippyDB.

Figure 6: The access count distribution of UP2X.

example, if one KV-pair stores the metadata of the first block
of a file, it will always be used as the start-key of Iterator_seek
when the whole file is requested.

UP2X The CDF distribution of KV-pair access counts is
shown in Figure 6. Merge and Get have wide distributions of
access counts. If we define a KV-pair accessed 10 times or
more during the 24-hour period as a hot KV-pair, about 50%
of the KV-pairs accessed by Get and 25% of the KV-pairs
accessed by Merge are hot. On the other hand, the ratio of
very hot KV-pairs (accessed 100 times or more in the 24-hour
period) for Merge is 4%, which is much higher than that of
Get (fewer than 1%). Both Merge and Get have a very long
tail distribution, as shown in the figure.

4.3 QPS (Queries Per Second)
The QPS metric shows the intensiveness of the workload

variation over time. The QPS of some CFs in UDB have
strong diurnal patterns, while we can observe only slight
QPS variations during day and night time in ZippyDB
and UP2X. The daily QPS variations are related to social
network behaviors.

UDB The QPS of UDB is shown in Figure 7. Some CFs
(e.g., Assoc and Non_SG) and some query types (e.g., Get
and Put) have strong diurnal patterns due to the behaviors
of Facebook users around the world. As shown in Figure
7(a), the QPS for either Get or Put usually increases from
about 8:00 PST and reaches a peak at about 17:00 PST. Then,
the QPS quickly drops and reaches its nadir at about 23:00
PST. The QPS of Delete, SingleDelete, and Iterator shows
variations, but it is hard to observe any diurnal patterns. These
queries are triggered by Facebook internal services, which

have low correlation with user behaviors. The QPS of six CFs
are shown in Figure 7(b). Assoc and Non_SG have a strong
diurnal variation, but the QPS of Non_SG is spikier. Since
ETL requests are not triggered by Facebook users, the QPS of
Object_2ry is spiky and we cannot find any clear patterns.

ZippyDB The QPS of ZippyDB is different from that of
UDB. The QPS of ZippyDB varies over the 24-hour period,
but we do not find a diurnal variation pattern, especially for
Put, Delete, and Iterator_Seek. Since ObjStorage is an object
stored at Facebook, object read is related to social network
behaviors. Therefore, the QPS of Get is relatively lower at
night and higher during the day (based on Pacific Standard
Time). Because range queries (Iterator_Seek) are usually not
triggered by Facebook users, the QPS for this query type is
stable and is between 100 and 120 most of the time.

UP2X The QPS of either Get or Put in UP2X does not
have a strong diurnal variation pattern. However, the usage
of Merge is closely related to the behavior of Facebook users,
such as looking at posts, likes, and other actions. Therefore,
the QPS of Merge is relatively lower at night (about 1000)
and higher during the day (about 1500).

5 Key and Value Sizes

Key size and value size are important factors in understand-
ing the workloads of KV-stores. They are closely related to
performance and storage space efficiency. The average (AVG)
and standard deviation (SD) of key and value sizes are shown
in Table 2, and the CDFs of key and value sizes are shown in
Figure 8. In general, key sizes are usually small and have
a narrow distribution, and value sizes are closely related
to the types of data. The standard deviation of key sizes
is relatively small, while the standard deviation of value
size is large. The average value size of UDB is larger than
the other two.

UDB The average key size is between 16 and 30 bytes
except for Assoc_2ry, which has an average key size of 64
bytes. The keys in Assoc_2ry consist of the 4-byte MySQL
table index, two object IDs, the object type, and other informa-
tion. Therefore, the key size of Assoc_2ry is usually larger
than 50 bytes and has a long tail distribution as shown in
Figure 8(a). For other CFs, the keys are composed of the 4-
byte MySQL table index as the prefix, and 10 to 30 bytes
of primary or secondary keys like object IDs. Thus, the keys
show a narrow distribution. Note that the key sizes of a very
small number of KV-pairs are larger than 1 KB, which is not
shown in the key size CDF due to the X-axis scale limit.

The value size distribution is shown in Figure 8(b). Object

214 18th USENIX Conference on File and Storage Technologies USENIX Association

(a) Overall QPS for each query type at different dates and times in a 14-day time span (b) Overall QPS of each CF at different dates and times in a 14-day time span

Figure 7: The QPS variation at different dates and times in a 14-day time span.

Table 2: The average key size (AVG-K), the standard deviation
of key size (SD-K), the average value size (AVG-V), and the
standard deviation of value size (SD-V) of UDB, ZippyDB,
and UP2X (in bytes)

AVG-K SD-K AVG-V SD-V
UDB 27.1 2.6 126.7 22.1
ZippyDB 47.9 3.7 42.9 26.1
UP2X 10.45 1.4 46.8 11.6

and Assoc have a long tail distribution. The value sizes of
Object vary from 16 bytes to 10 KB, and more than 20% of
the value sizes are larger than 1 KB. The average value size
of KV-pairs in Object is about 1 KB and the median is about
235B, which is much larger than those in other CFs. User
data, like the metadata of photos, comments, and other posted
data, is stored in this CF, which leads to a large value size.
In Assoc, the value sizes are relatively small (the average is
about 50 bytes) and vary from 10 bytes to 200 bytes.

A very special case is Assoc_count, whose key size and
value size are exactly 20 bytes. According to the design of
this CF, the key is 20 bytes (bigint association ID) and is com-
posed of a 10-byte counter and 10 bytes of metadata. Since
all the information used in secondary index CFs (Assoc_2ry
and Object_2ry) is stored in its key, the value does not con-
tain any meaningful data. Therefore, the average value size is
less than 8 bytes and there are only three possible value sizes
in the distribution (1 byte, 6 bytes, or 16 bytes) as shown in
Figure 8(b). For CFs with large value sizes like Object, opti-
mizations like separating key and value [32] can effectively
improve performance.

ZippyDB Since a key in ZippyDB is composed of ObjS-
torage metadata, the key sizes are relatively large. The CDF
of the key sizes is shown in Figure 8(c). We can find several
“steps" in the CDF. Nearly all of the key sizes are in the
two size ranges: [48, 53] and [90, 91]. The ratio of KV-pairs
in these two key size ranges are different for different query
types. For example, about 60% of the key sizes of Get are in
the [48, 53] range, while the ratio for Put is about 31%.

The value sizes are collected from Put queries. As shown
in Figure 8(d), the value size distribution has a very long tail:
about 1% of the value sizes are larger than 400 bytes, and

(a) UDB key size CDF (b) UDB value size CDF

(c) ZippyDB key size CDF (d) ZippyDB value size CDF

(e) UP2X key size CDF (f) UP2X value size CDF

Figure 8: The key and value size distributions of UDB, Zip-
pyDB, and UP2X.

about 0.05% of the value sizes are over 1 KB. Some of the
value sizes are even larger than 100 KB. However, most of
the KV-pairs have a small value. More than 90% of the value
sizes are smaller than 34 bytes, which is even smaller than
the key sizes.

UP2X The key sizes do not have a wide distribution, as
shown in Figure 8(e). More than 99.99% of the KV-pairs
accessed by Get have a key size of 9 bytes. About 6% of
the KV-pairs inserted by Merge have a key size of 9 bytes,
and 94% are 17 bytes. The 17-byte KV-pairs are all cleaned
during compaction, and they are never read by upper-layer
applications through Get. Put is rarely used in UP2X. Among
the 282 KV-pairs inserted by Put, about 8.9% of the key sizes

USENIX Association 18th USENIX Conference on File and Storage Technologies 215

Figure 9: The heat-map of Get in Object and Assoc_count during a 24-hour period. The X-axis represents the key-ID of keys in
the whole key-space, and the Y-axis represents the KV-pair access counts. The red vertical lines are the MySQL table boundaries.

are smaller than 10 bytes, and 47% of them are 46 bytes.
The value size distribution is shown in Figure 8(f). The

value sizes of some KV-pairs inserted by Put are extremely
large. The average is about 3.6 KB, and about 3% of the KV-
pairs are over 100 KB. The value sizes of KV-pairs inserted
by Merge have a special distribution. About 40% of the values
are smaller than 10 bytes, and about 52% of the values are
exactly 64 bytes. A large portion of the updates in UP2X are
the counters and other structured information. Thus, the value
sizes of those KV-pairs are fixed to 64 bytes.

6 Key-Space and Temporal Patterns

KV-pairs in RocksDB are sorted and stored in SST files. In
order to understand and visualize the key-space localities, we
sort all the existing keys in the same order as they are stored
in RocksDB and plot out the access count of each KV-pair,
which is called the heat-map of the whole key-space. Each
existing key is assigned a unique integer as its key-ID, based
on its sorting order and starting from 0. We refer to these
key-IDs as the key sequence.

The KV-pair accesses show some special temporal patterns.
For example, some KV-pairs are intensively accessed during
a short period of time. In order to understand the correlation
between temporal patterns and key-space locality, we use a
time series sequence to visualize these patterns. We sort the
keys in ascending order and assign them with key-IDs as
previously discussed, and this key sequence is used as the
X-axis. The Y-axis shows the time when a query is called.
To simplify the Y-axis value, we shift the timestamp of each
query to be relative to the tracing start time. Each dot in
the time series figure represents a request to a certain key at
that time. In the UDB use case, the first 4 bytes of a key are
the MySQL table index number due to the key composition
of MyRocks. We separate the key-space into different key-
ranges that belong to different tables by red vertical lines.

The heat-maps of the three use cases show a strong
key-space locality. Hot KV-pairs are closely located in
the key-space. The time series figures of Delete and Sin-
gleDelete for UDB and Merge for UP2X show strong tem-
poral locality. For some query types, KV-pairs in some
key-ranges are intensively accessed during a short period
of time.

(a) The time series of Delete queries in
Object

(b) The time series of SingleDelete
queries in Assoc_2ry

Figure 10: The time series figure of a 24-hour trace.

UDB We use the heat-map of Get in Object and
Assoc_count over a 24-hour period as an example to show
the key-space localities. As shown in Figure 9, hot KV-pairs
(with high access counts) are usually located in a small key-
range and are close to each other. That is, they show a strong
key-space locality (indicated by the dense green areas). Some
MySQL tables (the key-ranges between the red vertical
lines) are extremely hot (e.g., the green dense area in
Object), while other tables have no KV-pair accesses.
One interesting characteristic is that the KV-pairs with high
access counts in Assoc_count are skewed toward the end of
the table. In social graphs, new objects are assigned with rela-
tively larger IDs, and new associations are frequently added
to the new objects. Therefore, new KV-pairs in Assoc_count
are hot and are usually at the end of the MySQL table. More-
over, the heat-maps of Get and Put are similar. Usually, the
keys with the most Get queries are the ones with the most Put
queries.

Most KV-pairs are deleted only once, and they are unlikely
to be reinserted. Therefore, there are no hot KV-pairs in Delete
and SingleDelete queries. However, they show some special
patterns. For example, some nearby KV-pairs are deleted to-
gether in a short period of time as shown in Figure 10.

In Figure 10(a), the deleted KV-pairs in the same table for
Object are removed together in a short period of time (indi-
cated by green dots with close Y values). After that, deletions
will not happen for a long period of time. Similar patterns
also appear in the SingleDelete time series for Assoc_2ry, as
shown in Figure 10(b). In some MySQL tables, SingleDelete
is intensively called in several short time intervals to remove

216 18th USENIX Conference on File and Storage Technologies USENIX Association

Figure 11: Heat-map of KV-pairs accessed by Get in Zip-
pyDB.

KV-pairs in the same table. Between any two sets of inten-
sive deletions, SingleDelete is never called, which causes the
“green blocks" in the time series figures.

In general, KV-pairs are not randomly accessed in the
whole key-space. The majority of KV-pairs are not accessed
or have low access counts. Only a small portion of KV-pairs
are extremely hot. These patterns appear in the whole key-
space and also occur in different key-ranges. KV-pairs belong-
ing to the same MySQL table are physically stored together.
Some SST files at different levels or data blocks in the same
SST file are extremely hot. Thus, the compaction and cache
mechanisms can be optimized accordingly.

ZippyDB The heat-map of Get in ZippyDB shows a very
good key-space locality. For example, as shown in Figure 11,
the KV-pairs accessed by Get have high access counts and
are concentrated in several key-ranges (e.g., between 1×
106 and 5×106). Hot KV-pairs are not randomly distributed:
instead, these KV-pairs are concentrated in several small key-
ranges. The hotness of these key-ranges is closely related
to cache efficiency and generated storage I/Os. The better a
key-space locality is, the higher the RocksDB block cache
hit ratio will be. Data blocks that are associated with hot
key-ranges will most likely be cached in the RocksDB block
cache. These data blocks are actually cold from a storage
point of view. With a good key-space locality, the number of
data block reads from SST files will be much lower than a
random distribution. A similar locality is also found in the
Put and Iterator_seek heat-maps. Since all the KV-pairs are
deleted once, we did not observe any key-space locality for
Delete. In general, the ZippyDB workload is read-intensive
and has very good key-space locality.

UP2X If we look at the heat-map of all KV-pairs accessed
by Get as shown in Figure 12, we can find a clear boundary
between hot and cold KV-pairs. Note that the whole key-
space was collected after the tracing was completed. In the
heat-map, the KV-pairs from 0 to about 550,000 are never
accessed by Gets, but the KV-pairs from 550,000 to 900,000
are frequently accessed. A similar locality is also shown in the
heat-map of Merge. While KV-pairs from 0 to about 550,000
are sometimes accessed by Merge, their average access counts
are much lower than those of the KV-pairs from 550,000 to
900,000. This special locality might be caused by a unique
behavior of AI/ML services and their data update patterns.

The UP2X use case shows a very strong key-space local-
ity and temporal locality in Merge. However, about 90% of

Figure 12: Heat-map of KV-pairs accessed by Get in UP2X.

Figure 13: The time series of Merge in UP2X.

the KV-pairs inserted by Merge are actually cleaned during
compaction. Since the key-space heat-map does not show the
existence of KV-pairs cleaned by compactions, we plot out
the time series sequence for Merge, which can indicate Merge
accesses of all KV-pairs. As shown in Figure 13, KV-pairs
between 0 and 250,000 are frequently accessed during the
24-hour period. These are KV-pairs between 0 and 900,000
in the whole key-space. The KV-pairs between 250,000 and
4,700,000 show very special key-space and temporal localities.
The green blocks indicate that a small range of KV-pairs
are intensively called by Merge during half an hour. Af-
ter that, a new set of KV-pairs (with incrementally composed
keys) are intensively accessed by Merge during the next half
an hour. These KV-pairs are cleaned during compactions. Get
and Put do not have similar temporal and key-space localities.

7 Modeling and Benchmarking
After understanding the characteristics of some real-world

workloads, we further investigate whether we can use exist-
ing benchmarks to model and generate KV workloads that
are close to these realistic workloads. We do not consider
deletions in our current models.

7.1 How Good Are the Existing Benchmarks?
Several studies [6, 26, 47] use YCSB/db_bench + Lev-

elDB/RocksDB to benchmark the storage performance of
KV-stores. Researchers usually consider the workloads gen-
erated by YCSB to be close to real-world workloads. YCSB
can generate queries that have similar statistics for a given
query type ratio, KV-pair hotness distribution, and value size
distribution as those in realistic workloads. However, it is
unclear whether their generated workloads can match the I/Os
for underlying storage systems in realistic workloads.

To investigate this, we focus on storage I/O statistics such
as block reads, block cache hits, read-bytes, and write-bytes
collected by perf_stat and io_stat in RocksDB. To exclude
other factors that may influence the storage I/Os, we replay

USENIX Association 18th USENIX Conference on File and Storage Technologies 217

the trace and collect the statistics in a clean server. The bench-
marks are also evaluated in the same server to ensure the same
setup. To ensure that the RocksDB storage I/Os generated
during the replay are the same as those in production, we
replay the trace on a snapshot of the same RocksDB in which
we collected the traces. The snapshot was made at the time
when we started tracing. YCSB is a benchmark for NoSQL
applications and ZippyDB is a typical distributed KV-store.
Therefore, the workloads generated by YCSB are expected to
be close to the workloads of ZippyDB, and we use ZippyDB
as an example to investigate. Due to special plugin require-
ments and the workload complexities of UDB and UP2X, we
did not analyze storage statistics for those two use cases.

Before we run YCSB, we set the YCSB parameters of
workloada and workloadb to fit ZippyDB workloads as
much as possible. That is, we use the same cache size, ensure
that the request distribution and scan length follows Zipfian,
set the fieldlength as the average value size, and use the same
Get/Put/Scan ratios as those shown in Section 4. Since we
cannot configure the compression ratio in YCSB to make it
the same as ZippyDB, we use the default configuration in
YCSB. We normalize the results of the RocksDB storage
statistics based on those from the trace replay.

The number of block reads from YCSB is at least 7.7x that
of the replay results, and the amount of read-bytes is about
6.2x. The results show an extremely high read amplification.
Although the collected amount of write-bytes from YCSB
is about 0.74x that of the replay, the actual amount of write-
bytes is much lower if we assume YCSB achieves the same
compression ratio as ZippyDB (i.e., if the YCSB compression
ratio is 4.5, the amount of write-bytes is about 0.41x that
of the replay). Moreover, the number of block cache hits is
only about 0.17x that of the replay results. This evaluation
shows that, even though the overall query statistics (e.g., query
number, average value size, and KV-pair access distribution)
generated by YCSB are close to those of ZippyDB workloads,
the RocksDB storage I/O statistics are actually quite different.
db_bench has a similar situation.

Therefore, using the benchmarking results of YCSB as
guidance for production might cause some misleading results.
For example, the read performance of RocksDB under a pro-
duction workload will be higher than what we tested using
YCSB. The workload of YCSB can easily saturate the storage
bandwidth limit due to its extremely high read amplification.
Also, the write amplification estimated from the YCSB bench-
marking results are lower than in real production. The write
performance can be overestimated and might also lead to
incorrect SSD lifetime estimates.

With detailed analyses, we find that the main factor that
causes this serious read amplification and fewer storage writes
is the ignorance of key-space locality. RocksDB reads data
blocks (e.g., 16 KB) instead of a KV-pair from storage to
memory when it encounters a cache miss. In YCSB, even
though the overall KV-pair hotness follows the real-world

workload distribution, the hot KV-pairs are actually randomly
distributed in the whole key-space. The queries to these hot
KV-pairs make a large number of data blocks hot. Due to
the cache space limit, a large number of hot data blocks that
consist of the requested KV-pairs will not be cached, which
triggers an extremely large number of block reads. In contrast,
in ZippyDB, hot KV-pairs only appear in some key-ranges,
so the number of hot data blocks is much smaller. Similarly,
a random distribution of hot KV-pairs causes more updated
KV-pairs to be garbage collected in the newer levels during
compactions. Therefore, old versions of cold KV-pairs that
are being updated are removed earlier in the newer levels,
which leads to fewer writes when compacting older levels. In
contrast, if only some key-ranges are frequently updated, old
versions of cold KV-pairs are continuously compacted to the
older levels until they are merged with their updates during
compactions. This causes more data to be written during
compactions.

7.2 Key-Range Based Modeling
Unlike workloads generated by YCSB, real-world work-

loads show strong key-space localities according to the work-
load characteristics presented in Sections 6. Hot KV-pairs
are usually concentrated in several key-ranges. Therefore, to
better emulate a real-world workload, we propose a key-range
based model. The whole key-space is partitioned into several
smaller key-ranges. Instead of only modeling the KV-pair
accesses based on the whole key-space statistics, we focus on
the hotness of those key-ranges.

How to determine the key-range size (the number of KV-
pairs in the key-range) is a major challenge of key-range based
modeling. If the key-range is extremely large, the hot KV-pairs
are still scattered across a very big range. The accesses to
these KV-pairs may still trigger a large number of data block
reads. If the key-range is very small (e.g., a small number
of KV-pairs per range), hot KV-pairs are actually located in
different key-ranges, which regresses to the same limitations
as a model that does not consider key-ranges. Based on our
investigation, when the key-range size is close to the average
number of KV-pairs in an SST file, it can preserve the locality
in both the data block level and SST level. Therefore, we use
average number of KV-pairs per SST file as key-range size.

We first fit the distributions of key sizes, value sizes, and
QPS to different mathematical models (e.g., Power, Expo-
nential, Polynomial, Webull, Pareto, and Sine) and select the
model that has the minimal fit standard error (FSE). This is
also called the root mean squared error. For example, for a
collected workload of ZippyDB, the key size is fixed at either
48 or 90 bytes, the value sizes follow a Generalized Pareto
Distribution [25], and QPS can be better fit to Cosine or Sine
in a 24-hour period with very small amplitude.

Then, based on the KV-pair access counts and their se-
quence in the whole key-space, the average accesses per KV-
pair of each key-range is calculated and fit to the distribution

218 18th USENIX Conference on File and Storage Technologies USENIX Association

model (e.g., power distribution). This way, when one query is
generated, we can calculate the probability of each key-range
responding to this query. Inside each key range, we let the
KV-pair access count distribution follow the distribution of
the whole key-space. This ensures that the distribution of the
overall KV-pair access counts satisfies that of a real-world
workload. Also, we make sure that hot KV-pairs are allocated
closely together. Hot and cold key-ranges can be randomly
assigned to the whole key-space, since the locations of key-
ranges have low influence on the workload locality.

Based on these models, we further develop a new bench-
mark using db_bench. When running the benchmark, the QPS
model controls the time intervals between two consecutive
queries. When a query is issued, the query type is determined
by the probability of each query type calculated from the
collected workload. Then, the key size and value size are
determined by the probability function from the fitted mod-
els. Next, based on the access probability of each key-range,
we choose one key-range to respond to this query. Finally,
according to the distribution of KV-pair access counts, one
KV-pair in this key range is selected, and its key is used to
compose the query. In this way, the KV queries are generated
by the benchmark and follow the expected statistical models.
At the same time, it better preserves key-space locality.

7.3 Comparison of Benchmarking Results
We fit the ZippyDB workload to the proposed model

(Delete is excluded) and build a new benchmark called Pre-
fix_dist [20]. To evaluate the effectiveness of key-range-based
modeling, we also implement three other benchmarks with
different KV-pair allocations: 1) Prefix_random models the
key-range hotness, but randomly distributes the hot and cold
KV-pairs in each key-range; 2) similar to YCSB, All_random
follows the distribution of KV-pair access counts, but ran-
domly distributes the KV-pairs across the whole key-space;
and 3) All_dist puts the hot keys together in the whole key-
space instead of using a random distribution. All four bench-
marks achieve a similar compression ratio as that of ZippyDB.

Similar to the process described in Section 7.1, we config-
ure YCSB workloada and workloadb to fit the ZippyDB work-
load as closely as possible. We run YCSB with the following
4 different request distributions: 1) uniform (YCSB_uniform),
2) Zipfian (YCSB_zipfian), 3) hotspot (YCSB_hotspot), and
4) exponential (YCSB_exp). We use the same pre-loaded
database (with 50 million randomly inserted KV-pairs that
have the same average key and value sizes as those of a real-
world workload) for the 8 benchmarks. The RocksDB cache
size is configured with the same value as the production setup.
We run each test 3 times (the following discussion uses aver-
age value) and normalize the results based on that of replay.

Figure 14 compares the I/O statistics of the 8 benchmarks.
The total number of block reads and the amount of read-bytes
by YCSB_zipfian workloads are at least 500% higher than
those of the original replay results. Even worse, the num-

0
2
4
6
8

10
12
14
16

All_
ra

nd
om

All_
dist

Pref
ix_

ra
ndom

Pref
ix_

dist

YCSB_r
an

dom

YCSB_z
ipfia

n

YCSB_h
ots

pot

YCSB_e
xpN

or
m

oa
liz

ed
 S

ta
tis

tic
 R

es
ul

ts

Block_read Block_cache_hit Read_bytes Write_bytes

Figure 14: The normalized block read, block cache hit, read-
bytes, and write-bytes of benchmarks based on that of the
replay. We collected statistics from ZippyDB trace replay
results and normalized the statistics from 8 benchmarks. The
red line indicates the normalized replay results at 1. The closer
the results are to the red line, the better.

ber of block reads and the amount of read-bytes of the other
three YCSB benchmarking results are even higher, at 1000%
or more compared with the replay results. In contrast, the
amount of read-bytes of Prefix_dist are only 40% higher, and
are the closest to the original replay results. If we compare
the 4 benchmarks we implemented, we can conclude that
Prefix_dist can better emulate the number of storage reads by
considering key-space localities. All_dist and Prefix_random
reduce the number of extra reads by gathering the hot KV-
pairs in different granularities (whole key-space level vs. key-
range level). Note that if YCSB achieves a similar compres-
sion ratio, the RocksDB storage I/Os can be about 35-40%
lower. However, this is still much worse than the storage I/Os
of All_dist, Prefix_random, and Prefix_dist.

If the same compression ratio is applied, the actual amount
of write-bytes by YCSB should be less than 50% of the origi-
nal replay. Prefix_dist achieves about 60% write-bytes of the
original replay. Actually, the mismatch between key/value
sizes and KV-pair hotness causes fewer write-bytes compared
with the original replay results. In general, YCSB can be fur-
ther improved by: 1) adding a key-range based distribution
model as an option to generate the keys, 2) providing through-
put control to simulate the QPS variation, 3) providing key
and value size distribution models, and 4) adding the ability
to simulate different compression ratios.

7.4 Verification of Benchmarking Statistics
We select the Assoc workload from UDB as another exam-

ple to verify whether our benchmark can achieve KV query
statistics that are very similar to those of real-world work-
loads. Since 90% of keys are 28 bytes and 10% of keys are
32 bytes in Assoc, we can use these two fixed key sizes. We
find that Generalized Pareto Distribution [25] best fits the
value sizes and Iterator scan length. The average KV-pair
access count of key-ranges can be better fit in a two-term
power model [33, 34], and the distribution of KV-pair access
counts follows a power-law that can be fit to the simple power
model [33, 34]. As we discussed in Section 4.3, because the
QPS variation has a strong diurnal pattern, it can be better fit

USENIX Association 18th USENIX Conference on File and Storage Technologies 219

101 102 103

Value size (bytes)

10-6

10-4

10-2

100

Pr
ob

ab
ili

ty

Assoc Value Size PDF

Empirical PDF
Synthetic PDF

100 105

Keys being sorted

10-6

10-4

10-2

100

Pr
ob

ab
ili

ty

Assoc KV-pair Access PDF
Empirical PDF
Synthetic PDF

100 102 104

Iterator Scan Length

10-6

10-4

10-2

100

Pr
ob

ab
ili

ty

Assoc Iterator Scan Length PDF

Empirical PDF
Synthetic PDF

0 500 1000 1500 2000 2500 3000 3500 4000
Time (second)

2000

2500

3000

3500

4000

Q
PS

Assoc QPS Variation Over Time

Fitted QPS

Figure 15: The synthetic workload QPS, and the PDF comparisons between the collected workload and the synthetic workload.

to the Sine model [35] with a 24-hour period.
To compare the workload statistics obtained from bench-

marking with those of realistic workloads, we run the new
benchmark with a different workload scale: 1) 10 million
queries, 2) 30 million existing keys, 3) a 600-second period of
QPS sine, and 4) a {Get, Put, Iterator} ratio of {0.806, 0.159,
0.035}, respectively (the same as in UDB Assoc). We collect
the trace during benchmarking and analyze the trace. Figure
15 shows the QPS variation and the probability density func-
tion (PDF) comparison of value sizes, KV-pair access counts,
and Iterator scan lengths between the UDB Assoc workload
and the generated workload. Although the scale of the work-
load generated from our benchmark is different from that of
UDB Assoc, the PDF figures show that they have nearly the
same distribution. This verifies that the generated synthetic
workload is very close to the UDB Assoc workload in terms
of those statistics.

8 Related Work

During the past 20 years, the workloads of storage systems,
file systems, and caching systems have been collected and
analyzed in many studies. Kavalanekar et al. collected block
traces from production Windows servers at Microsoft and
provided workload characterizations that have benefitted the
design of storage systems and file systems tremendously [27].
Riska et al. analyzed the disk-level workload generated by
different applications [40]. The file system workloads were
studied by industrial and academic researchers at different
scales [30, 41, 42]. The workloads of the web server caches
were also traced and analyzed [2, 3, 43, 46]. While the web
cache can be treated as a KV-store, the query types and work-
loads are different from persistent KV-stores.

Although KV-stores have become popular in recent years,
the studies of real-world workload characterization of KV-
stores are limited. Atikoglu et al. analyzed the KV workloads
of the large-scale Memcached KV-store at Facebook [5]. They
found that reads dominate the requests, and the cache hit rate
is closely related to the cache pool size. Some of their find-
ings, such as the diurnal patterns, are consistent with what
we present in Section 4. Major workload characteristics of
RocksDB are very different from what Atikoglu et al. found in
Memcached. Other KV-store studies, such as SILT [31], Dy-
namo [14], FlashStore [12], and SkimpyStash [13], evaluate

designs and implementations with some real-world workloads.
However, only some simple statistics of the workloads are
mentioned. The detailed workload characteristics, modeling,
and synthetic workload generation are missing.

Modeling the workloads and designing benchmarks are
also important for KV-store designs and their performance
improvements. Several benchmarks designed for big data
NoSQL systems, such as YCSB [11], LinkBench [4], and
BigDataBench [45], are also widely used to evaluate KV-
store performance. Compared with these benchmarks, we
further provide the tracing, analyzing, and key-range based
benchmarking tools for RocksDB. The users and developers
of RocksDB can easily develop their own specific benchmarks
based on the workloads they collect with better emulation in
both the KV-query level and storage level.

9 Conclusion and Future Work

In this paper, we present the study of persistent KV-store
workloads at Facebook. We first introduce the tracing, replay-
ing, analyzing, and benchmarking methodologies and tools
that can be easily used. The findings of key/value size dis-
tribution, access patterns, key-range localities, and workload
variations provide insights that can help optimize KV-store
performance. By comparing the storage I/Os of RocksDB
benchmarked by YCSB and those of trace replay, we find that
many more reads and fewer writes are generated by bench-
marking with YCSB. To address this issue, we propose a
key-range based model to better preserve key-space localities.
The new benchmark not only provides a good emulation of
workloads at the query level, but also achieves more precise
RocksDB storage I/Os than that of YCSB.

We have already open-sourced the tracing, replaying, ana-
lyzing, and the new benchmark in the latest RocksDB release
(see the Wiki for more details [20]). The new benchmark is
part of the benchmarking tool of db_bench [18]. We are not
releasing the trace at this time. In the future, we will further
improve YCSB workload generation with key-range distribu-
tion. Also, we will collect, analyze, and model the workloads
in other dimensions, such as correlations between queries, the
correlation between KV-pair hotness and KV-pair sizes, and
the inclusion of additional statistics like query latency and
cache status.

220 18th USENIX Conference on File and Storage Technologies USENIX Association

Acknowledgments
We would like to thank our shepherd, George Amvrosiadis,

and the anonymous reviewers for their valuable feedback. We
would like to thank Jason Flinn, Shrikanth Shankar, Marla
Azriel, Michael Stumm, Fosco Marotto, Nathan Bronson,
Mark Callaghan, Mahesh Balakrishnan, Yoshinori Matsunobu,
Domas Mituzas, Anirban Rahut, Mikhail Antonov, Joanna Bu-
jnowska, Atul Goyal, Tony Savor, Dave Nagle, and many oth-
ers at Facebook for their comments, suggestions, and support
in this research project. We also thank all the RocksDB team
members at Facebook. This work was partially supported by
the following NSF awards 1439622, 1525617, 1536447, and
1812537, granted to authors Cao and Du in their academic
roles at the University of Minnesota, Twin Cities.

References
[1] M. Annamalai. Zippydb: a modern, distributed key-

value data store. https://www.youtube.com/watch?
v=DfiN7pG0D0k, 2015.

[2] M. Arlitt and T. Jin. A workload characterization study
of the 1998 world cup web site. IEEE network, 14(3):30–
37, 2000.

[3] M. F. Arlitt and C. L. Williamson. Web server workload
characterization: The search for invariants. ACM SIG-
METRICS Performance Evaluation Review, 24(1):126–
137, 1996.

[4] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan. Linkbench: a database benchmark based
on the facebook social graph. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, pages 1185–1196. ACM, 2013.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In ACM SIGMETRICS Performance Evalu-
ation Review, volume 40, pages 53–64. ACM, 2012.

[6] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer,
M. Honda, and K. Vaswani. Speicher: Securing lsm-
based key-value stores using shielded execution. In
Proceedings of the 17th USENIX Conference on File
and Storage Technologies (FAST 19), pages 173–190,
2019.

[7] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. C.
Li, et al. TAO: Facebook’s distributed data store for the
social graph. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC 13), pages 49–60,
2013.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Systems
(TOCS), 26(2):4, 2008.

[9] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei,
N. Simha, W. Wang, K. Wilfong, T. Williamson, and
S. Yilmaz. Realtime data processing at facebook. In
Proceedings of the International Conference on Man-
agement of Data, pages 1087–1098. ACM, 2016.

[10] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet:
A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on
Cloud computing, pages 143–154. ACM, 2010.

[12] B. Debnath, S. Sengupta, and J. Li. Flashstore: high
throughput persistent key-value store. In Proceedings
of the VLDB Endowment, volume 3, pages 1414–1425.
VLDB Endowment, 2010.

[13] B. Debnath, S. Sengupta, and J. Li. Skimpystash: Ram
space skimpy key-value store on flash-based storage. In
Proceedings of the ACM SIGMOD International Con-
ference on Management of data, pages 25–36, 2011.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s highly
available key-value store. In ACM SIGOPS operating
systems review, volume 41, pages 205–220. ACM, 2007.

[15] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Sa-
vor, and M. Strumm. Optimizing space amplification in
RocksDB. In CIDR, volume 3, page 3, 2017.

[16] Facebook. Cassandra on rocksdb at instagram.
https://developers.facebook.com/videos/f8-
2018/cassandra-on-rocksdb-at-instagram.
2018.

[17] Facebook. Merge operator. https://github.com/
facebook/rocksdb/wiki/Merge-Operator, 2018.

[18] Facebook. db_bench. https://github.com/
facebook/rocksdb/wiki/Benchmarking-tools,
2019.

[19] Facebook. Myrocks. http://myrocks.io/, 2019.

[20] Facebook. Rocksdb trace, replay, analyzer, and work-
load generation. https://github.com/facebook/
rocksdb/wiki/RocksDB-Trace%2C-Replay%2C-
Analyzer%2C-and-Workload-Generationr, 2019.

USENIX Association 18th USENIX Conference on File and Storage Technologies 221

https://www.youtube.com/watch?v=DfiN7pG0D0k
https://www.youtube.com/watch?v=DfiN7pG0D0k
https://developers.facebook.com/videos/f8-2018/cassandra-on-rocksdb-at-instagram
https://developers.facebook.com/videos/f8-2018/cassandra-on-rocksdb-at-instagram
https://github.com/facebook/rocksdb/wiki/Merge-Operator
https://github.com/facebook/rocksdb/wiki/Merge-Operator
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
http://myrocks.io/
https://github.com/facebook/rocksdb/wiki/RocksDB-Trace%2C-Replay%2C-Analyzer%2C-and-Workload-Generationr
https://github.com/facebook/rocksdb/wiki/RocksDB-Trace%2C-Replay%2C-Analyzer%2C-and-Workload-Generationr
https://github.com/facebook/rocksdb/wiki/RocksDB-Trace%2C-Replay%2C-Analyzer%2C-and-Workload-Generationr

[21] Facebook. Rocksdb. https://github.com/
facebook/rocksdb/, 2019.

[22] Facebook. Single delete. https://github.com/
facebook/rocksdb/wiki/Single-Delete. 2019.

[23] S. Ghemawat and J. Dean. Leveldb. URL: https://github.
com/google/leveldb,% 20http://leveldb. org, 2011.

[24] A. Gupta. Followfeed: Linkedin’s feed made faster
and smarter. https://engineering.linkedin.com/
blog/2016/03/followfeed--linkedin-s-feed-
made-faster-and-smarter, 2016.

[25] J. R. Hosking and J. R. Wallis. Parameter and quan-
tile estimation for the generalized pareto distribution.
Technometrics, 29(3):339–349, 1987.

[26] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y.-r.
Choi. Slm-db: single-level key-value store with per-
sistent memory. In Proceedings of the 17th USENIX
Conference on File and Storage Technologies (FAST 19),
pages 191–205, 2019.

[27] S. Kavalanekar, B. Worthington, Q. Zhang, and
V. Sharda. Characterization of storage workload traces
from production windows servers. In IEEE Inter-
national Symposium on Workload Characterization
(IISWC 08), pages 119–128. IEEE, 2008.

[28] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui,
and J. Cong. Atlas: Baidu’s key-value storage system for
cloud data. In IEEE 31st Symposium on Mass Storage
Systems and Technologies (MSST 15), pages 1–14, 2015.

[29] L. Lamport et al. Paxos made simple. ACM Sigact News,
32(4):18–25, 2001.

[30] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L.
Miller. Measurement and analysis of large-scale network
file system workloads. In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC 08), vol-
ume 1, pages 2–5, 2008.

[31] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky.
SILT: A memory-efficient, high-performance key-value
store. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles (SOSP 11), pages
1–13. ACM, 2011.

[32] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Wisckey: separat-
ing keys from values in ssd-conscious storage. ACM
Transactions on Storage (TOS), 13(1):5, 2017.

[33] MathWorks. Power series models. https://www.
mathworks.com/help/curvefit/power.html.
2019.

[34] MathWorks. Power series. https://en.wikipedia.
org/wiki/Power_series. 2019.

[35] MathWorks. Sine fitting. https://www.mathworks.
com/matlabcentral/fileexchange/66793-sine-
fitting. 2019.

[36] Y. Matsunobu. Innodb to myrocks migration in main
mysql database at facebook. USENIX Association, May
2017.

[37] S. Nanniyur. Sherpa scales new heights. https:
//yahooeng.tumblr.com/post/120730204806/
sherpa-scales-new-heights, 2015.

[38] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

[39] Redis. Redis documentation. https://redis.io/
documentation, 2019.

[40] A. Riska and E. Riedel. Disk drive level workload
characterization. In Proceedings of the USENIX Annual
Technical Conference (ATC 06), pages 97–102, 2006.

[41] D. Roselli and T. E. Anderson. Characteristics of file
system workloads. University of California, Berkeley,
Computer Science Division, 1998.

[42] D. S. Roselli, J. R. Lorch, T. E. Anderson, et al. A
comparison of file system workloads. In Proceedings
of the USENIX Annual Technical Conference (USENIX
ATC 00), pages 41–54, 2000.

[43] W. Shi, R. Wright, E. Collins, and V. Karamcheti. Work-
load characterization of a personalized web site and its
implications for dynamic content caching. In Proceed-
ings of the 7th International Workshop on Web Caching
and Content Distribution (WCW 02), 2002.

[44] J. Wang. Myrocks: best practice at alibaba. https:
//www.percona.com/live/17/sessions/myrocks-
best-practice-alibaba, 2017.

[45] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,
W. Gao, Z. Jia, Y. Shi, S. Zhang, et al. Bigdatabench:
A big data benchmark suite from internet services. In
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 488–499, 2014.

[46] A. Williams, M. Arlitt, C. Williamson, and K. Barker.
Web workload characterization: Ten years later. In Web
content delivery, pages 3–21. Springer, 2005.

[47] S. Zheng, M. Hoseinzadeh, and S. Swanson. Ziggurat:
a tiered file system for non-volatile main memories and
disks. In Proceedings of the 17th USENIX Conference
on File and Storage Technologies (FAST 19), pages 207–
219, 2019.

222 18th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/wiki/Single-Delete
https://github.com/facebook/rocksdb/wiki/Single-Delete
https://engineering.linkedin.com/blog/2016/03/followfeed--linkedin-s-feed-made-faster-and-smarter
https://engineering.linkedin.com/blog/2016/03/followfeed--linkedin-s-feed-made-faster-and-smarter
https://engineering.linkedin.com/blog/2016/03/followfeed--linkedin-s-feed-made-faster-and-smarter
https://www.mathworks.com/help/curvefit/power.html
https://www.mathworks.com/help/curvefit/power.html
https://en.wikipedia.org/wiki/Power_series
https://en.wikipedia.org/wiki/Power_series
https://www.mathworks.com/matlabcentral/fileexchange/66793-sine-fitting
https://www.mathworks.com/matlabcentral/fileexchange/66793-sine-fitting
https://www.mathworks.com/matlabcentral/fileexchange/66793-sine-fitting
https://yahooeng.tumblr.com/post/120730204806/sherpa-scales-new-heights
https://yahooeng.tumblr.com/post/120730204806/sherpa-scales-new-heights
https://yahooeng.tumblr.com/post/120730204806/sherpa-scales-new-heights
https://redis.io/documentation
https://redis.io/documentation
https://www.percona.com/live/17/sessions/myrocks-best-practice-alibaba
https://www.percona.com/live/17/sessions/myrocks-best-practice-alibaba
https://www.percona.com/live/17/sessions/myrocks-best-practice-alibaba

A Appendix

A.1 Trace Replay
./db_bench –benchmarks=replay –

trace_file=./trace_<Trace Name> –num_column_families=1
-use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -trace_replay_fast_forward=24
–perf_level=2 –trace_replay_threads=3 -use_existing_db=true
-db=./<Directory of Existing RocksDB Database for Replay>

A.2 Trace Analyzing
./trace_analyzer -analyze_get -analyze_put -

analyze_merge -analyze_delete -analyze_single_delete
-analyze_iterator -output_access_count_stats -
output_dir=./result_<Trace Name> -output_key_stats
-output_qps_stats -output_value_distribution -
output_key_distribution -output_time_series -
print_overall_stats -print_top_k_access=6 -value_interval=1
-output_prefix= <Trace Name>_result -trace_path=./trace_
<Trace Name> ./ <Trace Name>_general.txt

A.3 New Benchmarks
Before running the benchmark, user needs to compile

RocksDB db_bench and run it via command lines. Note that,
if user runs the benchmark following the 24 hours Sine pe-
riod, it will take about 22-24 hours. In order to speedup the
benchmarking, user can increase the sine_d to a larger value
such as 45000 to increase the workload intensiveness and also
reduce the sine_b accordingly.

Create a database with 50 million random inserted KV-
pairs

./db_bench –benchmarks=fillrandom –perf_level=3
-use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456 -key_size=48
-value_size=43 -num=50000000 -db=./<Directory of
Generated Database with 50 million KV-pairs>

All_random
./db_bench –benchmarks="mixgraph" -

use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456 -
keyrange_num=1 -value_k=0.2615 -value_sigma=25.45
-iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.83
-mix_put_ratio=0.14 -mix_seek_ratio=0.03 -
sine_mix_rate_interval_milliseconds=5000 -sine_a=1000
-sine_b=0.000073 -sine_d=4500 –perf_level=2 -
reads=420000000 -num=50000000 -key_size=48 -

db=./<Directory of Generated Database with 50 million
KV-pairs> -use_existing_db=true

All_dist
./db_bench –benchmarks="mixgraph" -

use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456
-key_dist_a=0.002312 -key_dist_b=0.3467 -
keyrange_num=1 -value_k=0.2615 -value_sigma=25.45
-iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.83
-mix_put_ratio=0.14 -mix_seek_ratio=0.03 -
sine_mix_rate_interval_milliseconds=5000 -sine_a=1000
-sine_b=0.000073 -sine_d=4500 –perf_level=2 -
reads=420000000 -num=50000000 -key_size=48 -db=./<
Directory of Generated Database with 50 million KV-pairs>
-use_existing_db=true

Prefix_random
./db_bench –benchmarks="mixgraph" -

use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456 -
keyrange_dist_a=14.18 -keyrange_dist_b=-2.917 -
keyrange_dist_c=0.0164 -keyrange_dist_d=-0.08082
-keyrange_num=30 -value_k=0.2615 -value_sigma=25.45
-iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.83
-mix_put_ratio=0.14 -mix_seek_ratio=0.03 -
sine_mix_rate_interval_milliseconds=5000 -sine_a=1000
-sine_b=0.000073 -sine_d=4500 –perf_level=2 -
reads=420000000 -num=50000000 -key_size=48 -db=./<
Directory of Generated Database with 50 million KV-pairs>
-use_existing_db=true

Prefix_dist
./db_bench –benchmarks="mixgraph" -

use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456
-key_dist_a=0.002312 -key_dist_b=0.3467 -
keyrange_dist_a=14.18 -keyrange_dist_b=-2.917 -
keyrange_dist_c=0.0164 -keyrange_dist_d=-0.08082
-keyrange_num=30 -value_k=0.2615 -value_sigma=25.45
-iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.83
-mix_put_ratio=0.14 -mix_seek_ratio=0.03 -
sine_mix_rate_interval_milliseconds=5000 -sine_a=1000
-sine_b=0.000073 -sine_d=4500 –perf_level=2 -
reads=420000000 -num=50000000 -key_size=48 -db=./<
Directory of Generated Database with 50 million KV-pairs>
-use_existing_db=true

USENIX Association 18th USENIX Conference on File and Storage Technologies 223

FPGA-Accelerated Compactions for LSM-based Key-Value Store

Teng Zhang*,†, Jianying Wang*, Xuntao Cheng*, Hao Xu*, Nanlong Yu†, Gui Huang*, Tieying Zhang*,
Dengcheng He*, Feifei Li*, Wei Cao*, Zhongdong Huang†, and Jianling Sun†

*Alibaba Group
†Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Zhejiang University

{jason.zt,beilou.wjy,xuntao.cxt,haoke.xh,qushan, tieying.zhang,
dengcheng.hedc,lifeifei,mingsong.cw}@alibaba-inc.com

{yunanlong,hzd, sunjl}@zju.edu.cn

Abstract
Log-Structured Merge Tree (LSM-tree) key-value (KV) stores
have been widely deployed in the industry due to its high
write efficiency and low costs as a tiered storage. To main-
tain such advantages, LSM-tree relies on a background com-
paction operation to merge data records or collect garbages
for housekeeping purposes. In this work, we identify that
slow compactions jeopardize the system performance due
to unchecked oversized levels in the LSM-tree, and resource
contentions for the CPU and the I/O. We further find that the
rising I/O capabilities of the latest disk storage have pushed
compactions to be bounded by CPUs when merging short
KVs. This causes both query/transaction processing and back-
ground compactions to compete for the bottlenecked CPU
resources extensively in an LSM-tree KV store.

In this paper, we propose to offload compactions to FPGAs
aiming at accelerating compactions and reducing the CPU bot-
tleneck for storing short KVs. Evaluations have shown that the
proposed FPGA-offloading approach accelerates compactions
by 2 to 5 times, improves the system throughput by up to 23%,
and increases the energy efficiency (number of transactions
per watt) by up to 31.7%, compared with the fine-tuned CPU-
only baseline. Without loss of generality, we implement our
proposal in X-Engine, a latest LSM-tree storage engine.

1 Introduction

Key-value (KV) stores developed based on the Log-Structured
Merge Tree (LSM-tree) have emerged as the backbone
database storage system serving many applications in the
cloud that are sensitive to both the cost and the perfor-
mance, such as instant messaging, online retail and advertise-
ments. Notable examples include LevelDB [8], BigTable [2],
RocksDB [13], Dynamo [9], WiredTiger [35], and X-Engine
[16] from various companies. LSM-tree is favoured in these
cases because its advantages on the write efficiency and stor-
age costs compensate the shortcomings of the widely adopted
Solid State Drives (SSDs) in industrial storages [13]. For ex-
ample in the online retail context, the underlying database

0 4 8 16 24 28 32 36 40 48 64FPGA
Compaction threads number on the CPU

0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
u

gh
p

u
t

(M
ill

io
n

tx
n

/s
)

Throughput CPU IO

0

20

40

60

80

100

U
ti

liz
at

io
n

(%
)

Figure 1: Impacts of added CPU threads for compactions on
the overall system throughput.

storage is prefered to be able to provide a high write through-
put for the placement of new orders, an acceptable read latency
for users to query hot items, and a low storage cost for storing
all records of the stockpiles, logistics, payments and other
business-critical e-commerce details on top of a web-scale
storage built upon SSDs [16].

KV stores built atop the LSM-tree usually exploit other
database structures to offer a general-purpose storage ser-
vice that excels in read, write performance and the cost at
the same time. For example, indexes and caches contribute
significantly to answering point lookups, which are among
the majorities in the common write and point read-intensive
(WPI) workloads [7]. Indexes offer a fast path to navigate in
the huge storage, the size of which is often amplified by Multi-
version Concurrency Control (MVCC) [16]. And, caches help
reducing disk I/Os by buffering hot items in the main mem-
ory [16, 25].

Despite these efforts made, we have observed that the per-
formance of LSM-tree KV stores often fatigues after serving
the WPI workloads for long hours due to poorly maintained
shapes (i.e., oversized levels) of the LSM-tree under work-
load pressures. An LSM-tree keeps multiple levels of records
with inclusive key ranges in the disk (details introduced in

USENIX Association 18th USENIX Conference on File and Storage Technologies 225

Section 2.1). This data organization often forces a query to
traverse in multiple levels to merge scattered records for a
complete answer or seek a record, even with indexes. Such
operations carry the extra overhead of skipping over invalid
records marked for deletion. To contain these drawbacks,
background compaction operations (a.k.a., merge) are intro-
duced to merge inclusive data blocks between adjacent levels
and remove deleted records, intending to keep the LSM-tree
in a properly tiered shape. However, in this work, we find
that there exists a difficult trade-off between resources de-
voted to query and transaction processing in the critical path
and resources devoted to background compactions which con-
sume heavy computation and disk I/O resources, especially
for WPI workloads containing both reads and writes. If we
allocate more software threads to compactions, we throttle up
the background maintenance of the storage at the risk of hurt-
ing the overall performance by depriving CPUs of actually
processing queries and transactions.

Figure 1 plots the throughputs of an LSM-tree KV store
processing a typical WPI workload (75% point lookups, 25%
writes) using an increasing number of CPU threads for com-
pactions. With the number of threads scaling up to 32, the
total compaction throughput increases, resulting in significant
performance benefits. However, with more threads added for
compactions, CPUs become saturated and contended. Con-
sequently, the system throughput drops after 32 threads as
shown in Figure 1. We also find out with detailed profilings
(introduced in Section 4) that compactions are still not fast
enough to deal with the above-introduced problems with 32
or more threads.

Research efforts exploring two major approaches have been
made to optimize compactions [6,16,18,28,29,40]. One is to
reduce the workload per compaction task by exploiting data
distributions (e.g., almost sorted, not overlapped ranges) to
avoid unnecessary merges [16, 29], or by splitting data into
multiple partitions and schedule compactions for each parti-
tion when needed separately [18]. The other is to optimize the
scheduling of compactions in terms of when and where com-
paction shall be executed [28]. Ideally, compaction should be
completed when it is most needed for the sake of performance,
and its execution has minimal resource contentions with other
operations in the system. However, these two conditions often
contradict with each other in WPI workloads, because the
needs for compactions and the needs for high KV throughput
often peak at the same time. Thus, the resource contentions
in the storage system for both CPUs and I/O remain as a
challenge, limiting the scalability of compaction speed with
added CPU threads, and leaving the performance fatigue of
LSM-tree storage system as an open problem.

In this paper, we propose to offload compactions from
CPUs to FPGAs for accelerated executions due to four con-
siderations. Firstly, offloading compactions away from CPUs
relieves CPUs from such I/O-intensive operations. This en-
ables the storage system to use less CPUs or increase the

throughput using the same number of CPUs, both of which
translate to monetary savings for users, especially in the pub-
lic cloud. Secondly, FPGAs suit the requirement to accelerate
compactions which are pipelines of computational tasks, com-
pared with GPUs which are prefered by computations of the
SIMD paradigm. We have also found out in this work that
compactions merging short KV records (pairs) are surpris-
ingly bounded by computation, partially because the disk
I/O bandwidth has been improved significantly recently. This
calls for dedicated performance optimization. Thirdly, the
high power efficiency of FPGAs offers a competitive advan-
tage on reducing the total cost of ownership (TCO), compared
with other solutions. And, users of LSM-tree KV stores are
sensitive to such costs, given that they pay for the storage al-
most permanently. We argue in this work that offloading com-
pactions to FPGAs increase the economical value of LSM-tree
KV stores in the cloud.

On the FPGA, we design and implement compaction as
a pipeline including three stages on decoding/encoding in-
puts/outputs, merging data, and managing intermediate data
in buffers. We also implement an FPGA driver, and an asyn-
chronous compaction task scheduler to facilitate the offload-
ing and improve its efficiency. We integrate our FPGA of-
floading solution with X-Engine, a state-of-the-art LSM-tree
storage system [16]. We evaluate X-Engine with and with-
out our proposal using typical WPI workloads with varying
compositions. Experimental results show that the proposed
FPGA offloading approach accelerates compactions by 2 to 5
times, improves the overall throughput of the storage engine
by 23%, compared with the best CPU baseline. Overall, we
make the following contributions:

• We have identified the slow and heavy compaction as a ma-
jor bottleneck causing resource contentions, causing over-
sized level L0 and other problems that eventually lead to
the performance degradation of the LSM-tree KV store.

• We have designed and implemented an efficient multi-
staged compaction pipeline on FPGAs (i.e., Compaction
Unit), supporting merge and delete operations. We have
introduced an asynchronous scheduler (i.e., Driver) to co-
ordinate CPUs and the FPGA for the offloading of com-
pactions. To the best of our knowledge, this is the first work
on offloading compactions to FPGAs.

• We have modeled the FPGA compaction throughput ana-
lytically with validations. Using this model, we are able
to predict the performance of the proposal for different of-
floaded compaction tasks. And, we have identified future
optimization opportunities on the FPGA for compactions.

• We have compared the performance and energy consump-
tions of a state-of-the-art LSM-tree KV store (X-Engine
[16]) using both the CPU-only baseline and the FPGA-
offloading solution for compactions using both micro- and

226 18th USENIX Conference on File and Storage Technologies USENIX Association

macro-benchmarks. Evaluation results show that our pro-
posal increases the overall throughput of the KV store by
23% and increases the energy efficiency (number of trans-
actions per watt) by 31.7%, compared with the CPU-only
baseline.

This paper is organized as follows. Section 2 introduces
backgrounds of LSM-tree KV stores, FPGAs and our motiva-
tions to offload compactions to FPGAs. Section 3 explains the
overview of our design and introduces design details of com-
pactions on the FPGA and the offloading process, including
both implementation details and analytical models. We eval-
uate our proposals in Section 4. Finally, we discuss related
work in Section 5 and conclude in Section 6.

2 Background and Motivation

2.1 LSM-tree KV-Store
LSM-trees have been extensively studied in academia and
deployed in the industry due to its high write efficiency and
low storage cost on SSDs. In the original design [23] shown
in Figure 2a, an LSM-tree contains two tree-like components
C0 and C1, residing in the main memory and the disk, re-
spectively. For fast writes, incoming KV records are inserted
into C0, accessing only the main memory. When C0 is full
in the main memory, parts of it are merged with C1 in the
disk, leaving space in the main memory for new data. The
overhead of this merge operation increases as the size of C1
grows, because leaf nodes of C0 may overlap with many leaf
nodes of C1. To bound such overhead, it is preferable to di-
vide a single disk component into multiple ones: C1, C2, ...,
Ck, where each component Ci+1 is larger than its previous
one Ci. However, a single KV record now has to be merged
multiple times among these components over time, causing
write amplification. And, a lookup may also have to access
multiple components with inclusive key ranges, which are
referred to as read amplifications in this work.

memory

disk

……

C0

C1

C2

Ck

merge sort

(a) Original LSM-tree.

memtable SSTable

L0

L1
L2

Lk

……

immutable
memtable

memory

disk

(b) Modern LSM-tree.

Figure 2: Original LSM-tree and Modern LSM-tree Architec-
tures.

To bound write and read amplifications, many studies have
envolved LSM-tree into a tiered storage with optimized main
memory data structure, multi-level disk components with each
level consisting of multiple files or fine-grained data blocks.

Figure 2b shows a typical LSM-tree architecture as in many in-
dustrial systems such as RocksDB [13] and X-Engine [16]. In-
coming data are inserted into memtables (often implemented
as skiplists [24]). Once filled, memtables are switched to be
immutable and flushed to the first level L0 in the disk. A level
Lk is similar to component Ck in the original design with a
major difference that Lk is partitioned into many files (e.g.,
Sorted Sequence Tables as in RocksDB [13]) or data blocks
(e.g., extents as in X-Engine [16]). There are two types of
policies for the merging operation (i.e., compaction). For each
batch to be merged into the next level (or component), one
policy is to merge it with existing data in the target level, know
as the leveling policy. This approach keeps data in a level in a
nicely sorted order at the expense of the compaction speed.
The other approach is to simply append data into the next
level without merging, known as the tiering policy. In this
way, the compaction itself is fast at the expense of the sorted
order within a level. Dayan et al. have compared these two
policies analytically [5]. Huang et al. proposed a data reuse
technique allowing compaction to only physically merge data
blocks with overlapping key ranges and reuse the rest to re-
duce the total I/O accesses [16]. Caches, indexes, and bloom
filters have been introduced to compensate the shortcoming of
the log-structured storage on lookup performance [7, 13, 16].
With skewed data accesses, these optimizations can reduce
disk I/Os significantly [16].

2.2 Motivations

Despite the state-of-the-art optimizations introduced above,
we find that slow compactions still lead to the performance
fatigue problem of an LSM-tree KV store running the WPI
workloads for the following reasons:

Problem 1: Shattered L0. In the first level L0, data blocks
often have overlapping key ranges because they are directly
flushed from the main memory without being merged. Unless
compactions merge them in time, a point lookup may have
to check multiple blocks for a single key, even with indexes.
As time passes in such cases with slow compactions, data
blocks in L0 stockpiles, continuously increasing the lookup
overhead. Such shattered L0 have significant performance
impacts because records flushed into L0 are still very hot (i.e.,
very likely to be accessed) due to the data locality.

Problem 2: Shifting Bottlenecks. A compaction opera-
tions naturally consist of multiple stages: decoding, merging
and encoding because KV records are often prefix encoded.
To identify the bottleneck among these stages, we profile a
single compaction task performed by a single CPU thread
on an SSD. Figure 3 shows the execution time breakdown.
As the value size increases, the percentage of computation
time (decoding, merging, encoding) decreases. For short KVs,
computation takes up to 60% time of the whole compaction
procedure. When the value size exceeds 128 bytes, I/O opera-
tions occupy most of the CPU time. This breakdown shows

USENIX Association 18th USENIX Conference on File and Storage Technologies 227

that the bottleneck transfers from the CPU to the I/O with
increasing KV sizes. This phenomenon suggests that the com-
paction is bounded by computation while merging short KVs
and bounded by I/O in other cases.

8 16 32 64 128 256 1024
Value Size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
xe

cu
ti

on
T

im
e

Computation Read Write

Figure 3: The breakdown of CPU compaction (key=8 bytes).

In this work, we map the above introduced three stages
to a pipeline and offload it to accelerators. With faster com-
pactions, data blocks in L0 are more frequently merged. With
offloading, CPUs are relieved from the heavy compaction
operations, leaving more resources to process queries and
transactions. We choose to offload compactions to FPGAs
due to its suitability to accelerate pipelines of computational
tasks like compactions, low power consumption for low TCO,
and its flexibility as pluggable PCIe-attached accelerators.

2.3 FPGA offloading
A Filed-programmable Gate Array (FPGA) chip is an array of
programmable hardware units, including look-up tables, flip-
flops, and DSPs (digital signal processors). Software develop-
ers enjoy the flexibility in configuring FPGAs for dedicated
purposes without other software overheads (e.g., the OS).
FPGAs have been widely applied to accelerate pipelines of
computational tasks for high performance and low power con-
sumptions, compared with other accelerators such as GPUs,
and many-core CPU processors [30, 33, 41, 42]. FPGAs suit
such applications because programmed hardware units can
be easily wired to implement pipelines with multiple stages.
And, each hardware unit executes fixed operations, specified
by designs, at every cycle with no extra overhead, achieving a
high level of efficiency. In the market, FPGA chips are usually
embedded in an SoC (system-on-chip) together with other
hardware (e.g, RAM, CPUs, PCIe interfaces, SSD controllers)
to meet different system requirements. It is also available in
the public cloud (e.g., Amazon EC2 F1 instances, Alibaba
Cloud F3 instances) to offer customizable computation ser-
vices.

There are two main approaches to integrate FPGAs in a
KV store. One is the “bump-in-the-wire" design that places

the FPGA between the CPU and the disk [37]. This approach,
in which the FPGA serves as a data filter, is favoured when
the on-chip RAM of FPGAs are small in size so that it can
only temporarily hold a slice of a data stream. As the on-
chip RAMs grow in capacity, FPGAs are now capable to
serve as a co-processor, onto which we can offload opera-
tions with large data volume to process. This approach suits
asynchronous tasks, during which CPUs are not stalled by the
offloaded tasks. In this paper, we adopt the latter approach to
offload compactions as a whole to FPGAs and only use the
CPU for task generations. Such solutions based on FPGA-
offloading can naturally evolve into a computational storage
with coupled FPGA-SSD devices emerging in the market
(e.g., Samsung SmartSSD).

3 Design and Implementation

3.1 Overview

Figure 4 shows our design of the FPGA-offloading for com-
pactions, integrated with X-Engine. X-Engine is one of the
state-of-the-art LSM-tree KV store [16]. It exploits memta-
bles to buffer newly inserted KV records, and caches to buffer
hot pairs and data blocks. In the disks, each level of the LSM-
tree contains multiple extents. Each extent in turn stores KV
records with associated indexes and filters. X-Engine main-
tains a global index to accelerate lookups. In the baseline
system without offloading compactions, all put, get, delete,
multi-get operations in addition to background flush and com-
paction operations are processed by CPUs. We refer to this as
the CPU-only baseline.

To offload compactions, we first design a Task Queue
to buffer newly triggered compaction tasks, and a Result
Queue to buffer compacted KV records in the main memory.
Software-wise, we introduce a Driver to offload compactions,
including managing the data transfer from the host and the
FPGA (the device). On the FPGA, we design and deploy mul-
tiple Compaction Units (CUs), responsible for merging KV
records.

3.2 Driver

3.2.1 Managing Compaction Tasks

In LSM-tree KV stores such as X-Engine, compaction be-
tween level Li and Li+1 are triggered when the data size of
Li (i.e., the number of extents as in X-Engine) reaches a pre-
defined threshold. To facilitate offloading, we maintain three
types of threads: builder threads, dispatcher threads and driver
threads at the CPU side to build compaction tasks, dispatch
tasks to CUs in the FPGA, and install compacted data blocks
back into the storage, respectively. We illustrate this process
in Figure 5 and introduce the details of these threads in the
following.

228 18th USENIX Conference on File and Storage Technologies USENIX Association

MemTablesResult
Queue

Put

FlushInstall

FPGA

Get

Compaction

Task
Queue

Cache

IndexesImmutable
MemTables

L0

L1
L2

Driver

CU

Figure 4: System Overview of the Storage Engine with the
FPGA-offloading of Compactions.

Task Queue

Result Queue

FPGA

Driver
Device
Memory

Dispatch Thread Driver ThreadBuilder Thread

Figure 5: Asynchronous Compaction Scheduler. By imple-
menting a thread pool to distribute FPGA-offloading com-
paction tasks, the cost of context switch is reduced.

Builder thread For each triggered compaction, the builder
thread partitions extents to be merged into multiple groups of
similar sizes. Each group then forms a compaction task, with
its data loaded into the main memory. An FPGA compaction
task is built containing the metadata required including point-
ers to the task queue, input data, results, a callback function
(transferring compacted data blocks from the FPGA to the
main memory), return code (indicating whether a task is fin-
ished successfully) and other metadata of the compaction
task, as shown in Figure 6. This compaction task is pushed
to the task queue, waiting to be dispatched to a CU on the
FPGA. This builder thread also checks the result queue and
installs compacted data blocks back to the storage when the
task is successful. In cases when the FPGA failed to complete

*callback

*input_data

 *result

return_code

*task_queue

compaction_info

Compaction TaskResult Queue

CPU compaction Thread Pool

return_code == Failed

Flush Persistent
Storage

Figure 6: CPU checks the task’s status, redoes the task and
flushes the data as SSTable if necessary.

a compaction task (e.g., the key-value size exceeds FPGA’s
capacity), it starts a CPU compaction thread to retry this task.
In our practices, we find that only 0.03% tasks offloaded to
the FPGA fail on average.

Dispatcher thread The dispatcher consumes the task
queue and dispatches tasks to all the CUs on the FPGA in a
round-robin manner. Given that compaction tasks have sim-
ilar sizes, such round-robin dispatching achieves balanced
workload distribution among multiple CUs on the FPGA. The
dispatcher notifies the driver thread to transfer the data to the
device memory on the FPGA.

Driver thread The driver thread transfers input data asso-
ciated with a compaction task to the device memory on the
FPGA and notifies the corresponding CU to start working.
When a compaction task is finished, this driver thread is inter-
rupted to execute the callback function, which transfers the
compacted data blocks back to the host memory, and pushes
the completed task into the result queue.

In such implementation, we tune the size of a compaction
task to provide sufficient data for a compaction unit, guarantee
load balances among CUs, and limit the overhead for retrying
a compaction task upon failures on the FPGA. We also tune
the number of threads for the builder, dispatcher, and the
installer separately, to achieve balanced throughputs among
them.

3.2.2 Instruction and Data Paths

To drive the FPGA for compactions, we need to transfer in-
structions and data via the PCIe interconnect. To maximize
such transfer efficiency, we design an Instruction Path and
a Compaction Data Path. We also design an Interruption
Mechanism to notify the Installer Thread when a CU com-
pletes a compaction task, and a Memory Management Unit
(MMU) managing the device memory on the FPGA. The
whole process is depicted in Figure 7.

The detailed description of the submodules are as follows:
Instruction Path The instruction path is designed for small

and frequent data transfers like the CU availability check.
Compaction Data Path The data path uses DMA. The

data for compaction is transferred via this path. By this way,
the CPU is not involved in the data transfer procedure.

Interruption Mechanism When a compaction task fin-
ishes, an interrupt will be sent via PCIe, and then the result is
written back to the host with the help of the interrupt vector.

Memory Management Unit (MMU) MMU allocates
memory on the device memory to store the input data copied
from the host.

3.3 Compaction Unit
Compaction Unit (CU) is the logic implementation of the
compaction operation on the FPGA. Multiple CUs can be de-
ployed on the same FPGA, the total number of which mainly

USENIX Association 18th USENIX Conference on File and Storage Technologies 229

Driver

HOST

FPGA
allocates

MMU
data transfer

data transfer status check

Interruption
Machanism

task completed

Compaction data pathCU Instruction path

Memory

Device Memory

Figure 7: FPGA Driver.

depends on the available hardware resources. Figure 8 illus-
trates the design of a CU. In this design, a compaction task
consists of multiple stages: Decoder, Merger, KV Transfer,
and Encoder (details introduced below). We introduce buffers
(i.e., KV Ring Buffer, and Key Buffer) between subsequent
modules and a Controller to coordinate the execution of each
module.

Device
Memory

Decoder

Decoder

Decoder

Decoder

KV Ring Buffer

KV Ring Buffer

KV Ring Buffer

KV Ring Buffer
KV Output
Buffer

Way 0

Way 1

Way 2

Result

Way 3

controller

 Merger

Key Buffer

KV Transfer

Encoder

FPGA

Figure 8: Compaction Unit overview.

Decoder We consider a KV store where keys are prefix-
encoded to save spaces. The Decoder decodes input KV
records. If the tiering compaction policy is adopted, there
may exist multiple ways of input data blocks to be merged.
For the levelling policy, there are at most two ways of inputs
from the two adjacent levels. We find that most tiering com-
pactions involve two to four ways of inputs in our practices.
If we place two decoders in a CU with each one decoding one
way of inputs, we need to build three two-way compactions to
achieve a single four-way compaction. Instead, placing four
decoders consume 40% more hardware resources without
requiring more tasks for two to four ways of compactions,
compared with the two-decoder design. Thus, we chose to
place four decoders in each CU. The decoder outputs decoded
KV records into the KV Ring Buffers.

KV Ring Buffer The KV Ring Buffer caches the decoded
KV records. We have observed in our practices that KV sizes
rarely exceed 6KB. Thus, we configure each KV ring buffer
to contain 32 8KB slots. The additional 2KB can be used
to store meta-information such as the KV length. We design
three status signals for a KV ring buffer: FLAG_EMPTY ,
FLAG_HALF_FULL and FLAG_FULL, indicating whether

the buffer is empty, half full, or fully filled, respectively. Be-
ginning with an empty buffer, the decoder keeps decoding
and filling this buffer. After this buffer is half-filled, the down-
stream Merger is allowed to read the filled data and starts
merging them. While the merger is working, the decoder con-
tinues to fill the rest of the buffer until it is fully filled. We
match the speed of the merger and the decoder so that the
merge takes the same amount of time to finish its job by filling
half of the ring buffer. In this way, the decoder and the merger
can be efficiently pipelined. In cases that these two modules
do not match, the Controller pauses the decoder. We keep a
read pointer for the merger to mark from where it should read
in KV records, and a write pointer for the decoder similarly.

KV Transfer, Key Buffer and Merger Only keys are
transferred to the Key Buffer, and then the Merger for com-
parisons. If a key is qualified as an output, the KV transfer
module transfers the corresponding KV record from the up-
stream KV ring buffer to the KV Output Buffer with the same
data structure as the KV ring buffer. The Controller gets noti-
fied with the comparison result and move the read pointer in
the corresponding KV Ring Buffer forward accordingly. For
example, as illustrated in Figure 9, if the KV record in way 2
is the smallest key-value in the current comparison round, the
Controller will notify KV Transfer to transfer the KV record
where the read pointer points in way 2’s KV Ring Buffer and
move the read pointer forward to fetch the next entry into the
key buffer for the next round.

Encoder This module encodes the merged KV records
from the KV output buffer to data blocks and places them into
the device memory. Because there is only one way of merged
data, we place only one encoder within each CU.

Controller The Controller module serves as a coordinator
in a CU. It manages the read and write pointers in the KV
ring buffer for the merger and decoder, respectively. It also
signals each module when to start or pause.

 Merger

21KV Ring Buffer

KV Ring Buffer

KV Ring Buffer

KV Ring Buffer

way 0

way 1

way 2

way 3

read pointer

0000002 insert

27 0000002 delete

15 0000008 insert

15 0000014 insert

user_key seq type

key buffer

Figure 9: Detailed Design of the Merger.

3.4 Analytical Model for CU
Due to the pipeline design, it is crucial to match the through-
put of different modules to avoid over-provisioning and waste
of hardware resources. However, it is difficult to derive the

230 18th USENIX Conference on File and Storage Technologies USENIX Association

number of resources for each component with so many tuning
knobs. Therefore, in this section we propose an analytical
model for CU to guide the resource provisioning. The nota-
tions and parameters that we use in the model are summarized
in Table 1.

Table 1: Summary of Notations used in the Analytical Model.

Parameter Values/Units Description

N Workload-dependent Total number KVs processed

fFPGA 200 MHz Clock frequency of the FPGA

Wbus 8 Bytes Width of bus data

Wkey 1 ∼ 2K Bytes Width of key

Wvalue 0 ∼ 4K Bytes Width of value

Adecoder 2 Decoder amplification factor1

Akv_trans f er 1 KV_transfer amplification factor

Amerger 5 CPE amplification factor

Aencoder 2 Encoder amplification factor

Btrans f er Bytes/second Host-device transfer bandwidth

bdecoder 10 Base cycles for Decoder

bkv_trans f er 18 Base cycles for KV_transfer

bmerger 50 Base cycles for Compaction PE

bencoder 46 Base cycles for Encoder

µ Workload-dependent Merging selectivity

The throughput of a CU is dominated by the throughput
of the slowest stage as shown in Equation 1, with only one
exception on the KV Transfer. When the KV Transfer does
work to transfer merged KVs, it is executed in serial with its
predecessor stage, Merger. In this case, their costs shall be
combined. The cost of each stage consists of its computa-
tion and memory overhead (i.e., moving data into/from Block
RAMs inside the FPGA chip) in addition to a constant num-
ber of base cycles consumed when starting this stage. We
introduce the details in the following.

TCU = min{Tdecoder,Tkv_trans f er,Tcpe,Tencoder,Tmem} (1)

Tdecoder =
fFPGA

bdecoder +(Adecoder ·Wkey +Wvalue)/Wbus
(2)

Tmerger =
fFPGA

bmerger +Amerger ·Wkey/Wbus
(3)

Tkv_trans f er

=
fFPGA

bkv_trans f er +(Akv_trans f er ·Wkey +Wvalue)/Wbus

(4)

Tencoder =
fFPGA

bencoder +(Aencoder ·Wkey +Wvalue)/Wbus
(5)

Tmem =
N · (Wkey +Wvalue) · (1+µ)

Btrans f er
(6)

Equation 2, 4, 3, and 5 model the cost of processing a single
KV record for the Decoder, Merger, KV Transfer and Encoder
stages, respectively. Equation 6 models the throughput of data
transfer between the host and the device, bounded by PCIe
bandwidth. Through inspecting the hardware implementation
and performance profiling, we initiate these models with data
listed in Table 1. As an example, for a KV record with 8-byte
key and 32-byte value, the costs for each stage in the term of
cycles consumed per KV are 16, 55, 23, and 52 for the De-
coder, Merger, KV Transfer, and Encoder stages, respectively.
The overall throughput is 200MHz

55 = 3.6 M records/s, assum-
ing the performance is bounded by the Merger. We valid this
model with experiments in Section 4.2.

4 EVALUATION

In this section, we first evaluate how a Compaction Unit (CU)
performs on the FPGA using microbenchmarks, in addition
to validating our analytical model for a CU. We then evalu-
ate how the proposed FPGA-offloading of compactions con-
tribute to X-Engine using varying workloads. X-Engine is
one of the state-of-the-art LSM-tree KV stores [16].

4.1 Experimental Setup
We evaluate our proposal on a server featuring two Intel Xeon
Platinum 8163 2.5 GHz 24-core CPUs with two-way hyper-
threading, a 768 GB Samsung DDR4-2666 main memory and
a RAID 0 consisting of 10 Samsung SSDs, running Linux
4.9.79. We attach a Xilinx Virtex UltraScale+ VU9P FPGA
board (running at 200MHz) with a 16 GB device memory to
this server through a x16 PCIe Gen 3 interface, to which we
offload compactions. Specifications of this FPGA board is
summarized in its datasheet [39].

4.2 Evaluating the FPGA-based Compaction
CU Performance Analysis. To evaluate the performance of
a CU, we prepare 4,000,000 KV records with varying key and
value sizes and manually trigger a compaction to merge them.
Figure 10 compares the throughput, in the term of input KV
records merged per second, achieved by a single CPU thread
and the FPGA-offloading of compactions.

We observe that the throughputs of the FPGA-offloading
compactions are 203% to 507% higher than those on the
CPU, achieving performance speedups across all KV sizes.
For shorter KV sizes (thus smaller compaction tasks), the
FPGA-offloading solution suffers from a relatively higher
percentage of the offloading overhead. Such costs are diluted
when the KV size increases, resulting in higher speedups over
the CPU.

1The amplification factor indicates the times of the number of
clock cycles for each module if we use kv_transfer as the baseline.

USENIX Association 18th USENIX Conference on File and Storage Technologies 231

32 64 128 256 384 512 640 768 896 1024
Value Size (Bytes)

0

2

T
h

ro
u

gh
p

u
t

(M
ill

io
n

R
ec

or
d

s/
s)

CPU FPGA

(a) 8-byte key.

32 64 128 256 384 512 640 768 896 1024
Value Size (Bytes)

0

1

2

T
h

ro
u

gh
p

u
t

(M
ill

io
n

R
ec

or
d

s/
s)

CPU FPGA

(b) 32-byte key.

32 64 128 256 384 512 640 768 896 1024
Value Size (Bytes)

0

1

2

T
h

ro
u

gh
p

u
t

(M
ill

io
n

R
ec

or
d

s/
s)

CPU FPGA

(c) 64-byte key.

Figure 10: Throughput of FPGA-based and CPU-based compactions with varying KV settings.

We validate our analytical model for a CU on the FPGA us-
ing a high-pressure scenario in which all input KV records are
decoded, compared, encoded, and written back to the storage
(i.e., 100% selectivity). In this case, in our current imple-
mentation, the Merger and the KV Transfer stages are not
pipelined. They execute in serial. Figure 11 reports the mea-
sured and estimation throughput. For KV records up to 8-byte
key and 256-byte values, estimation errors are within only 5%.
With larger sizes, the error grows up to 13% for the 1024-byte
value. Such estimation inaccuracies are very likely caused by
potential pipeline stalls and bus contentions. And, we con-
clude that the overall throughput is always bounded by that
of the Merger and KV Transfer stages combined, neither the
accesses to the device memory nor the data transfer over the
PCIe.

32 64 128 256 384 512 640 768 896 1024
Value Size (Bytes)

0

1

2

M
ill

io
n

R
ec

or
d

s/
s

FPGA (records/s) Estimated FPGA (MB/s)

200

400

600

800

M
B

/s

Figure 11: FPGA Compaction Model (key=8 bytes).

Resource Consumption. In Table 2, we report the re-
source consumption (i.e., LUT, Flip-Flop and memory con-
sumed) of each stage in a CU on the FPGA. A single CU
consumes less than 5% of the total resources, with the en-
coder consuming the largest number of resources because it
has the most complicated logics including prefix encoding
and communication with other stages. In practice, we can
place up to 8 CUs in the FPGA board, utilizing 25.6% of
the LUTs, 10.4% of the Flip-Flops, and 38.4% of the device
RAM. In addition to the about 15% resources consumed by
the shell inside the FPGA chip (including buses, DDR con-
trollers, etc.), our current implementation utilizes about half

of the hardware resources on the FPGA. We recognize that
such utilization is constrained by the necessary place and
route overhead on the FPGA and our current implementation
which can be improved with further optimizations.

Table 2: Hardware resource utilization by a single CU.

LUT Flip-Flop RAM (MB)
Decoder 5783 × 4 4570 × 4 8 × 4
KV Transfer 1076 1006 0
Merger 4119 2555 0
Encoder 6489 4101 0
Others 3819 4841 14
1 CU 38635 30783 46
FPGA total 1182000 2364000 960
Utilization 3.2% 1.3% 4.8%

4.3 Evaluating a KV Store with FPGA-
offloading of Compactions

4.3.1 Workloads

To evaluate the impacts of FPGA-offloading of compactions
on an LSM-tree KV store using X-Engine [16], we adopt
DBBench, a popular opensource benchmark to measure LSM-
tree storages such as LevelDB and RocksDB [8, 25, 26]. We
consider skewed workloads following a zipf distribution, and
use the zipf factor of 1.0 to generate the default workload. We
vary multiple parameters in our experiments including the
number of CPU threads used for compactions, the read ratio
(i.e., the percentage of reads (v.s. writes) in the workload) and
others.

We prepare KV records for 32 LSM-tree tables, with each
table storing 200,000,000 records in a single X-Engine KV
store instance. The total data size is about 278 GB. We tune
the cache size in the main memory to 70 GB. By default, we
use 8-byte keys and 32-byte values, a common size as in many
KV stores deployed in the industry, especially those storing
secondary indexes. In all experiments, we warm up the stor-
age for 3,600 seconds and measure performance metrics for
another 3,600 seconds, which is long enough for the exposure
of performance issues in our setting.

232 18th USENIX Conference on File and Storage Technologies USENIX Association

4.3.2 The Impacts of Compactions

Figure 12 shows the overall performance (transactions per
second) achieved in correspondence with the size of level
L0, comparing the impacts of increasing numbers of threads
for compactions on the CPU-only baseline and the FPGA-
offloading solution, given our default WPI workload. By up to
24 CPU threads, added threads yield significant performance
improvements by merging overlapping key ranges in the level
L0 at an increasing speed, which reduces the expected number
of I/O accesses for a point lookup. In this phase, compactions
are slower than the total write throughput of the KV store,
so that it is not able to ingest enough newly written data in
the LSM-tree. Thus, accelerating compactions using more
threads pays back.

From 24 to 32 threads, the throughput barely changes. After
32 threads, the throughput drops with more threads added. The
reason is two-fold. Firstly, more threads added introduce more
resource contentions, as shown in Figure 1 where the overall
CPU utilization almost always 100%. And, we show in Figure
3 that compactions, in this case, are bounded by computations
on the CPU. Secondly, added threads eventually saturate the
disk I/O as shown in Figure 1, incurring I/O contentions for
both the query/transaction processing and compactions.

Figure 12 shows that the FPGA-offloading compaction
achieves around 23% higher throughput than the best CPU-
only baseline in this workload. Both accelerating compactions
and reducing resource contentions at the CPU side contribute
to such improvements (shown in Figure 1). Due to the fine-
grained compaction task build and distribute, we have not
observed any obvious difference in memory consumption
between FPGA-offloading compaction and CPU-based com-
paction (shown in Figure 1). The average memory bandwidth
with FPGA-offloading compaction (50.06 GB/s) is 29% lower
than the best CPU baseline (70.50 GB/s), showing the CPU-
only approach consumes more memory bandwidth.

0 4 8 16 24 28 32 36 40 48 64FPGA
Compaction threads number on the CPU

0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
u

gh
p

u
t

(M
ill

io
n

tx
n

/s
)

Data size Throughput

0

10

20

30

40

L
ev

el
0

d
at

a
si

ze
(G

B
)

Figure 12: Compaction threads number vs. L0 data size.

Table 3 summaries the performance metrics and power
consumption of X-Engine with FPGA-offloading compaction

and CPU-based compaction using 32 threads. With FPGA
acceleration, the throughput is improved by 23.3% while the
average response time is decreased by 14.7% and 28.1% for
read and write operation respectively. The tail request latency
is reduced by over 40% as the computation contention is re-
lieved with compaction offloaded to the FPGA. Furthermore,
we report the power consumptions. The average machine-
wise power consumption is lowered by 7.2% with FPGA-
offloading of compactions reducing the CPUs’ utilization
and power consumptions. Because the FPGA has higher en-
ergy efficiency for compactions than CPUs, the overall energy
efficiency (number of transactions processed per watt) is im-
proved by 31.7%. With further continuous efforts on optimiz-
ing such FPGA-offloading implementations for KV stores,
more energy savings and TCO reductions are promising.

4.3.3 The Impacts of Read Ratio

In this section, we investigate the performance benefits of the
FPGA-offloading compaction when the read ratio varies. In
Figure 13, we gradually reduce the read ratio to 75% which
resembles a write-heavy WPI workload, our proposed of-
floading approach outperforms the baseline with around 10%
reduction in CPU consumptions in all cases and consumes
slightly more I/Os due to its higher throughput than the CPU.

4.3.4 Macro Benchmarks

Now we compare the CPU-only baseline and our proposal
using the DBBench [26] and YCSB benchmarks [4]. Fig-
ure 14 reports the DBBench results, including the follow-
ing tests: FR (fill random, randomly inserting records),
SRWR (seek random while writing, seeking random indi-
vidual records with only one thread inserting records), RWR
(read while writing, reading multiple random threads with
only one thread inserting records), UR (update random, updat-
ing random records) and RRWR (read random write random,
all threads reading and writing random records for 90% and
10% of the time, respectively).

In these tests, our proposal manages to reduce the CPU
utilization and improve the throughput with similar I/O and
memory consumptions. FR has the highest performance im-
provement (54% improvement in total) per CPU utilization
reduction (15% utilization reduction in total) because such
write-only workloads generate a lof of compactions that ben-
efit from offloading. For the I/O-bounded RWR, our offload-
ing approach improves the throughput by 18% by relieving
CPUs from compaction I/Os (20% utilization reduction) with-
out resolving the I/O bottleneck. In other tests, our approach
achieves slightly higher I/O utilizations than the CPU-only
baselines, resulting in 17% to 29% performance improve-
ments. These results demonstrate multiple benefits of replac-
ing CPUs for the execution of compactions by FPGAs.

Figure 15 reports the YCSB results using the following

USENIX Association 18th USENIX Conference on File and Storage Technologies 233

Table 3: The value of adding an FPGA to X-Engine.

Million Txn/s Avg Get RT (µs) P99 Get RT (µs) Avg Put RT (µs) P99 Put RT (µs) Power (Watt) Efficiency (Txn/Watt)
CPU (32 compaction threads) 0.90 139.89 928.15 107.51 864.95 636.54 1416.54
CPU + FPGA 1.11 119.38 537.08 77.30 499.52 590.78 1865.44
Improvement +23.3% -14.7% -42.1% -28.1% -42.2% -7.2% +31.7%

90:10 85:15 80:20 75:25
Mixed workload (%:%)

0.0

0.5

1.0

1.5

T
h

ro
u

gh
p

u
t

(M
ill

io
n

tx
n

/s
) 32 compaction threads FPGA

(a) Throughput.

90:10 85:15 80:20 75:25
Mixed workload (%:%)

0

25

50

75

100

C
P

U
U

ti
liz

at
io

n
(%

)

32 compaction threads FPGA

(b) CPU Utilization.

90:10 85:15 80:20 75:25
Mixed workload (%:%)

0

25

50

75

100

IO
U

ti
liz

at
io

n
(%

)

32 compaction threads FPGA

(c) I/O Utilization.

90:10 85:15 80:20 75:25
Mixed workload (%:%)

0

10

20

M
em

or
y

U
ti

liz
at

io
n

(%
)

32 compaction threads FPGA

(d) Memory Consumptions.

Figure 13: Comparing the CPU-only baseline and the FPGA-offloading proposal with varying read ratios (percentages of gets).

workloads: workload a (50% read and 50% update), work-
load b (95% read and 5% update), workload c (read-only),
workload d (95% read and 5% insert), workload e (95%
scan and 5% insert) and workload f (50% read-modify-write
latest records and 50% random reads). Reads dominate all
these workloads, resulting in non-frequent compactions in the
undelrying KV store. Hence, the throughout improvement is
marginal with our proposal. We observe 23.7% and 16.1%
gains on throughput for workload a and workload f, respec-
tively. Both these workloads contain non-trival writes.

In both the DBBench and the YCSB benchmarks, the pro-
posed FPGA-offloading of compactions contribute more to
the KV store when there are significant writes in the workload,
compared with read-intensive ones, because compactions in
LSM-trees are only triggered upon writes. Acknowledging
that both the WPI workload and read-intensive workloads are
common in the applications of LSM-tree KV stores, there
are efforts in both the literature and the industry that exploit
FPGAs to accelerate lookups and queries [31]. Given the flex-
ibility of FPGAs, it is worth exploring of dynamically switch-
ing the logics of FPGAs or programming different dedicated
accelerator units in a single FPGA to suit various workloads
in the production.

5 Related Work

5.1 Software Optimizations of Compactions

To improve the efficiency of compactions, VT-tree [29] uses
the stitching technique to avoid unnecessary disk I/Os for
sorted and non-overlapping key ranges. However, this method
is subject to data distributions and may lead to fragmentations,
worsening the performance of range scans and compactions.
In bLSM [28] and PE [18], the data distribution is taken into
consideration. Both algorithms partition the key range into
multiple sub-key ranges and confine compaction in hot data

key ranges, which accelerates the data flow. PCP [40] ob-
served that the compaction procedure can be pipelined. It
employs multiple CPUs and storages to fully utilize both
CPU and I/O resources to speed up the compaction procedure.
Dayan et al. offer richer space-time trade-offs by merging
as little as possible to achieve given bounds on lookup cost
and space and proposed a hybrid compaction policy (i.e., use
levelling for the largest level and tiering for the rest) to reduce
write amplifications [6, 25]. Huang et al. propose to split
data in the LSM-tree into small data blocks, and reuse data
blocks without overlapping key ranges during compactions
extensively to reduce the write amplification [16]. All these
software optimizations are orthogonal to our work on accel-
erating the compaction using FPGAs. We believe combined
software and hardware optimization will benefit the system
performance and power consumption a step further. It seems
to be a fruitful area that orchestrates the hardware (e.g., CPU,
FPGA, GPU) and exploit the potentials to schedule the tasks
to the hardware that best suit their characteristics.

5.2 Hardware Accelerations in Databases
In the past decades, optimizing databases using carefully de-
signed hardware techniques has been a very heated area in
both the academia and the industry. Because both analytical
and transactional databases manipulate data records through
a well-defined set of operators or primitives (e.g., put, get,
scan, join), we are able to either implement such operators
using fixed hardware logics on a database-specific proces-
sor or machine [1, 12, 17, 36, 38], or do so using high-level
languages (e.g., C++, OpenCL) on a general-purpose pro-
cessor with assistances from latest hardware features (e.g.,
SIMD, high-bandwidth memory) [3, 15]. Comparing these
two approaches, database-specific hardware very likely deliv-
ers groundbreaking performance and energy-efficiency with
a relatively longer time-to-market and a higher engineering
and financial cost per processor. And, hardware-aware opti-

234 18th USENIX Conference on File and Storage Technologies USENIX Association

FR SRWR RWR UR RRWR
Workload Type

0

1

2

3

T
h

ro
u

gh
p

u
t

(M
ill

io
n

tx
n

/s
) 32 compaction threads FPGA

(a) Throughput.

FR SRWR RWR UR RRWR
Workload Type

0

25

50

75

100

C
P

U
U

ti
liz

at
io

n
(%

)

32 compaction threads FPGA

(b) CPU Utilization.

FR SRWR RWR UR RRWR
Workload Type

0

25

50

75

100

IO
U

ti
liz

at
io

n
(%

)

32 compaction threads FPGA

(c) I/O Utilization.

FR SRWR RWR UR RRWR
Workload Type

0

10

20

M
em

or
y

U
ti

liz
at

io
n

(%
)

32 compaction threads FPGA

(d) Memory Consumption.

Figure 14: Comparing the CPU-only baseline and the FPGA-offloading proposal using the DBBench benchmark.

a b c d e f
Workload Type

0

2

4

T
h

ro
u

gh
p

u
t

(M
ill

io
n

tx
n

/s
) 32 compaction threads FPGA

(a) Throughput.

a b c d e f
Workload Type

0

25

50

75

100

C
P

U
U

ti
liz

at
io

n
(%

)

32 compaction threads FPGA

(b) CPU Utilization.

a b c d e f
Workload Type

0

25

50

75

100

IO
U

ti
liz

at
io

n
(%

)

32 compaction threads FPGA

(c) I/O Utilization.

a b c d e f
Workload Type

0

10

20

M
em

or
y

U
ti

liz
at

io
n

(%
)

32 compaction threads FPGA

(d) Memory Consumption.

Figure 15: Comparing the CPU-only baseline and the FPGA-offloading proposal using the YCSB benchmark.

mizations on general-purpose processors are much easier to
program and deploy in the market with lower levels of the
energy proportionality and performance speedup [32]. This
work tries a third approach using FPGAs.

We explore using FPGA, a flexible and programmable hard-
ware accelerator, for database optimizations aiming at both
higher performance and higher economic values. In the lit-
erature, FPGAs have already been widely studied to accel-
erate individual operators or algorithms such as data parti-
tion [20], hashing [19], algorithmic trading [27], achieving sig-
nificant performance improvements. For SQL accelerations,
Glacier [21] is a compiler that translates SQL queries into
VHDL code, targeting at streaming and standing queries. For
unpredictable workloads like warehouse scenario, techniques
like partial reconfiguration [10] and runtime parameteriza-
tion [22] has been proposed. IBM’s Netezza [14] managed to
push simple selection and projection-based filtering to FPGAs.
Advanced SQL offloading like Group By and Where clause
has also been addressed [10, 11, 37]. The state-of-art SQL
acceleration is capable of dealing with pattern matching and
user-defined function [30]. Commercial examples for SQL
offloading like Oracle’s Exata [34] and IBM’s Netezza [14]
reveals the interests of the industry in this field.

Instead of stretching the arms on these foreground opera-
tors or algorithms, we offload a heavy and frequently executed
background operation, compaction, to FPGAs. We argue that
FPGAs can contribute to the overall database performance (a
database storage in our case for now) by relieving CPUs from
computation-bounded tasks, and performing much more effi-
ciently for the offloaded tasks in a relatively isolated hardware
environment.

6 Conclusion

In this paper, we argue that the LSM-tree KV store suffers
from slow compactions due to resource contentions, oversized
LSM-tree levels and other reasons. With the CPU and I/O
consumptions of compactions carefully profiled, we find that
compactions can be surprisingly bounded by computation for
merging shot KVs. We further propose to offload compactions
to a dedicated FPGA for acceleration and integrate our pro-
posal with X-Engine, a state-of-the-art LSM-tree KV store. To
facilitate such offloading, we have designed and implemented
the pipelined Compaction Units on the FPGA and a Driver to
achieve efficient offloading. With evaluations comparing our
proposal with the fine-tuned CPU-only baseline, we show that
the proposed FPGA-offloading of compactions can increase
the system throughput and energy efficiency by up to 23%
and 31.7%, respectively.

Acknowledgments

This work is a result of a joint project by multiple teams at
Alibaba Cloud. The POLARDB X-Engine team develops the
underlying LSM-tree storage engine used in this study [16];
the Hardware and Software Co-development team implements
the proposals in this paper on FPGAs with significant efforts.
We would like to acknowledge Xulin Yu, Ming Zeng, Xiaohui
Yan, Yang Kong, and Dongdong Wei in particular for their
contributions on implementing and evaluating the FPGA so-
lution. We deeply appreciate anonymous reviewers and our
shepherd for their constructive comments on this work.

USENIX Association 18th USENIX Conference on File and Storage Technologies 235

References

[1] Oliver Arnold, Sebastian Haas, Gerhard Fettweis, Ben-
jamin Schlegel, Thomas Kissinger, and Wolfgang
Lehner. An application-specific instruction set for accel-
erating set-oriented database primitives. In Proceedings
of the 2014 International Conference on Management
of Data (SIGMOD), pages 767–778. ACM, 2014.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4,
2008.

[3] Xuntao Cheng, Bingsheng He, Mian Lu, Chiew Tong
Lau, Huynh Phung Huynh, and Rick Siow Mong Goh.
Efficient query processing on many-core architectures:
A case study with intel xeon phi processor. In Proceed-
ings of the 2016 International Conference on Manage-
ment of Data, pages 2081–2084. ACM, 2016.

[4] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[5] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 International Conference on Man-
agement of Data (SIGMOD), pages 79–94. ACM, 2017.

[6] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data (SIGMOD), pages 505–520. ACM, 2018.

[7] Niv Dayan and Stratos Idreos. The log-structured merge-
bush & the wacky continuum. In Proceedings of the
2019 International Conference on Management of Data
(SIGMOD), 2019.

[8] Jeff Dean and Sanjay Ghemawat. Leveldb. https:
//github.com/google/leveldb, 2020.

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In ACM SIGOPS operating systems
review, pages 205–220. ACM, 2007.

[10] Christopher Dennl, Daniel Ziener, and Jurgen Teich. On-
the-fly composition of fpga-based sql query accelerators

using a partially reconfigurable module library. In Field-
Programmable Custom Computing Machines (FCCM),
2012 IEEE 20th Annual International Symposium on,
pages 45–52. IEEE, 2012.

[11] Christopher Dennl, Daniel Ziener, and Jürgen Teich. Ac-
celeration of sql restrictions and aggregations through
fpga-based dynamic partial reconfiguration. In Field-
Programmable Custom Computing Machines (FCCM),
2013 IEEE 21st Annual International Symposium on,
pages 25–28. IEEE, 2013.

[12] David J. DeWitt, Shahram Ghandeharizadeh, Dono-
van A. Schneider, Allan Bricker, H-I Hsiao, and Rick
Rasmussen. The gamma database machine project.
IEEE Transactions on Knowledge and data engineering,
2(1):44–62, 1990.

[13] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Strum. Op-
timizing space amplification in rocksdb. In CIDR, vol-
ume 3, page 3, 2017.

[14] Phil Francisco et al. The netezza data appliance architec-
ture: A platform for high performance data warehousing
and analytics. IBM Redbooks, 2011.

[15] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K
Govindaraju, Qiong Luo, and Pedro V Sander. Rela-
tional query coprocessing on graphics processors. ACM
Transactions on Database Systems (TODS), 34(4):21,
2009.

[16] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang,
Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang,
Wei Cao, and Qiang Li. X-engine: An optimized storage
engine for large-scale e-commerce transaction process-
ing. In Proceedings of the 2019 International Confer-
ence on Management of Data (SIGMOD), pages 651–
665. ACM, 2019.

[17] Balakrishna R Iyer. Hardware assisted sorting in ibm’s
db2 dbms. In International Conference on Management
of Data, COMAD 2005b, 2005.

[18] Christopher Jermaine, Edward Omiecinski, and Wai Gen
Yee. The partitioned exponential file for database stor-
age management. The VLDB Journal—The Interna-
tional Journal on Very Large Data Bases, 16(4):417–
437, 2007.

[19] Kaan Kara and Gustavo Alonso. Fast and robust hashing
for database operators. In Field Programmable Logic
and Applications (FPL), 2016 26th International Con-
ference on, pages 1–4. IEEE, 2016.

236 18th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/google/leveldb
https://github.com/google/leveldb

[20] Kaan Kara, Jana Giceva, and Gustavo Alonso. Fpga-
based data partitioning. In Proceedings of the 2017
ACM International Conference on Management of Data,
pages 433–445. ACM, 2017.

[21] Rene Mueller, Jens Teubner, and Gustavo Alonso.
Streams on wires: a query compiler for fpgas. Pro-
ceedings of the VLDB Endowment, 2(1):229–240, 2009.

[22] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-
Arno Jacobsen. Flexible query processor on fpgas. Pro-
ceedings of the VLDB Endowment, 6(12):1310–1313,
2013.

[23] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33(4):351–385, 1996.

[24] William Pugh. Skip lists: a probabilistic alternative to
balanced trees. Communications of the ACM, 33(6):668–
676, 1990.

[25] RocksDB. A persistent key-value store for fast storage
environments. https://rocksdb.org/, 2020.

[26] Facebook RocksDB. Performance benchmarks.
https://github.com/facebook/rocksdb/wiki/
Performance-Benchmarks, 2019.

[27] Mohammad Sadoghi, Martin Labrecque, Harsh Singh,
Warren Shum, and Hans-Arno Jacobsen. Efficient event
processing through reconfigurable hardware for algo-
rithmic trading. Proceedings of the VLDB Endowment,
3(1-2):1525–1528, 2010.

[28] Russell Sears and Raghu Ramakrishnan. blsm: a general
purpose log structured merge tree. In Proceedings of
the 2012 International Conference on Management of
Data (SIGMOD), pages 217–228. ACM, 2012.

[29] Pradeep Shetty, Richard P Spillane, Ravikant Malpani,
Binesh Andrews, Justin Seyster, and Erez Zadok. Build-
ing workload-independent storage with vt-trees. In
FAST, pages 17–30, 2013.

[30] David Sidler, Zsolt István, Muhsen Owaida, and Gus-
tavo Alonso. Accelerating pattern matching queries in
hybrid cpu-fpga architectures. In Proceedings of the
2017 International Conference on Management of Data
(SIGMOD), pages 403–415. ACM, 2017.

[31] David Sidler, Zsolt István, Muhsen Owaida, Kaan Kara,
and Gustavo Alonso. doppiodb: A hardware accelerated
database. In Proceedings of the 2017 International
Conference on Management of Data (SIGMOD), pages
1659–1662. ACM, 2017.

[32] Dimitris Tsirogiannis, Stavros Harizopoulos, and
Mehul A Shah. Analyzing the energy efficiency of
a database server. In Proceedings of the 2010 Interna-
tional Conference on Management of Data (SIGMOD),
pages 231–242. ACM, 2010.

[33] Zeke Wang, Kaan Kara, Hantian Zhang, Gustavo
Alonso, Onur Mutlu, and Ce Zhang. Accelerating gener-
alized linear models with mlweaving: a one-size-fits-all
system for any-precision learning. Proceedings of the
VLDB Endowment, 12(7):807–821, 2019.

[34] Ronald Weiss. A technical overview of the oracle exa-
data database machine and exadata storage server. Ora-
cle White Paper. Oracle Corporation, Redwood Shores,
2012.

[35] MongoDB WiredTiger. Wiredtiger. https://github.
com/wiredtiger/wiredtiger.

[36] De Witt. Direct-a multiprocessor organization for sup-
porting relational database management systems. IEEE
Transactions on Computers, 100(6):395–406, 1979.

[37] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex:
An intelligent storage engine with support for advanced
sql offloading. Proceedings of the VLDB Endowment,
7(11):963–974, 2014.

[38] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A.
Kim, and Kenneth A. Ross. Q100: The architecture and
design of a database processing unit. SIGPLAN Not.,
49(4):255–268, February 2014.

[39] Xilinx. Ultrascale architecture and product
data sheet: Overview. https://www.xilinx.
com/support/documentation/data_sheets/
ds890-ultrascale-overview.pdf, 2019.

[40] Zigang Zhang, Yinliang Yue, Bingsheng He, Jin Xiong,
Mingyu Chen, Lixin Zhang, and Ninghui Sun. Pipelined
compaction for the lsm-tree. In Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International,
pages 777–786. IEEE, 2014.

[41] Shijie Zhou, Rajgopal Kannan, Yu Min, and Viktor K
Prasanna. Fastcf: Fpga-based accelerator for stochastic-
gradient-descent-based collaborative filtering. In Pro-
ceedings of the 2018 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, pages 259–
268. ACM, 2018.

[42] Shijie Zhou, Rajgopal Kannan, Hanqing Zeng, and Vik-
tor K Prasanna. An fpga framework for edge-centric
graph processing. In Proceedings of the 15th ACM In-
ternational Conference on Computing Frontiers, pages
69–77. ACM, 2018.

USENIX Association 18th USENIX Conference on File and Storage Technologies 237

https://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/wiredtiger/wiredtiger
https://github.com/wiredtiger/wiredtiger
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf

HotRing: A Hotspot-Aware In-Memory Key-Value Store

Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu,
Yuanyuan Sun, Huan Liu, Feifei Li

Alibaba Group

Abstract
In-memory key-value stores (KVSes) are widely used to

cache hot data, in order to solve the hotspot issue in disk-
based storage or distributed systems. The hotspot issue inside
in-memory KVSes is however being overlooked. Due to the
recent trend that hotspot issue becomes more serious, the lack
of hotspot-awareness in existing KVSes make them poorly
performed and unreliable on highly skewed workloads.

In this paper, we explore hotspot-aware designs for in-
memory index structures in KVSes. We first analyze the
potential benefits from ideal hotspot-aware indexes, and dis-
cuss challenges (i.e., hotspot shift and concurrent access is-
sues) in effectively leveraging hotspot-awareness. Based on
these insights, we propose a novel hotspot-aware KVS, named
HotRing1, that is optimized for massively concurrent accesses
to a small portion of items. HotRing is based on an ordered-
ring hash index structure, which provides fast access to hot
items by moving head pointers closer to them. It also ap-
plies a lightweight strategy to detect hotspot shifts at run-time.
HotRing comprehensively adopts lock-free structures in its
design, for both common operations (i.e., read, update) and
HotRing-specific operations (i.e., hotspot shift detection, head
pointer movement and ordered-ring rehash), so that massively
concurrent requests can better leverage multi-core architec-
tures. The extensive experiments show that our approach is
able to achieve 2.58⇥ improvement compared to other in-
memory KVSes on highly skewed workloads.

1 Introduction
The in-memory key-value store (KVS) is an essential compo-
nent in storage infrastructures (e.g. databases, file systems)
that caches frequently accessed data in memory for faster ac-
cess. KVSes help to improve the performance and scalability
of these systems, where billions of requests need be processed
in each single second. Many state-of-the-art KVSes, e.g.,
Memcached [44], Redis [31] and their variants [8, 15, 17, 33],

1 HotRing is a subcomponent of Tair — a NoSQL product extensively
used in Alibaba Group and publicly available on Alibaba Cloud.

0 0.2 0.4 0.6 0.8 1

Key Ratio

0

0.2

0.4

0.6

0.8

1

A
cc

e
ss

 R
a

tio

workload1
workload2
workload3
workload4

(a) Daily distribution

0 0.2 0.4 0.6 0.8 1

Key Ratio

0

0.2

0.4

0.6

0.8

1

A
cc

e
ss

 R
a

tio

workload1
workload2
workload3
workload4

(b) Extreme distribution

Figure 1: Access ratio of different keys.

are widely developed and deployed in production environ-
ments of enterprises, such as Facebook [42], Amazon [3],
Twitter [49] and LinkedIn [12].

The hotspot issue (i.e., a small portion of items that are
frequently accessed in a highly-skewed workload) is a com-
mon problem in real-world scenarios, and has been studied
extensively in literature [4, 10, 20, 23, 27]. There are many
solutions to address cluster-wide hotspots, such as consis-
tent hash [29], data migration [9, 11, 46] and front-end data
caching [16,26,32,36]. Besides, the single-node hotspot issue
is also well addressed. For example, computer architecture
leverages hierarchical storage layout (e.g., disk, RAM, CPU
cache) to cache frequently accessed data blocks in low-latency
storage medium. Many storage systems, e.g., LevelDB [18]
and RocksDB [14], use in-memory KVSes to manage hot
items.

However, the hotspot issue inside an in-memory KVS is
usually being overlooked. We have collected access distri-
butions in in-memory KVSes from Alibaba’s production en-
vironments, as illustrated in Figure 1. We observe that 50%
(daily cases) to 90% (extreme cases) of accesses only touch
1% of total items, which shows that the hotspot issue becomes
unprecedentedly serious in the Internet era. There are sev-
eral reasons behind this phenomenon. First, the population
of active users in online applications keeps growing. A real-
time event (e.g., online sales promotions, breaking news) is
able to attract billions of accesses to a few items in a short
period of time, where fast access to these hotspots is critical.
It has been reported that every 0.1s of loading delay would

USENIX Association 18th USENIX Conference on File and Storage Technologies 239

cost Amazon 1% in sales, and every 0.5s of additional load
delay for Google search results would lead to a 20% drop in
traffic [35]. Second, infrastructures beneath such applications
become complex. It is common that a minor error (e.g., due
to software bugs or configuration mistakes) somewhere in the
pipeline may lead to (unpredictably) repeated accesses to an
item (e.g., read and return an error message endlessly). It is
desired that such unpredicted hotspots shall not crash or block
the entire system. Hence, keeping a KVS performant and
reliable in the existence of hotspots is of great importance.

Many index structures can be used to implement
a KVS, such as skip list [14, 18], balanced/trie trees
(e.g., Masstree [37]), and hashes (e.g., Memcached [44],
MemC3 [15], MICA [33], FASTER [8]), where hashes are
the most popular due to faster lookups. However, we observe
that most approaches are not aware of hotspots, i.e., they in-
distinguishably manage all items via a same policy. In such
case, reading a hot item involves the same number of memory
accesses compared to other items. From a theoretical analysis
(detailed in § 2.2), we find that looking up hotspots in current
hash indexes requires much more effort than from an ideal
strategy. Though there exist mechanisms to reduce memory
accesses, they only render limited efficacy. For example, CPU
cache helps to speedup hotspot accesses, but has only 32MB
of capacity. Rehash operation helps to reduce the length of
each collision chain, but significantly increases the memory
footprint. This situation provides us opportunities to further
optimize hotspot accesses in highly-skewed workloads.

In this paper, we propose HotRing, a hotspot-aware in-
memory KVS that leverages a hash index optimized for mas-
sively concurrent accesses to a small portion of items, i.e.,
hotspots. The initial idea is to make memory accesses required
for looking up an item (negatively) correlated to its hotness,
i.e., the hotter items shall be read faster. To achieve this goal,
two challenges have to be addressed: hotspot shift - the set of
hot items keeps shifting, and we need to detect and adapt to
such shifts in a timely manner; concurrent access - hotspots
are inherently accessed by massively concurrent requests,
and we need to sustain high concurrency for them. For the
hotspot shift issue, we replace the collision chain in the hash
index with an ordered-ring structure, such that bucket headers
can directly re-point to hot items as hotspots shift, without
compromising correctness. In addition, we use a lightweight
mechanism to detect hotspot shift at run-time. For the con-
current access issue, we adopt a lock-free design inspired by
existing lock-free structures [19, 50], and extend it to support
all operations required by HotRing, including hotspot shift
detection, head pointer movement and ordered-ring rehash.

We have conducted extensive experimental evaluations
on benchmarks that simulate real workload, and have com-
pared HotRing with lock-free chain-based hashes and other
baselines. The results show that, in extremely skewed work-
loads, HotRing processes up to 565M read requests per sec-
ond, providing 2.58⇥ improvement over other systems. It

also achieves 2.17⇥ and 1.32⇥ improvement for in-place-
updates and read-copy-updates respectively. This verifies that
HotRing is an effective structure to improve the capability of
hotspot processing on each single node, making it a perfor-
mant and reliable in-memory KVS.

Our main contributions are summarized as follows:

• We identify the hotspot issue in existing in-memory in-
dexes, and demonstrate that hotspot-aware designs have
great potential to improve performance for hot items.

• We propose HotRing, an ordered-ring hash structure,
as the first effort to leverage hotspot-aware designs. It
provides fast access to hot items by moving head pointers
closer to them. It also adopts a lightweight strategy to
detect hotspot shifts at run-time.

• We make HotRing lock-free to support massively con-
current accesses. In particular, we design from scratch
HotRing-specific operations, including hotspot shift de-
tection, head pointer movement and ordered-ring rehash.

• We evaluate our approach on real-workload-based bench-
marks. The results show that HotRing significantly out-
performs other KVSes when the accesses are highly-
skewed.

The rest of this paper is organized as follows. §2 introduces
hash indexes and hotspot issues, and discusses opportunities
and challenges for hotspot-aware hashes. §3 elaborates the
detailed design of HotRing, and §4 evaluates its performance.
Lastly, §5 reviews related work and §6 concludes the paper.

2 Background & Motivation

In this section, we first introduce the hash index and hotspot
issues in existing KVSes. We then show potential benefits
from ideal hotspot-aware hashes theoretically. At last, we
discuss challenges to effectively leverage hotspot-awareness
in practical indexes, as well as our design principles.

2.1 Hash Indexes and Hotspot Issues
Hash index is the most popular in-memory structure used
in KVSes, especially when range queries are not needed by
upper applications. Figure 2 illustrates the typical structure
of a hash index, which contains a global hash table and one
collision chain for each entry in the table. To access a key,
we first calculate its hash value h to locate the corresponding
entry head, and then check items in the collision chain until
that key is found or the end of chain is reached (i.e., key not
exists). A n-bit hash value can be further divided into a hash
table part (e.g., k-bit) and a tag part (e.g., (n� k)-bit). The
tag can be included in each item to avoid comparing long
keys [8, 33]. As can be seen in Figure 2, hash indexes are not
aware of hotspots, i.e., hot items might be distributed evenly

240 18th USENIX Conference on File and Storage Technologies USENIX Association

!"#$%

!"#$&

'()*+&

!"#$,

-."/% -."/0 -."/1

)"2(-."/1*+)

!"#$%&"'() *+((,#,+-%*$",-,-.

3"2
4#56"

7"8.9-."/9
:$$;"<<

=".#$#.#
>#?

!@.9-."/ A@5$9-."/

Figure 2: The conventional hash index structure.

in collision chains, For a hot item placed close to the tail
of the collision chain (e.g., Item3 in the figure), it requires
more memory accesses than other items in front. However, in
highly skewed workloads, slight increase of hot-item access
cost may result in severe decline of overall performance.

There are several ways to reduce hot-item access cost, how-
ever, with only limited effects. First, CPU caches can speedup
accesses to hot data blocks (i.e., in the unit of a 64-byte cache-
line). However, for most commodity servers, the capacity of
CPU cache is around 32 MB, while the entire memory volume
exceeds 256 GB. Only 0.012% of memory can be cached, far
less than observed hotspot ratios in Figure 1. To better utilize
CPU cache, many cache-friendly index structures [8, 33] are
proposed. Second, the hash table can be enlarged (i.e., via
rehash) to reduce lengths of collision chains, so that locating
a hot item needs fewer memory accesses. However, rehash is
no longer advised when the hash table is already huge in size.
For example, for two successive rehash operations, the second
one requires two times the memory space, but only brings in
half of the efficacy (in terms of the chain length reduction).
In summary, all existing approaches only mitigate the hotspot
issue to a small extent.

2.2 Potential Benefits of Hotspot-Awareness
As hotspot issue is getting serious (shown in Figure 1), it
renders a rising opportunity to the design of hotspot-aware
hash indexes. First of all, it is interesting to have a rough
estimation and analysis on how much potential benefits we
can obtain from leveraging hotspot-aware designs.

In conventional chain-based hash indexes, hot items are
randomly placed in the collision chain, so that hot items and
cold items are equivalent in terms of access cost. Suppose
that we have N items (i.e., key-value pairs) stored in a hash
table with B buckets, the average length of each bucket chain
is L = N/B. The number of expected memory accesses to
retrieve an item in the chain Echain is

Echain = 1+
L
2
= 1+

N
2 ·B (1)

where the leading 1 represents the lookup in the hash table.
In an ideal hotspot-aware hash index, memory accesses

required to retrieve an item should be (negatively) correlated
to this hotness, e.g., the hottest item needs the fewest memory

0 5 10 15

Chain length

0

5

10

#
 o

f
M

e
m

o
ry

 A
cc

.

E
chain

E
ideal

Figure 3: Expected memory accesses for an index lookup
(total items N = 2.5 ·108).

accesses to retrieve. We model item hotness in a Zipfian
distribution, where the access frequency f of the x-th hottest
item is expressed as:

f (x) =
1
xq

ÂN
n=1

1
nq

(2)

where q is the skewness factor. To simplify the analysis, we
assume that hotspots are evenly distributed in B buckets, i.e.,
each bucket contains exactly one from the top B hottest items,
one from the top B+ 1 to 2B hottest items, and so on. In
this case, if we can sort all items in a chain by their access
frequencies (in descending order), the number of expected
memory accesses to retrieve an item Eideal is

Eideal = 1+ÂL
k=1 F(k) · k

= 1+Â
N
B
k=1[Â

k·B
i=(k�1)·B+1 f (i)] · k

(3)

where F(k) represents the accumulated access frequencies of
the k-th item on each chain.

To estimate the potential benefits from hotspot-aware de-
signs, we calculate the expected number of memory accesses
for both traditional hash and ideal hotspot-aware hash, as
shown in Figure 3. We can observe that, as collision chain
length keeps growing, hotspot-aware hash significantly im-
proves the access efficiency. This result confirms that the con-
sideration of hotspot-awareness in a hash index is a promising
direction for performance improvement.

2.3 Challenges and Design Principles
We have shown that making an index hotspot-aware is bene-
ficial. However, there remains several challenges before we
can leverage this insight in practical designs:

• Hotspot Shift. In real applications, access patterns keep
changing over time. It is prohibitive to order all items ide-
ally by their latest hotness. Hence, we need a lightweight
approach to track the shift of hotness.

• Concurrent Access. Each hotspot is being inherently
accessed by massively concurrent requests. Therefore, it
is critical to support high concurrency for both read/write
operations, in order to sustain satisfactory performance.

For the hotspot shift problem, our design principle is to
avoid re-order items in the chain, but to move head pointers

USENIX Association 18th USENIX Conference on File and Storage Technologies 241

!"#$%&"'()*

+",-.+",-.

+",-/

0$*()/

+",-/

!"#$%&"'() *+((,#,+-%.,-/

+1&2%&"' 314-2%&"'

!"#
5,46"

7"8&2%&"'2
9--:";;

<"&,-,&,
=,>

Figure 4: The index structure of HotRing.

instead, e.g., point to the hottest item or a globally better po-
sition. To ensure all items in a bucket are always accessible
regardless of head pointer movement, we replace the collision
chain with a ordered-ring structure, called HotRing (§3.1).
Though this design cannot achieve optimal hotspot-awareness
discussed in §2.2, we observe in experiments that it is suffi-
ciently effective and fast. Besides, we apply two lightweight
strategies to detect hotspot shift at run-time (§3.2).

For the concurrent access problem, lock-free structures
are canonical solutions, with which expensive lock and syn-
chronization operations are eliminated. Many works have
demonstrated that lock-free designs can significantly improve
system throughput [2, 5, 21]. Examples include read-copy-
update (RCU) [13] and Hazard Pointers [40], based on atomic
Compare-And-Swap (CAS). In our work, the lock-free design
adopts the existing work [19, 50], which ingeniously solves
the concurrency problem of deletions and insertions (§3.3).
We extend this design to support all basic operations required
by HotRing, including hotspot shift detection, head pointer
movement and rehash (§3.4).

3 Design of HotRing
In this section, we elaborate detailed designs in HotRing
that adopt hotspot-awareness, including the index structure,
hotspot-shift detection strategies, and lock-free operations
(i.e., read/write, insert/delete, head pointer movement, and
rehash).

3.1 Ordered-Ring Hash Index
Figure 4 depicts the index structure of HotRing, which refines
the structure of collision chains in conventional hash indexes.
In our design, the last item in the chain is linked to the first
item, forming a collision ring. In this manner, a head pointer
in the hash table can point to any items in the corresponding
ring, rather than being fixed to the front item in the chain.
The design of collision ring makes it possible for HotRing to
move the head pointer according to the data hotness, and scan
the entire ring from any starting position. Note that if there is
a single item in the ring, its next-item pointer just points to
itself.

However, due to the ring-based design, there exists a serious
problem: if the target item is not found, it may lead to infinite
traverses in the ring. It is important to figure out when we can

!"#$%&'

("%$#)' *")$&)'

+",$#-'

."/$%)'0123343

5")$&,'

6"&$%-'

7"8$/)'09:;0<"=$8-'01233

5")$&,'0>2?3

!"#$%&'("%$#)' *")$&)' +",$#-'5")$&,' 6"&$%-'

5")$&,'0>2?3

."/$%)'$07"8$/)'09:;0<"=$8-'01233

<49;

!"#$%&'

()*%&%&'+)*,)

<49;

!?41"?9@$A4B'

Figure 5: Find operation in HotRing.

safely terminate the lookup process. Note that it is insufficient
to mark the first item pointed by the head pointer as the stop
signal, because it can be modified by concurrent requests (e.g.,
the marked item is deleted). Hence, we propose an ordered-
ring structure to help determine the termination of lookup
processes. Intuitively, we can sort items in the ring by their
keys. In this case, the occurrence of item-not-found can be
determined if we have already encountered two successive
items that are respectively smaller and larger than the target
item. Furthermore, since comparing two long keys might be
costly, we utilize the tag field (introduced in §2.1) first. That
is to say, an item k is ranked by the pair of its tag and key
fields, i.e., orderk = (tagk,keyk).

During a lookup process for item k, suppose that the item i
is being accessed, we can immediately terminate if one of the
following conditions satisfies.
Condition f or Item Found (Hit) :

orderi = orderk (4)

Conditions f or Item Not Found (Miss) :

8
><

>:

orderi�1 < orderk < orderi

or orderk < orderi < orderi�1

or orderi < orderi�1 < orderk

(5)

Figure 5 illustrates all possible situations of looking up an
item in HotRing. We show the dictionary order (tag,key) of
each item in the figure. For example, the item C is behind
item A due to tagA < tagC; and the item D is behind item C
(with the same tag), because of keyC < keyD. The item B is
confirmed to be a miss when compared to the item C, because
of tagA < tagB < tagC; the items G and H are misses when
compared to the item I, because of tagG < tagI < tagF and
tagI < tagF < tagH respectively. Unlike the traditional chain-
based hashes, not all items in the ring have to be accessed
before a miss is concluded. Assume that a ring contains n
items, we only need to compare with (n/2)+1 items in aver-
age for a lookup.

242 18th USENIX Conference on File and Storage Technologies USENIX Association

3.2 Hotspot Shift Identification
In ordered-ring hash index, the lookup process can easily
determine whether there is a hit or miss. The remaining prob-
lem is how to identify hotspots and adjust head pointer when
hotspot shift occurs.

Hotspot items are evenly distributed in all buckets, due
to strongly uniformed distribution of hash values. Here, we
focus on hotspot identification in each bucket independently.
In practice, the number of collision items in each bucket is
relatively small (e.g., 5 to 10 items), so that there is usually
one hotspot in each collision ring (under 10% - 20% hotspot
ratio). We can improve the hotspot access by pointing the
head pointers to the only hotspot, which avoids re-organizing
data and reduces memory overhead. To obtain good perfor-
mance, two metrics have to be concerned, i.e., identification
accuracy and reaction delay. The accuracy of hotspot identi-
fication is measured by the proportion of identified hotspots.
The reaction delay is the time span between the time a new
hotspot occurs and the time we successfully detect it. Con-
sidering both metrics, we first introduce a random movement
strategy that identifies hotspots with extremely low reaction
delay. We then propose a statistical sampling strategy that
provides much higher identification accuracy with relatively
high reaction delay.

First of all, we define several terms used throughout this
section. The first item pointed by the head pointer is called the
hot item, and the rest items are cold items. Their accesses to
them are defined as hot access and cold access, respectively.

3.2.1 Random Movement Strategy

Here we introduce a straightforward random movement strat-
egy, which retains less reaction delay but achieves relatively
low accuracy. The basic idea is that the head pointer is period-
ically moved to a potential hotspot from an instant decision,
without recording any historical metadata. In particular, each
thread is assigned a thread-local parameter to record the num-
ber of requests it executes. After every R requests, the thread
determines whether to perform a head pointer movement op-
eration. If the R-th access is a hot access, the position of head
pointer remains unaffected. Otherwise, the pointer is moved
to the item accessed by this cold access, which becomes the
new hot item. The parameter R affects the reaction delay and
identification accuracy. If a small R is used, the reaction delay
to achieve stable performance will be low. However, this may
also adversely cause frequent and ineffective head pointer
movement. In our scenarios, data accesses are highly skewed
and hence the head pointer movement tends to be infrequent.
The parameter R is empirically set to 5 by default, which
has been demonstrated to provide low reaction delay and
negligible performance impact (as shown in Figure 15(b)).

Note that if the workload skewness is not that obvious,
the random movement strategy will become inefficient. More
importantly, this strategy is unable to handle multiple hotspots

!""#$%%

&'()*+,'-.($#!/(01$+

2+30(24+30(%

50.6+7$()")()

89+30(%

(a) Head Pointer Format

!""#$%%&'()*$#

+,-./*%

012(3*1"1*1

4$5*-6*$7-!""#$%%

8$9

,:-./*%

;<<(=/$"

+-./*

>$?1%?

+-./*

@1A

(b) Item Format

Figure 6: HotRing Index Format.

in a collision ring. In this case, the head pointer tends to move
frequently, which does not help to speedup hotspot accesses
but adversely affects normal operations.

3.2.2 Statistical Sampling Strategy

In order to achieve higher performance, we design a statis-
tical sampling strategy that aims to provide more accurate
hotspot identification with slightly higher reaction delay. We
first introduce the detailed formats of items and pointer in
HotRing and show how to take advantage of existing for-
mats to maintain statistics without additional space overhead.
Then, we elaborate the sampling strategy to estimate access
frequencies. Finally, we propose a way to derive the optimal
head pointer movement when hotspot shifts, considering that
multiple hotspots may exist in a ring.

Index Format. We plan to record access frequencies for all
items in each collision ring. Since the physical address of mod-
ern machines occupies only 48 bits (but can be updated with
64-bit atomic compare-and-swap operations), we can utilize
the remaining 16 bits to record metadata. In HotRing, each
head pointer consists of three parts (as shown in Figure 6(a)):
an Active bit, a Total Counter (15 bits), and the address (48
bits). The Active bit is a flag used to control statistical sam-
pling for hotspot identification. The Total Counter records
the number of accesses to the corresponding ring. Besides,
the structure of an item is shown in Figure 6(b). Rehash is a
flag to control rehash process (discussed in §3.4). Occupied
is used to ensure concurrency correctness (discussed later in
this section). HotRing uses the remaining 14 bits in the Next
Item Address to record access counts for each item. Based
on statistics maintained at both ring level and item level, the
calculation of access frequencies is straightforward.

Statistical Sampling. How to dynamically identify
hotspots with low overhead is a challenging problem. The
hash table is usually large, e.g., contains 227 ⇠ 230 buckets.
The simultaneous and continuous updates of statistics on mas-
sive rings will cause severe performance degradation. It is crit-
ical to minimize the overhead while retain the accuracy, which
is achieved by periodical sampling in HotRing. In particular,
each thread maintains a thread-local counter for processed
requests. After every R requests are finished, we determine
whether to launch a new round of sampling (by turning on the
Active flag in Figure 6(a)). If the R-th access is a hot access,
it means that the current hotspot identification is still accurate,

USENIX Association 18th USENIX Conference on File and Storage Technologies 243

and sampling needs not be triggered. Otherwise, it means the
hotspot has shifted and we start the sampling. The parameter
R is set to 5, following similar considerations as in §3.2.1.
When the Active bit is set, the subsequent accesses to the ring
are to be recorded in both Total Counter and corresponding
items’ counters. This sampling process requires additional
CAS operations, and results in temporary access deficiency.
To shorten this period, we set the number of samples the same
as the number of items in each ring, which we believe already
provides enough information to derive new hotspots.

Hotspot Adjustment. Based on collected statistics, we are
able to determine new hot item and move the head pointer
according to the access frequencies of items. After sampling
process is done, the last accessing thread is responsible for
frequency calculation and hotspot adjustment. First, the thread
atomically resets the Active bit using a CAS primitive, which
ensures that only one thread will perform subsequent tasks.
Then, this thread calculates the access frequency of each item
in the ring. The access frequency of item k is nk/N, where
N is Total Counter of the ring and nk is the counter of the
k-th item. Next, we calculate the income of the head pointer
to each item. When the item t (0 < t < k) is pointed by the
head pointer, the corresponding income Wt is calculated by
the following formula:

Wt = Âk
i=1

ni

N
⇤ [(i� t)mod k] (6)

The income Wt measures the average number of memory
accesses for the ring when item t is selected to be pointed
by the head pointer. Therefore, selecting the item with the
min(Wt) as the hot item ensures that hotspots can be accessed
faster. If the calculated position is different from the previous
head, the head pointer should be moved using a CAS primitive.
Note that the strategy not only deals with single hotspot, but
also works for multiple hotspots. It helps to figure out the
optimal position (e.g., may not necessarily be the hottest item)
that avoids frequent movement between hotspots. After the
hotspot adjustment is done, the responsible thread resets all
counters to prepare for the next round of sampling in future.

Write-Intensive Hotspot with RCU. For update opera-
tions, HotRing provides an in-place update method for those
values less than 8 bytes (i.e., modern machines support atomic
operations for up to 8 bytes). In this case, reading and updating
an item is treated the same in terms of hotness. However, the
situation is completely different for larger values, as shown in
Figure 7. The read-copy-update (RCU) protocol has to be ap-
plied for high performance. In this case, the preceding item’s
pointer needs to be modified to point to the new item during
an update. If the write-intensive hotspot in the head is modi-
fied, the entire collision ring has to be traversed to reach its
preceding item. That is to say, a write-intensive hot item also
makes its preceding item hot. Taking this insight, we modify
the statistical sampling strategy slightly. For a RCU update,
the counter of its preceding item is incremented instead. This

! " #

$%&

'()*

!+

! " #

$%&

,-).(-/(012(0(314-(0-435067-087*469435012(067-:)-*041(80&

! " #

$%&

'()*

!+

'()*

Figure 7: Updating hot item A with RCU makes item F hot.

helps to point the head to the precedent of a write-intensive
hotspot, making the entire RCU update operation fast.

3.2.3 Hotspot Inheritance
When performing RCU update or deletion on the head item,
we need to move the head pointer to another item. However,
if the head pointer is moved randomly, it may point to a cold
item with a high probability, which will cause the hotspot iden-
tification strategies to be triggered frequently. Furthermore,
the performance of the system will be seriously degrades due
to frequent triggering of identification strategies.

First of all, if the collision ring has only one item (i.e., the
Next Item Address has the same position as the head pointer),
the head pointer is modified by CAS to complete the update
or deletion. If there are multiple items, HotRing uses existing
hotspot information (i.e., head pointer position) to inherit the
hotness. We design different head pointer movement strate-
gies for both RCU update and delete operations to ensure the
validity of hotspot adjustment: For the RCU update of the
head item, the most recently updated item has a high prob-
ability of being accessed immediately due to the temporal
locality of accesses. Hence, the head pointer is moved to the
new version of the head item. For the deletion of the head
item, the head pointer is simply moved to the next item, which
is a straightforward and effective solution.

3.3 Concurrent Operations
The head pointer movement makes the lock-free design more
complicated. This is mainly reflected in the following aspects:
On one hand, the head pointer movement may be concurrent
with other threads. Hence, we need to consider the concur-
rency of head pointer movement and other modification oper-
ations, preventing the pointer from pointing to invalid items.
On the other hand, when we delete or update an item, we
need to check if the head pointer is pointing to the item. If so,
we need to move the head pointer correctly and smartly. In
this section, we mainly introduce the control method of con-
current access to solve the concurrency problem in HotRing.
In order to achieve high access concurrency and ensure high
throughput, we have implemented a complete set of lock-free
designs, which has been rigorously introduced by previous
work [19, 50]. The atomic CAS operation is used to ensure
that two threads will not modify the same Next Item Address
simultaneously. If multiple threads are trying to update the
same Next Item Address, only one thread succeeds and others
fail. Failed threads have to re-execute their operations.

244 18th USENIX Conference on File and Storage Technologies USENIX Association

! " #

"$

%

! " #

"$

%

(a) RCU update & Insert

! " #

#$

%

"$

! " #

#$

%

"$

(b) RCU update & RCU update

! " #

#$

% ! " #

#$

%

(c) RCU update & Delete

Figure 8: Different concurrency issues that involve RCU operations.

Read. HotRing scans the collision ring to search for an item
with the target key as described in Sec. 3.1. No additional op-
erations are required to ensure correctness of read operations.
Therefore, the read operations are completely lock-free.

Insertion. The insertion create a new item (e.g., item C
in Figure 8(a)), and modify the preceding item’s Next Item
Address . Two concurrent insertions may compete for the same
Next Item Address. The CAS ensures that only one succeeds
and the other has to retry.

Update. We design two update strategies for different value
sizes. The in-place-update operation (for 8-byte values) does
not affect other operations, which is guaranteed through CAS.
However, the RCU operation (for longer values) needs to cre-
ate a new item, which challenges the concurrency of other
operations. Taking the RCU update & Insert as an example in
Figure 8(a): one thread is trying to insert the item C by modi-
fying the Next Item Address of the item B, and another thread
is trying to update the B with B0 concurrently. Operations of
both threads will succeed since they modify different pointers
with CAS. However, since item B is not visible to the ring,
even though the insert operation for item C has succeeded,
it cannot be accessed subsequently and lead to incorrectness.
The same problem exists in Figure 8(b). In order to solve
the problem, HotRing uses the Occupied bit (as shown in
Figure 6(b)) to ensure correctness. We perform the update
operation in two steps. For example, in the case of Update
& Insert: Firstly, the Next Item Address of item B that to be
updated is atomically set as occupied. Once the Occupied bit
is set, the insertion of Item C will fail and have to retry. Sec-
ondly, the Next Item Address of item A is atomically changed
to item B0 and the Occupied bit for B0 is reset.

Deletion. The deletion is achieved by modifying the
pointer to the deleted item to its next item. Therefore, it
must be ensured that Next Item Address of the deleted item
is not changed during the operation. Similarly, we utilize the
Occupied bit to ensure correctness of concurrent operations.
For the case of RCU update & Delete as shown in Figure 8(c),
the update for item D is processed by updating the forward
item B’s pointer, while item B is currently being deleted. The
updated item D0 cannot be traversed correctly, resulting in
data miss. If the Occupied bit of item B is set for deletion,
the update for item D will fail to modify item B’s Next Item
Address and have to retry. Once the deletion of item B is com-
pleted, the update operation can be successfully executed.

Head Pointer Movement. The movement of the head
pointer is a special action in HotRing. In order to ensure
the correctness of the head pointer movement with other oper-

ations (especially for update and deletion), we need additional
management. There are two major problems that need to be
addressed: (1) how to handle the concurrency of normal opera-
tions and the head pointer movement caused by identification
strategies? (2) how to handle the head pointer movement,
caused by updating or deleting of the head item?

For the head pointer movement caused by the identification
strategies, we also use the Occupied bit to ensure correct-
ness. When moving the head pointer to a new item, we set its
Occupied bit to ensure that the item will not be updated or
deleted during the movement. For head item update, HotRing
moves the head pointer to new version of this item. Before
moving the head pointer, we need to ensure that the new ver-
sion item will not be changed (i.e., updated or deleted) by
other threads. Therefore, when updating the item, HotRing
sets the Occupied bit of the new version item first, until the
movement is completed. For head item deletion, HotRing
needs to occupy not only the item that is ready to be deleted,
but also its next item. Because if the next item is not occupied
during the deletion operation, the next node may have been
changed, which makes the head pointer points to an invalid
item.

3.4 Lock-free Rehash
As new data arrives from insertions, the number of collision
items in a ring continues to increase, resulting in traversing
more items per access. In this case, the performance of KVSes
will be seriously degraded. We propose in HotRing a lock-free
rehash strategy that allows for flexible rehash as data volumes
increase. The conventional rehash strategy is triggered by the
load factor (i.e., average length of chain) of the hash table.
However, this fails to consider the effect of hotspots, and
hence is unsuitable for HotRing. In order to make the index
adapt to the growth of hotspot items, HotRing uses the access
overhead (i.e., average number of memory accesses to retrieve
an item) to trigger the rehash. Our lock-free rehash strategy
includes three steps:

Initialization. First of all, HotRing creates a backend re-
hash thread. The thread initializes the new hash table that
is twice the size of the old one, by sharing the highest bit
of the tag. As shown in Figure 9(a), There is an old head
pointer in an Old Table’s bucket, and there are two new head
pointers in the New Table’ correspondingly. The number of
bits required for hash is expanded from k to k+1. HotRing
divides data based on the tag range. Assuming that the hash
value has n bits, and the tag range is [0,T) (T = 2(n�k)), two
new head pointers manage items from [0,T/2) and [T/2,T)

USENIX Association 18th USENIX Conference on File and Storage Technologies 245

!"#$%&'"(

)(*$%&'"(

!"#! $"%

&

'()*+,")

-.&

&/0 -.&
1,2*+,")0

1,2*+,")3

(a) Hash table

!

" #
$%&'()*

+
$%&',

-

.

/01234%1

$%&5,

$%&5()*

647234%18

647234%1*

!"#$%#

&'("

(b) Initialization

!

" #
$%&'()*

+
$%&',

-

.

/01230%45

674230%4 /01230%4*

$%&8,

$%&8()*

(c) Split

!

" #
$%&'()*

+
$%&',

-

.

/01230%4*

$%&5,

$%&5()*
/01230%46

(d) Deletion

Figure 9: The lock-free rehash strategy (The dotted line between (c) and (d) represents a transition period before deletion).

respectively. Meanwhile, the rehash thread creates a rehash
node consisting of two child rehash items, which correspond
to two new head pointers respectively. Each rehash item has
the same format as data item, except that no valid KV pair
is stored. HotRing identifies rehash items by the Rehash bit
in each item. In the initialization phase, the tags of two child
rehash items are set differently. As shown in Figure 9(b), the
corresponding rehash items set the tags to 0 and T/2, respec-
tively.

Split. In the split phase, The rehash thread splits the ring
by inserting two rehash items into it. As shown in Figure 9(c),
rehash items are inserted before item B and item E respec-
tively, becoming the boundaries of the tag range to divide
the ring. When two insertion operations complete, the New
Table is made active. After that, subsequent accesses (from
New Table) need to select the corresponding head pointer
by comparing the tags, while previous accesses (from Old
Table) proceed by identifying the rehash node. All data can
be accessed correctly without effecting concurrent reads and
writes. Until now, accesses to items are logically divided into
two paths. When we look up a target item, at most half of the
ring needs to be scanned. For example, the traversal path for
accessing item F is Head1 ! E ! F.

Deletion. In this phase, the rehash thread delete the rehash
nodes (as shown in Figure 9(d)). Before that, the rehash thread
have to maintain a transition period to ensure that all accesses
initiated from the Old Table have finished, such as the grace
period for read-copy-update synchronization primitive [13].
When all accesses end, the rehash thread can safely delete
the Old Table and then rehash nodes. Note that the transition
period only blocks the rehash thread, but not access threads.

4 Evaluation
In this section, we evaluate the performance of HotRing us-
ing real-workload-based benchmarks. In particular, we com-
pare the throughput and scalability of HotRing with lock-free
chain-based hash and other baseline systems. We also provide
detailed evaluations to demonstrate the effectiveness of major
designs adopted by HotRing.

4.1 Experimental Setup
Environment. We run experiments on a machine consisting
of two Intel(R) Xeon(R) CPU E5-2682 v4 with 2.50GHz

Table 1: Experimental environment.

CPU 2.50GHz Intel Xeon(R) E5-2682 v4 * 2

L2 cache 256KB (512 * 8 way)

L3 cache 40MB (32768 * 20 way)

Cache Alignment 64B

Main Memory 32GB 2133MHz DDR4 DRAM * 8

Table 2: Hotspot access ratio with different hotspot definition
(i.e., top a of hottest items) and zipfian parameter (q).

q
a 1% 10% 20% 30% 40% 50%

0.5 9.9% 31.6% 44.7% 57.7% 63.2% 70.7%
0.7 24.9% 50.0% 61.6% 71.9% 75.9% 81.2%
0.9 57.3% 76.2% 82.2% 86.9% 89.9% 92.2%
0.99 75.1% 87.4% 91.2% 93.4% 94.9% 96.2%
1.11 91.7% 96.4% 97.6% 98.2% 98.7% 99.0%
1.22 97.8% 99.2% 99.5% 99.6% 99.7% 99.8%

processors. They have 2 sockets, each with 16 cores (64 hy-
perthreads in total). The machine has 256GB RAM capacity,
and runs CentOS 7.4 OS with Linux 3.10 kernel. To achieve
better performance, we bind each thread to the corresponding
core. Table 1 summarizes the detailed hardware configuration
of the machine.

Workloads. We conduct experiments using the YCSB core
workloads [10], except workload E that involves scan opera-
tions. For each item (i.e., key-value pair), we set the key size
to be 8 bytes, and the value size to be 8 and 100 bytes for
in-place-update and read-copy-update (RCU) respectively. In
each test, the number of loaded keys is fixed to 250 millions,
and the key-bucket ratio (i.e., the number of keys divided by
the number of buckets) varies to control average length of
collision chains. In addition, we tune the zipfian distribution
parameter q in YCSB to generate workloads that simulate
daily and extreme hotspot scenarios. Table 2 shows the ra-
tio of hotspot accesses with different hotspot definitions and
skewness. Recall that Figure 1 shows the workload distribu-
tions in our production environments. We observe that q falls
in [0.9, 0.99] for daily scenarios, and in [1, 1.22] for extreme
cases. Hence, we choose 0.99 and 1.22 for q as representa-

246 18th USENIX Conference on File and Storage Technologies USENIX Association

A B C D F

YCSB workloads

0

5

10

15

20

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

HotRing-r HotRing-s
Chaining Hash FASTER
Masstree Memcached

(a) Single thread

A B C D F

YCSB workloads

0

200

400

600

800

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

HotRing-r HotRing-s
Chaining Hash FASTER
Masstree Memcached

(b) 64 threads

Figure 10: Throughput of HotRing and other systems.

tives.
Baselines. In order to better demonstrate the advantage of

hotspot-aware designs in HotRing, we implement a lock-free
chain-based hash index as a baseline (Chaining Hash). It is
modified from the hash structure in Memcached, and uses the
CAS primitive to insert new items to the head of collision
chains. We also compare to other KVS systems: the C++
version of FASTER [7], in which we ensure all data resides in
memory; Masstree [30], a high-performance in-memory range
index that is a representative KVS with non-hash indexes. In
addition, the lock-based Memcached [44] is also included as
a reference.

Note that the memory footprint of an index structure greatly
affects system performance. In order to have fair comparisons,
we strictly make the memory consumption of indexes the
same for all approaches. In each test, if not otherwise specified,
we use following default settings: 64 threads, 8-byte value
payloads, workload B of YCSB, q set to 1.22, and key-bucket
ratio set to 8 (for HotRing).

4.2 Comparison to Existing Systems
We evaluate HotRing against four baselines introduced above,
i.e., Chaining Hash, FASTER, Masstree and Memcached,
which are all high-performance KVS implementations.

Overall performance. Figure 10 shows the overall system
throughput of all approaches on different YCSB workloads.
We run two HotRing variants with distinct hotspot identifica-
tion strategies: HotRing-r adopts random movement strategy,
and HotRing-s adopts sampling statistics strategy. Compared
to other systems, HotRing achieves better performance in
throughput under all workloads, especially for workloads B
and C. HotRing-s outperforms other approaches by 2.10⇥ -
7.75⇥. It achieves 12.90M ops/sec with a single thread and
565.36M ops/sec with 64 threads, which implies promising
scalability. Besides, HotRing also keeps advantages for in-
sertion operations. For workloads D and F of YCSB (with
massive insertions), HotRing-s outperforms other approaches
by 1.81⇥ - 6.46⇥. This is because the ordered-ring structure
speeds up item location by early termination, while the tag
field reduces the cost of sorting. Though the hotspot identifi-
cation of HotRing-r is less accurate than HotRing-s (about 7%
worse), its overall performance is still significantly improved
compared to other systems.

Collision chaining length. Figure 11(a) shows the

2 4 8 16

Key/bucket ratio

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

HotRing-r HotRing-s
Chaining Hash FASTER

(a) Impact of chain length

0.5 0.6 0.7 0.8 0.9 0.991.111.22
0

100

200

300

400

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

HotRing-r HotRing-s
Chaining Hash FASTER

(b) Impact of q

Figure 11: Performance impact of collision chain length and
access skewness.

throughput of different approaches when we vary the length
of collision chains. We tune the key-bucket ratio from 2 to 16,
which means that the conflicts in the hash table become more
intense. We can see that Chaining Hash and FASTER have
good performance when key-bucket ratio is 2. This is because
when the collision chain is short, the memory access over-
head for hotspot items is relatively minor, making the effect of
cache more significant (especially for FASTER). However, as
the length of the collision chain increases, frequent accesses
to hotspot items drop the performance of Chaining Hash and
FASTER seriously. In contrast, HotRing retains satisfactory
performance even for long chains. In particular, when the
key-bucket ratio is 2, its read throughput is 1.93⇥ and 1.31⇥
compared to that of Chaining Hash and FASTER. When the
ratio becomes 16, the performance gap increases to 4.02⇥
and 3.91⇥ respectively. This is because HotRing puts hot
items close to the head, so that less memory accesses are
required. This design is more cache-friendly, where only head
pointers and hotspot items need be cached, rendering higher
performance. Therefore, we conclude that HotRing has better
performance and scalability due to its hotspot-aware designs.

Access skewness. Figure 11(b) shows the throughput of
different approaches when the zipfian parameter q varies. We
tune q from 0.5 to 1.22, which means that the hotspot issue in
workloads become more severe. As can be seen, the perfor-
mance improvement in both Chaining Hash and FASTER is
not obvious as q increases, since they lack hot-aware consider-
ations. In contrast, the performance of HotRing significantly
improves as q increases, especially when q is greater than
0.8. Even when q is in [0.5,0.8] range, where hotspot issue
is minor, HotRing-s still achieves better performance than
others. This is because HotRing-s is able to handle the case of
multiple hotspots in the collision ring. When there are multi-
ple items with similar access frequencies, HotRing-s can find
the best head pointer position to achieve optimal performance
(§3.2.2). However in this case, HotRing-r fails to choose the
optimal head pointer position, leading to frequently-triggered
pointer movements.

RCU operation. In order to show the performance of RCU
more prominently, we use YCSB to generate write-intensive
workloads with 100-byte value payloads (both 50% write and
write only). Figure 12 shows the throughput of different ap-
proaches when RCU operations are involved. In this test, we

USENIX Association 18th USENIX Conference on File and Storage Technologies 247

50% write write only
0

50

100

150

200

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c) HotRing-s(w/o) HotRing-s

Chaining Hash FASTER
Masstree Memcached

(a) key/bucket = 2

50% write write only
0

50

100

150

200

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c) HotRing-s(w/o) HotRing-s

Chaining Hash FASTER
Masstree Memcached

(b) key/bucket = 8

Figure 12: Performance of RCU operations.

HotRing-r HotRing-s Chaining Hash
0

100

200

300

400

O
ve

rh
e
a
d
 (

n
s)

HeadPointer HeadItem
Non-HeadItems HashValue
Benchmark Other

(a) q = 1.22

HotRing-r HotRing-s Chaining Hash
0

300

600

900

1200

O
ve

rh
e
a
d
 (

n
s)

HeadPointer HeadItem
Non-HeadItems HashValue
Benchmark Other

(b) q = 0.99

Figure 13: Break-down cost.

demonstrate the need for special processing of RCU operation
in HotRing (§3.2.2). In particular, HotRing-s indicates that
the sampling statistics strategy will increase the forward item
counter instead when an item is updated by RCU. HotRing-
s(w/o) represents the strategy without distinguishing RCU
operations. Firstly, HotRing-s(w/o) has poor performance
in all cases, even worse than Chaining Hash and FASTER.
This is because HotRing-s(w/o) needs to traverse the entire
collision ring for completing an RCU operation on the hot
item. However in HotRing-s, the optimized hotspot counting
strategy significantly improves RCU performance. Note that
when key-bucket ratio equals 2, the performance of HotRing-
s is slightly slower than that of FASTER. This is because
the hotspot item requires RCU operation at the second slot
pointed by the header point, where one additional memory
access is needed. Furthermore, it involves one extra CAS op-
eration (on Occupied bit) to complete the RCU operation. As
the number of collision items keeps increasing, above issues
will be greatly mitigated. For example, when key-bucket ratio
reaches 8, the throughput of HotRing-s is 1.32⇥ better than
Chaining Hash and FASTER.

4.3 Investigation of Detailed Designs
In this section, we compare HotRing with the conventional
chaining hash, in order to investigate the advantages of
hotspot-aware designs.

Break-down cost. We collects the break-down cost of
different functions involved during workload execution. Fig-
ure 13 shows the average break-down cost for a single read
access in HotRing and Chaining Hash (where key-bucket
ratio is 8). In this figure, HeadPointer is the cost to locate
the head pointer of the corresponding collision ring or chain;
HeadItem is the cost to access the head item; Non-HeadItem
is the cost to access other items; HashValue is the cost due
to the hash calculation; Benchmark is the cost to read and

0 5 10

Time (s)

0

200

400

600

800

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

HotRing-r
HotRing-s
Chaining Hash

(a) q = 1.22

0 5 10 15 20 25

Time (s)

0

50

100

150

200

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

HotRing-r
HotRing-s
Chaining Hash

(b) q = 0.99

Figure 14: Reaction delay.

2 4 8 16

Key/bucket ratio

0

50

100

150

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

HotRing Chaining Hash

(a) 100% read miss

1 5 10 50 100 1000

The parameter R

0

200

400

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

(b) Impact of R

Figure 15: Performance impact of read miss and R.

interpret the workload command; and Other is the cost from
the system kernel. As can be observed, the cost in Chaining
Hash is mainly dominated by Non-HeadItem accesses, which
is about 193ns/660ns when q = 1.22/0.99. This indicates
that hotspot items in chain-based hash tend to be evenly dis-
tributed in the chain, increasing the access cost significantly.
In contrast, HotRing-r and HotRing-s significantly reduce
the Non-HeadItem cost. Especially for HotRing-s, the Non-
HeadItem cost is about 10ns/136ns when q = 1.22/0.99. Since
the proportion of Non-HeadItem is negatively related to the
hotspot identification accuracy, this implies that HotRing-s
has higher hotspot identification accuracy where more hotspot
items are detected and placed at the head.

Reaction delay. Reaction delay is one of important metrics
for measuring hotspot identification strategies. Figure 14
shows the throughput trends over time after hotspots have
shifted (workload C). We can observe that HotRing-r has
faster reaction than HotRing-s, which only takes less than 2
seconds to reach stable state. However, its peak throughput
is much lower due to its inaccurate hotspot detection. The
throughput of Chaining hash is not affected since it lacks
hotspot-awareness.

Read miss. We evaluate the throughput of both approaches
for handling read misses as shown in Figure 15(a). As can be
seen, the performance gap between HotRing and Chaining
Hash expands with the increase of chain length. In particular,
HotRing achieves 1.17⇥ improvement when the key-bucket
ratio is 2, and 1.80⇥ when the ratio reaches 16. This is
because that HotRing only needs to compare with half of
items in average for a lookup (as shown in Figure 5), while
Chaining Hash accesses all items in the chain.

Parameter R. Recall that the choice of parameter R affects
the frequency of head pointer movement (§3.2). When R is
small, the hotspot identification has less reaction delay, but re-
sults in more frequent (and invalid) head pointer movements.

248 18th USENIX Conference on File and Storage Technologies USENIX Association

0 0.9 0.99 0.999 0.9999 0.99999

Access ratio

0

2

4

6

8

10

A
cc

e
ss

 la
te

n
cy

 (
u
s) HotRing-r

HotRing-s
Chaining Hash

(a) q = 1.22

0 0.9 0.99 0.999 0.9999 0.99999

Access ratio

0

2

4

6

8

10

A
cc

e
ss

 la
te

n
cy

 (
u
s) HotRing-r

HotRing-s
Chaining Hash

(b) q = 0.99

Figure 16: Tail latency.

Figure 15(b) shows the impact of R on overall throughput in
different scenarios. It can be observed that the performance
get slightly worse when R is either too small (due to overheads
from hotspot identification) or too large (due to delayed han-
dles of hotspot shifts). In practice, we set R to 5 for balanced
consideration and better throughput.

Tail latency. HotRing-s requires statistical sampling and
the last thread during a sampling process needs to calcu-
late access frequencies to find the best position for the head
pointer. Hence, there might exist long-tail accesses due to
such additional computations. Figure 16 shows the latency
distribution of 100 thousands accesses. When q = 1.22, the 99-
percentile response time is about 2µs, but there are long-tail
accesses requiring 8.8µs. It is similar when q = 0.99, where
99-percentile response time is 3µs and long-tail access time
is 9.6µs. Note that the long-tail access is partially related to
the simplification of our implementation choices, and can
be further mitigated by moving additional computations to
dedicated backend threads.

Lock-free rehash. Rehash is an important mechanism to
ensure stable performance of growing hash tables. We con-
struct following scenario to evaluate our lock-free rehash
operation: in the initial state, the number of loaded keys is
250 millions and the key-bucket ratio is 8; then, we use a
YCSB workload with 50% read (q =1.22) and 50% insertion
to simulate the continuous growth of hash tables. Figure 17
shows HotRing’ performance over time when rehashes are
conducted. In particular, I,T, and S represent the initialization,
transition, and splitting phases of rehash, respectively. It can
be observed that two consecutive rehash operations help to
retain the throughput as data volume continuously grows. The
short-term drops during rehash are attributed to the temporary
lack of hotspot awareness when the new hash table starts to
work.

5 Related Work
Many existing works focus on the design of index structures
for key-value stores. Memcached [17] is a widely-used dis-
tributed key-value store, which is used by a large number
of companies. However, its multi-threading performance is
unsatisfactory, due to frequent competition of locks. Based on
Memcached, there is plenty of work with outstanding contri-
butions in the literature. By implementing lock-free designs
and cache-friendly optimizations, they achieve higher con-

0 5 10 15 20

Time (s)

0

20

40

60

80

T
h
ro

u
g
h
p
u
t
(M

 o
p
s/

se
c)

I
T

S

HotRing with rehash

Figure 17: Rehash performance.

currency and throughput [8, 15, 17, 24, 33, 43]. In particular,
FASTER [8] is one of the state-of-the-art implementations
with lock-free designs. For hotspot awareness, Splay trees [47]
is an inspiring work that adapts its structure to optimize for re-
cently accessed items. However, its lock-based design makes
it unsuitable for highly concurrent scenarios.

Besides, there are many works on the better integration
of system designs with emerging hardwares, such as FP-
GAs [6,34], RDMA-enabled NICs [28,41,45], GPU [22], low-
overhead user-level implementations for TCP [25], and In-
finiBand with hardware-level reliable datagrams [41]. Mean-
while, in order to provide fast memory allocation (for insertion
and deletion), many protocols also leverage lock-free memory
management methods [38, 39], which can be used to prevent
the ABA problem [48]. Note that these optimization for hard-
ware and memory management are orthogonal to the design of
index structures, and we can also adopt these ideas to further
improve HotRing’s performance.

6 Conclusion and Future Work
In real-world deployment of KVSes, the hotspot issue is com-
mon and becomes more serious recently. For example, in
order to provide a highly-available service, Alibaba’s NoSQL
product Tair [1] has to allocate more machines than neces-
sary to handle sudden occurrences of hotspots. Hence, we
explore opportunities and challenges for designing hotspot-
aware in-memory KVS. Based on discovered insights, we
propose a hash index called HotRing that is optimized for
massively concurrent accesses to a small portion of items.
It dynamically adapts to the shift of hotspots by pointing
bucket heads to frequently accessed items. In most cases, hot
items can be retrieved within two memory accesses. HotRing
comprehensively adopts lock-free structures in its design, for
both common hash operations and HotRing-specific opera-
tions. The extensive experiments show that our approach is
able to achieve 2.58⇥ throughput improvement compared to
other in-memory KVSes on highly skewed workloads. Now
HotRing has become a subcomponent of Tair, extensively
used in Alibaba Group.

At present, HotRing-r is designed for single hotspot on
each chain, while HotRing-s also handles multiple hotspots.
In most cases, we can mitigate the multiple hotspot issue by
reducing chaining length via rehash. For some extreme cases
where it fails to handle, we leave the exploration of a suitable
solution as future work.

USENIX Association 18th USENIX Conference on File and Storage Technologies 249

References

[1] Tair - NoSQL product of Alibaba Group.
https://help.aliyun.com/document_detail/
145957.html, 2019.

[2] Juan Alemany and Edward W Felten. Performance
Issues in Non-blocking Synchronization on Shared-
memory Multiprocessors. In Proceedings of the eleventh
annual ACM symposium on Principles of distributed
computing (PODC 1992), pages 125–134. ACM, 1992.

[3] Amazon. Amazon ElastiCache. https://aws.amazon.
com/cn/elasticache, 2014.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a Large-
Scale Key-Value Store. 40(1):53–64, 2012.

[5] Brian N Bershad. Practical Considerations for Lock-free
Concurrent Objects. 1991.

[6] Michaela Blott, Kimon Karras, Ling Liu, Kees A Vissers,
Jeremia Bär, and Zsolt István. Achieving 10Gbps Line-
rate Key-value Stores with FPGAs. In HotCloud, 2013.

[7] Badrish Chandramouli. microsoft FASTER. https:
//github.com/microsoft/FASTER, 2018.

[8] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. FASTER: A Concurrent Key-Value Store with
In-Place Updates. In Proceedings of the 2018 Interna-
tional Conference on Management of Data (SIGMOD
2018), pages 275–290. ACM, 2018.

[9] Yue Cheng, Aayush Gupta, and Ali R Butt. An In-
memory Object Caching Framework with Adaptive
Load Balancing. In Proceedings of the Tenth Euro-
pean Conference on Computer Systems (EuroSys 2015),
page 4. ACM, 2015.

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
1st ACM symposium on Cloud computing (SoCC 2010),
pages 143–154. ACM, 2010.

[11] Frank Dabek, M Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-Area Cooperative Stor-
age with CFS. In Proceedings of the 18th ACM Sym-
posium on Operating System Principles (SOSP 2001),
volume 35, pages 202–215. ACM, 2001.

[12] Dhananjay Ragade. David Raccah. Linkedin Mem-
cached. https://www.oracle.com/technetwork/
server-storage/ts-4696-159286.pdf, 2014.

[13] Mathieu Desnoyers, Paul E McKenney, Alan S Stern,
Michel R Dagenais, and Jonathan Walpole. User-Level
Implementations of Read-Copy Update. IEEE Trans-
actions on Parallel and Distributed Systems, 23(2):375–
382, 2012.

[14] Facebook. RocksDB. https://rocksdb.org.

[15] Bin Fan, David G Andersen, and Michael Kaminsky.
MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing. In Proceedings
of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2013), volume 13,
pages 371–384, 2013.

[16] Bin Fan, Hyeontaek Lim, David G Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
Load Balancing for Randomly Partitioned Cluster Ser-
vices. In Proceedings of the 2nd ACM Symposium on
Cloud Computing (SoCC 2011), page 23. ACM, 2011.

[17] Brad Fitzpatrick. Distributed Caching with Memcached.
Linux journal, 2004(124):5, 2004.

[18] Sanjay Ghemawat and Jeff Dean. LevelDB. https:
//github.com/google/leveldb, 2011.

[19] Timothy L Harris. A Pragmatic Implementation of Non-
blocking Linked-lists. In Proceedings of the 15th Inter-
national Conference on Distributed Computing (DISC
2001), pages 300–314. Springer, 2001.

[20] Tyler Harter, Dhruba Borthakur, Siying Dong, Ami-
tanand Aiyer, Liyin Tang, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. Analysis of HDFS Under
HBase: A Book Messages Case Study. In Proceedings
of the 12th USENIX Conference on File and Storage
Technologies (FAST 14), pages 199–212, 2014.

[21] Maurice Herlihy and J Eliot B Moss. Transactional
memory: Architectural support for lock-free data struc-
tures. In Proceedings of the 20th annual international
symposium on computer architecture (ISCA 1993), vol-
ume 21, pages 289–300. ACM, 1993.

[22] Tayler H Hetherington, Mike O’Connor, and Tor M
Aamodt. MemcachedGPU: Scaling-up Scale-out Key-
value Stores. In Proceedings of the Sixth ACM Sympo-
sium on Cloud Computing (SoCC 2015), pages 43–57.
ACM, 2015.

[23] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson,
Daniel A Freedman, Ken Birman, and Robbert van Re-
nesse. Characterizing Load Imbalance in Real-world
Networked Caches. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (HotNets 2014),
page 8. ACM, 2014.

250 18th USENIX Conference on File and Storage Technologies USENIX Association

https://help.aliyun.com/document_detail/145957.html
https://help.aliyun.com/document_detail/145957.html
https://aws.amazon.com/cn/elasticache
https://aws.amazon.com/cn/elasticache
https://github.com/microsoft/FASTER
https://github.com/microsoft/FASTER
https://www.oracle.com/technetwork/server-storage/ts-4696-159286.pdf
https://www.oracle.com/technetwork/server-storage/ts-4696-159286.pdf
https://rocksdb.org
https://github.com/google/leveldb
https://github.com/google/leveldb

[24] Intel. Intel Threading Building Blocks. https://www.
threadingbuildingblocks.org, 2017.

[25] EunYoung Jeong, Shinae Woo, Muhammad Asim
Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han,
and KyoungSoo Park. mTCP: a Highly Scalable User-
level TCP Stack for Multicore Systems. In Proceedings
of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2014), volume 14,
pages 489–502, 2014.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing Key-Value Stores with Fast
In-Network caching. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (SOSP 2017),
pages 121–136. ACM, 2017.

[27] Jaeyeon Jung, Balachander Krishnamurthy, and Michael
Rabinovich. Flash Crowds and Denial of Service At-
tacks: Characterization and Implications for CDNs and
Web Sites. In Proceedings of the 11th international
conference on World Wide Web (WWW 2002), pages
293–304. ACM, 2002.

[28] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using RDMA Efficiently for Key-Value Services.
ACM SIGCOMM 2014 Conference (SIGCOMM 2014),
44(4):295–306, 2015.

[29] David Karger, Eric Lehman, Tom Leighton, Matthew
Levine, Daniel Lewin, and Rina Panigrahy. Consis-
tent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on The World Wide
Web. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing (STOC 1997),
volume 97, pages 654–663, 1997.

[30] Eddie Kohler. Masstree. https://github.com/
kohler/masstree-beta, 2013.

[31] Redis lab. Redis. https://https://redis.io/,
2017.

[32] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G
Andersen, and Michael J Freedman. Be fast, Cheap and
in Control with SwitchKV. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16), pages 31–44, 2016.

[33] Hyeontaek Lim, Donsu Han, David G Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to Fast
In-Memory Key-Value Storage. In Proceedings of the
11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 2014), pages 429–444, 2014.

[34] Kevin Lim, David Meisner, Ali G Saidi, Parthasarathy
Ranganathan, and Thomas F Wenisch. Thin Servers
with Smart Pipes: Designing SoC Accelerators for Mem-
cached. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA 2013), vol-
ume 41, pages 36–47. ACM, 2013.

[35] Greg Linden. Akamai Online Retail Per-
formance Report: Milliseconds are Critical.
http://glinden.blogspot.com/2006/11/
marissa-mayer-at-web-20.html, 2006.

[36] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. Distcache: Provable Load Balancing for Large-
Scale Storage Systems with Distributed Caching. In
Proceedings of the 17th USENIX Conference on File
and Storage Technologies (FAST 19), pages 143–157,
2019.

[37] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache Craftiness for Fast Multicore Key-Value Stor-
age. In Proceedings of the Seventh EuroSys Conference
on Computer Systems, (EuroSys 2012), pages 183–196.
ACM, 2012.

[38] Maged M Michael. High Performance Dynamic Lock-
Free Hash Tables and List-Based Sets. In Proceedings
of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA 2002), pages 73–82.
ACM, 2002.

[39] Maged M Michael. Safe Memory Reclamation for
Dynamic Lock-Free Objects Using Atomic Reads and
Writes. In Proceedings of the Twenty-First Annual
ACM Symposium on Principles of Distributed Comput-
ing (PODC 2002), pages 21–30. ACM, 2002.

[40] Maged M Michael. Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects. IEEE Transactions
on Parallel and Distributed Systems, 15(6):491–504,
2004.

[41] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store. In Proceedings of the 2013
USENIX Annual Technical Conference (ATC 2013),
pages 103–114, 2013.

[42] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
Memcache at Facebook. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2013), volume 13, pages 385–
398, 2013.

USENIX Association 18th USENIX Conference on File and Storage Technologies 251

https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org
https://github.com/kohler/masstree-beta
https://github.com/kohler/masstree-beta
https://https://redis.io/
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

[43] Diego Ongaro, Stephen M Rumble, Ryan Stutsman,
John Ousterhout, and Mendel Rosenblum. Fast Crash
Recovery in RAMCloud. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles
(SOSP 2011), pages 29–41. ACM, 2011.

[44] Matthew Shafer. Memcached. https://github.com/
memcached/memcached, 2012.

[45] Patrick Stuedi, Animesh Trivedi, and Bernard Metzler.
Wimpy Nodes with 10GbE: Leveraging One-Sided Op-
erations in Soft-RDMA to Boost Memcached. In Pro-
ceedings of the 2012 USENIX Annual Technical Confer-
ence (ATC 2012), pages 347–353, 2012.

[46] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie
Duggan, Aaron J Elmore, Ashraf Aboulnaga, Andrew
Pavlo, and Michael Stonebraker. E-Store: Fine-Grained
Elastic Partitioning for Distributed Transaction Process-
ing. Proceedings of the VLDB Endowment, 8(3):245–
256, 2014.

[47] Robert Endre Tarjan. Sequential Access in Splay
Trees Takes Linear Time. Combinatorica, 5(4):367–378,
1985.

[48] R Kent Treiber. Systems Programming: Coping With
Parallelism. New York: International Business Ma-
chines Incorporated, Thomas J. Watson Research Center,
1986.

[49] Twitter. Twitter Memcached. https://github.com/
twitter/twemcache, 2014.

[50] John D Valois. Lock-free linked lists using compare-
and-swap. In Proceedings of the Fourteenth Annual
ACM Symposium on Principles of Distributed Comput-
ing (PODC 1995), volume 95, pages 214–222. Citeseer,
1995.

252 18th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/memcached/memcached
https://github.com/memcached/memcached
https://github.com/twitter/twemcache
https://github.com/twitter/twemcache

BCW: Buffer-Controlled Writes to HDDs for SSD-HDD Hybrid Storage Server

Shucheng Wang1, Ziyi Lu1, Qiang Cao1∗, Hong Jiang3,

Jie Yao2, Yuanyuan Dong4 and Puyuan Yang4

1Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System,
2School of Computer Science and Technology, Huazhong University of Science and Technology,

3Department of Computer Science and Engineering, University of Texas at Arlington,
4Alibaba Group

Abstract
Hybrid Storage servers combining high-speed SSDs and

high-capacity HDDs are designed for high cost-effectiveness

and provide μs-level responsiveness for applications. Observa-

tions from the production hybrid cloud storage system Pangu

suggest that HDDs are often severely underutilized while

SSDs are overused, especially for writes that dominate the

hybrid storage. This lopsided utilization between HDDs and

SSDs leads to not only fast wear-out in the latter but also

very high tail latency due to frequent garbage collections in-

duced by intensive writes to the latter. On the other hand,

our extensive experimental study reveals that a series of se-

quential and continuous writes to HDDs exhibit a periodic,

staircase shaped pattern of write latency, i.e., low (e.g., 35μs),

middle (e.g., 55μs), and high latency (e.g., 12ms), resulting

from buffered writes in HDD’s controller. This suggests that

HDDs can potentially provide μs-level write IO delay (for

appropriately scheduled writes), which is close to SSDs’ write

performance. These observations inspire us to effectively ex-

ploit this performance potential of HDDs to absorb as many

writes as possible to avoid SSD overuse without performance

degradation.

To achieve this goal, we first characterize performance be-

haviors of hybrid storage in general and its HDDs in particular.

Based on the findings on sequential and continuous writes, we

propose a prediction model to accurately determine next write

latency state (i.e., fast, middle and slow). With this model,

a Buffer-Controlled Write approach, BCW, is proposed to

proactively and effectively control buffered writes so that

low- and mid-latency periods in HDDs are scheduled with

application write data and high-latency periods are filled with

padded data. Based on BCW, we design a mixed IO scheduler

(MIOS) to adaptively steer incoming data to SSDs and HDDs

according to write patterns, runtime queue lengths, and disk

status. We perform extensive evaluations under production

workloads and benchmarks. The results show that MIOS re-

moves up to 93% amount of data written to SSDs, reduces

∗Corresponding author. Email: caoqiang@hust.edu.cn

Figure 1: Sequential writing in a 10TB Western Digital HDD.

average and 99th-percentile latencies of the hybrid server by

65% and 85% respectively.

1 Introduction

Storage clouds have prevalently deployed hybrid storage

servers integrating solid-state drives (SSDs) and hard-drive

disks (HDDs) in their underlying uniform storage infrastruc-

ture, such as Alibaba Pangu [9], Amazon [38], Facebook [35],

Google [20], Microsoft Azure [8]. Such hybrid storage servers

employ an SSD-HDD tiered architecture to reap the bene-

fits of both SSDs and HDDs for their superior IO perfor-

mance and large capacity respectively, thus achieving high

cost-effectiveness. Incoming writes are quickly persisted in

the SSD tier and acknowledged, and then flushed to the HDD

tier at a later time.

Our observations from real-world production workloads

of hybrid storage servers in Pangu indicate that, SSDs are

generally over-used while HDDs are less than 10% utilized

on average, missing the opportunity to exploit HDDs’ perfor-

mance and capacity potentials. However, writes are known

to be unfriendly to SSDs for two reasons. First, SSDs have

limited P/E (Program/Erase) cycles [6, 36] that are directly

USENIX Association 18th USENIX Conference on File and Storage Technologies 253

related to the amount of writes. Second, SSDs suffer from un-

predictable, severe performance degradations resulting from

garbage collections [26, 51]. To guarantee stable write per-

formance of storage servers in write-heavy workloads, cloud

providers have to deploy more and/or larger SSDs, signifi-

cantly increasing their total investment capital.

Our extensive experimental study on HDD write behav-

iors, conducted on various HDD products and with results

shown in Figure 1, suggests that a series of continuous and

sequential small HDD writes (e.g., 4KB) exhibit low latency

(e.g., 35μs) for about 60 ms, and then a sharply elevated high

latency (e.g., 12ms), which is followed by medium latency

(e.g., 55μs) for about 40ms. The three states of write behav-

iors, or write states in short, are referred to in this paper as

fast, mid, and slow writes, respectively. The former two types

of writes can provide μs-level responsiveness, because incom-

ing writes are considered complete and acknowledged (to the

host) once their data have been written into the built-in buffer

in the controller. However, when the write buffer is full, host

writes have to be blocked until the buffered data are flushed

into the disk, causing slow writes. This finding inspires us

to fully exploit performance potentials offered by buffered

writes of HDD, improving the performance while mitigating

write-penalty on SSDs. Our goal is to enable hybrid storage

servers to achieve higher performance and reliability without

introducing extra hardware.

However, the key challenge for adopting buffered writes in

HDDs to take advantage of the fast and mid writes is the dif-

ficulty in predicting precisely when these write states would

occur. The internal buffer and other components of HDDs are

completely hidden from the host. Host can only identify the

current write state according to its own delay, but not future

write states. To address this issue, we build a prediction model

for sequential and continuous write patterns that predicts the

next HDD write state. The insights is that, the write states of

continuous and sequential HDD write requests is periodical.

The prediction of next write state can be achieved with the

information of buffered-write period and current write state.

Then, we propose a Buffer-Controlled Write (BCW) approach.

BCW can proactively and effectively control the buffer write

behavior according to the predictor and runtime IO monitor-

ing. Besides, BCW also actively “skip” slow writes by filling

padded data during HDD slow writes.

We further propose a mixed IO scheduler (MIOS) for SSD-

HDD hybrid storage by leveraging the BCW approach. MIOS

adaptively redirects incoming writes to SSDs or HDDs de-

pending on write states, runtime queue length, and disk status.

Under high IO intensity, MIOS can be triggered to reduce

IO pressure, the amount of data written and write penalty on

SSDs while improving both average and tail latency.

The main contributions of this paper are as follows.

• Through extensive experimental studies on HDD write

behaviors, we discover that there exist a periodic

staircase-shaped write latency pattern consisting of μs-

level write latency (low and mid write states) followed

by ms-level write latency (slow write state) upon con-

tinuous and sequential writes, because of the buffered

write feature in HDDs. To facilitate the full exploita-

tion of this write latency pattern, we build a predictor to

pre-determine what the next write state is.

• We propose a buffer-controlled write (BCW) approach,

which proactively activates continuous and sequential

write patterns, as well as effectively controls the IO be-

havior, according to the predictor and runtime IO mon-

itoring. BCW also employs data padding to actively

avoid, or skips, slow writes for the host.

• We design an SSD-HDD mixed IO scheduler (MIOS) to

improve the overall performance of SSD-HDD hybrid

storage servers, while substantially reducing write traffic

to SSDs.

• We prototype and evaluate MIOS under a variety of pro-

duction workloads. The results demonstrate that MIOS

reduces average and tail latency significantly with dra-

matic decrease in the amount of data written to SSDs.

The rest of the paper is organized as follows. Section 2

provides the necessary background for the proposed BCW

approach. Section 3 analyzes the behaviors of HDD buffered

writes. Section 4 describes design and implementation of

BCW and MIOS. We evaluate the effectiveness of MIOS

in Section 5. Finally, Section 6 describes related works and

Section 7 concludes the paper.

2 Background and Motivation

2.1 Primary Storage

Nowadays, primary storage involves popular solid-state

driver (SSD), and traditional hard disk drive (HDD). SSDs

have become a mainstream storage media due to its superior

performance to and lower power consumption than HDDs

[1, 49]. However, the limited write endurance has become a

critical design issue in SSD-based storage systems [34]. Fur-

thermore, SSDs suffer from performance-degrading garbage

collections (GCs), which recycle the invalid pages by moving

valid parts to new blocks and then erasing old blocks [27, 37].

GCs with ms-level delays can block incoming user requests,

thus leading to long tail latency [17]. On the other hand, both

large IO blocks and high IO intensity can lead to sudden

increase in SSD queue, resulting in high tail latency [26].

Therefore, recent studies [50] indicate that SSDs do not al-

ways exhibit their ideal performance in practical.

HDDs have large capacity at low cost without the wear-out

problem. However, HDDs have relatively low performance

compared to SSDs. A random HDD IO has 2∼3 orders of

magnitude higher latency than an SSD IO. This is primarily

because of the ms-level mechanical seeking of disk head.

254 18th USENIX Conference on File and Storage Technologies USENIX Association

2.2 SSD-HDD Hybrid Storage
To accommodate exponentially increasing storage require-

ment while achieving overall cost-effectiveness, SSD-HDD

hybrid storage has emerged to be an inevitable choice for

cloud providers [40,47]. Most providers, such as Google [20],

Amazon [38], Facebook [35], and Microsoft’s online ser-

vices [8], expect larger storage capacity and better perfor-

mance but at lower cost. To meet this demand, they increas-

ingly embrace storage heterogeneity, by deploying variable

types and numbers of SSDs, which offer lower IO latency [14],

as the primary tier and HDDs, which provide larger capacity

at low cost as the secondary tier. The fast SSD tier generally

plays the role of a write buffer to quickly persist incoming

write data, which are eventually flushed to the slower but

larger HDD tier. As a result, the SSD tier absorbs most of the

write traffic from foreground applications.

2.3 Write Behavior of Hybrid Storage
Write-intensive workloads widely exist in many production

environments, such as enterprise applications, supercomput-

ing, and clouds. Enterprise servers are expected to rapidly

persist production data in time, such as business databases.

Burst buffer [3, 28] in supercomputing systems also deploy

high-performance SSDs to temporarily store instantaneous

highly-intensive write data.

More commonly, many backend storage servers in cloud

must accommodate write-dominated workloads, as observed

in Alibaba Pangu [9]. Pangu is a distributed large-scale stor-

age platform and provides cost-effective and unified storage

services for Alibaba Cloud [22, 30] and Ant Financial [9]. As

such, Pangu needs to minimize the total cost of ownership

while meeting strict QoS requirements like tail latency [5,15].

As an observation made through our analysis of produc-

tion trace data from Pangu in Table 1, some storage nodes

(servers) in Pangu rarely serve reads from the frontend and

instead must handle amounts of highly-intensive writes. For

Alibaba Cloud, because the upper-level latency-critical online

services generally build their own application-aware caches to

ensure service responsiveness and reserve local fast-storage

to cache hot data for user reads, the backend storage nodes

are thus required to persist new and updated data from fron-

tend nodes as soon as possible. To better understand this

write-dominated workload behavior, we analyze four typical

workloads on Pangu storage nodes A (Cloud Computing), B

(Cloud Storage), C and D (Structured Storage). We count the

workloads from one SSD and one HDD in each node because

the workload behavior of all storage devices is basically the

same in one node. Observations are drawn as follows. A com-

prehensive workload analysis of Pangu can be found in the

previous study [31].

• Most requests are writes. As shown in Table 1, more than

77% and up to 95% of requests are writes in these nodes,

and the amount of data written is 1-2 orders of magnitude

Table 1: The workload characteristics of Pangu traces

recorded from one SSD and one HDD in four different nodes,

A B C and D, that support online services.
Node
Type

Duration
(min)

Writes
(GB)

Reads
(GB)

Avg. Req.
Size(KB)

Peak
KRPS

Avg.
KRPS

Avg. HDD
IO Uti.(%)

Avg. SSD
IO Uti.(%)

A 45 18.5 1.4 56.0 3.4 0.23 7.6 11.9

B 30 74.4 2 17.7 9.3 2.5 9.8 28.5

C 30 10.7 2.1 4.2 9.6 2.7 4.1 24.6

D 26 10.1 1.7 4.1 11.1 3 4.8 25

(a) Latency (b) Queue Length (c) IO size

(d) Node A (e) Node B (f) Node C (g) Node D

Figure 2: Behaviors of production workloads on four repre-

sentative hybrid storage nodes in Pangu in terms of latency,

queue length, request size and IO intensity.

larger than that of data read from them. Actually, nearly 3

TB data are written to every SSD each day, which is close

to DWPD (Drive Writes Per Day) that strictly limits the

amount of SSD data written daily for reliability.

• The IO intensity distribution has bursty patterns. As

shown in Figure 2(d) through Figure 2(g), SSDs experi-

ence bursty intensive write workloads (e.g., 11K request

per second in workload D).

• The amount of data written to SSDs and HDDs differ

dramatically. For instance, the average SSD IO utiliza-

tion is up to 28.5% in load B while it is less than 10% in

HDD. Even so, most of the HDD utilization is used in

dumping SSD data, rarely servicing user requests.

• There exists long tail latency. As shown in Figure 2(a),

SSDs with high IOPS suffer from heavy-tail IO latency

(e.g., the 99th percentile latency is 10ms) due to queue

blocking in Figure 2(b). This is caused in part by (1)

large writes (e.g., 1MB), and (2) frequent garbage col-

lections induced by high write intensity.

• Small size IOs account for a large proportion of all IOs.

As shown in Figure 2(c), more than 75% of write re-

quests are of 10KB or smaller, and the average request

size is nearly 4KB in C and D.

2.4 Challenge
To relieve the SSD pressure from write-dominate work-

loads, a simple solution is to increase the number of SSDs

in the hybrid nodes. However, this is a costly solution as it

increases the total cost of ownership. An alternative is to ex-

ploit the severely underutilized HDD IO capacity in hybrid

storage nodes when SSDs are overused. The state-of-art so-

lution SSD-Write-Redirect (SWR) [31] redirects large SSD

USENIX Association 18th USENIX Conference on File and Storage Technologies 255

(a) 4TB West Digital HDD (b) 4TB Seagate HDD

(c) 8TB West Digital HDD (d) 8TB Seagate HDD

Figure 3: Sequential writing on four types of HDDs.

writes to idle HDDs. This approach can alleviate the SSD

queue blocking issue to some extent. However, the IO delays

experienced by requests redirected to HDDs are shown to be

3-12 times higher than those experienced on SSDs. This is

clearly undesirable, if not unacceptable, for most small writes

that demand μs-level latency. The key challenge is how to

reduce HDD IO delay to the μs-level that is close to SSDs, a

seemingly impossible task at a first glance. Fortunately, as we

look closer into the write behaviors of HDDs, this is indeed a

possible task, which we elaborate next.

3 HDD Write Behaviors
To have a comprehensive understanding HDD write be-

haviors, so as to assess the possibility of achieving μs-level

write latency on HDDs, we perform continuous and sequential

writes, which is the most friendly write pattern for HDDs.

3.1 Buffered Writes
We conduct a “Profiling” process to observe detailed HDD

behaviors, a series of continuous and sequential writes with

the same IO size are written to an HDD. We select five repre-

sentative HDD products: West Digital 10TB (WD100EFAX

[13]), 8TB (WD8004FRYZ [12]), 4TB (WD40EZRZ [13]),

Seagate 8TB (ST8000DM0004 [44]), 4TB (ST4000DM004

[45]). The 4TB Seagate HDD is SMR (Shingled Magnetic

Recording) and the other four HDDs are PMR (Perpendicular

Magnetic Recording). We draw three interestng observations

from the profiling results shown in Figure 1 and Figure 3.

• For each tested HDD, the series of continuous sequential

write requests experience a similar sequence of three-

level write latency, i.e., low, mid, and high latencies,

forming a staircase-shaped time series. For example, in

the 10TB HDD, the three levels of write latency of 16KB

writes are about 66μs, 135μs, and 12ms respectively.

• The observed HDD write behavior is periodic. At the

beginning (right after the buffer becomes empty) low-

latency writes last for a period (e.g., 60ms in 10TB),

which is followed by a spike (high-latency writes) and

then mid-latency writes. If the write pattern is contin-

M M M M M M SS

Time

Write
Latency

F

S

Fast write

Slow write
M Mid write

F F F F

Buffered Write Sequence

M M M M M M SS
F F F F

Sync Sync

...

fW mW sW

Figure 4: The HDD Buffered-Write Model with two complete

Buffered Write Sequences.

uous, high-latency writes and mid-latency writes will

appear alternately.

• The number of low-latency continuous writes in a se-

quence relies on their I/O size. Smaller write size leads

to a larger number of writes. For example, the number

of 16KB and 64KB writes is about 1200 and 240 on the

10TB HDD, respectively.

The reasons behind these observed HDD write behaviors

are as follows. Modern HDDs deploy a built-in DRAM (e.g.,

256MB for the 10TB and 8TB HDDs, and 64MB for the two

4TB HDDs). However, only a part of the DRAM (e.g., 16MB

for 10TB WD and 8TB Seagate HDD, 4MB for 8TB WD

HDD and 4TB Seagate HDD, 2MB for 4TB WD HDD) can

be used to buffer incoming write IOs based on external obser-

vation. The remaining capacity of the HDD built-in DRAM

can be used as read-ahead cache, ECC buffer [10], sector

remapping buffer, or prefetching buffer [18,43]. However, the

exact mechanism by which this built-in DRAM in HDD is

used, which varies with the HDD model, is generally propri-

etary to the HDD manufactures only. Fortunately, the actual

size of write buffer can be measured externally by profiling.

Upon successful buffering of a write, HDD immediately

informs the host of request completion. When the buffered

data exceed a threshold, the HDD must force a flushing of the

buffered data into their locations in the disk media. During

this period, incoming writes must be blocked until the buffer

is freed up again. It is worth noting that, after an idle period,

the HDD buffer may become empty implicitly as a course of

flushing data to the disk. However, to explicitly empty the

buffer, we can actively invoke sync() to force flushing.

3.2 An HDD Buffered-Write Model
To formally characterize the HDD write behavior, we

build an HDD buffered-write model. Figure 4 illustrates the

schematic diagram of the HDD buffered-write model in the

time dimension (runtime). The x axis represents the time se-

quences of transitions among the three write levels, with each

sequence being started by “Sync” event.

A Buffered-Write Sequence consists of three aforemen-

tioned types of HDD buffered writes, i.e., Fast (low-latency),

Mid (mid-latency) and Slow (high-latency) writes, which de-

notes as F , M, and S, respectively. In the model, F , M, and

S can be thought of as the states a write request can be in

(i.e., experiencing the fast, mid or slow write process). As

described in Table 2, these IO delays are denoted as L f , Lm
and Ls, respectively. The F state means that an incoming write

256 18th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: The list of descriptions about all the parameters in

the HDD Buffered-Write Model.
Parameters Description

L f/m/s The IO delays of write requests in the F/M/S write states

Wf/m/s The cumulative amount of written data for the Fast/Mid/Slow Stages

Tf/m/s The time duration of the Fast/Mid/Slow Stages

si The IO size of write request i

request wi with the size of si can be buffered completely in

the built-in DRAM buffer of HDD. The M state means that

the write buffer is close to be full. The S state means that the

write buffer is full and any incoming write request is blocked.

A Buffered Write Sequence lasts a Fast stage, followed by

one or more Slow-and-Mid stage-pairs. The sequence begins

when there is sufficient buffer available for Fast stage (e.g.,

close to empty). It ends when current series of continuous

writes ends. The Fast, Mid, and Slow Stage last for Tf , Tm,

and Ts respectively, which are determined by the cumulative

amount of written data Wf , Wm, and Ws in the respective states.

Actually, Wf = Tf ∗ si/L f and it is applied to Wm.

We can profile the HDDs to identify such key parameters.

For example, in the 10TB HDD with 64KB write requests

shown in Figure 1, the value of L f is 180μs, Lm is 280μs and

Ls is 12ms. The value of Tf is 60 ms, Tm is 37ms and Ts
is 12ms. Wf is 16MB and Wm is 8MB. Ws depends on the

IO size si. According to the HDD buffered-write model, the

Fast and Mid writes of HDD have 100-μs-level latency, which

can approach the write latency of SSDs. This motivates us to

design a controllable buffer write strategy for HDDs to reduce

writes on SSDs in hybrid storage systems without sacrificing

the overall performance.

Note that the buffering and flushing mechanisms are com-

pletely hidden from the host and heavily depend on the spe-

cific HDD models. Fortunately, we can measure the buffered

write feature of an HDD externally and experimentally based

on the aforementioned experiments.

4 Design
To fully exploit HDD buffered writes, two critical chal-

lenges must be addressed. The first is how to determine which

write state that a write request will be Fast (F), Mid (M), or

Slow (S), in order to properly schedule the write request. The

second is how to steer an incoming write request to HDD

without performance degradation.

For the first problem, we build a Write-state Predictor to

pre-determine the next write state based on the current write

state and buffer state. The ability to determine the subsequent

write state of HDD is critical to scheduling incoming write

requests. Based on that, we propose Buffer-Controlled Writes,

shortly for BCW, a writing approach to proactively activate

continuous and sequential write patterns that the predictor

relied on, as well as effectively controls the IO behavior ac-

cording to the predictor and runtime IO monitoring. To avoid

performance degradation caused by S writes, we propose a

proactive padding-write approach to “skip” the S state by

F M

Sync

Write
S

Sync

A

U

Sync

A U

Figure 5: The State Predication Diagram. Each write request

can only be one of the three write states, F , M, and S. Letter

"A" means that the current data written in the F and M states

are less than the Wf and Wm values, respectively. Otherwise,

the write buffer is "U". The Sync operation takes the next

write state back to F .

executing slow writes with padded non-user data.

To overcome the second issue, we propose the SSD-HDD

Mixed IO scheduler (MIOS) that adaptively controls queue

lengths of SSDs and HDDs in hybrid storage nodes, and de-

termines where to steer a user write request.

4.1 Write-state Predictor
The next write state could be predicted according to write

buffer’s free space and the write state of the current request.

In HDD buffered write, each write request state should be one

of F , M, and S state. The HDD write buffer state is considered

by buffered-write model to be in either A (available) or U (un-

available). The "A" state means that the current Accumulative

Data Written (ADW) in the F and M states are less than Wf
and Wm, respectively. Otherwise, the write buffer is in the "U"

state. Figure 5 shows how the next write state is determined

based on the current buffer state and write state in a State

Predication Diagram, which is described as follows:

• F/A : The current write state is F and the buffer is avail-

able. Next write state is most likely to be F .

• F/U : Although the current write state is F , the buffer

is unavailable. Next write state is likely to change to S.

• M/A : The current write state is M and the buffer is

available. Next write state is most likely to remain M.

• M/U : Although the current write state is M, the buffer

is unavailable. Next write state should be S.

• S : The current write state is S. Next write state will be

M with a high probability.

• The Sync operation will force the next write state and

buffer state back to be F/A in all cases.

Based on that, we design a Write-state Predictor described

in Algorithm 1. It identifies what the current write state is, F ,

M or S, by monitoring the IO request size and latency, and

calculating the free space in the write buffer. That is, the ADW

in the current write state (F or M) is recorded and compared

with Wf or Wm, for predicting the next write state.

Next, we assess the prediction accuracy of the write-state

predictor. We write 100GB data with an IO size of 128KB to

the 10TB WD HDD and invoke sync() after each 1GB data

written. The results show that the predictor correctly identifies

99.5% of the F state, 98.1% of the M state and 60.3% of the

S state. The low prediction accuracy for the S write-state is

USENIX Association 18th USENIX Conference on File and Storage Technologies 257

Algorithm 1 The algorithm of Write-state Predictor

Input: Current write request size: size; The last write state: state; Current

accumulative amount of data written: ADW ;

The amounts of data written in the F state and M state: WF and WM
Output: Write-state prediction for the next request (F , M or S)

1: function Predictor()

2: if state == F then
3: if (ADW + size) < Wf then : return F
4: else: return S
5: end if
6: else if state == M then
7: if (ADW + size) < Wm then : return M
8: else: return S
9: end if

10: else: return M
11: end if

due to the prediction policy that tends to favor the S write-

state to reduce the performance degradation, when an actual

S write-state is mis-predicted as a different state.

4.2 Buffer-Controlled Writes
Buffer-Controlled Writes (BCW) is an HDD writing ap-

proach that ensures user writes using F or M write state, and

avoids allocating Slow writes. The key idea of BCW is to

make buffered write controllable. Based on the Write-state

predictor, we design BCW, as described in Algorithm 2.

Upon activating BCW, a sync() operation is invoked to

force synchronization to empty the buffer actively. BCW dis-

patches sequential user writes to HDD if it is predicted to be

in F or M state, otherwise pads non-user data to HDD, until it

reach to the max setting loop (or unlimited) of Buffered Write

Sequence. If there are user requests in the queue, BCW writes

them serially. After a write is completed, BCW adds its write

size to ADW, and updates the write-state accordingly.

During light or idle workload periods with sparse requests,

the HDD request queue will be empty from time to time,

making the write stream discontinuous. To ensure the stability

and certainty of buffered writes in a sequential and continuous

pattern, BCW will proactively pad non-user data to write to

the disk. The padding data are of two types, PF and PS. The

former is used to fill the F and M states with 4KB non-user

data; the latter is to fill the S state with larger block size,

e.g., 64KB of non-user data. A small PF can minimize the

waiting time of user requests. A large PS helps trigger Slow

write quickly. Note that even for each padded write, BCW

still executes the write-state predictor algorithm.

More specifically, BCW continuously calculates ADW in

the current state (F or M). When ADW is close to Wf or Wm,

it means that the HDD buffered write is at the tail of the Fast

or Mid stage. The S write state may occur after several writes.

At this point, BCW notifies the scheduler and proactively

triggers the Slow write with PS.

To avoid long latency for user writes, at this period, all

incoming user requests have to be steered to other storage

devices, such as SSDs. When an S write completed, the next

Algorithm 2 The algorithm of Buffer-Controlled Write

Input: The max loop of Buffered Write Sequence: Loopmax
Request Ri size: sizei; Current written amount: ADW ;

The state of last write: state;

Active padded writes and their size: PS,PF and sizePS,sizePF

1: sync()
2: while loop < Loopmax do
3: if request Ri in the HDD write queue then
4: write Ri to HDD, update ADW and state
5: else
6: if Predictor() == S then
7: f lagHDD = False // Stop receiving

8: while state == S do
9: write PS to HDD, update ADW and state

10: end while
11: f lagHDD = True // Start receiving

12: reset ADW ; loop++

13: end if
14: if Predictor() == M then
15: write PF to HDD; update ADW and state
16: end if
17: end if
18: end while

write will be M according to the write-state predictor. Then

BCW resets the ADW and accepts user requests again.

We also find it unnecessary to proactively fill padded writes

in the Fast state before ADW exceeds Wf . When ADW does

not reach Wf , the physical disk operation is not yet triggered

and the buffer can absorb user requests for this period. When

ADW exceeds Wf in a short time of period, it means that the

buffer will begin to flush the data to the disk and the next write

state will be changed to S. On the other hand, when ADW is

less than Wf for a long time of period, the disk can flush the

buffered data automatically so that the next write state may

be F . However, it does not affect performance. We apply this

observation to the scheduler design in the next section.

In most cases, the sequential and continuous write pattern

induced by BCW is reasonably stable. However, this pattern

can be broken, e.g., HDD reads. Besides, slow writes may be

triggered in advance by user requests or PF writes. To regain

the control of buffered writes, BCW continuously executes

PS until a S write state is detected. As a result, the write-state

predictor will be recalibrated. The cost of this strategy is that

BCW wastes IO and storage of HDD to perform PS writes.

In addition, we also can issue sync() to reset the buffered

write state in BCW. Howerver, a sync() can take several hun-

dred milliseconds, during which the HDD cannot accept any

writes. Fortunately, in the experiment, we found that the BCW

interrupted cases are rare.

BCW stores incoming data to HDD in log-append man-

ner. This differs with traditional logging mode in existing file

systems like ext4 [33]. The latter allocates writes to the tail

logical address of the log, ensuring address continuity. How-

ever, it doesn’t ensure IO continuity and does not determine

the next write state. In contrast, BCW maintains both address

and IO continuity, make the buffer writing be controllable.

258 18th USENIX Conference on File and Storage Technologies USENIX Association

Scheduling
Strategy

User writes

SSD HDDSSD

...

...
HDD

...

...
Log file in HDDilfi i

Request
queue

MIOS
HDDflag()l t

Figure 6: Architecture of the Mixed IO scheduler. It moni-

tors all request queues of SSDs and HDDs. The user writes

meeting the conditions are redirected to appropriate HDDs.

4.3 Mixed IO scheduler
BCW provides a proactive and controllable buffer writing

approach. In this section, we further propose a Mixed IO
scheduler (MIOS) for SSD-HDD hybrid storage to leverage

BCW effectively. The scheduler decides whether or not to

steer user writes to a HDD request queue according to the

results of the Write-state Predictor and current queue status.

Architecture The architecture of MIOS is shown in Figure

6. MIOS monitors all request queues of SSDs and HDDs

at runtime, judiciously triggers the BCW process, and deter-

mines whether a user write should be directed to a selected

HDD or SSD. MIOS creates a device file in each HDD in the

configuration process. The device file stores BCW writes in

an append-only manner. Before MIOS scheduling, a Profiling

is performed to determine the key parameters (Wf , Wm, etc.)

for the write-state predictor.

Scheduling Strategy In algorithm 3, the SSD request

queue length l(t) at time t is a key parameter in MIOS. When

l(t) is larger than a predefined threshold L, the scheduler steers

user writes to an HDD with the prediction of it being F or M
write state. The threshold L is pre-determined according to the

actual performance measurements on SSD. Specifically, we

measure the write latency under different SSD queue lengths.

If the request with queue length l has latency larger than the

IO delay of HDD in the M state, we simply set the threshold

L to the minimum l. The rationale is that when the SSD queue

length is larger than L, the SSD writes’ latencies will be at the

same level as their latencies on an HDD in the F or M write

state with BCW. L can be determined and adjusted experi-

mentally according to workload behaviors and storage device

configurations at runtime. This strategy mitigates, though not

avoids, the long-tail latency upon workload bursts or heavy

Garbage Collections on SSD [37,48]. In these cases, the SSD

request queue length can be 8-10 times longer than its aver-

age. Therefore, redirected HDD writes not only relieve SSD

pressure imposed by bursty requests and heavy GCs, curbing

the long-tail latency, but also lower the average latency.

Additionally, when the queue length of SSD is less than L,

triggering BCW is optional. Enabling or disabling BCW in

this case is denoted as MIOS_E or MIOS_D, respectively. In

other words, MIOS_E strategy allows redirection with BCW

when the queue length of SSD is lower than L. MIOS_D strat-

Algorithm 3 The algorithm of Mixed IO Scheduler

Input: SSD queue length at time t: l(t);
Queue length threshold: L; HDD available flag: f lagHDD;

Schedule Strategy: MIOS_D or MIOS_E
1: if (f lagHDD == True) then
2: if l(t) > L && Predictor() == F or M then
3: Send to HDD queue

4: else if MIOS_E && Predictor() == F then
5: Send to HDD queue

6: else: Send to SSD queue

7: end if
8: else: Send to SSD queue

9: end if

egy, by contrast, disables redirection when the SSD queue

length is lower than L. Note that the write latency of an HDD

in the M write state is still much higher than that of an SSD.

The request latency after redirection may be increased. There-

fore, when the l(t) is lower than L, we only redirect user

requests to leverage the F write state of HDD in MIOS_E. We

will experimentally analyze the positive and negative effects

of MIOS_D and MIOS_E in Section 5.

Generally, a typical hybrid storage node contains multi-

ple SSDs and HDDs. We divide all disks into independent

SSD/HDD pairs, each of which contains an SSD and one or

more HDDs. Each SSD/HDD pair is managed by an indepen-

dent MIOS scheduler instance.

Finally, MIOS requires the complete control over HDDs.

It means that the HDDs in BCW cannot be interfered by

other IO operations. When an HDD is executing BCW and a

read request arrives, MIOS immediately suspends BCW and

serves this read. It will try to redirect all writes to other idle

disks at this time. For read-dominated workloads, BCW can

be disabled to avoid interfering with reads.

4.3.1 Implementation

MIOS can be implemented in either file-level or volume-

level to jointly manage SSDs and HDDs in a hybrid storage.

In this work, MIOS provides a simple yet flexible file-level

request scheduling scheme atop of existing file systems to

leverage their mature file-to-storage mapping mechanism. A

user request is identified with the corresponding filename and

file internal offset. To reduce overhead of the underlying file

system, MIOS employs direct IO mode to access the log by

calling Linux kernel functions such as open, close, read, and

write. Data of each write request is stored as a chunk in the

log. We design a metadata structure that records and tracks

chunks in the log. We choose a hash table and use the file ID

field of a request as the hash key.

When an HDD is idle, all user data stored in the log will be

written to their own original files, after which the log will be

recycled, called as HDD Garbage Collection. HDD GC should

be triggered when the log size exceeds a predefined threshold

(e.g., 70% capacity of HDD). HDD GC first sequentially and

continuously reads user data chunks that are interspersed with

USENIX Association 18th USENIX Conference on File and Storage Technologies 259

Table 3: The amount of redirected writes data and requests

with the MIOS_D and the MIOS_E strategies.
Workload Type A B C D
Writing Method Baseline / MIOS_D / MIOS_E

SSD Writes
(GB) 14.7 / 13.9 / 1.2 61.2 / 57.1 / 48.1 7.2 / 6.1 / 2.1 7.5 / 6.3 / 2.1

HDD Writes
(GB) - / 4.1 / 61.6 - / 18.4 / 56 - / 4.5 / 22.3 - / 4.4 / 25.6

SSD Requests
(millions) 0.43 / 0.36 / 0.04 4.4 / 3.7 / 1.3 4.8 / 3.7 / 1.6 4.7 / 3.8 / 1.3

Figure 7: The average, 99th and 99.9th-percentile latency un-

der four Pangu production workloads, comparing Baseline
with MIOS_D (a logscale is used for the y-axis).

padded data in the log to reduce seeks. And then it extracts

and merges the user data to update their correspond files.

These file updates can be performed in batch [53].

5 Evaluation

5.1 Experiment Setup
We run experiments for performance evaluation on a server

with two Intel Xeon E5-2696 v4 processors (2.20 GHz, 22

CPUs) and 128 GB of DDR3 DRAM. To understand the

impact of different storage configurations on the performance,

we choose two types of SSDs, a 256GB Intel 660p SSD [11]

and a 256GB Samsung 960EVO SSD [16]. Their peak write

throughputs are 0.6 GB/s and 1.5GB/s, respectively. Three

types of HDDs are WD 10TB, WD 4TB, and Seagate 4TB,

as described in Section 3.1.

The 10TB WD HDD has a Wf of 16MB and Wm of 8MB.

Using the process to pre-determine the queue length threshold

L explained in Section 4, we set L to 1 for workload of node

A, 3 for node B, 2 for node C and D, where the workloads

of nodes A, B, C and D are described in Table 1 of Section

2. As discussed earlier, MIOS has two schemes, MIOS_D
and MIOS_E. When the SSD queue length is less than L,

the former conservatively disables request redirection; the

latter allows request redirection but only redirects user write

requests to the F write state. The Baseline for the evaluation

is writing all user data into the SSDs. In addition, a com-

plete BCW sequence consists a series of 1 Fast stage and 10

Mid/Slow stage-pairs (Figure 4).

5.2 MIOS under Production Workloads
We first evaluate the effectiveness of MIOS_D under four

Pangu production workloads on the WD 10TB HDD.

Write Performance Figure 7 shows that the average and

tail latency (99th and 99.9th) of all four workloads are sig-

nificantly reduced by MIOS_D. Among four workloads, B

gains the most benefit. Its average, 99th and 99.9th-precentile

Figure 8: The CDF of SSD queue length.

Figure 9: The average request latency in six request-size

groups that are classified by IO size with MIOS_D.

latencies are reduced by 65%, 85%, and 95% respectively.

On the contrary, these three latencies in A are only reduced

by about 2%, 3.5% and 30%, respectively, which is far less

than the other workloads. The reason is that the redirection

in MIOS_D is only triggered when the queue length is high,

but A has the least intensity and thus the least queue blocking,

which renders MIOS much less useful.

To better understand the root causes for the above experi-

mental results, the cumulative distribution functions (CDFs)

of SSD queue lengths for four workloads are shown in Figure

8. MIOS_D significantly shorten queue lengths compared to

Baseline. B and A have the maximum (95%) and minimum

(15%) reduction in their queue lengths. Therefore, MIOS_D
reduces the overall queueing delay significantly.

Request size To deeply understand impact of write size in

MIOS_D and BCW, we break down all redirected requests

into six groups with different ranges of IO sizes, and measure

the average latency in each group.

Figure 9 shows that, in all four workloads, MIOS_D reduces

the average write latency of size below 64KB. The B workload

benefits the most. The average latencies of three groups of

small-sized requests (<4KB; 4KB-16KB; 16KB-64KB) are

reduced by 61%, 85%, and 59%, respectively. The other three

workloads also reduce their latencies differently. In Baseline,

small and intensive requests result in queue blocking more

frequently (Figure 2) than in MIOS_D. Therefore, MIOS_D
is the most effective in reducing latency in such cases.

However, in groups of requests larger than 256KB, the

average latency is increased in all workloads except B. The

latency is increased by up to 31.7% in the >1MB group, and

12.1% in the 256KB-1MB group for the D workload. The

average latency of the 256KB-1MB group in C is increased

by 20.1%. The reason is twofold. First, large SSD writes

under light load have better performance than HDDs because

260 18th USENIX Conference on File and Storage Technologies USENIX Association

(a) The average and 99th tail latency

with different L values

(b) The redirected written data with

different L value

Figure 10: MIOS_D with different queue length threshold L.

(a) The average and tail latency with

MIOS_D and MIOS_E
(b) The redirected written data for

different request-size group

Figure 11: MIOS_D vs MIOS_E.

SSDs have high internal-parallelism that favors large requests.

Second, large writes are relatively sparse and not easy to be

completely blocked. For example, the average latency of the

>256KB request-size groups in Baseline is very close to the

raw SSD write performance.

Queue Length Threshold L To evaluate the effect of L
selection, we compare the pre-defined L value (Def), deter-

mined by the process described Section 4.2, with L+1 (Inc).

Note that the process for pre-defining the queue length thresh-

old is designed to tradeoff between reducing the write latency

and reducing the write traffic to SSD.

Figure 10(a) shows that, Inc slightly reduces average, 99th

and 99.9th-percentile latency compared to Def. Among the

four workloads, the maximum reduction in average latency

is less than 10%. This is because the higher queue length

is, the longer waiting delay a request experiences. Therefore,

Inc can acquire more latency gains by redirection than Def.
However, the choice of L value can greatly affect the amount

of redirected data. In Figure 10(b), the number of redirected

requests is much smaller in Inc than in Def. The amount of

redirected data for workloads A∼D are decreased by 94%,

64%, 52% and 62%, respectively. These results are consistent

with the implications of Figure 8 that longer queue length in

SSD triggers much fewer SSD overuse alerts, significantly

reducing chances for request redirecting to HDD.

MIOS_D vs MIOS_E We compare MIOS_D with

MIOS_E in terms of the amount of data written to SSD and

HDD, and the number of redirected write requests, as shown

in Table 3. Workload A has the highest percentage of data

and requests redirected with MIOS_E, reducing the SSD writ-

ten data by up to 93.3% compared with Baseline, which is

significantly higher than MIOS_D. Since workload A has

lower IO intensity, MIOS_E has more chances to redirect

even when the queue length is low. Note that we also counted

the padded data in BCW as the amount of data written in

HDD. In such a case the total amount of data written can vary

(a) Average and tail latency (b) SSD write reduction

Figure 12: Latency and SSD written data reduction with

only F write-state by actively issuing sync() (Normalized

to MIOS_D).

Table 4: Amount of data written to and number of requests

processed in SSD with different HDDs under workload B.
Baseline WD-10TB WD-4TB SE-4TB

SSD written data (GB) 61.2 4.1 4.2 4.4

SSD write requests (thousands) 4453 720 724 769

a great deal. Workload B has the lowest percentage of redirec-

tion with MIOS_E, which reduces SSD written data by 30%.

Nevertheless, the absolute amount of redirected data is very

large because the SSD written data in Baseline is larger than

any of the other three workloads. Compared with MIOS_D,

MIOS_E can greatly decrease the amount of data written to

SSD. Therefore, it is beneficial to alleviate SSD wear-out.

However, the negative effect of MIOS_E is the increase of

average and tail latency. In Figure 11(a), MIOS_E leads to

generally higher average latency than MIOS_D by up to 40%

under workload A. Although for the other three workloads,

the average latency remains basically unchanged. This is

because for workload A much more writes (i.e., >90%) are

redirected by MIOS_E than by MIOS_D, and in HDD requests

experience longer latency than in SSD. Moreover, the 99.9th-

percentile latency of MIOS_E is increased by 70% in A, 55%

in B, 31% in C, and 8% in D compared to MIOS_D. The

results can be explained by Figure 11(b). MIOS_E increases

the average latency for nearly all the IO size groups, especially

for the groups with requests of size larger than 256KB.

Moreover, we only use the F write state by proactively

issuing sync() when the ADW reaches Wf . In Figure 12, we

measure the average, 99th, 99.9th-percentile latency and the

SSD written data reduction with this strategy. We take the

MIOS_D as the baseline and present the performance normal-

ized to MIOS_D. The 99.9th-percentile latency is increased

by 12.8x over MIOS_D in the B node. The 99th-percentile

latency in the B, C and D nodes also be increased by 3x,

1.65x and 1.56x, respectively. This means that this strategy

is less efficiency for reducing tail latency when the workload

becomes heavier. This is because it redirects less SSD write

data than MIOS_D when SSD suffers queue blockage. As

mentioned in Section 4.2, sync() is a high cost operation (e.g.,

several hundreds of milliseconds) to flush the HDD buffer

and cannot serve any requests during the operation.

Experiment with other HDDs We use the 4TB WD, 4TB

Seagate and the 10TB WD HDD to replay workload B, com-

paring MIOS_D (with the default L value) with the Baseline
in terms of the amount of data written to and the number of

write requests processed in SSD. Workload B is chosen for

USENIX Association 18th USENIX Conference on File and Storage Technologies 261

(a) Average, 99th and 99.9th-

percentile latency

(b) Average latency of requests with

different request-size group

Figure 13: MIOS_D performance with three different types

of HDDs under workload B.

(a) Queue length CDF (b) Average and tail latency

Figure 14: Queue length CDF and latency under Pangu work-

load A, with the 660p SSD for three scheduling strategies.

this experiment, since it has the most SSD written data and

the most severe SSD queue blockage, clearly reflecting the

effect of IO scheduling.

Figure 13 shows that different types of HDDs do not have a

significant impact on the effect of MIOS_D. First, the average

and tail latencies for all the three HDDs are virtually identical,

with a maximum difference of less than 3%. In addition, of

the six request-size groups, only the >1MB group exhibits

a large difference among the different HDDs. The average

latency of 10TB HDD is 14% lower than that of the other

two 4TB HDDs. This is because the native write performance

gap between the HDDs. It can be found from Table 4 that

different types of HDDs do not notably affect the amount of

data redirected, with little difference of less than 5%.

Experiment with lower-performing 660p SSD Next, to

further explore the effect of MIOS with different SSDs, we

deploy the lower-performance 660p SSD. We replay the same

workload A that has the lowest pressure on SSD, and employ

the MIOS_D and MIOS_E strategies, respectively.

From the latency CDF Figure 14(a), when using SSDs with

the low performance SSD, more than 7% of the requests are

severely affected by long queuing delay and the maximum

queue length reaches up to 2700. It surpass the experiment

result with 960EVO SSD (e.g., 23 shown in Figure 8(B)). This

is because when the IO intensity exceeds the ability of 660p

SSD to accommodate, the SSD queue length builds up quickly.

As a result in Figure 14(b), the average and tail latencies in

Baseline rise sharply compared with 960EVO SSD shown in

previous Figure 7. The average latency in Baseline is 90ms

and the 99th-percentile latency exceeds 5 second.

With such a high workload pressure on a lower-

performance SSD, MIOS can help reduce some of the pres-

sure on SSD by redirecting some of the queued requests to

HDDs. As seen from Figure 14, MIOS_D decreases the queue

blockage with a maximum 45% queue length reduction. At

Table 5: The HDD utilization with MIOS_E and MIOS_D.
Node
Type

Duration
(s) Baseline Net Util.

MIOS_D
Net Util.
MIOS_E

Gross Util.
MIOS_E

A 2700 7.6% 7.9% 11.9% 27.9%

B 1800 9.8% 18.2% 26.8% 56.9%

C 1800 4.1% 10.7% 16.2% 35.8%

D 1560 4.8% 12.3% 17.3% 39.5%

same time, the average latency in MIOS_E returns to μs-level

(e.g., 521μs), and the 99th and 99.9th-percentile latencies are

reduced to an acceptable range of 2.4ms and 87ms, respec-

tively. Because MIOS_E redirects much more SSD requests

with low queue length, it prevents queue blockage in SSD,

particularly for a lower-performance one. By comparing this

experiment on a lower-performance SSD with an earlier one

on a high-performance SSD, we believe that when the perfor-

mance of SSD in hybrid storage cannot support the intensity

of a write-dominated workload, MIOS and BCW can pro-

vide an effective way to improve the overall IO capacity by

offloading much of the workload pressure on SSD to HDD.

In addition, we compare BCW to a system that simply adds

an extra SSD. We equally distribute the workloads to two

SSDs. The system can achieve the same or even better latency

than MIOS_E, but at a significantly increased hardware cost.

5.3 BCW
We further analyze and evaluate the wasted storage-space

of BCW, due to the padded data to help keep continuous HDD

written pattern and skip the S write state.

Amount of padded data We first analyze the amount of

padded data written to HDD. In Table 3, we measure the data

amount with MIOS_D and MIOS_E when a BCW sequence

contains one Fast state and 10 Mid/Slow stage-pairs. The

stats in the table clearly indicates that MIOS_E generates

substantially more HDD write data than MIOS_D. When more

requests are redirected, the amount of padded data increases

proportionally. For example, the padded data with MIOS_E is

15x that with MIOS_D in workload A, 3x in workload B, 4x

in workloads C and D. Frequently triggering BCW increases

the occurrences and thus amount of padded data. Furthermore,

when the amount of redirected data increases, the Fast stage

without padded data will be used up faster and more Mid/Slow

stage-pairs with padded data will be executed.

HDD utilization The original Pangu traces exhibit low

HDD utilization, which is defined by the percentage of time

an HDD is actually working on processing IO requests. More

specifically, Table 1 and 5 shows that HDDs are generally

keeps very low utilization (e.g., <10%) in all four workloads.

Using MIOS, the HDD utilization has been increased with

different degrees. The gross utilization is defined to be the per-

centage of the total execution time when the HDD is working

on IO requests (including sync() operation), which is the real

usage of the disk. The highest gross utilization is 56.9% under

workload B. This means that the disk still has enough free

time for HDD garbage collection. To analyze the amount of

262 18th USENIX Conference on File and Storage Technologies USENIX Association

Figure 15: FIO benchmark to experiment with three strategies.

The IO transmission interval is set to 20-320us.
time HDD is effectively working for user requests, we define

net utilization as the percentage of the total execution time that

the HDD spends exclusively serving user requests, excluding

the time HDD spends on padding data in BCW. Thus, the

net utilization is positively correlated to the amount of redi-

rected data. The net utilization of HDD in MIOS_E is higher

than that in MIOS_D. Under workload B and MIOS_E, HDD

has the highest net utilization improvement over Baseline, by

2.7x, while the same is enhanced to 1.8x under MIOS_D.

5.4 Write Intensity
The effectiveness of BCW heavily depends on the write

intensity. To better understand this relationship, we test the

average and tail latency of three scheduling strategies as a

function of write intensity (in terms of IO transmission in-

terval), Baseline (_B), MIOS_D (_D) and MIOS_E (_E). We

initialize the IO size to 32KB, and continuously issue write

requests using FIO [4]. Since FIO cannot adjust IO intensity,

we set the generated IOs with a fixed transmission interval

from 20 to 320μs. We use 960EVO SSD and 10TB HDD, and

set the L value to 1.

Figure 15 shows that, when the interval is between 20-60μs,

the requests written to SSD are severely blocked and the 99th

tail latency reaches as high as 5.2 second. In this case, both

MIOS_D and MIOS_E can significantly reduce the request

latency. And MIOS_E is slightly better than MIOS_D because

the former handles burst writes better. When the interval is

60-80μs, Baseline still exhibits very high latency in SSD.

However, the latency has returned to an acceptable μs-level

after scheduling by MIOS. When the interval exceeds 100μs,

the average and 99th-percentile latencies are stable, because

there is very little SSD queue blockage with this level of

request intensity. In this case, MIOS_D and Baseline have the

lowest average latency and remain the same as the interval

grows. However, the average and tail latency of MIOS_E is

higher than others. This is because even if there is no queue in

SSD, MIOS_E will still redirect requests, and the performance

gap between SSD and HDD can lead to high latency.

6 Related Works
IO scheduler The IO scheduling on HDD had been ad-

equately studied as CFQ, Anticipatory, Deadline [7], and

NCQ [54]. With wide adoption of SSDs, more recent re-

searches address flash IO characteristics as read/write per-

formance asymmetry and internal parallelism. FIOS [39] em-

ploys a fair IO timeslice management to attains fairness and

high efficiency of SSD. HIOS [23] gives GC-aware and QoS-

aware scheduler in host. PIQ [19] and ParDispatcher [46]

minimize access conflicts between IO requests. A large body

of research further offer finer scheduling inside of SSD to

reduce interference between IO flows [42], write amplifica-

tion [27], and GC overhead [17,21,24]. SWAN [26] partitions

SSDs into multiple zones to separately serve write requests

and perform GC. These works focus on homogeneous-device

block-level scheduling. In contrast, MIOS schedules writes

upon SSD-HDD hybrid storage.

Hybrid storage For SSD-HDD hybrid storage, most works

use SSDs as a read cache or/and write buffer [2, 25, 41], and

HDDs as the secondary or backup storage [29], due to the

large performance gap between SSD and HDD. Prior works

also employ HDDs as a write cache for SSDs to reduce the

amount of data written to the latter [41, 52]. Besides, SSD-

HDD mixed RAID [32] also has been studied to comple-

ment their disadvantages with advantages. Ziggurat [55] as

a tiered file system across NVMM and disks steers larger

asynchronous writes into disks. SWR [31] merely redirects

synchronous large writes to HDDs at highly queueing. BCW

further exploits HDD buffer to redirect synchronous small

writes while avoiding performance degradation.

7 Conclusion

Some hybrid storage servers serve write-dominate work-

loads, which leads to SSD overuse and long-tail latency while

HDDs are underutilized. However, our extensive experimen-

tal study reveals that HDDs are capable of μs-level write IO

latency with appropriate buffered writes. This motivated us to

use HDDs to offload write requests from overused SSDs by re-

quest redirection. To this end, we present a Buffer-Controlled

Write approach to proactively control buffered writes, by se-

lecting fast writes for user requests and padding non-user data

for slow writes. Then, we proposed a mixed IO scheduler to

automatically steer incoming data to SSDs or HDDs based

on runtime monitoring of request queues. Our extensive eval-

uation of MIOS and BCW, driven by real-world production

workloads and benchmarks, demonstrated their efficacy.

Acknowledgments

We would like to thank our shepherd, Jian Huang, and the

anonymous reviewers for their valuable feedback and sugges-

tion. This work is supported in part by NSFC No.61821003,

NSFC No.61872156, National key research and development

program of China (No.2018YFA0701804), the US NSF under

Grant No.CCF-1704504 and No.CCF-1629625, and Alibaba

Group through Alibaba Innovative Research (AIR) Program.

USENIX Association 18th USENIX Conference on File and Storage Technologies 263

References
[1] David G Andersen and Steven Swanson. Rethinking

flash in the data center. IEEE micro, 30(4):52–54, 2010.

[2] Manos Athanassoulis, Shimin Chen, Anastasia Aila-

maki, Phillip B. Gibbons, and Radu Stoica. Masm:

efficient online updates in data warehouses. In Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011, pages 865–876, 2011.

[3] Guillaume Aupy, Olivier Beaumont, and Lionel Eyraud-

Dubois. What size should your buffers to disks be?

In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 660–669. IEEE,

2018.

[4] AXBOE. Fio: Flexible i/o tester. https://github.
com/axboe/fio.

[5] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan

Gupta, Ravishankar Chandhiramoorthi, and Diego Di-

dona. SILK: Preventing latency spikes in log-structured

merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 753–766,

Renton, WA, July 2019. USENIX Association.

[6] Simona Boboila and Peter Desnoyers. Write endurance

in flash drives: Measurements and analysis. In FAST,

pages 115–128, 2010.

[7] Daniel P Bovet and Marco Cesati. Understanding the
Linux Kernel: from I/O ports to process management. "

O’Reilly Media, Inc.", 2005.

[8] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-

tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-

wat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. Win-

dows azure storage: a highly available cloud storage

service with strong consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 143–157. ACM, 2011.

[9] Alibaba Clouder. Pangu – the high performance

distributed file system by alibaba cloud. 2018.

https://www.alibabacloud.com/blog/pangu_
the_high_performance_distributed_file_
system_by_alibaba_cloud_594059.

[10] Intel Corporation. Enterprise-class versus

desktop-class hard drives. pages 6–7, 2016.

https://www.intel.com/content/dam/support/
us/en/documents/server-products/Enterprise_
vs_Desktop_HDDs_2.0.pdf.

[11] Intel Corporation. Product brief of intel 660p se-

ries. pages 2–2, 2019. https://www.intel.com/

content/dam/www/public/us/en/documents/
product-briefs/660p-series-brief.pdf.

[12] Western Digital Corporation. Product brief: Wd gold

enterprise class sata hdd. pages 2–3, 2019. https:
//documents.westerndigital.com/content/
dam/doc-library/en_us/assets/public/
western-digital/product/internal-drives/
wd-gold/product-brief-wd-gold-2579-810192.
pdf.

[13] Western Digital Corporation. Wd red nas hard drives

data sheet. pages 2–3, 2019. http://products.wdc.
com/library/SpecSheet/ENG/2879-800002.pdf.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex

Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: amazon’s highly available

key-value store. In ACM SIGOPS operating systems
review, volume 41, pages 205–220. ACM, 2007.

[15] Diego Didona and Willy Zwaenepoel. Size-aware shard-

ing for improving tail latencies in in-memory key-value

stores. In NSDI, pages 79–94, 2019.

[16] Samsung Electronics. Samsung ssd 960 evo m.2

data sheet. pages 2–4, 2017. https://www.intel.
com/content/dam/www/public/us/en/documents/
product-briefs/660p-series-brief.pdf.

[17] Nima Elyasi, Mohammad Arjomand, Anand Sivasubra-

maniam, Mahmut T Kandemir, Chita R Das, and My-

oungsoo Jung. Exploiting intra-request slack to improve

ssd performance. ACM SIGARCH Computer Architec-
ture News, 45(1):375–388, 2017.

[18] FUJITSU. Mbc2073rc mbc2036rc hard disk

drives product manual. pages 60–62, 2007.

https://www.fujitsu.com/downloads/COMP/fel/
support/disk/manuals/c141-e266-01en.pdf.

[19] Congming Gao, Liang Shi, Mengying Zhao, Chun Ja-

son Xue, Kaijie Wu, and Edwin H-M Sha. Exploiting

parallelism in i/o scheduling for access conflict mini-

mization in flash-based solid state drives. In 2014 30th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–11. IEEE, 2014.

[20] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-

ung. The google file system. 2003.

[21] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.

Dftl: a flash translation layer employing demand-based

selective caching of page-level address mappings. vol-

ume 44. ACM, 2009.

264 18th USENIX Conference on File and Storage Technologies USENIX Association

[22] Congfeng Jiang, Guangjie Han, Jiangbin Lin, Gangyong

Jia, Weisong Shi, and Jian Wan. Characteristics of co-

allocated online services and batch jobs in internet data

centers: A case study from alibaba cloud. IEEE Access,

7:22495–22508, 2019.

[23] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,

Joonhyuk Yoo, and Mahmut T Kandemir. Hios: a host

interface i/o scheduler for solid state disks. In ACM
SIGARCH Computer Architecture News, volume 42,

pages 289–300. IEEE Press, 2014.

[24] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and

Sangyeun Cho. The multi-streamed solid-state drive. In

6th {USENIX} Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[25] Taeho Kgil and Trevor Mudge. Flashcache: a nand flash

memory file cache for low power web servers. In Pro-
ceedings of the 2006 international conference on Com-
pilers, architecture and synthesis for embedded systems,

pages 103–112. ACM, 2006.

[26] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin

Lee, Changwoo Min, and Sam H Noh. Alleviating

garbage collection interference through spatial separa-

tion in all flash arrays. In 2019 {USENIX} Annual Tech-
nical Conference ({USENIX}{ATC} 19), pages 799–

812, 2019.

[27] Jaeho Kim, Yongseok Oh, Eunsam Kim, Jongmoo Choi,

Donghee Lee, and Sam H Noh. Disk schedulers for

solid state drivers. In Proceedings of the seventh ACM
international conference on Embedded software, pages

295–304. ACM, 2009.

[28] Anthony Kougkas, Hariharan Devarajan, and Xian-He

Sun. Hermes: a heterogeneous-aware multi-tiered dis-

tributed i/o buffering system. In Proceedings of the 27th
International Symposium on High-Performance Paral-
lel and Distributed Computing, pages 219–230. ACM,

2018.

[29] Huiba Li, Yiming Zhang, Dongsheng Li, Zhiming

Zhang, Shengyun Liu, Peng Huang, Zheng Qin, Kai

Chen, and Yongqiang Xiong. Ursa: Hybrid block stor-

age for cloud-scale virtual disks. In Proceedings of the
Fourteenth EuroSys Conference 2019, page 15. ACM,

2019.

[30] Qixiao Liu and Zhibin Yu. The elasticity and plasticity

in semi-containerized co-locating cloud workload: A

view from alibaba trace. In Proceedings of the ACM
Symposium on Cloud Computing, pages 347–360. ACM,

2018.

[31] Shuyang Liu, Shucheng Wang, Qiang Cao, Ziyi Lu,

Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang.

Analysis of and optimization for write-dominated hy-

brid storage nodes in cloud. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC 2019, Santa
Cruz, CA, USA, November 20-23, 2019, pages 403–415,

2019.

[32] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian, Dan Feng,

Jianxi Chen, and Lingfang Zeng. Hpda: A hybrid parity-

based disk array for enhanced performance and reliabil-

ity. ACM Transactions on Storage (TOS), 8(1):4, 2012.

[33] Avantika Mathur, Mingming Cao, Suparna Bhat-

tacharya, Andreas Dilger, Alex Tomas, and Laurent

Vivier. The new ext4 filesystem: current status and

future plans. In Proceedings of the Linux symposium,

volume 2, pages 21–33, 2007.

[34] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-

Won Lee, and Young Ik Eom. Sfs: random write consid-

ered harmful in solid state drives. In FAST, volume 12,

pages 1–16, 2012.

[35] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,

Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva

Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4:

Facebook’s warm {BLOB} storage system. In 11th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), pages 383–398, 2014.

[36] Muthukumar Murugan and David HC Du. Rejuve-

nator: A static wear leveling algorithm for nand flash

memory with minimized overhead. In 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–12. IEEE, 2011.

[37] J. Ou, J. Shu, Y. Lu, L. Yi, and W. Wang. Edm: An

endurance-aware data migration scheme for load balanc-

ing in ssd storage clusters. In 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium,

pages 787–796, May 2014.

[38] Mayur R Palankar, Adriana Iamnitchi, Matei Ripeanu,

and Simson Garfinkel. Amazon s3 for science grids:

a viable solution? In Proceedings of the 2008 interna-
tional workshop on Data-aware distributed computing,

pages 55–64. ACM, 2008.

[39] Stan Park and Kai Shen. Fios: a fair, efficient flash i/o

scheduler. In FAST, volume 12, pages 13–13, 2012.

[40] Raghu Ramakrishnan, Baskar Sridharan, John R

Douceur, Pavan Kasturi, Balaji Krishnamachari-

Sampath, Karthick Krishnamoorthy, Peng Li, Mitica

Manu, Spiro Michaylov, Rogério Ramos, et al. Azure

data lake store: a hyperscale distributed file service for

USENIX Association 18th USENIX Conference on File and Storage Technologies 265

big data analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data,

pages 51–63. ACM, 2017.

[41] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh

Balakrishnan, and Ted Wobber. Extending ssd lifetimes

with disk-based write caches. In FAST, volume 10, pages

101–114, 2010.

[42] Arash Tavakkol, Mohammad Sadrosadati, Saugata

Ghose, Jeremie Kim, Yixin Luo, Yaohua Wang,

Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez-Luna,

and Onur Mutlu. Flin: Enabling fairness and enhancing

performance in modern nvme solid state drives. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 397–410. IEEE,

2018.

[43] Seagate Technology. Enhanced caching advan-

tage—turboboost and advanced write caching.

pages 2–3, 2016. https://www.seagate.
com/files/www-content/product-content/
enterprise-performance-savvio-fam/
enterprise-performance-15k-hdd/
_cross-product/_shared/doc/
enchanced-cache-advantage-tp691.1-1610us.
pdf.

[44] Seagate Technology. Barracuda pro compute sata

hdd data sheet. pages 2–3, 2018. https://www.
seagate.com/www-content/datasheets/pdfs/
barracuda-pro-14-tb-DS1901-9-1810US-en_US.
pdf.

[45] Seagate Technology. Barracuda compute sata

product manual. pages 7–8, 2019. https://www.
seagate.com/www-content/product-content/
desktop-hdd-fam/en-us/docs/100799391e.pdf.

[46] Hua Wang, Ping Huang, Shuang He, Ke Zhou, Chunhua

Li, and Xubin He. A novel i/o scheduler for ssd with

improved performance and lifetime. In 2013 IEEE 29th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–5. IEEE, 2013.

[47] Hui Wang and Peter Varman. Balancing fairness and ef-

ficiency in tiered storage systems with bottleneck-aware

allocation. In Proceedings of the 12th {USENIX} Con-
ference on File and Storage Technologies ({FAST} 14),
pages 229–242, 2014.

[48] Yeong-Jae Woo and Jin-Soo Kim. Diversifying wear in-

dex for mlc nand flash memory to extend the lifetime of

ssds. In Proceedings of the Eleventh ACM International
Conference on Embedded Software, page 6. IEEE Press,

2013.
[49] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng

Wu. Lessons and actions: What we learned from 10k

ssd-related storage system failures. In 2019 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19),
pages 961–976, 2019.

[50] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao

Tong, Swaminathan Sundararaman, Andrew A Chien,

and Haryadi S Gunawi. Tiny-tail flash: Near-perfect

elimination of garbage collection tail latencies in nand

ssds. ACM Transactions on Storage (TOS), 13(3):22,

2017.

[51] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun,

Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li,

and Kihyoun Kwon. Reducing garbage collection over-

head in {SSD} based on workload prediction. In 11th
{USENIX} Workshop on Hot Topics in Storage and File
Systems (HotStorage 19), 2019.

[52] Puyuan Yang, Peiquan Jin, Shouhong Wan, and Lihua

Yue. Hb-storage: Optimizing ssds with a HDD write

buffer. In Web-Age Information Management - WAIM
2013 International Workshops: HardBD, MDSP, BigEM,
TMSN, LQPM, BDMS, Beidaihe, China, June 14-16,
2013. Proceedings, pages 28–39, 2013.

[53] Yang Yang, Qiang Cao, Hong Jiang, Li Yang, Jie Yao,

Yuanyuan Dong, and Puyuan Yang. Bfo: Batch-file

operations on massive files for consistent performance

improvement. In 35th International Conference on Mas-
sive Storage Systems and Technology (MSST’19), 2019.

[54] Young Jin Yu, Dong In Shin, Hyeonsang Eom, and

Heon Young Yeom. Ncq vs. i/o scheduler: Prevent-

ing unexpected misbehaviors. ACM Transactions on
Storage (TOS), 6(1):2, 2010.

[55] Shengan Zheng, Morteza Hoseinzadeh, and Steven

Swanson. Ziggurat: a tiered file system for non-volatile

main memories and disks. In 17th {USENIX} Confer-
ence on File and Storage Technologies ({FAST} 19),

pages 207–219, 2019.

266 18th USENIX Conference on File and Storage Technologies USENIX Association

INFINICACHE: Exploiting Ephemeral Serverless Functions
to Build a Cost-Effective Memory Cache

Ao Wang1∗, Jingyuan Zhang1∗, Xiaolong Ma2, Ali Anwar3, Lukas Rupprecht3, Dimitrios Skourtis3,
Vasily Tarasov3, Feng Yan2, Yue Cheng1

1George Mason University 2University of Neveda, Reno 3IBM Research–Almaden

Abstract
Internet-scale web applications are becoming increasingly
storage-intensive and rely heavily on in-memory object
caching to attain required I/O performance. We argue that
the emerging serverless computing paradigm provides a well-
suited, cost-effective platform for object caching. We present
INFINICACHE, a first-of-its-kind in-memory object caching
system that is completely built and deployed atop ephemeral
serverless functions. INFINICACHE exploits and orchestrates
serverless functions’ memory resources to enable elastic pay-
per-use caching. INFINICACHE’s design combines erasure
coding, intelligent billed duration control, and an efficient
data backup mechanism to maximize data availability and
cost effectiveness while balancing the risk of losing cached
state and performance. We implement INFINICACHE on AWS
Lambda and show that it: (1) achieves 31 – 96× tenant-side
cost savings compared to AWS ElastiCache for a large-object-
only production workload, (2) can effectively provide 95.4%
data availability for each one hour window, and (3) enables
comparative performance seen in a typical in-memory cache.

1 Introduction
Internet-scale web applications are becoming increasingly
important as they offer many useful services to the end users.
Examples range from social networks [22] that serve billions
of photo and video files every day to hosted container image
repositories such as Docker Hub [5]. These web applica-
tions typically require a large storage capacity for the massive
amount of data they must store. For instance, Docker Hub
hosts over 2.6 million container images, and Facebook gener-
ates 4 PB of data daily [6].

Cloud object stores (e.g., Amazon S3, Google Cloud Stor-
age, OpenStack Swift, etc.) have become the first choice for
serving the simple object GET/PUT requests of these storage-
intensive web applications. To improve request latencies
for better user experience, cloud object stores are typically
being used in combination with networked, lookaside In-
Memory Object Caches (IMOCs) such as Redis [10] and
Memcached [9]. Serving requests from an IMOC is much
faster than serving them directly from a backing object store.
However, due to the high cost of main memory, IMOCs are
largely used only as a small cache for buffering small-sized
objects that range in size from a few bytes to a few KBs [19].

∗These authors contributed equally to this work.

Caching large objects (i.e., objects with sizes of MBs–GBs)
is believed to be relatively inefficient in an IMOC as large
objects consume significant memory capacity and network
bandwidth. This either causes cache churn with evictions of
many small objects that would be reused soon if the cache is
too small, or incurs high cost for larger cache sizes.

Large object caching has been demonstrated to be effec-
tive and beneficial in cluster computing [16, 38, 47, 58]. To
verify that these benefits also apply to web applications, we
analyzed production traces from an IBM Docker registry [17]
and identified two key properties for large objects: (1) large
objects are heavily reused with strong data locality and are
accessed less frequently than small ones, and (2) achieving a
fast access speed for large objects is critical for system perfor-
mance though it does not require as stringent a service level
objective (SLO) as that for small objects, the latter of which
demands sub-millisecond latencies. These properties suggest
that web applications can benefit from large object caching,
which state-of-the-art IMOCs currently do not provide.

The emerging serverless computing paradigm (cloud func-
tion services, or Function-as-a-Service (FaaS)) [36] intro-
duces a new way of building and deploying applications, in
which the service providers take care of resource scaling and
management. Developers can thus focus on developing the
function logic without managing servers. Popular uses of
serverless computing today are event-driven and stateless ap-
plications such as web/API serving and batch ETL (extract,
transform, and load) [1]. However, we find that serverless
computing can also provide a potential cost-effective solution
for resolving the tension between small and large objects in
memory caching.

We demonstrate how to build an IMOC as a serverless ap-
plication. A serverless application is structured as a collection
of cloud functions. A function has memory that can be used to
store objects that are needed during its execution. We use this
memory to store cached objects. Functions are executed on
demand. In our serverless IMOC, the functions are invoked
by the tenant to access the cached objects. FaaS providers
cache invoked functions and their state so in-memory objects
are retained between function invocations. This provides a
sufficient lifetime for cached objects. Providers only charge
tenants when a function is invoked, in our case, when a cached
object is accessed. Thus the memory capacity used to cache
an object is billed only when there is a request hitting that ob-
ject. Our serverless IMOC reduces the tenants’ monetary cost

USENIX Association 18th USENIX Conference on File and Storage Technologies 267

10−4 10−2 100 102 104

Object size (MB)

0.0
0.2
0.4
0.6
0.8
1.0

Ob
je

ct
 F

ra
ct

io
n

London
Dallas

(a) Object size.

10−4 10−2 100 102 104

Object size (MB)

0.0
0.2
0.4
0.6
0.8
1.0

By
te

 F
ra

ct
io

n London
Dallas

(b) Object footprint.

100 101 102 103 104

Access Count

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

London
Dallas

(c) Access count for obj. > 10 MB.

100 101 102 103

Reuse Interval (hr)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

London
Dallas

(d) Reuse interval for obj. > 10 MB.

Figure 1: Characteristics of object sizes and access patterns in the IBM Docker registry production traces.

of memory capacity compared to other IMOCs that charge
for memory capacity on an hourly basis whether the cached
objects are accessed or not.

Utilizing the memory of cloud functions for object caching
introduces non-trivial challenges due to the limitations and
constraints of serverless computing platforms: Cloud func-
tions have limited resource capacity (e.g., 1 CPU, up to sev-
eral GB memory, and limited network bandwidth) with strict
network communication constraints (e.g., no inbound TCP
connection); providers may reclaim a function and its memory
at any time, creating a risk of loss of the cached data.

We present INFINICACHE, a cost-effective in-memory ob-
ject cache that exploits and orchestrates serverless cloud func-
tions. INFINICACHE synthesizes a series of techniques into
a holistic design to overcome the aforementioned challenges
and to achieve high performance, cost effectiveness, scala-
bility, and fault tolerance. INFINICACHE leverages erasure
coding to: (1) provide fault tolerance against data loss due to
function reclamation by the service provider; (2) improve per-
formance by utilizing the aggregated network bandwidth of
multiple cloud functions in parallel; and (3) use redundancy
to handle tail latencies caused by straggling functions. IN-
FINICACHE implements function orchestration policies that
improve reliability while lowering cost. Specifically, INFINI-
CACHE implements a lightweight data backup mechanism in
which a cloud function periodically performs delta synchro-
nization (delta-sync) with a clone of itself so as to minimize
the chances that a reclaimed function causes a data loss.

In summary, this paper makes the following contributions:
• Identify the opportunities and challenges of serverless

function-based object caching by performing a long-
term analysis of the internal mechanisms of a popular
serverless computing platform (AWS Lambda [2]).

• Design and implement INFINICACHE, the very first in-
memory object caching system powered by ephemeral
and “stateless” cloud functions.

• Provide an analytical model of INFINICACHE’s fault
tolerance mechanism built using erasure coding and pe-
riodic delta-sync techniques.

• Perform an extensive evaluation using both microbench-
mark and production workloads. Experimental results
show that INFINICACHE achieves performance compa-
rable to ElastiCache for large objects and improves the
cost effectiveness of cloud IMOCs by 31 – 96×.

2 Background and Motivation
Large-scale web applications have increasingly complex stor-
age workload characteristics. Many modern web applications
utilize a microservice architecture, which consists of hundreds
to thousands of microservice modules [33]. Different modules
exhibit different object size distributions and request patterns.
For example, a Docker image registry service uses Redis to
store small-sized container metadata (i.e., manifests), and an
object store to store large-sized container images [17, 40].
While in-memory caching has been extensively studied in
the context of large-scale web applications focusing on small
objects, cloud cache management for large objects remains
poorly explored and poses further challenges.

2.1 Large Object Caching
To obtain a better understanding of large object caching, we
analyze production traces from an IBM Docker registry col-
lected in 2017 from two datacenters (one in London, UK, and
the other in Dallas, US) [17]. The goal is to reveal patterns
that enable us to make realistic assumptions for the design of
INFINICACHE.

Extreme Variability in Object Size. We first analyze the
object size distributions. As shown in Figure 1(a), we find that
object sizes span over nine orders of magnitude, and that more
than 20% of objects are larger than 10 MB in size. This ob-
servation highlights the extreme variability and heterogeneity
of real-world object store workloads, which further increases
the complexity of cloud IMOC management.

Tension between Small and Large Objects. Efficiently
managing both small and large objects in an IMOC is chal-
lenging due to two performance-cost tradeoffs. First, with
limited cache capacity, large objects occupy a large amount of
memory and would cause evictions of many small objects that
might be reused in the near future, thus hurting performance.
This is evidenced by Figure 1(b), where large objects (with
size larger than 10 MB) occupy more than 95% of the total
storage footprint. Second, large object requests typically con-
sume significant network bandwidth resources, which may
inevitably affect the latencies of small objects.

On one end, to prevent large objects from consuming too
much memory and starving small object requests, an object
size threshold is defined to not admit objects larger than the
threshold [13, 23]. On the other end, system administrators
can simply provision more memory (and thus more servers)

268 18th USENIX Conference on File and Storage Technologies USENIX Association

to increase the capacity of the cache. However, this would
increase the total cost of ownership (TCO) with reduced re-
source utilization. In fact, according to our analysis of the
production Docker registry workloads, for the busiest deploy-
ment among seven datacenters, the average throughput of
requests with object sizes greater than 10MB is below 3,500
GETs per hour.
Caching Large Objects Matters. While large object
caching is challenging, it can provide significant benefit as
large object workloads exhibit strong data locality. Figure 1(c)
plots the access frequency distribution for all objects larger
than 10 MB. About 30% of large objects are accessed at least
10 times, and the object popularity shows a long-tail distribu-
tion, with the most popular objects absorbing more than 104

accesses. Figure 1(d) shows the temporal reuse patterns of the
large object workloads. Around 37%–46% large objects are
reused within 1 hour since the last time they were accessed.
The strong temporal locality patterns underscore the benefit
for caching large objects for web applications.

2.2 Building a Memory Cache on Cloud Func-
tions: Opportunities and Challenges

The above observations lead to an important question to the
storage system designers and cluster administrators: can we
build a new cloud caching model that relieves the tension
between performance and cost while serving large objects in
a cost-effective manner? We argue that what is missing is a
truly elastic cloud storage service model that charges tenants
in a request driven mode instead of capacity usage, which the
emerging serverless computing naturally enables, with the
following desirable properties:
Pay-Per-Use Pricing: FaaS providers (including AWS
Lambda [2], Google Cloud Functions [7], Microsoft Azure
Functions [4], and IBM Cloud Functions [8]) charge users at
a fine granularity – for example, AWS Lambda bills on a per-
invocation basis ($0.02 per 1 million invocations) and charges
(CPU and memory bundle) resource usage by rounding up the
function’s execution time to the nearest 100 milliseconds with
a rate of $0.0000166667 per second for each GB of RAM.
Note the function startup cost is not billed, and does not count
for its execution time. Large object IMOC workloads can take
advantage of this fine-grained pay-as-you-go pricing model
to keep the tenant’s monetary costs low.
Short-Term Caching: More importantly, FaaS providers
keep functions “warm” by caching their state in mem-
ory for a short period of time to mitigate the “cold-start”
penalty1 [15, 43, 54]. Functions that are not invoked for
a while can be reclaimed by the provider, and the state stored
in the functions is lost. The duration of the “warm” period
may vary (ranging from tens of minutes to longer than 6 hours
as observed in §4.1) for AWS Lambda, and largely depends
on how frequently the Lambda function gets invoked.

1“Cold start” refers to the first-ever invocation of a function instance.

Ideally, a cloud tenant can leverage the above properties
naturally enabled by a FaaS provider to build an opportunistic
IMOC on a serverless platform. As such, a naive design
would simply invoke a cloud function and store objects into
the function’s memory until the function is reclaimed by the
provider, and then re-insert the objects into a new function.

This approach is appealing for several reasons. First and
foremost, it inherently redefines the pay-as-you-go pricing
model in the context of storage (in our case memory cache
storage) by realizing a new form of memory elasticity — the
memory capacity used to cache an object is billed only when
there is a request hitting that object. This significantly dif-
ferentiates the proposed cache model against conventional
cloud storage or cache services, which start charging tenants
for capacity usage whenever the capacity has been committed
in use. Second, it offers a virtually infinite (yet cheap) short-
term capacity, which is advantageous for large object caching,
since the tenants can invoke many cloud functions but have
the provider pay the cost of function caching2.

However, FaaS providers place limits on the use of cloud
resources to simplify resource management, which introduces
challenges in building a stateful cache service atop stateless
cloud functions. Take AWS Lambda for example — each
Lambda function comes with a limited CPU and memory ca-
pacity; tenants can choose a memory amount between 128MB
and 3008MB in 64MB increments. Lambda allocates CPU
power linearly in proportion to the amount of memory config-
ured, capped by 1.7 cores. Each Lambda function can run at
most 900 seconds (15 minutes) and will be forcibly returned
when the function times out. In addition, Lambda only allows
outbound TCP network connections and bans inbound con-
nections and UDP traffic, meaning a Lambda function cannot
be used to implement a server, which is necessary for stateful
applications such as IMOC. However, once an outbound TCP
connection is established, it can be used to issue (multiple)
requests to the function. Another limitation that plagues the
performance of serverless applications is the lack of quality-
of-service (QoS) control. As a result, functions suffer from
straggler issues [45]. Therefore, an ideal IMOC built atop
cloud functions must provide effective workaround solutions
to all the above challenges.

3 INFINICACHE Design
INFINICACHE has three components: an INFINICACHE client
library, a proxy, and a Lambda function runtime used to im-
plement cache nodes3. As shown in Figure 2, an INFINI-
CACHE deployment consists of a cluster of Lambda cache
nodes, which are logically partitioned and managed by multi-
ple proxies. Each proxy orchestrates a Lambda cache pool.
Applications interact with INFINICACHE via a client library

2FaaS providers essentially pay for the cost of storing the objects, while
the tenants pay for the function invocations and function duration.

3We use Lambda cache node and Lambda function (runtime) interchange-
ably in different contexts.

USENIX Association 18th USENIX Conference on File and Storage Technologies 269

Cache pool 1 Cache pool 2

Client library

Proxy 1

Application

Client library

Proxy 2

Application

Figure 2: INFINICACHE architecture overview. Icon n denotes
EC-encoded object chunks. Chunks with same color belong to the
same object.

that is responsible for cache invalidation upon an overwrite
and cache insertion upon a read miss assuming a read-only,
write-through cache; the client library encodes and decodes
the objects using erasure coding (EC) and interfaces with a
proxy serving as a rendezvous that streams the EC-encoded
object chunks between a client library and the Lambda nodes.

INFINICACHE introduces a proxy primarily because a
Lambda node cannot run in server mode due to banned in-
bound connections. Thus a client library has to rely on an
intermediate server (the proxy) for accepting connection re-
quests from Lambda nodes. In INFINICACHE, the client
library and proxy are logically separated as they have clearly
partitioned functionality, but in deployment they can be physi-
cally co-located on the same machine. To enable data sharing
across different Lambda cache pools, a client can communi-
cate with any proxy (see Figure 2).

3.1 Client Library
INFINICACHE’s client library exposes to the application a
clean set of GET(key) and PUT(key, value) APIs (see Fig-
ure 3). The client library is responsible for: (1) transparently
handling object encoding/decoding using an embedded EC
module, (2) load balancing the requests across a distributed
set of proxies, and (3) determining where EC-encoded chunks
are placed on a cluster of Lambda nodes.

A
p

p
lic

a
ti
o

n

EC encoder

EC decoder

PUT

InfiniCache client library

GET

InfiniCache

proxyC
H

 r
in

g

Figure 3: INFINICACHE client library (CH: consistent hashing).

Erasure Coding Processing. In our initial design, we ob-
served that adding EC processing to the proxy would stall
the chunk streaming pipeline (§3.2) and significantly impact
the overall data transfer performance. Hence we made a de-
sign choice to move the computation-heavy EC part from the
proxy to the client library.
The PUT Path. Assume that we have a multi-proxy deploy-
ment in which each proxy manages a separate Lambda node
pool with shared access among clients. For a PUT request,

2 3 4 5 6 7 8 9 10 11
VM host touched per request

0
250
500
750

1000

La
te

nc
y(

m
s)

Lambda-side
Client-perceived

Figure 4: The box-and-whisker plot of latencies as a function of the
number of VM hosts touched per request.

INFINICACHE’s client library first determines the destina-
tion proxy (and therefore its backing Lambda pool) by using
a consistent hashing-based load balancing approach. The
client library then encodes the object with a pre-configured
EC code ((d + p) using a Reed-Solomon (RS) code) and pro-
duces a number of object chunks, each with a unique identifier
IDob j_chunk (computed as a concatenation of the object key
and the chunk’s sequence number). To handle extremely large
objects, INFINICACHE can encode them with more aggres-
sive EC code (e.g., (20+4)). Next, the client decides which
Lambda nodes to store the chunks on by randomly gener-
ating a vector of non-repetitive IDλ. Each encoded chunk
with its piggybacked <IDob j_chunk, IDλ> is sent to the destina-
tion proxy, which streams the data to the destination Lambda
nodes and remembers the locations in the Lambda pool where
the chunks are cached.

The GET Path. A GET request is first sent to the proxy by
using consistent hashing; the proxy then consults its mapping
table, which records the chunk to Lambda node association
and fetches the object chunks from the associated Lambda
nodes (see §3.2). Once the chunks arrive at the client, the
client library decodes the chunks, reconstructs the original
object, and returns the object to the application.

Eliminating Lambda Contention. Lambda functions are
hosted by EC2 Virtual Machines (VMs). A single VM can
host one or more functions. AWS seems to provision Lambda
functions on the smallest possible number of VMs using a
greedy binpacking heuristic [54]. This could cause severe
network bandwidth contention if multiple network-intensive
Lambda functions get allocated on the same host VM.

We conduct an empirical study to verify this. In our study
setup, each Lambda function has 256 MB memory. We use
an RS code of (10+ 1) to split a 100 MB object into 10
data chunks and 1 parity chunk, and place each chunk on a
Lambda node randomly selected from a fixed sized Lambda
node pool. We measure the latency of GET requests by scaling-
up the pool from 20 to 200 Lambda nodes. As a result, the
number of host VMs that the 11-chunk object spans varies
proportionally as the Lambda node pool scales up and down4.
Figure 4 shows the latency distribution as a function of the
number of underlying host VM touched per request. With a
larger Lambda node pool (where the request is more likely to
be spread across more host VMs), we observe a decreasing

4We run command uname in Lambda to get the underlying host VM’s IP.

270 18th USENIX Conference on File and Storage Technologies USENIX Association

trend in the latency on the Lambda-side (the time that each
Lambda node spends serving the chunk request) as well as
the client-perceived (end-to-end) latencies.

These results stress the need to minimize resource con-
tention among multiple Lambda functions sharing the same
VM host. While over-provisioning a large Lambda node pool
with many small Lambda functions would help to statistically
reduce the chances of Lambda co-location, we find that using
relatively bigger Lambda functions largely eliminates Lambda
co-location. Lambda’s VM hosts have approximately 3 GB
memory. As such, if we use Lambda functions with ≥ 1.5
GB memory, every VM host is occupied exclusively by a sin-
gle Lambda function, assuming INFINICACHE’s cache pool
consists of Lambda functions with the same configuration5.

3.2 Proxy
Each INFINICACHE proxy (Figure 5) is responsible for: (1)
managing a pool of Lambda nodes, and (2) streaming data
between clients and the Lambda nodes. Each Lambda node
proactively establishes a persistent TCP connection with its
managing proxy.

Client-facing

queues

Lambda-

facing queues

… …

InfiniCache proxy

G
E

T
/P

U
T

re

q
u
e
s
ts Meta-

data

LRU

Figure 5: INFINICACHE proxy.

Pool Management. Each proxy manages a pool of Lambda
nodes, and also maintains the metadata to record the mapping
between object chunks and Lambda nodes. To achieve fault
tolerance, the proxy also serves as a coordinator to coordinate
data migration and delta sync (see detail in §4). Each proxy
tracks the memory usage of every Lambda node in the pool.
The proxy starts to evict objects as long as there is not enough
free memory in the Lambda pool using a CLOCK based [30]
LRU policy. The LRU module operates at the object granular-
ity at the proxy. After the eviction process, the proxy updates
the mapping metadata, and inserts the new data.

First-d based Parallel I/O. The proxy sends and receives
object chunks in parallel by utilizing I/O parallelism to maxi-
mize network bandwidth utilization. To mitigate the Lambda
straggler problem, the proxy directly streams the first d out
of (d + p) encoded object chunks to the client. Though ac-
cepting the first-d arrived chunks may likely result in an EC
decoding process at the client library, as we show in §5.1, the
performance benefit of the optimization outweights the EC
decoding overhead with reduced tail latency for GET requests.

3.3 Lambda Function Runtime
The Lambda function runtime executes inside each Lambda
instance and is designed to manage the cached object chunks
in the function’s memory. Our Lambda runtime uses several

5AWS does not allow sharing Lambda-hosting VMs across tenants [20].

techniques to work around the inherent limitations of AWS
Lambda. These techniques, as described below, ensure that
caching is robust and cost-effective with negligible overhead.

Memory and Connection Management. The Lambda
runtime tracks cached key-value pairs that are sorted with
a CLOCK-based priority queue6 for facilitating the ordered
chunk backup process described in §4.2. Since AWS Lambda
does not allow inbound TCP or UDP connections, each
Lambda runtime establishes a TCP connection with its des-
ignated proxy server, the first time it is invoked. A Lambda
node gets its proxy’s connection information via its invoca-
tion parameters. The Lambda runtime then keeps the TCP
connection established until reclaimed by the provider.

Anticipatory Billed Duration Control. AWS charges
Lambda usage per 100 ms (which we call a billing cycle).
To maximize the use of each billing cycle and to avoid the
overhead of restarting Lambdas, INFINICACHE’s Lambda
runtime uses a timeout scheme to control how long a Lambda
function runs. When a Lambda node is invoked by a chunk
request, a timer is triggered to limit the function’s execution
time. The timeout is initially set to expire within the first
billing cycle. The runtime employs a simple heuristic to de-
cide whether to extend the timeout window. If no further
chunk request arrives within the first billing cycle, the timer
expires and returns 2–10 ms (a short time buffer) before the
100 ms window ends. This avoids accidentally executing into
the next billing cycle. The buffer time is configurable, and is
empirically decided based on the Lambda function’s memory
capacity. If more than one request can be served within the
current billing cycle, the heuristic extends the timeout by one
more billing cycle, anticipating more incoming requests.

Preflight Message. While the proxy knows whether a
Lambda node is running or has already returned, it does not
know when a Lambda node will expire and return. Because
of the billed duration control design that was just described, a
Lambda node may return at any time. For example, right after
the proxy has sent a request but before the request arrives at
the Lambda, the Lambda function may expire, resulting in a
denial of the request. The proxy could maintain global knowl-
edge about the Lambda node’s real-time states by periodically
polling the Lambda node. However, this is costly especially
if the Lambda pool size scales up to several thousand nodes.

To eliminate such overhead, the proxy issues a preflight
message (PING) each time a chunk request is forwarded to
the Lambda node. Upon receiving the preflight message, the
Lambda runtime responds with a PONG message, delays the
timeout (by extending the timer long enough to serve the
incoming request), and when the request has been served,
adjusts the timer to align it with the ending of the current
billing cycle. To further reduce overhead, the proxy can
attach the PING message as a parameter of a Lambda function

6Note that CLOCK is being leveraged for two unrelated purposes: per-
proxy for object eviction (§3.2), and per-node for chunk backup ordering.

USENIX Association 18th USENIX Conference on File and Storage Technologies 271

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

4

7

9

10

14

Figure 6: Lambda connection validation process in a proxy.

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

8

56

13

1112

Figure 7: State transitions of a Lambda function runtime.

invocation request, if the Lambda node is in sleep mode (i.e.,
not running but cached by AWS). Once awoken, the Lambda
runtime sends a PONG response back to the proxy.

3.4 Reliable Lambda Connections
To maintain reliable network connections between Lambda
nodes and their proxy, each proxy lazily validates the status of
a Lambda node every time there is a request to send. A proxy
maintains three states for each Lambda connection: 1) A
Sleeping state—a Lambda node that is not actively running;
2) An Active state—an actively running Lambda node; 3) A
Maybe state—during data backup (§4.2) the original Lambda
connection might have been temporarily replaced with a new
connection connecting the proxy to the destination Lambda
node. Figure 6 and Figure 7 depict the state transition graphs
for the proxy and the Lambda function runtime, respectively.
Note the step numbers show the interactions between a proxy
(Figure 6) and a Lambda function (Figure 7).

Connection Lifecycle. Initially, no Lambda node
is connected to the proxy. The connection is
(Sleeping,Unvalidated). 1 When a request comes,
or if a pre-warm-up is necessary, 2 the proxy invokes
a Lambda node. 3 Once the Lambda node is actively
running and has successfully connected to its proxy, the
Lambda runtime sends a PONG message to proxy. Now
the connection’s state becomes (Active,Validated), and
the proxy can start issuing chunk requests. 4 After the
proxy sends a chunk request, the connection transits to the
state (Active,Unvalidated). Having served the request
(5 transits from Active,Idling to Active,Serving while
6 transits back), if the proxy forwards the next request
continuously, a re-validation of the connection is necessary.
7 A PING message is sent. 8 This time, the Lambda node
replies with a PONG directly, which 9 makes the connection
(Active,Validated) again, and 10 the proxy continues
to issue the next chunk request. Note that the Lambda
node may return anytime, or a message may timeout. In
this case, the proxy re-invokes the Lambda node while
marking the connection as (Sleeping,Validating). Having
served the request (11 transits from Active,Idling to

Active,Serving while 12 transits back), if no request arrives,
the Lambda node 13 sends BYE to the proxy and returns,
and then the proxy 14 transits the connection state back to
(Sleeping,Unvalidated).

When a connection is in the Maybe state, it behaves like an
Active connection except that the proxy ignores the “return”
of the source Lambda node. This does not cause a correct-
ness issue since the source has already been replaced by a
new one (i.e., the destination). The connection is marked as
(Sleeping,Unvalidated) if a BYE message is received via the
connection.

4 Data Availability and Fault Tolerance
In this section, we conduct a case study with AWS Lambda
and describe the approaches INFINICACHE employs for main-
taining practical data availability and fault tolerance over a
fleet of ephemeral cloud functions with a high churn rate.

4.1 AWS Lambda Properties
While AWS allows function caching to mitigate “cold start”
overhead, it does not provide any availability guarantees for
the cached function and can reclaim it anytime. Hence, IN-
FINICACHE needs to be robust against frequent failures of
cache nodes. To better understand the stateless property of
AWS Lambda and its implications on short-term data avail-
ability, we conduct an extensive black-box analysis. We an-
alyze reclamation behaviors by quantifying the number of
reclaimed Lambda functions in a 24-hour period under differ-
ent warm-up strategies.

According to a recent study [54], a Lambda function that
finishes execution is kept by AWS for at most 27 minutes
if that function is not invoked again. A function’s lifespan
can be extended to hours if that function instance is invoked
periodically (i.e., by so-called warm-up operations). The
lifespan extension varies according to the warm-up strategy
as well as AWS’ internal resource management policy.

We deploy a pool of 300–400 Lambda functions with the
same memory configuration, and re-invoke each one of them
every N minute(s). Each function simply returns an ID value
that the function computed when it was invoked the first time.
If AWS reclaims an already invoked, cached function, a new

272 18th USENIX Conference on File and Storage Technologies USENIX Association

0 4 8 12 16 20 24
Timeline (Hour)

0

100

200

300

Fu
nc

 re
cla

im
ed 1 min (01/09/20)

1 min (12/26/19)
1 min (11/06/19)
1 min (10/20/19)
1 min (09/15/19)
9 min (08/21/19)

Figure 8: Number of functions being reclaimed over time under
various warm-up strategies.

0 10 20 30 40 50
Reclaimed function per minute

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
ob

ab
ilit

y 1 min (01/09/20)
1 min (12/26/19)
1 min (11/06/19)
1 min (10/20/19)
1 min (09/15/19)
9 min (08/21/19)

Figure 9: Probability distribution of the number of functions re-
claimed per minute on the sampled days.

function instance will be instantiated at the next invocation
request and the ID of this function will change. We keep track
of the ID to detect whether a function has been reclaimed or
not. We evaluate two warm-up strategies: a low warm-up
frequency (every 9 minutes) and a relatively high frequency
(every 1 minute). We ran each strategy during a span of 6
months (from August 2019 to January 2020), and recorded
the number of function reclaiming events.

As shown in Figure 8, for 9 min (08/21/19), we observe a
large number of function reclaiming events clustered around
hour 6, hour 12, and hour 20–22. The number of reclaimed
functions spiked roughly every 6 hours and almost all the
functions get reclaimed. For 1 min (09/15/19), the situa-
tion got much better; the peak number of reclaiming events
gets reduced to 22, 21, and 16 at hour 6, respectively. Similar
trends appeared in November, but got substantially changed in
December and January – for example for 1 min (12/26/19),
instead of spiking every 6 hours, AWS continuously reclaimed
Lambda functions with an hourly reclaiming rate of 36. This
is possibly due to AWS Lambda’s internal policy changes af-
ter AWS announced the launch of provisioned concurrency [3]
for Lambda on December 03, 2019.

Figure 9 shows the function reclaiming events roughly fol-
low a Zipf distribution for August, September, and November
(with different s values), and a Poisson distribution for Octo-
ber, December, and January (with different λ values). With
that, we can calculate an approximate range of probabilities of
r functions being reclaimed simultaneously in a user-defined
interval (§4.3). Motivated by these observations, we argue
that with careful design, we can improve the data availability
for INFINICACHE.

4.2 Maximizing Data Availability
INFINICACHE adopts three techniques for maximizing data
availability: (1) EC is used to enable data recovery for up
to p object chunk losses given an RS code (d + p). In the
case that there are more than p chunks lost, tenants need

1. init

2. Launch

4. Backup cmd

5. Connect

7. Connect

9. Connect

10. Be replaced 11. Send chunk key

metadata

6. Invoke w/ conn info

3. Send address:port

Retrieve

data

8. Hello

sProxy Relay d

Figure 10: INFINICACHE’s backup protocol.
to retrieve the data from the backing object store; (2) each
Lambda runtime is warmed up after every Twarm interval of
time; we use a Twarm value of of 1 minute as motivated by
our observations in §4.1; (3) to further enhance availability, a
delta-sync based data backup scheme provides incremental
backups every Tbak interval. The selection of Tbak is a trade-off
between availability, runtime overhead, and cost effectiveness:
a shorter interval lowers the data loss rate while a longer
interval incurs less backup overhead and less cost. In the
following, we explain the backup scheme in more detail.
Backup Protocol. INFINICACHE performs periodic delta-
sync backups between two peer replicas7 of the same Lambda
function. We choose peer replicas instead of distinct Lambdas
to be able to seamlessly failover to one of them in case the
other gets reclaimed.

In light of the observations in Figure 8, we design
a backup scheme that preserves the following properties:
(1) autonomicity—a Lambda node should backup itself
with minimum help from the proxy to keep proxy logic
simple; (2) high availability—the service provided by the
Lambda node should not be interrupted; and (3) low network
overhead—large object workloads are network bandwidth
sensitive so backups should cause low or no extra network
overhead. To this end, we adopt an efficient, Lambda-aware
mechanism that performs delta-sync between two peer repli-
cas of the same Lambda function.

The protocol sequence graph is depicted in Figure 10. In
Step 1, a Lambda node λs, serving as the source cache node,
sends an init-backup message to its proxy to initialize a
backup process every Tbak. Acknowledging this message,
in Step 2, the proxy launches a new process called relay
(co-allocated with proxy), which serves to forward TCP pack-
ets between λs and a destination Lambda node λd , i.e., the
Lambda node that receives the backup. In Step 3, the relay
process sends its own network information (address:port) to
the proxy, which issues a backup command in Step 4 to λs,
piggybacked with the relay’s connection information.

7Concurrent invocations to the same function produce multiple concurrent
Lambda instances – this process is called auto-scaling. Here we call each
instance of the same function a peer replica.

USENIX Association 18th USENIX Conference on File and Storage Technologies 273

In Step 5, λs establishes a TCP connection with the re-
lay and in Step 6 invokes a peer replica instance of the λs
function, which serves as λd ; at the same time, λs passes the
connection information of both the relay and proxy to λd as
the Lambda invocation parameters. In Step 7, λd establishes a
TCP connection with the relay. If connected successfully, an
indirect network channel is bridged through a relay between
λs and λd . Then λd sends a hello message to λs in Step 8
and connects to the proxy in Step 9.

Upon establishing the connection with λd , in Step 10, the
proxy disconnects from λs, which makes λd the only active
connection to the data of λs. Hence, the proxy forwards all
requests to λd while λd forwards requests to λs, if it has not
yet received the requested data. To receive data, λd sends a
hello to λs in Step 11 and λs starts sending metadata (stored
chunk keys) in an order from MRU to LRU. Once λd has
received all the keys, it starts the data migration by retrieving
the data associated with the keys from λs.

If λd receives a PUT request during data retrieval and the
key is not found, it inserts the new data in its cache and then
forwards it to λs. If a GET request is received for a key that
has been retrieved already from λs, λd directly responds with
the requested chunk. Otherwise, λd forwards the request to
λs, responds to the proxy, and then caches the key and the
corresponding chunk.

After data retrieval completes, λd returns and the connec-
tion to the proxy becomes inactive. Hence, the next time the
proxy invokes this Lambda function, AWS would launch one
of the two, λs or λd , if they have not been reclaimed yet. As
they are now in sync, they can both serve the data. After
another interval Tbak, the whole backup procedure repeats. λd
only retrieves the “delta” part of data to reduce overhead.

4.3 Data Availability and Cost Analysis
Availability Analysis. To better understand the data avail-
ability of INFINICACHE, we build an analytical model. As-
sume Nλ is the total number of Lambda nodes. At time Tr, a
number r of nodes are found reclaimed. m is the minimum
number of chunks that leads to an object loss and n is the
number of EC chunks of a object. An object is considered not
available if there are at least m chunks lost due to function re-
claiming. The probability P(r) that an object is not available
(i.e., lost) is formalized as: P(r) = ∑

n
i=m pi, where:

pi =
C(r, i)C(Nλ − r,n− i)

C(Nλ,n)
. (1)

Here C(r, i) is the combinations in which r reclaimed Lambda
nodes happens to hold i chunks belonging to the same object.
C(Nλ − r,n− i) is the combinations in which the rest chunks
of that object are held in Lambda nodes that have not been
reclaimed. C(Nλ,n) is the combinations in which all Lambda
nodes hold all chunks of an object.

Assuming pd(r) is the probability distribution of reclaim-
ing r Lambda nodes at Tr, the probability of losing an object

Pl is the sum of the probabilities of losing one object when at
least m Lambda nodes are reclaimed:

Pl =
Nλ

∑
r=m

P(r)pd(r) =
Nλ

∑
r=m

n

∑
i=m

C(r, i)C(Nλ − r,n− i)
C(Nλ,n)

pd(r). (2)

One observation is that pm
pm+1

can be larger than 10. E.g.,
for a 400-Lambda nodes deployment with Nλ = 400, an RS
code of (10 + 2), and a warm-up interval of 1 minute, if
12 nodes get reclaimed simultaneously at time Tr, we have
p3/p4 = 18.8 for r = 12, and P(r) is only about 5% larger
than p3. So we can simplify the formulation as P(r) ≈ pm,
thus Pl can be simplified as:

Pl ≈
Nλ

∑
r=m

C(r,m)C(Nλ − r,n−m)

C(Nλ,n)
pd(r). (3)

In our case study, Nλ = 400, n = 12, m = 3, and Twarm =
1 min. With Equation 3 we get Pl = 0.0039% ∼ 0.11% or
an availability Pa = 99.89% ∼ 99.9961% for 1 minute, and
93.36 ∼ 99.76% for 1 hour based on the variable probability
distribution of Lambda reclaiming policies we observed over
a six-month period (§4.1).
Cost Analysis. To maintain high availability, INFINI-
CACHE employs EC, warm-up, and delta-sync backup, which
all incur extra cost. For a better understanding of how these
techniques impact total cost, we build an analytical cost model.
To simplify our presentation, we do not explicitly express the
EC configuration using an RS code (d + p), but rather re-
flect it in the total number of instances Nλ. The total cost per
hour C is therefore composed of (1) serving chunk requests
(Cser), (2) warming-up functions (Cw), and (3) backing up
data, (Cbak). Thus, C = Cser +Cw +Cbak Next, we introduce
each term respectively.
• Serving cost Cser. AWS charges function invocations and
function duration. We denote the price per invocation as creq
and the duration price of per GB-second as cd . The function
duration is rounded up to the nearest 100 ms, we define a
round-up operation ceil100(.). Assume Lambda’s memory is
M GB, the average hourly request rate is nser, and the duration
of each invocation is tser ms, we have:

Cser = nser ∗ creq +nser ∗ ceil100(tser)/1000∗M ∗ cd . (4)
• Warm-up cost Cw. The backup frequency fw = 60/Twarm.
The warm-up duration tw is typically in the range of a few ms
and therefore we have ceil100(tw) = 100 ms. Thus we have:

Cw = Nλ ∗ fw ∗ creq +Nλ ∗ fw ∗0.1∗M ∗ cd . (5)

• Backup cost Cbak. The backup frequency is denoted as
fbak = 60/Tbak. We have:

Cbak = Nλ ∗ fbak ∗ creq +Nλ ∗ fbak ∗ tbak ∗M ∗ cd . (6)

As shown in §5.2, the backup cost is a dominating factor
whose proportion increases as more data are being cached.

5 Evaluation
In this section, we evaluate INFINICACHE on AWS Lambda
using microbenchmarks and a production workload from the
IBM Docker registry [17].

274 18th USENIX Conference on File and Storage Technologies USENIX Association

10MB 20MB 40MB 60MB 80MB 100MB
Obj Size(MB)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2

10+4
4+2
5+1

(a) 128 MB Lambda.

10MB 20MB 40MB 60MB 80MB 100MB
Obj Size(MB)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2

10+4
4+2
5+1

(b) 256 MB Lambda.

10MB 20MB 40MB 60MB 80MB 100MB
Obj Size(MB)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2

10+4
4+2
5+1

(c) 512 MB Lambda.

10MB 20MB 40MB 60MB 80MB 100MB
Obj Size(MB)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2

10+4
4+2
5+1

(d) 1024 MB Lambda.

10MB 20MB 40MB 60MB 80MB 100MB
Obj Size(MB)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2

10+4
4+2
5+1

(e) 2048 MB Lambda.

10MB 20MB 40MB 60MB 80MB 100MB
Obj Size(MB)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2
4+2

5+1
ElastiCache(10-node)
ElastiCache(1-node)

(f) 3008 MB Lambda.

Figure 11: Microbenchmark performance.

2 4 6 8 10
Client(s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

B/
s)

Ideal
InfiniCache

Figure 12: Scalability of INFINICACHE.

Implementation. We have implemented a prototype of IN-
FINICACHE using 5,340 lines of Go (460 LoC for the client
library, 3,447 for the proxy, and 1,433 for the Lambda run-
time). The EC module of the client library is implemented
using the Golang reedsolomon lib [11], which uses Intel’s
AVX-512 for accelerating EC computation.

Setup. Our experiments use AWS Lambda functions with
various configurations. Unless otherwise specified, we deploy
the client (with INFINICACHE’s client library) and proxy on
c5n.4xlarge EC2 VM instances. The Lambda functions are
in the same Amazon Virtual Private Cloud (VPC) as the EC2
instances and are equipped with a 10 Gbps network connec-
tion. The Lambda functions’ network bandwidth increases
with its memory amount; we observed a throughput of 50–160
MBps (from the smallest memory amount of 128 MB to the
largest memory amount of 3008 MB) between a c5n.4xlarge

EC2 instance and a Lambda function using iperf3.

5.1 Microbenchmark Performance
We first evaluate the performance of INFINICACHE under
synthetic GET-only workloads generated using a simple bench-
mark tool. With the microbenchmarking tests, we seek to
understand how different configuration knobs impact INFINI-
CACHE’s performance. The evaluated configuration knobs
include: EC RS code (we compare (10+1), (10+2), (4+2),
(5+ 1), with a (10+ 0) baseline, which directly splits an
object into 10 chunks without EC encoding/decoding), ob-

ject sizes (10–100 MB), and the Lambda function’s resource
configurations (128–3008 MB).

Figure 11 shows the distributions of end-to-end request
latencies seen under different configuration settings. Invoking
a warm Lambda function takes about 13 ms on average (with
the Go AWS SDK API), which is included in the end-to-end
latency results. We observe that the (10+1) code performs
best compared to other RS code configurations. This is due
to two reasons. First, (10+ 1) results in a maximum I/O
parallelism factor of 10 (first-k parallel I/O is described in
§3.2), and second, it keeps the EC decoding overhead at a
minimum (the higher the number of parity chunks, the longer
it takes for RS to decode). The caveat of using (10+ 1) is
that it trades off fault tolerance for better performance.

Another observation is that the (10+0) case does not seem
to lead to a better performance than that of (10+ 1) and in
several cases even sees higher tail latencies. This is due to
the fact that (10+ 0) suffers from Lambda straggler issues,
which outweighs the performance gained by fully eliminating
the EC decoding overhead. In contrast, (10+ 1)’s first-d
approach adds redundancy and this request-level redundancy
helps mitigate the impact of stragglers.

A Lambda function’s resource configuration has a great
impact on INFINICACHE’s latency. For example, (10+ 1)
achieves latencies in the range of 110–290 ms (Figure 11(c))
with 512 MB Lambda functions for objects of 100 MB,
whereas with 2048 MB Lambda functions, latencies improve
to 100–160 ms (Figure 11(e)). In addition, latency improve-
ment hits a plateau for Lambda functions equipped with more
than 1024 MB memory because larger Lambda functions
eliminate the network bottleneck for large chunk transfers.

To compare INFINICACHE with an existing solution, we
choose ElastiCache (Redis) and deploy it in two modes, a
1-node deployment using a cache.r5.8xlarge instance, and
a scale-out 10-node deployment using cache.r5.xlarge in-

USENIX Association 18th USENIX Conference on File and Storage Technologies 275

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

ElastiCache
IC (all objects)
IC (large only)
IC (large no backup)

0 10 20 30 40 50
Timeline (hour)

(b) All objects

0.0

0.1

0.2

0 10 20 30 40 50
Timeline (hour)

(c) Large obj only

0.0

0.1

0.2

0 10 20 30 40 50
Timeline (hour)

(d) Large obj only w/o backup

0.0

0.1

0.2
PUT/GET
Backup
Warm-up

Figure 13: Total $ cost (a) for ElastiCache and INFINICACHE (IC), and INFINICACHE’s hourly cost breakdown under various settings (b)-(e).

0 10 20 30 40 50
Timeline (hour)

(a) All objects

0

200

400

600

Co
un

t

0 10 20 30 40 50
Timeline (hour)

(b) Large obj only

0

200

400

600

0 10 20 30 40 50
Timeline (hour)

(c) Large obj only w/o backup

0

200

400

600
Recovery
RESET
Function reclaiming

Figure 14: Timeline of INFINICACHE’s fault tolerance activities under various workload settings.

Workload WSS Thpt EC IC IC w/o backup
All objects 1,169 GB 3,654 67.9% 64.7% -
Large obj. only 1,036 GB 750 65.9% 63.6% 56.1%

Table 1: Workloads’ working set sizes (WSS), throughput (average
GETs per hour), and the cache hit ratio achieved by ElastiCache (EC)
and INFINICACHE (IC).

stances. As shown in Figure 11(f), INFINICACHE outper-
forms the 1-node ElastiCache for all object sizes, as Redis is
single-threaded and cannot handle concurrent large I/Os as ef-
ficiently. For larger object sizes, INFINICACHE with (10+1)
and (10+2) consistently achieves lower latencies compared
to the 10-node ElastiCache, thanks to INFINICACHE’s first-d
based data streaming optimization. These results show that
INFINICACHE’s performance is competitive as an IMOC.

Scalability. In this test, we setup a multi-client deployment
to simulate a realistic use case in which a tenant has multi-
ple microservices that concurrently read from and write to
INFINICACHE. To do so, we vary the number of clients from
1 to 10. We also deploy a 5-proxy cluster where each proxy
manages a 50-node Lambda pool (and each Lambda function
has 1024 MB memory). Each client uses consistent hashing to
talk to different proxies for shared data access (see Figure 2).

Figure 12 shows the throughput in terms of GB/s. We
observe that INFINICACHE’s throughput scales linearly as
the number of clients increases. Ideally, INFINICACHE can
scale linearly as long as more Lambda nodes are available for
serving GET requests.

5.2 Production Workload
In this section, we evaluate INFINICACHE using the IBM
Docker registry production workload (detailed in §2). The
original workload contains a 75-day request trace spanning
7 geographically distributed datacenters. Out of the 7 data-
centers, we select Dallas, which features the highest load. We
parse the Dallas trace for GET requests that read a blob (i.e., a
Docker image layer). We test two workload settings: 1) all

objects (including both small and large, with a working set
size (WSS) of 1,169 GB as shown in Table 1), and 2) large
object only (only including objects larger than 10 MB, with
a WSS of 1,036 GB).

We replay the first 50 hours of the Dallas trace in real time
and skip the largest object which was 8 GB (there was only
one object). A GET upon a miss results in a PUT that inserts
the object into the cache. INFINICACHE is configured with
a pool consisting of 400 1.5 GB Lambda functions, which
are managed by one proxy co-located with our trace replayer
as the client. We use an EC RS configuration of (10+ 2)
to balance performance with fault tolerance. We select a
warm-up interval Twarm as 1 minute (due to our study in Fig-
ure 8) and a backup interval Tbak as 5 minutes (to balance the
cost-availability tradeoff). For the large object only work-
load, we test two INFINICACHE configurations: the default
case with backup enabled, and a case with backup disabled
(without backup).
Cost Savings. Figure 13(a) shows the accumulated mon-
etary cost of INFINICACHE in comparison with an Elasti-
Cache setup of one cache.r5.24xlarge Redis instance with
635.61 GB memory. By the end of hour 50, ElastiCache costs
$518.4, while INFINICACHE with all objects costs $20.52.
Caching only large objects bigger than 10 MB leads to a cost
of $16.51 for INFINICACHE. INFINICACHE’s pay-per-use
serverless substrate effectively brings down the total cost by
96.8% with a cost effectiveness improvement of 31×. By
disabling the backup option, INFINICACHE further lowers
down the cost to $5.41, which is 96× cheaper than Elasti-
Cache. However, the low monetary cost for tenants comes at
a price of impacted availability and hit ratio – INFINICACHE
without backup sees a lower hit ratio of 56.1% (Table 1) –
thus presenting a reasonable tradeoff for tenants to choose.

INFINICACHE’s monetary cost is composed of three parts:
(1) serving GETs/PUTs, (2) warming-up Lambda functions,
and (3) backing up data. Figure 13(b)-(d) details the cost

276 18th USENIX Conference on File and Storage Technologies USENIX Association

10−2 100 102

Latency (sec)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ElastiCache
InfiniCache
AWS S3

(a) All objects.

10−1 100 101 102

Latency (sec)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ElastiCache
InfiniCache
AWS S3

(b) Objects > 10 MB.

Figure 15: INFINICACHE latencies vs. AWS S3 and ElastiCache.

breakdown, further explaining the cost variations of different
combinations of workload and INFINICACHE settings. In Fig-
ure 13(b), we see that about 41% of the total cost is spent on
serving data requests under the workload with all objects;
this is because a significant portion of requests are for small
objects. In contrast, for the large object only workload
shown in Figure 13(c), the backup and warmup cost domi-
nates, occupying around 88.3% of the overall cost. This is be-
cause the hourly request rate for large object only is signif-
icantly lower than that for the all object workload. Further-
more, disabling backup leads to a dramatic cost-effectiveness
improvement (see Figure 13(d)). The warm-up cost is differ-
ent between Figure 13(c) and Figure 13(d), because with the
backup option enabled, a warm-up invocation may trigger a
backup, and thus increase the warm-up duration.

Fault Tolerance. Figure 14 shows INFINICACHE’s fault
tolerance activities for different cases. An object loss (losing
all the replicas of more than p chunks) results in a cache
miss which triggers a RESET; the RESET fetches the lost object
from a backing store and reinserts it into INFINICACHE. We
observe that EC-based recovery activities and RESETs mostly
coincide with the occurrence of request spikes at hour 15–
20 and hour 34–42. Under the workload of all objects

(Figure 14(a)), we see a total of 5,720 RESET events. This
number is reduced to 1,085 for the large object only work-
load (Figure 14(b)), leading to an availability of 95.4%; as
shown in Figure 14(c). INFINICACHE without backup sees
3,912 RESETs, which is 18.6% of 21,022 read hits in total.
RESETs also result in a lower cache hit ratio for INFINICACHE,
compared to ElastiCache, as shown in Table 1.

Performance Benefit. We replay the first 50 hours of the
Dallas trace against AWS S3 to simulate a deployed Docker
registry service using S3 as a backing store. We compare
INFINICACHE’s performance against AWS ElastiCache and
S3 seen under the same workload (all objects). Figure 15
shows the overall trend of latency distribution, and Figure 16
shows the distribution of the normalized latencies as a func-
tion of the object sizes.

We make the following three observations. (1) In Fig-
ure 15(b), we see that, compared to S3, INFINICACHE
achieves superior performance improvement for large objects.
For about 60% of all large requests, INFINICACHE is able to
achieve an improvement of at least 100×. This trend demon-

<1 [1,10) [10,100) >=100
Object size (MB)

100

102

104

No
rm

al
ize

d
la

te
nc

y ElastiCache InfiniCache AWS S3

Figure 16: Normalized latencies grouped by object sizes. Each is
normalized to that of ElastiCache.

strates the efficacy of INFINICACHE in serving as an IMOC
in front of a cloud object store. (2) INFINICACHE is partic-
ularly good at optimizing latencies for large objects. This
is evidenced by two facts: i) INFINICACHE achieves almost
identical performance as ElastiCache for objects sizing from
1–100 MB; and ii) INFINICACHE achieves consistently lower
latencies than ElastiCache for objects larger than 100 MB (see
Figure 16), due to INFINICACHE’s I/O parallellism. (3) IN-
FINICACHE incurs significant overhead for objects smaller
than 1 MB (Figure 16), since fetching an object from INFINI-
CACHE typically requires to invoke Lambda functions, which
takes on average 13 ms and is much slower than directly
fetching a small object from ElastiCache.

6 Discussion
In this section, we discuss the limitations and possible future
directions of INFINICACHE.

0 80K 160K 240K 320K
Access rate (req / hr)

0.0
2.5
5.0
7.5

10.0

Ho
ur

ly
 c

os
t (

$)

ElastiCache
InfiniCache

Figure 17: Hourly $ cost (Y-axis) of INFINICACHE with 400 1.5 GB
Lambdas vs. one cache.r5.24xlarge ElastiCache instance, as a
function of access rate (X-axis).

Small Object Caching. Small object-intensive memory
caching workloads have a high traffic rate, typically rang-
ing from thousands to hundreds of thousands of requests per
second [19]. Serverless computing platforms are not cost-
effective under such workloads, because the high data traffic
will significantly increase the per-invocation cost and com-
pletely outweigh the pay-per-use benefit. Figure 17 compares
the hourly cost of INFINICACHE with ElastiCache, assuming
the cost models in §4.3 and configurations in §5.2. The hourly
cost increases monotonically with the access rate, and even-
tually overshoots ElastiCache when the access rate exceeds
312 K requests per hour (86 requests per second).
Porting INFINICACHE to Other FaaS Providers. To the
best of our knowledge, major serverless computing service
providers such as Google Cloud Functions and Microsoft
Azure Functions all provide function caching with various
lifespans to mitigate the cost of cold startups [54]. Google

USENIX Association 18th USENIX Conference on File and Storage Technologies 277

Cloud Functions imposes similar constraints on tenants:
e.g., banned in-bound TCP connections and limited function
CPU/memory resources. The design of INFINICACHE should
be portable to other major serverless computing platforms
such as Google Cloud Functions, with minor source code
modifications to work with Google Cloud’s APIs.
Service Provider’s Policy Changes. Service providers
may change their internal implementations and policies in re-
sponse to systems like INFINICACHE. On the one hand, state-
fulness is urgently demanded by today’s FaaS tenants – provid-
ing durable state caching is critical to support a broader range
of complex stateful applications [12, 21, 52] such as data ana-
lytics [45] and parallel & scientific computing [25, 49]. On
the other hand, to strike a balance, providers could introduce
new pricing models for stateful FaaS applications – tenants
can get stateful Lambda functions by paying slightly more
than that is charged by a completely stateless one. The new
feature recently launched by AWS Lambda, provisioned con-
currency [3], pins warm Lambda functions in memory but
without any availability guarantee (provisioned Lambdas may
get reclaimed, and re-initialized periodically. But the reclama-
tion frequency is low compared to non-provisioned Lambdas),
and charges tenants hourly ($0.015 per GB per hour, no mat-
ter whether the provisioned functions get invoked), which is
similar to EC2 VMs’ pricing model. Nonetheless, it opens
up research opportunities for new serverless-oriented cloud
economics. We leave developing durable storage atop INFINI-
CACHE in support of new stateful serverless applications as
considerations for our future work.
Using INFINICACHE as a White-Box Approach. INFINI-
CACHE presents a practical yet effective solution that exploits
AWS Lambda as a black-box to achieve cost effectiveness,
availability, and performance for cloud tenants. Our find-
ings also imply that modern datacenter management systems
could potentially leverage such techniques to provide short-
term (e.g., intermediate data) caching for data-intensive ap-
plications such as big data analytics. Serving as a white-box
solution, datacenter operators can use global knowledge to
optimize data availability and locality. We hope future work
will build on ours to develop new storage frameworks that
can more efficiently utilize ephemeral datacenter resources.

7 Related Work
Cost-Effective Cloud Storage. Considerable prior
work [14, 44, 46, 56, 57] has examined ways to minimize the
usage cost of cloud storage. SPANStore [56] adopts a hybrid
cloud approach by spreading data across multiple cloud
service providers and exploits pricing discrepancies across
providers. By contrast, INFINICACHE focuses on exploiting
stateless cloud function services to achieve pay-per-use
storage elasticity with dramatically reduced cost.
Exploiting Spot Cloud Resources. Researchers have ex-
plored spot and burstable cloud resources to improve the cost
effectiveness of applications such as memory caching [53],

IaaS services [50], and batch computing [51]. INFINICACHE
differs from them in several aspects: (1) ephemeral cloud
functions exhibit significantly higher churn than the more sta-
ble spot instances; (2) cloud functions are inherently “server-
less” and cannot directly host serverful long-running applica-
tions which accept inbound network connections; and (3) spot
instances are not automatically cached by providers unlike
cloud functions.
In-Memory Key-Value Stores. A large body of re-
search [26, 27, 28, 29, 37, 39, 41, 42, 48, 55] focuses on
improving the performance of in-memory key-value stores
for small-object intensive workloads. INFINICACHE is specifi-
cally designed and optimized for large objects with sizes rang-
ing from MBs to GBs. EC-Cache [47] and SP-Cache [58] are
in-memory caches built atop Alluxio [38] to provide large ob-
ject caching for data-intensive cluster computing workloads.
They split the large objects into smaller chunks (EC-Cache
leverages erasure coding while SP-Cache directly partitions
objects) and perform curated chunk placement to achieve load
balancing. The role of erasure coding in INFINICACHE is
multi-fold: similar to EC-Cache [47], INFINICACHE lever-
ages erasure coding to mitigate the cloud functions’ straggler
issue; erasure coding also provides space-efficient fault toler-
ance against potential loss of cloud functions.
New Applications of Serverless Computing. Researchers
have identified new applications for serverless computing
in data analytics [25, 35], video processing [18, 32], linear
algebra [49], machine learning [24, 34], and software compi-
lation [31]. However, these applications exploit the comput-
ing power of serverless platforms to parallelize and acceler-
ate compute-intensive jobs, whereas INFINICACHE presents
a completely new use case of cloud function services—
implementing a stateful storage service atop stateless cloud
functions by exploiting transparent function caching.

8 Conclusion
With web applications becoming increasingly storage-
intensive, it is imperative to revisit the design of in-memory
object caching in order to efficiently deal with both small
and large objects. We have presented a novel in-memory
object caching solution that achieves high cost effectiveness
and good availability for large object caching by building
INFINICACHE on top of a popular serverless computing plat-
form (AWS Lambda). For the first time in the literature,
INFINICACHE enables request-driven pay-per-use elasticity
at the cloud storage level with a serverless architecture. IN-
FINICACHE does this by synthesizing a series of techniques
including erasure coding and a delta-sync-based data backup
scheme. Being serverless-aware, INFINICACHE intelligently
orchestrates ephemeral cloud functions and improves cost
effectiveness by 31× compared to ElastiCache, while main-
taining 95.4% availability for each hour time window.

INFINICACHE’s source code is available at:
https://github.com/mason-leap-lab/InfiniCache.

278 18th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/mason-leap-lab/InfiniCache

Acknowledgments
We are grateful to our shepherd, Carl Waldspurger, as well as
the anonymous reviewers, for their valuable comments and
suggestions that significantly improved the paper. We would
also like to thank Benjamin Carver and Richard Carver for
their careful proofreading. This work is sponsored in part by
NSF under CCF-1919075, CCF-1756013, IIS-1838024, and
AWS Cloud Research Grants.

References

[1] 2018 Serverless Community Survey: huge growth
in serverless usage. https://serverless.com/
blog/2018-serverless-community-survey-huge-
growth-usage/.

[2] AWS Lambda. https://aws.amazon.com/lambda/.

[3] AWS Lambda announces Provisioned Concurrency
(Posted on: Dec 3, 2019). https://aws.amazon.
com/about-aws/whats-new/2019/12/aws-lambda-
announces-provisioned-concurrency/.

[4] Azure Functions. https://azure.microsoft.com/
en-us/services/functions/.

[5] Docker Hub: Container Image Library. https://www.
docker.com/products/docker-hub.

[6] Facebook’s Top Open Data Problems. https:
//research.fb.com/blog/2014/10/facebook-s-
top-open-data-problems/.

[7] Google Cloud Functions. https://cloud.google.
com/functions/.

[8] IBM Cloud Functions. https://console.bluemix.
net/openwhisk/.

[9] Memcached. https://memcached.org/.

[10] Redis. https://redis.io/.

[11] Reed-Solomon Erasure Coding in Go. https://
github.com/klauspost/reedsolomon.

[12] The Serverless Supercomputer: Harnessing the power
of cloud functions to build a new breed of distributed
systems. https://read.acloud.guru/https-
medium-com-timawagner-the-serverless-
supercomputer-555e93bbfa08.

[13] Varnish HTTP Cache. https://varnish-cache.
org/.

[14] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim
Weatherspoon. Racs: A case for cloud storage diversity.
In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, pages 229–240, New York, NY,
USA, 2010. ACM.

[15] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-

performance serverless computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
923–935, Boston, MA, 2018. USENIX Association.

[16] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew
Warfield, Dhruba Borthakur, Srikanth Kandula, Scott
Shenker, and Ion Stoica. Pacman: Coordinated memory
caching for parallel jobs. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 267–280, San Jose,
CA, 2012. USENIX.

[17] Ali Anwar, Mohamed Mohamed, Vasily Tarasov,
Michael Littley, Lukas Rupprecht, Yue Cheng, Nan-
nan Zhao, Dimitrios Skourtis, Amit S. Warke, Heiko
Ludwig, Dean Hildebrand, and Ali R. Butt. Improving
docker registry design based on production workload
analysis. In 16th USENIX Conference on File and Stor-
age Technologies (FAST 18), pages 265–278, Oakland,
CA, 2018. USENIX Association.

[18] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and
George Porter. Sprocket: A serverless video processing
framework. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC ’18, pages 263–274, New
York, NY, USA, 2018. ACM.

[19] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, pages 53–64,
New York, NY, USA, 2012. ACM.

[20] AWS. Whitepaper: Security overview of AWS Lambda
Security and compliance best practices. March 2019.

[21] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard
París, Pierre Sutra, and Pedro García-López. On the
faas track: Building stateful distributed applications
with serverless architectures. In Proceedings of the 20th
International Middleware Conference, Middleware ’19,
pages 41–54, New York, NY, USA, 2019. ACM.

[22] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason So-
bel, and Peter Vajgel. Finding a needle in haystack:
Facebook’s photo storage. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 47–60, Berkeley, CA,
USA, 2010. USENIX Association.

[23] Daniel S. Berger, Ramesh K. Sitaraman, and Mor
Harchol-Balter. Adaptsize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 483–498, Boston,
MA, 2017. USENIX Association.

[24] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew

USENIX Association 18th USENIX Conference on File and Storage Technologies 279

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://aws.amazon.com/lambda/
https://aws.amazon.com/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://aws.amazon.com/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://aws.amazon.com/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.docker.com/products/docker-hub
https://www.docker.com/products/docker-hub
https://research.fb.com/blog/2014/10/facebook-s-top-open-data-problems/
https://research.fb.com/blog/2014/10/facebook-s-top-open-data-problems/
https://research.fb.com/blog/2014/10/facebook-s-top-open-data-problems/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://console.bluemix.net/openwhisk/
https://console.bluemix.net/openwhisk/
https://memcached.org/
https://redis.io/
https://github.com/klauspost/reedsolomon
https://github.com/klauspost/reedsolomon
https://read.acloud.guru/https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08
https://read.acloud.guru/https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08
https://read.acloud.guru/https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08
https://varnish-cache.org/
https://varnish-cache.org/

Zhang, and Randy Katz. Cirrus: A serverless framework
for end-to-end ml workflows. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’19, pages
13–24, New York, NY, USA, 2019. ACM.

[25] Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue
Cheng. In search of a fast and efficient serverless dag
engine. In 4th International Parallel Data Systems
Workshop (PDSW 2019), 2019.

[26] Yue Cheng, Aayush Gupta, and Ali R. Butt. An in-
memory object caching framework with adaptive load
balancing. In Proceedings of the Tenth European Con-
ference on Computer Systems, EuroSys ’15, pages 4:1–
4:16, New York, NY, USA, 2015. ACM.

[27] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh,
and Sachin Katti. Cliffhanger: Scaling performance
cliffs in web memory caches. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16), pages 379–392, Santa Clara, CA, March
2016. USENIX Association.

[28] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
79–94, Boston, MA, February 2019. USENIX Associa-
tion.

[29] Bin Fan, David G. Andersen, and Michael Kamin-
sky. Memc3: Compact and concurrent memcache with
dumber caching and smarter hashing. In Presented
as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
371–384, Lombard, IL, 2013. USENIX.

[30] Fernando J Corbato. A paging experiment with the
multics system. Technical Report.

[31] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 475–488, Renton, WA,
July 2019. USENIX Association.

[32] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 363–376, Boston,
MA, 2017. USENIX Association.

[33] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna

Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark
suite for microservices and their hardware-software im-
plications for cloud & edge systems. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, pages 3–18, New
York, NY, USA, 2019. ACM.

[34] V. Ishakian, V. Muthusamy, and A. Slominski. Serving
deep learning models in a serverless platform. In 2018
IEEE International Conference on Cloud Engineering
(IC2E), pages 257–262, April 2018.

[35] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99In Proceedings of the 2017 Sympo-
sium on Cloud Computing, SoCC ’17, pages 445–451,
New York, NY, USA, 2017. ACM.

[36] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion
Stoica, and David A. Patterson. Cloud programming
simplified: A berkeley view on serverless computing.
Technical Report UCB/EECS-2019-3, EECS Depart-
ment, University of California, Berkeley, Feb 2019.

[37] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 137–152, New York, NY, USA, 2017.
ACM.

[38] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC
’14, pages 6:1–6:15, New York, NY, USA, 2014. ACM.

[39] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, Seattle, WA, 2014. USENIX
Association.

[40] M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz, V. Tarasov,
L. Rupprecht, D. Skourtis, M. Mohamed, H. Ludwig,
Y. Cheng, and A. R. Butt. Bolt: Towards a scal-
able docker registry via hyperconvergence. In 2019
IEEE 12th International Conference on Cloud Comput-
ing (CLOUD), pages 358–366, July 2019.

[41] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,

280 18th USENIX Conference on File and Storage Technologies USENIX Association

Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. Distcache: Provable load balancing for large-
scale storage systems with distributed caching. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 143–157, Boston, MA, February 2019.
USENIX Association.

[42] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, pages 183–196, New
York, NY, USA, 2012. ACM.

[43] Edward Oakes, Leon Yang, Dennis Zhou, Kevin
Houck, Tyler Harter, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. SOCK: Rapid task provi-
sioning with serverless-optimized containers. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 57–70, Boston, MA, 2018. USENIX Associ-
ation.

[44] T. G. Papaioannou, N. Bonvin, and K. Aberer. Scalia:
An adaptive scheme for efficient multi-cloud storage. In
SC ’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, pages 1–10, Nov 2012.

[45] Qifan Pu, Shivaram Venkataraman, and Ion Stoica.
Shuffling, fast and slow: Scalable analytics on server-
less infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 193–206, Boston, MA, 2019. USENIX Asso-
ciation.

[46] Krishna P.N. Puttaswamy, Thyaga Nandagopal, and
Murali Kodialam. Frugal storage for cloud file systems.
In Proceedings of the 7th ACM European Conference
on Computer Systems, EuroSys ’12, pages 71–84, New
York, NY, USA, 2012. ACM.

[47] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
401–417, Savannah, GA, November 2016. USENIX
Association.

[48] Stephen M. Rumble, Ankita Kejriwal, and John Ouster-
hout. Log-structured memory for dram-based storage.
In 12th USENIX Conference on File and Storage Tech-
nologies (FAST 14), pages 1–16, Santa Clara, CA, Febru-
ary 2014. USENIX Association.

[49] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas,
Shivaram Venkataraman, Ion Stoica, Benjamin Recht,
and Jonathan Ragan-Kelley. numpywren: serverless
linear algebra. arXiv preprint arXiv:1810.09679, 2018.

[50] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin,
and Prashant Shenoy. Spotcheck: Designing a deriva-
tive iaas cloud on the spot market. In Proceedings of
the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 16:1–16:15, New York, NY, USA,
2015. ACM.

[51] Supreeth Subramanya, Tian Guo, Prateek Sharma,
David Irwin, and Prashant Shenoy. Spoton: A batch
computing service for the spot market. In Proceed-
ings of the Sixth ACM Symposium on Cloud Computing,
SoCC ’15, pages 329–341, New York, NY, USA, 2015.
ACM.

[52] Tim Wagner. Serverless State: What comes next for
serverless. In ServerlessConf NYC’19.

[53] Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta,
George Kesidis, and Qianlin Liang. Exploiting spot
and burstable instances for improving the cost-efficacy
of in-memory caches on the public cloud. In Proceed-
ings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, pages 620–634, New York, NY,
USA, 2017. ACM.

[54] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas
Ristenpart, and Michael Swift. Peeking behind the
curtains of serverless platforms. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages
133–146, Boston, MA, 2018. USENIX Association.

[55] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren,
Michel Hack, and Song Jiang. Zexpander: A key-value
cache with both high performance and fewer misses. In
Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, New York, NY, USA,
2016. Association for Computing Machinery.

[56] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan
Katz-Bassett, and Harsha V. Madhyastha. Spanstore:
Cost-effective geo-replicated storage spanning multi-
ple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pages 292–308, New York, NY, USA,
2013. ACM.

[57] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. Costlo:
Cost-effective redundancy for lower latency variance on
cloud storage services. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
15), pages 543–557, Oakland, CA, May 2015. USENIX
Association.

[58] Yinghao Yu, Renfei Huang, Wei Wang, Jun Zhang,
and Khaled Ben Letaief. Sp-cache: Load-balanced,
redundancy-free cluster caching with selective parti-
tion. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, SC ’18. IEEE Press, 2018.

USENIX Association 18th USENIX Conference on File and Storage Technologies 281

Quiver: An Informed Storage Cache for Deep Learning

Abhishek Vijaya Kumar
Microsoft Research India

Muthian Sivathanu
Microsoft Research India

Abstract
We introduce Quiver, an informed storage cache for deep
learning training (DLT) jobs in a cluster of GPUs. Quiver em-
ploys domain-specific intelligence within the caching layer, to
achieve much higher efficiency compared to a generic storage
cache. First, Quiver uses a secure hash-based addressing to
transparently reuse cached data across multiple jobs and even
multiple users operating on the same dataset. Second, by co-
designing with the deep learning framework (e.g., PyTorch),
Quiver employs a technique of substitutable cache hits to get
more value from the existing contents of the cache, thus avoid-
ing cache thrashing when cache capacity is much smaller
than the working set. Third, Quiver dynamically prioritizes
cache allocation to jobs that benefit the most from the caching.
With a prototype implementation in PyTorch, we show that
Quiver can significantly improve throughput of deep learning
workloads.

1 Introduction

The more you know, the less (cache) you need.

- Australian proverb

Increasingly powerful compute accelerators, such as faster
GPUs [33] and ASICs [17], have made the storage layer a
potential bottleneck in deep learning training (DLT) jobs, as
these jobs need to feed input training data fast enough to keep
the compute units busy. For example, a popular benchmark
for deep learning training is the ResNet50 [16] model on
ImageNet data [14]. On 8 V100s, the training job can process
10,500 images/sec [6]. As each input image in ImageNet
is roughly 200 KB, this translates to a storage bandwidth
requirement of nearly 2 GB/s, to keep the GPUs busy. Newer,
faster hardware (e.g., TPUv3 [20], GraphCore [13]) will push
this bandwidth requirement even higher, as their increased
compute speeds require faster feeding of input data.

While such bandwidth requirements are challenging in their
own right, three aspects of deep learning training (DLT) jobs
exacerbate this problem.

First, for hyper-parameter tuning, users typically run tens
or hundreds of instances of the same job, each with a different
configuration of the model (e.g., learning rate, loss function,
etc.). In such a scenario, the same underlying store must ser-
vice reads from several such jobs, each reading in a different

random order, placing significantly higher bandwidth demand
on the store.

Second, data sizes for input training data in deep learn-
ing jobs have been increasing at a rapid pace. While the 1M
ImageNet corpus is hundreds of GB in size (the full corpus
is 14x larger), newer data sources that are gaining popular-
ity are much larger. For example, the youtube-8M dataset
used in video models, is about 1.53 TB for just frame-level
features [12], while the Google OpenImages dataset [10], a
subset of which is used in the Open Images Challenge [11],
has a total size of roughly 18 TB for the full data [10].

Third, the most common mode of running deep learning
jobs is by renting GPU VMs on the cloud (partly because of
the high cost of GPUs); such VMs have limited local SSD
capacity (e.g., most Azure GPU series VMs have a local SSD
of 1.5 to 3TB). Further, local SSDs are “ephemeral" across
VM migrations. Pre-emptible VMs are provided by cloud
providers at a significantly lower cost (6-8x cheaper) com-
pared to dedicated VMs [1, 22]; such VMs running DLT jobs
may be preempted at any time, and resume from a check-
point on a different VM [3], losing all local SSD state. As
a result, users keep input training data in reliable persistent
cloud storage (e.g., in a managed disk or a data blob) within
the same data center region, and access the store remotely
from GPU VMs that run the training job. Egress bandwidth
from the store to the compute VMs is usually a constrained
resource, especially when several VMs read from the same
storage blob.

In this paper, we present Quiver, a storage management
solution for supporting the I/O bandwidth requirements of
DLT jobs in the above setting where the input training data
resides in a cloud storage system, and the DLT jobs are run in
a few GPU VMs in the cloud (typically in the same datacenter
region). Quiver is an intelligent, distributed cache for input
training data, that is shared across multiple jobs or even across
multiple users, in a secure manner without leaking data.

The key insight in Quiver is to fundamentally improve
cache efficacy by exploiting several characteristics of the DLT
workflow that simplify storage management. First, deep learn-
ing datasets are head-heavy. A few popular input datasets
(such as ImageNet) are used across numerous DLT jobs and
across several model architectures. Even in companies, dif-
ferent members of a team may be iterating on different al-
ternative ideas, all of which target the same end-to-end prob-
lem/dataset such as web search. Second, each DLT job runs

USENIX Association 18th USENIX Conference on File and Storage Technologies 283

multiple (typically 50-100) epochs of training, with each
epoch consuming the entire training data once (in a random
permutation order). These two characteristics make the work-
load very cache-friendly. However, when the datasets are too
large to fit in a single VM, the cache needs to span multiple
VMs (possibly across multiple users in the organization) in a
secure manner.

Another key observation that Quiver exploits is that the
data read by DLT jobs is transparently substitutable. A single
epoch of a DLT job consumes the entire training data in a ran-
dom permutation order, and as long as the order is random and
the entire data is consumed exactly once, the exact sequence
in which inputs are read does not matter. This allows Quiver
to provide thrash-free caching, a powerful technique in sce-
narios when the available cache capacity is much smaller than
the working set size; such a scenario usually makes the cache
ineffective because of thrashing. In contrast, Quiver allows a
small slice of the dataset to be cached and shared efficiently
in a decentralized manner across multiple jobs accessing that
dataset, without causing thrashing.

Sharing a cache across multiple users, where each user
may have private training data (perhaps to augment standard
datasets) needs to preserve privacy so that training data of one
user is not leaked to another. The need for isolation of data
conflicts with reuse of cache across shared data. To bridge
this, Quiver does secure content-based indexing of the cache,
so that the cache is reused even across different physical
datasets with the same content (e.g., multiple copies/blobs
of ImageNet data). The content-hash of a data item (or a
group of data items) is used to address the cache. A digest
file available with the DLT job of a particular user contains
the hashes of individual data items in the dataset; the very
possession of a valid content hash serves as a capability to
access that data item, thus providing a simple yet effective
form of access control similar to those explored in content-
addressed filesystems [9, 23].

An important signal that Quiver uses to prioritize cache
placement and eviction, is the effective user-perceived benefit
from caching, for every DLT job. Whether a DLT job needs
a cache is primarily a function of two factors: (a) the remote
storage bandwidth (b) amount of compute per byte of data
read by the job from the store. A DLT job with a very deep
model would perform lot of computation per input, and thus
the I/O time can be hidden/pipelined behind compute time
even if the storage bandwidth is low, and vice versa. Further,
some jobs may overlap I/O and computation with pipelining,
while some may perform I/O synchronously. Thus, modelling
the sensitivity of a DLT job’s performance to caching is not
straightforward. Quiver simplifies this by exploiting the pre-
dictability of DLT jobs across mini-batches [31, 37], and uses
controlled probing to measure the time for a fixed number
of mini-batches, with and without caching. The difference in
performance between these two modes is an accurate empir-
ical metric of how much a particular DLT job benefits from

caching, and is used in eviction and placement decisions.
We have implemented Quiver as a dynamic distributed

cache shared across multiple users and jobs running within
a cluster of GPUs, and integrated it with the PyTorch deep
learning toolkit [25]. Quiver has three components: a cache
server that runs in a separate container under a dedicated user,
a cache manager that co-ordinates actions across multiple
cache servers, and a cache client that runs in the same con-
tainer as every DLT job accessing the cache; in fact the client
is integrated with the PyTorch data input layer. Such tight
integration allows Quiver to exploit intricate knowledge of
the specific DLT job.

We have evaluated Quiver in a cluster of 48 GPUs, across a
multi-user, multi-job workload. We demonstrate that Quiver
speeds up DLT jobs by up to 3.8x and improves overall cluster
throughput by up to 2.1x under a mixed workload. We also
show that the substitutable cache hits feature of Quiver avoids
cache thrashing with a small cache, allowing jobs to make
good use of a fractional cache, and that benefit-aware cache
prioritization improves overall cluster efficiency by allocating
constrained cache space wisely.

This paper makes the following key contributions:
• We characterize the I/O behavior of deep learning train-

ing jobs, and identify various key characteristics such as
substitutability, predictability, and shareability.
• We provide the first storage solution that allows DLT jobs

to get much higher effective I/O bandwidth for training
data reads, by using a distributed cache that is shared
across multiple users in a secure manner.
• We identify and implement several efficiency improve-

ments to the cache layer by exploiting intricate knowl-
edge about how sensitive a job is to I/O performance, to
prioritize cache eviction and placement.
• We provide a novel thrash-proof caching strategy that

exploits the substitutability of a DLT job’s I/O requests,
and provide a way for multiple jobs to access a shared
slice of a data set in an efficient manner.
• We demonstrate the efficacy of our techniques and poli-

cies with a real implementation and empirical evaluation
on a cluster of 48 GPUs.

The rest of the paper is structured as follows. We present
a brief background of DLT jobs in Section 2. In Section 3,
we present various key characteristics of DLT jobs from an
I/O perspective. We present the design of Quiver in Section 4,
and provide more detail on the cache management policies
in Section 5. We discuss the implementation of Quiver in
Section 6, and evaluate it in Section 7. Finally, we present
related work in Section 8, and conclude in Section 9.

2 Background

A deep learning training (DLT) job takes training data as
input, and learns a model that represents the training data.

284 18th USENIX Conference on File and Storage Technologies USENIX Association

To perform the learning, a DLT job takes a small random
sample i.e., a mini-batch of input items at a time (typically
32 to 512 items), and uses stochastic gradient descent [29]
to slowly learn the parameters such that the prediction loss
is minimized. Each mini-batch is compute-intensive (mostly
involving multiplications of large matrices/tensors) and runs
on accelerators such as GPUs. Because each mini-batch runs
the same computation on inputs that have the same shape, all
mini-batches take identical time on the GPU [31, 37].
Input training data: Training data, at a high level, is a list of
tuples of the form < input, label >, where input is an image or
speech sample or text to be fed to the neural network, and label
is the ground truth of what the network should learn to classify
that input as. Training large networks such as ResNet50 [16]
or GNMT [36] requires millions of training examples. For
example, ImageNet-1M, a popular training data for image
classification, has 1 million images (the full dataset has 14
million), each of which can be about 200 KB in size. Recent
datasets such as youtube-8m [12] and OpenImages [10] are
several terabytes in size as well.

To feed input items in a randomized order, DLT frameworks
such as PyTorch use the notion of input indices to access the
training data. For example, if the training data has a million
items, they track a list of indices to each of these items, and
then randomly permute this list. They then perform random
access on the store to fetch the data items corresponding
to fixed number (i.e., the mini-batch size) of these indices.
An epoch of training completes when all these indices are
exhausted, i.e., the model has looked at all data items once. For
the next epoch, the list of indices is again randomly permuted,
so that different set of mini-batches get fed to the network.
A DLT job typically runs several epochs, ranging from 50 to
200.
Transformations: Input data items read from the store are
then transformed by the DLT framework. Typical transfor-
mations include decompression of the image to convert from
say, jpg format to a pixel format, applying various forms of
augmentation (scaling, rotation, etc.). These transformations
are usually CPU intensive.
Multi-jobs: Because of the trial-and-error nature of DLT
experimentation [28,37], users often run multiple instances of
the same model simultaneously, each with different configu-
rations of parameters such as learning rate. Each of these jobs
would access the entire training data, but in different random
orders.

3 IO Characteristics of DLT

In this section, we describe the key characteristics of DLT
jobs from an I/O access perspective.
1. Shareability: There is a high degree of overlap in I/Os
performed by a DLT job, both within and across jobs. Within
a job, as each job makes multiple passes over the same input
training data (i.e., multiple epochs), there is a clear benefit

to caching the data for use in subsequent epochs. More im-
portantly, there is also extensive inter-job sharing, because
of two reasons. First, with hyper-parameter exploration, a
multi-job [37] may have several jobs running different con-
figurations of the same model, operating on the same data.
These jobs may be running on different machines, but access
the same underlying data on cloud storage. Second, the input
training datasets that DLT jobs use are quite head-heavy; pop-
ular datasets (e.g., ImageNet) are used in several jobs. Even in
enterprise settings, multiple team members work to improve
accuracy on a dataset (e.g., web search click-data), each run-
ning a different model. There is hence a significant inter-job
reuse.
2. Random Access: While shareability seems to make DLT
jobs extremely cache-friendly, it is only true if the whole input
training data can fit in cache. Otherwise, the random access
pattern (different permutation each epoch) makes it cache-
unfriendly (in fact, adverserial) for partially cached data. A
cache that can hold say 20% of the training data would simply
thrash because of random I/O.

Partial caching of DLT training data is important, because
training data size for several datasets are already large, and
only getting larger as models get bigger. For example, the
youtube-8M dataset used in video models, is about 1.53 TB
for just frame-level features [12], while the Google OpenIm-
ages dataset, a subset of which is used in the Open Images
Challenge [11], has a total size of roughly 18 TB for the full
data [10]. Even the full ImageNet corpus of the entire 14 mil-
lion images is several terabytes in size. Further, a single server
in a GPU cluster often runs multiple jobs, or even time-slices
across several jobs [37]. As each of these jobs could be ac-
cessing different data sets, the local cache may be contended
across multiple datasets. So, getting useful performance out
of the cache under partial caching is important for DLT jobs.
3. Substitutability: Fortunately, another trait of DLT jobs
helps address the challenge posed by random access. From
an I/O perspective, an epoch of a DLT job only requires two
properties to hold: (a) each input data item must be touched
exactly once; and (b) a random sample of inputs must be
chosen for each mini-batch. Interestingly, the exact sequence
of data items does not matter for the correctness or accuracy
of the job, which means the I/O is substitutable; instead of
seeking for particular files, the DLT job can now ask for some
random subset that was not already accessed. From a caching
perspective, this is a unique property that can significantly
help with cache reuse. With substitutability, even a small
cache for say 20% of the training data can provide good
caching performance, because if an item is not in the cache,
we could return a substitute item from the cache that preserves
the randomness and uniqueness properties. As we show in
§ 7, substitutable caching does not impact the final accuracy
of the learning job.
4. Predictability: Another favorable property of DLT jobs
is their predictability across mini-batches [31, 37]. Because

USENIX Association 18th USENIX Conference on File and Storage Technologies 285

the time per mini-batch is known in advance, one can predict
how sensitive each job is to I/O performance, which can in
turn allow the cache placement and eviction to give higher
priority to jobs that benefit the most from caching.

4 Design of Quiver

In this section, we present the design of Quiver, a distributed
cache that improves I/O efficiency for DLT jobs running in a
cluster of GPUs. Quiver is a co-designed cache that is tightly
coupled with the DLT framework (e.g., PyTorch or Tensor-
flow). By modifying the DLT framework, the cache client
integrates deeply into the I/O access of the DLT job, and
shares richer information with the cache server.

4.1 System Architecture
Before getting into the details of Quiver, we describe the
broader context in which Quiver fits. Quiver is designed for
a shared GPU cluster that an organization creates on GPU
VMs allocated in the cloud. Each GPU VM has a certain
amount of local SSD storage. A DLT job runs within its own
container, thus isolating jobs of multiple users from each
other. A higher level scheduler and container manager such as
Kubernetes [7] manages submission of jobs and scheduling of
DLT job containers on a specific VM. Quiver is agnostic to the
exact scheduling mechanism used, and makes no assumptions
about the scheduler.

The input training data for jobs of a particular user is stored
in the cloud storage account of the corresponding user, which
ensures privacy and access control; while general datasets
such as ImageNet do not require this, in general, users some-
times augment standard datasets with their own private train-
ing samples which may be sensitive, or train on entirely pri-
vate data (e.g., surveillance videos, enterprise data). The DLT
job running in a VM would perform random reads on this
remote storage (e.g., an Azure blob [21] or Amazon S3 [2]).

A DLT job may move across VMs, because of VM re-
deployments, because of job migration [37], or because it runs
on cheaper preemptible VMs [1, 3, 22]. Hence, the local SSD
data at each VM is soft state. Thus, even if the whole training
dataset fits in one VM’s local SSD, the simple solution of
copying data once from the remote store to local SSD does
not work. With Quiver, a job can move around across VMs
and still transparently benefit from a shared distributed cache.

4.2 Security model
Quiver is a cache that is shared across multiple jobs and mul-
tiple users, so the security semantics are important. Quiver
guarantees that a user can see only data content that she has
access to otherwise (i.e., no training data is leaked across mul-
tiple users). This requirement of data isolation conflicts with
the need to share/reuse the cache for effective performance.

Figure 1: Architecture of Quiver Cache servers run on all
VMs, but within their own container. Quiver clients run in the
address space of the DLT job, and include changes to the DLT
framework. User’s input training data is fetched from cloud
storage on a cache miss. Each job’s dataset is sharded across
multiple cache servers, and looked up using content hashes.

For example, if two different users have their own copies of
the ImageNet dataset, those would be two different sets of
files in two different cloud storage accounts and thus would
logically need to be cached separately, thus preventing reuse
across users. Quiver uses content-addressed capabilities to
achieve cache reuse while preserving isolation.

4.3 Content-addressed Cache

The cache in Quiver is addressed not by file names and off-
sets, but by content hashes, similar to content-addressed file
systems [9, 23]. The granularity of a cache entry in Quiver
is decided by the DLT job, and it could be either an individ-
ual data item (e.g., image training data where each item is
hundreds of KB) or a group of data items (e.g., in text train-
ing data). For simplicity, we assume in this paper that the
granularity is a single data item. For each data item in the
dataset, a content hash (e.g., SHA1) of that item is calculated,
and the resulting hash acts as the index for cache inserts and
lookups. The benefit of content addressing is that the same
data items across multiple copies (say copies of ImageNet
data in different storage accounts of different users), will map
to the same hash, allowing reuse across users.

To ensure isolation, Quiver uses the notion of digest files for
the input training data. For each dataset that a user owns, the
user computes the content hashes of each data item, and stores
just the hashes in a digest file. The digest file contains entries
of the form <content_hash: file_location>, where the
file_location indicates the path and offset where that par-
ticular data item resides within the cloud storage account of

286 18th USENIX Conference on File and Storage Technologies USENIX Association

this particular user. Thus, across multiple users sharing the
same data set, while the hash component would be the same,
each user will have a different entry in the file_location
component, as they would point to that particular user’s back-
ing store in the cloud. Because the DLT job is calculating
these hash digests only from data that the user already has
access to, the very presence of a hash value serves as a capa-
bility for that user to access that content. As a result, when
a cache server gets a lookup for a certain hash value, it can
safety return the data associated with that key. The user can-
not manufacture or guess legal hashes without having the
content, because of the sparsity of the hash function and its
collision-resistance properties.

As the digest file is small (few MBs), it is stored locally
within the container of the DLT job. The DLT job first looks
up the cache with the hash capabilities. If the content is not
in the cache, it fetches it from remote storage (using the
file_location corresponding to the hash entry), and then
adds that content into the cache keyed by the hash value.

4.4 Quiver Server

The cache server in Quiver is a distributed, peer-to-peer ser-
vice that runs on all GPU VMs in the cluster. The cache server
runs as a separate “privileged" user (e.g., organization admin)
in its own container, so other users running DLT jobs do not
have access to that container. DLT jobs interact with the cache
server through RPC interfaces for lookup and insert. In-
ternally, the cache server is a key-value store maintained on
local SSD. The key space is partitioned across multiple cache-
server instances via consistent hashing; each cache server
instance handles its partition of the key space.

4.5 Cache Manager

Because Quiver is a distributed cache, it needs to co-ordinate
eviction and placement decisions so that all cache servers
roughly agree on the which parts of which data sets to cache.
The cache manager in Quiver interacts with both the Quiver
clients and Quiver servers to co-ordinate these decisions. The
cache manager is also responsible for measuring the likely
benefit that each job would get from caching, by probing DLT
jobs. It does this by instructing cache servers to temporarily
return cache misses for all data read by the DLT job for a few
mini-batches. It then compares this execution time with the
time during normal operation with caching, and uses this to
prioritize cache placement (§ 5).

4.6 Quiver Client

A significant part of the intelligence in Quiver exists at the
cache client. The cache client runs as part of the DLT job
within the user’s container, in the same address space as the

DLT framework such as PyTorch, and interposes at the in-
terface used by the DLT script to access training data. For
example, in PyTorch, the DataSet abstraction is used to iter-
ate over training data, and it has a simple Next interface to
get the next set of input data items for the next mini-batch.
Internally, the DataSet abstraction maintains a randomly per-
muted list of indices that determines the order in which the
data items are fetched. Quiver augments this component to
also manage the digest-file of hashes, and when a set of in-
dices are to be fetched from the store, it first does the lookup
in the cache using the hash values in the digest.

In addition, the Quiver client also exports job-specific in-
formation to the cache servers, such as the time taken per
mini-batch on the GPU. This allows the cache servers in
Quiver to probe and perform a controlled measurement of
performance of the DLT job with and without caching, and
use that to prioritize cache placement.

4.7 Substitutable hits

Quiver incorporates the notion of substitutable I/O into the
data fetch component of the DLT framework. Today, if a mini-
batch requires 512 data items, the dataset loader provides 512
indices to be fetched from the store; if only data pertaining
to a subset of the indices was cached, some items may be
missing, resulting in remote I/O in the critical path. In Quiver,
the loader looks up lot more (e.g., 10x) indices from the cache
and fills the mini-batch opportunistically with whichever 512
it is able to fetch from the cache, so that the DLT job can
make progress without blocking on the cache misses. It then
marks the indices that missed in cache as “pending". The data
loader continues with the remaining indices for subsequent
mini-batches. Once it reaches the end of that list, it makes
additional passes over the index list, this time focusing only
on the indices previously marked pending.

To see why this would work, assume that only 10% of
the training dataset is in cache (for simplicity, a contiguous
10% in the original data set order i.e., without any random
permutation). Now, because the lookups from the DLT job
are a randomly permuted order of indices, each sequence of k
indices is expected to get cache hits for k/10 indices; hence, if
it looks up a sequence of length 10∗k, it can fill its mini-batch
of size k. During its second pass over the pending entries, a
different, non-overlapping 10% of the dataset may be in the
cache, which means it would get hits for 1/9th of the lookups.
Note that this property also holds across multiple jobs each
with their own random permutations. For the same 10% that is
cached, regardless of the permutation each job has, each job is
expected to get hits for 1/10th of its lookups. Thus, multiple
jobs can proceed at full-cache-hit speeds although each of
them is accessing a completely different random permutation.
Such a workload would normally cause thrashing on a small
cache that contains only 10% of the data items. With substi-
tutable cache hits, we prevent thrashing and provide cache-hit

USENIX Association 18th USENIX Conference on File and Storage Technologies 287

performance. Of course, this assumes an intelligent cache
eviction policy, which we describe in § 5.
Impact on Accuracy: A natural question that arises with
substitutable hits is whether it impacts training accuracy. As
we show in § 7 across multiple models, substitutable hits do
not affect accuracy of the job, as the randomness within a rea-
sonable fraction of the training data (e.g., 10%) is sufficient.

4.8 Failure recovery
The substitutability property also helps mask failures of cache
servers, such as due to VMs going away. In a traditional
cache, failure of a cache server would cause a spike in miss
traffic to fetch the lost cache items from the store. Quiver can
handle it gracefully by simply returning substitute data items,
while fetching the contents of the failed cache server in the
background. The DLT jobs do not incur the miss handling
cost in the critical path; they just continue with whatever data
is available in the live cache servers; a subsequent pass over
the list of indices will use the re-populated data.

4.9 Locality of cache servers
While the simple version of Quiver (focus of this paper) has
a unified cache spread across all VMs, the Quiver design also
permits a locality-aware cache layout. For example, datasets
used by VMs within a rack in the data center (or a top-level
switch) could be cached only within other VMs under the
same switch, so that most fetches avoid the over-subscribed
cross-rack switches. In such a setting, each rack would have
its own logical Quiver instance with its own cache manager.
Quiver can thus also help save cost for the cloud provider by
reducing cross-rack network traffic.

5 Cache Management

In this section, we describe various aspects of cache manage-
ment in Quiver.

5.1 Co-ordinated eviction
As described in § 4.7, when only a part of the dataset (say
10%) is cached, Quiver does multiple passes over the list of
permuted indices of the dataset within a single epoch. To
get good hit-rate during the second pass, a different part of
the dataset must be cached during that second pass. In a
scenario where multiple DLT jobs (e.g., a multi-job doing
hyper-parameter exploration) are accessing the same dataset,
this is tricky because different jobs may exhaust their first
pass over the list of permuted indices at different times.

Quiver handles this by allocating cache space for two
chunks of the data set, and using a technique similar to double-
buffering [35]. First, the digest file representing the complete
dataset, is partitioned into a fixed number of chunks, such

that each chunk is, say, 10% of the dataset. The chunking of
the dataset has to be done intelligently, to ensure randomness
of the input data within each chunk. Some datasets such as
LibriSpeech [24] order data items by the sequence length;
chunking them in logical byte order would result in the first
chunk comprising entirely of short sequences, thus affecting
randomness. Recurrent neural networks (RNNs) [4, 36] re-
quire all inputs within a mini-batch to be of the same sequence
length; if a mini-batch comprises of inputs with different se-
quence lengths (e.g., randomly chosen inputs), they pad all
inputs to match the length of the longest input within the
mini-batch. Thus, for compute efficiency, it makes sense for
all inputs within the mini-batch to be roughly of the same
length.1. To allow for such efficient bucketing of inputs within
a mini-batch, we define the chunk to be a striped partition;
let us refer to each contiguous 10% of the input dataset as a
partition. Each partition is chunked into 10 stripe units; a log-
ical chunk is simply the complete stripe formed by stitching
the corresponding stripe unit within each partition. As much
as possible, a mini-batch is formed purely from inputs in a
single stripe unit, for homogeneity of sequence lengths, while
also ensuring uniform distribution of inputs.

Dataset chunking allows co-ordinated access of the cache
across multiple jobs. While the jobs operate on the first chunk,
the second chunk is brought into the cache, so that it is ready
when (some of) the jobs switch to the next pass, possibly in
a staggered manner. An important question is when to evict
the first chunk from the cache. If evicted too soon, a subset of
jobs that are still in their first pass and accessing that chunk
will see misses, whereas if it remains in the cache for too long,
the next (third) chunk cannot be preloaded. Quiver uses a
two-step process to handle eviction. A chunk is marked for
eviction when another chunk of the dataset is fully loaded
into cache; all new jobs will now get hits only from the latest
chunk. However, existing jobs that are still running their pass
over the first chunk, will continue to get hits on the first chunk.
When all existing jobs have exhausted their pass over the first
chunk (and notify the cache server), the first chunk is actually
evicted. At this point, the preload for the third chunk of the
data set can start.

In the above example, note that if a job proceeds at a much
slower rate compared to other jobs accessing the same dataset,
it could continue to access the first chunk for a long time,
preventing the load of the third chunk into the cache. Different
jobs in a multi-job are typically designed to proceed at a
similar pace, so this is not a common occurrence within a
multi-job, but could happen across very different models on
the same dataset. Interestingly, a job that is much slower than
other jobs on the same dataset means that it spends more time
per mini-batch on the GPU, which means it is less sensitive
to I/O performance(§ 5.3); a cache miss would not affect that

1Dynamic graph computation in modern frameworks such as Py-
Torch [25] ensures that a mini-batch with short sequence length uses corre-
spondingly lesser computation

288 18th USENIX Conference on File and Storage Technologies USENIX Association

job by much. Hence, Quiver does a forced-eviction of a chunk
after a threshold time has expired from the completion of the
first job on that chunk.

Algorithm 1 Substitutable hits & Co-operative miss handling

1: global gChunkIndex = -1
2: . Returns: List of indices of data items to be fetched for

current mini-batch
3: function GETBATCH(SIZE)
4: . Try to randomly sample 10 x size unused elements
5: pendingIndices = getPendingIndices(size * 10)
6: cacheHits = cacheClient.lookup(pendingIndices)
7: if len(cacheHits) >= size then
8: return pickAndMarkUsed(cacheHits, size)
9: end if

10: . Not enough cache hits, perform co-operative
11: . cache miss handling
12: result = List()
13: result.addAll(

pickAndMarkUsed(cacheHits, len(cacheHits)))

14: if gChunkIndex < 0 then
15: . cacheManager returns 0 if no chunk is cached
16: gChunkIndex =

cacheManager.getCurrentChunk(datasetId)
17: end if
18: chunksChecked=0
19: while chunksChecked < totalChunks do
20: . Tell cache servers that I am using this chunk
21: . (if not done already)
22: informServers(jobId, datasetId, gChunkIndex)
23: unusedIndices = getRandomUnusedIndices (

gChunkIndex, size - len(result))
24: if len(unusedIndices) == 0 then
25: informServersDoneUsingChunk(

jobId, datasetId, gChunkIndex)
26: end if
27: result.append(unusedIndices)
28: if len(result) == size then
29: return result
30: end if
31: gChunkIndex =

(gChunkIndex + 1) % totalChunks
32: ++chunksChecked
33: end while
34: end function

5.2 Co-operative cache miss handling

A common workload that places significant demand on the
storage bandwidth, is a multi-job [37] where a DLT user
runs tens or hundreds of jobs for the same model on the
same dataset, but with different hyper-parameter configura-
tions. Without Quiver, each of these jobs will read the same

data from the remote store, causing the remote store to be-
come a bottleneck, resulting in poor I/O throughput per job.
Quiver uses co-operative miss handling, where it shards the
cache fetches across multiple jobs, to avoid multiple fetches
of the same data items by multiple jobs. This sharding is
done implicitly by simply randomizing the order of fetch of
missing files, thus avoiding direct co-ordination among the
(independent) jobs. Thus, each job first checks the cache if a
set of (say 2048) data items exist, then reads a random subset
of those items, and adds the read items into the cache. Af-
ter the additions, it performs another cache lookup, but this
time it would get hits for not only the data items it added, but
also the other (mostly non-overlapping) data items that were
added simultaneously by other jobs that performed a similar
random fetch. Thus, even in the case of a cold cache, or if the
entire dataset cannot fit in cache, Quiver provides benefits by
conserving remote store bandwidth, reading most data items
only once across multiple jobs within a single epoch.

A high-level algorithm for substitutable cache hits and co-
operative miss handling is presented in Algorithm 1.

5.3 Benefit-aware Cache placement

When total cache space is constrained, Quiver utilizes job
heterogeneity to preferentially allocate cache space to the jobs
that benefit the most from the cache. A DLT job performs both
compute (on the GPU) and I/O. Intuitively, if the compute
time is higher than the I/O time to read from the remote store,
the I/O time can be overlapped, and the job performance
would be the same whether it reads from the cache or from
the remote store. However, this is a complex phenomenon to
model, because it depends on the degree of parallelism of the
job (i.e., number of GPUs it runs on), how large the model is,
whether the model is written in a way to pipeline computation
and I/O, etc.

Interestingly, the tight integration with the DLT framework
allows Quiver to intelligently probe and measure the job’s per-
formance with and without caching. When a new job requests
for adding entries into the cache, the cache manager picks
the job for probing. Probing operates in two steps. In the first
step, the cache manager instructs all cacheservers to reject
all cache lookups for that job, thus forcing the job to fetch
from the remote store. At the end of this probing phase, e.g.,
100 mini-batches, the cache manager gets the total elapsed
time from the cache client (which runs as part of the DLT
job). The cache manager then monitors the job’s performance
periodically with the default caching policy. If the times with
the default caching policy and without caching don’t differ by
much, it concludes that the job is not bottlenecked on remote
I/O bandwidth, and decides to turn off caching for that job.
A dataset touched only by such jobs would thus never enter
the cache, freeing up space for other datasets that benefit job
performance. Quiver runs the probing phase not only at job
start time, but periodically , as effective I/O throughput may

USENIX Association 18th USENIX Conference on File and Storage Technologies 289

have reduced because of increased load on the remote store
(e.g., newer jobs reading from the same store), thus making
the job more sensitive to I/O performance, or vice versa.

Let t i
h be the average per-mini-batch time for job i under

cache hit, and t i
m be the corresponding time under cache miss.

The benefit from caching for job i is thus bi = t i
m/t i

h. Let ni

be the number of GPUs taken by job i. The GPU resources
saved for job i by caching its dataset is thus gi = bi ∗ni.

For each data set Dk, there could be multiple jobs in the clus-
ter accessing the same data set. Because the cache is shared
by all such jobs, if N jobs access Dk, the total GPU resources
saved by caching the dataset is GDk = ∑

N
i=0 gi. Interestingly,

the cache manager has to decide only among three options
for each data set: (a) fully cache (space cost is the full size of
the dataset (b) enable co-operative miss by caching a fixed
size chunk (e.g., 15G), or 10% dataset whichever is smaller
(cost is 2 chunks for double buffering), or (c) no caching (zero
cost). Note that intermediate sizes for caching are useless, as
the benefits are the same as with caching two chunks, given
the substitutable cache-hits in Quiver.

Given a total cluster-wide cache space budget of S, the
cache manager uses a greedy algorithm to preferentially as-
sign cache space to datasets or dataset chunks with the highest
ratio of benefit-to-cost.

5.4 Cache sharing scenarios
Quiver transparently benefits a variety of DLT scenarios:
Single job accessing a dataset: If the entire dataset can fit in
cache, Quiver caches the data items accessed in the first epoch
of the DLT job. As the DLT job runs several epochs over the
same data, subsequent epochs get full cache-hits from Quiver,
and run faster. If the dataset does not fit in cache, the DLT job
does not benefit from Quiver as it reads from remote store in
the steady state.
A multi-job accessing a single dataset: A multi-job is a set
of jobs run by the same user on the same dataset, but with
different configurations of hyperparameters [37]. Today, each
jobs reads the same content in different random orders from
remote storage. With Quiver, if the data fits in cache, all jobs
share the cache and get full cache-hits. Interestingly, even if
only 10% of the data fits in cache, Quiver still gives better
performance, because it shards the reads across jobs with
co-operative miss handling (§ 5.2).
Different jobs accessing the same dataset: Another sce-
nario that Quiver benefits is opportunistic sharing of pop-
ular datasets across jobs even from multiple users. By doing
so, Quiver extracts more value out of the same SSD space
especially for popular datasets such as ImageNet.

6 Implementation

The Quiver client is implemented in PyTorch 1.1.0 (about 900
LOC). Pytorch’s data model consists of three abstractions:

Config Top-1 Acc. (%) Top-5 Acc. (%)
Baseline sampling 75.87 92.82
Quiver sampling 75.89 92.76

Table 1: ResNet50 on ImageNet: Final Accuracy after 90
epochs (higher is better) Average of two runs.

Config Word error rate (WER) (%)
Baseline sampling 22.29
Quiver sampling 22.32

Table 2: Accuracy of DeepSpeech2 on LibriSpeech: Final
WER (lower is better) Average of two runs (30 epochs).

Dataset, Sampler, and DataLoader. Dataset returns a data item
corresponding to a given index. Sampler creates random per-
mutations of indices in the range of dataset length. Dataloader
fetches one mini-batch worth of indices from the sampler,
and adds these to the index queue. The worker threads of
DataLoader consume these indices, and fetch data items from
Dataset. To use Quiver, instead of torch.utils.Dataset,
the model must use QuiverDataset (same interface as exist-
ing Dataset), that handles the digest file containing hashes.
Similarly, the model must extend from QuiverDataLoader
(same interface as standard DataLoader), that probes and
monitors the job’s mini-batch progress in the __next__ rou-
tine; it also ignores the default Sampler passed into the Dat-
aLoader API, instead using its custom Sampler that handles
substitutable hits, by creating a list of hashes from indices
sampled from chunks of the dataset.

The cache client uses RPC endpoints to look up the cache
using hashes, fetch files from cache, and finally, to write to
cache and communicate mini batch times to the cache man-
ager. Data fetch from Azure blob on the cache miss path
happens over a regular TCP socket connection. QuiverDataset
uses either the cache client or the blob client depending on
whether it is looking up the cache, or filling a cache miss.

The Quiver server is a network server written in C++ in
about 1200 lines of code. In addition to batched interfaces
for lookup/insert on cache, the server also exposes interfaces
to get the current active chunk and notify “ref_chunk" and
“unref_chunk"; the cache client uses these to assist with co-
ordinated eviction at the server. The server also exposes an
interface to set the caching mode, used by the cache manager,
e.g., to disable caching for a job during probe phase.

The cache manager is a simple python server with an RPC
endpoint used by the client to report mini-batch times, and it
informs the cache servers which datasets to cache in which
mode, based on its benefit-aware allocation decisions.

7 Evaluation

In this section, we evaluate Quiver along several dimensions.
We answer the following questions in the evaluation:

290 18th USENIX Conference on File and Storage Technologies USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

T
o

p
 1

 A
cc

u
ra

cy

Epoch #

Top 1 Accuracy: Quiver Sampling v. Global Sampling

Default sampling
Quiver sampling

Figure 2: Top-1 Accuracy of ResNet50 ImageNet model
under globally random sampling and chunked sampling.

• Do substitutable cache hits impact learning accuracy?

• How much does Quiver speed up different DLT jobs?

• How effective is co-ordinated eviction in Quiver?

• How effective is benefit-aware caching in Quiver?

7.1 Experimental setup

For our evaluation, we use a cluster of 48 GPUs across 12
VMs on Azure. 6 VMs contain 4 NVidia P100 GPUs each
while the other 6 contain 4 NVidia P40 GPUs each. All VMs
contain 3 TB of local SSD. Different experiments use a subset
of these VMs or the full set. The input datasets reside in Azure
storage blobs [21] within the same region. We use a diverse
set of deep learning workloads: ResNet50 [16] on the 154
GB ImageNet dataset [14], Inception v3 [32] on the 531 GB
OpenImages dataset [10], and DeepSpeech2 [4] on the 90 GB
LibriSpeech dataset [24]. For substitutable caching, we use a
fixed chunk-size of 15GB.

7.2 Accuracy with substitutability

We first show that substitutable caching in Quiver (i.e., re-
stricting the shuffle to a fraction of the dataset rather than
the entire dataset) has no impact on accuracy. As can be
seen from Figure 2, the top-1 accuracy curves closely match.
Table 1 shows the final top-1 and top-5 accuracies in both
configurations; Quiver sampling achieves the same accuracy
as globally random sampling. Table 2 shows results for the
DeepSpeech2 model on LibriSpeech dataset. Again, the chun-
ked sampling of Quiver converges to a similar word-error-rate
compared to globally random sampling.

Workload Time for 7000 mini-batches (s)
Baseline Quiver

Cache Miss Cache Hit Co-op. Miss
ResNet50 2505 646 (3.88x) 1064 (2.35x)
Inception 2874 1274 (2.26x) 1817 (1.58x)
DeepSpeech 1614 1234 (1.31x) 1265 (1.28x)

Table 3: Speedups from Quiver across three workloads

7.3 Improvement in job throughput
We now evaluate the performance gains from Quiver, on three
different workloads: ResNet50, Inception, and DeepSpeech2.
In each workload, we run a multi-job on 28 GPUs. Recall
that a multi-job runs multiple hyper-parameter configurations
of the same model/job. For each multi-job, we run 7 jobs
(of different configurations), where each job runs on 4 GPUs
in a single VM. We show the aggregate throughput (mini-
batches/second) of the multi-jobs under three configurations:

1. The baseline configuration, where all jobs read from the
remote storage blob. This configuration is referred to as
“Cache miss” in the graphs;

2. When all data fetches result in cache hits in Quiver. This
is the best case performance with Quiver, and is shown
as “Cache hit” in the graphs;

3. When Quiver starts with a cold cache, and the DLT jobs
perform co-operative cache miss handling to avoid re-
dundant I/O on the remote store. This also represents
the performance when only a 10% or 20% slice of the
dataset is cached(§ 4.7).

Figure 3 shows the results for the three workloads. As can
be seen, the slope of the “cache hit” curve is consistently much
less compared to the “cache miss" curve. In other words, the
same number of mini-batches are processed much faster with
Quiver, resulting in better efficiency. The “co-operative miss”
curve is in between the cache hit and cache miss configura-
tions. Thus, even when starting with a cold cache, the ability
of Quiver to avoid redundant I/O to the remote store from all
7 VMs allows it to extract much higher useful bandwidth out
of the remote storage, resulting in better efficiency. Interest-
ingly, in Figure 3(c), the difference between co-operative miss
and cache hit is minor, indicating that the workload can run
equally fast with just a small slice of the cache (§ 5.3). The
overall speedups achieved by Quiver for the three workloads
is shown in Table 3.

7.4 Interaction with I/O pipelining
DLT frameworks including PyTorch pipeline I/O with com-
putation, to hide I/O latency. In particular, the data loader
maintains a queue of fetched mini-batch inputs, and the com-
putation engine picks from the in-memory queue. Both base-
line and Quiver benefit from pipelining, so the benefits from
Quiver shown in the previous subsection are in addition to

USENIX Association 18th USENIX Conference on File and Storage Technologies 291

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 a

gg
re

ga
te

 m
in

i-b
at

ch
es

 p
ro

ce
ss

ed

Time (sec)

ResNet50: Aggregate throughput of 7 4-GPU jobs

Cache Miss
Co-operative Miss

Cache Hit

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 a

gg
re

ga
te

 m
in

i-b
at

ch
es

 p
ro

ce
ss

ed

Time (sec)

Inception v3: Aggregate throughput of 7 4-GPU jobs

Cache Miss
Co-operative Miss

Cache Hit

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000 1200 1400 1600 1800

N
um

be
r

of
 a

gg
re

ga
te

 m
in

i-b
at

ch
es

 p
ro

ce
ss

ed

Time (sec)

DeepSpeech2: Aggregate throughput of 7 4-GPU jobs

Cache Miss
Co-operative Miss

Cache Hit

(a) ResNet50/ImageNet (b) Inception/OpenImages (c) DeepSpeech2/LibriSpeech

Figure 3: Multi-job progress timeline with Quiver for multi-jobs of 7 jobs each in three models: ResNet50, Inception v3, and
DeepSpeech2. Each job runs on 4 GPUs within a single VM.

pipelining. We now analyze the time breakup of multiple
pipeline stages within a mini-batch, to understand how exactly
the faster I/O due to cache hits improves job performance. For
this, we zoom-in on 20 mini-batches of a single ResNet50 job
on 4 GPUs within a VM.

0 10 20 30 40 50
Time(s)

2
4
6
8

10
12
14
16
18
20

M
in

i B
at

ch
es

Zoomed in timeline of 20 mini-batches (baseline)
IO
GPU
TRANSFORM

Figure 4: Detailed timeline of 20 consecutive mini-batches
of ResNet50 (different stages), under remote I/O

Figure 4 is a Gantt chart [34] showing the micro-timeline of
a ResNet50 job execution (20 consecutive mini-batches, each
processing 512 images) when data is read from remote I/O.
The X-axis plots time, while the Y-axis plots the mini-batch
index from 1 to 20, starting from a random mini-batch during
training. The three boxes in each of the bars pertain to the
three main stages of mini-batch processing: I/O corresponds
to reading the input (from remote storage or Quiver), Trans-
form corresponds to performing transformation on the inputs,
such as image augmentation (CPU-intensive), and GPU is
the actual computation on GPU. Ideally, the GPU being the
most expensive resource, must not be idle. However, with
remote I/O, the GPU is idle most of the time (as seen from
the gap between GPU phases for mini-batch i and mini-batch

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time(s)

2
4
6
8

10
12
14
16
18
20

M
in

i B
at

ch
es

Zoomed in timeline of 20 mini-batches (Quiver)
IO
GPU
TRANSFORM

Figure 5: Detailed timeline of 20 consecutive mini-batches of
ResNet50 (different stages), under Quiver hits

i+ 1), as I/O time constrains job progress. Figure 5 shows
the micro-timeline under cache-hit in Quiver. As can be seen,
the GPU is almost fully utilized in this setting, as the I/O fin-
ishes much faster. Although data transformation takes a long
time per-mini-batch in both baseline and Quiver, because it is
parallelized (due to pipelining) across multiple mini-batches
on multiple CPU cores, it does not affect GPU utilization in
Quiver. Thus, while both cases benefit from the I/O pipelining
in PyTorch, Quiver is able to hide I/O latency much better.

7.5 Cache-constrained scenario

In this experiment, we run 4 ResNet50 jobs (each on 4 GPUs
within a single VM) accessing the same ImageNet dataset.
After about 15 minutes, we start 3 more ResNet50 jobs in
3 other VMs. We constrain the cache space to be capable
of only fitting 20% of the input data. This causes Quiver to
chop the training data into 10 chunks, and perform double
buffering with two chunks at a time (§ 4.7). Figure 7 shows

292 18th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200

F
ac

to
r

in
cr

ea
se

 in
 e

ffe
ct

iv
e

cl
us

te
r

th
ro

ug
hp

ut

Time (sec)

Aggregate cluster throughput on 48 GPUs (100G cache)

Quiver (100G)
LRU (100G)

Zero cache (baseline)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200

F
ac

to
r

in
cr

ea
se

 in
 e

ffe
ct

iv
e

cl
us

te
r

th
ro

ug
hp

ut

Time (sec)

Aggregate cluster throughput on 48 GPUs (200G cache)

Quiver (200G)
LRU (200G)

Zero cache (baseline)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200

F
ac

to
r

in
cr

ea
se

 in
 e

ffe
ct

iv
e

cl
us

te
r

th
ro

ug
hp

ut

Time (sec)

Aggregate cluster throughput on 48 GPUs (700G cache)

Quiver (700G)
LRU (700G)

Zero cache (baseline)

(a) 100 GB cache (b) 200 GB cache (c) 700 GB cache

Figure 6: Cluster GPU Throughput under multiple simultaneous jobs on 48 GPUs with Quiver, basic LRU, and without caching
(baseline). The workload consists of 4 jobs each of ResNet50, Inception, and DeepSpeech2. Each of the 12 jobs runs on 4 GPUs,
using a total of 48 GPUs. Average cluster throughput normalized to the non-cached scenario is shown.

 0

 500

 1000

 1500

 2000

 0 2000 4000 6000 8000 10000 12000

0 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
se

c)

Aggregate # mini-batches completed across all jobs

Chunk Number

Agg. job throughput
Chunk 0
Chunk 1
Chunk 2
Chunk 3
Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8
Chunk 9

Figure 7: Coordinated eviction with multiple jobs sharing a
small slice of the cache.

the aggregate throughput across these jobs. Every vertical line
in the graph indicates the duration for which a specific chunk
resides in the Quiver cache (the top x-axis plots the chunk
number).

There are several aspects that can be seen from this graph.
First, if one slices the graph by drawing a line parallel to
the x-axis for any time t, it indicates the number of chunks
that were cached by Quiver at that time, just by counting the
number of vertical lines that intersect. It can be seen that at
any given time, only 2 chunks are actually resident in the
cache, demonstrating co-ordinated eviction. Second, in the
aggregate throughput, one can see an increase in the progress
rate around roughly 15 mins into the experiment (i.e., when
the number of jobs increased from 4 to 7), as more jobs now
participate in the co-operative miss handling, improving per-
job throughput. Finally, one can notice that when the three
jobs start (around t=900 sec), the first two chunks of the cache
have already been evicted. Despite that, the jobs are able to

make good progress, as they perform substitutable caching,
but starting wth the third chunk first (while the first 4 jobs
started with the first chunk). This dynamic replaceability is
ensured by the cache management policy which directs new
jobs to the currently active chunks in order to evict older
chunks that other jobs have already exhausted.

7.6 Benefit-aware caching

In this experiment, we demonstrate the efficacy of benefit-
aware caching in Quiver, and compare it with a simple LRU-
based cache replacement policy. For this, we run a workload
with a mix of three different DLT models on 48 GPUs. We
run four jobs each of ResNet50, Inception, and DeepSpeech,
where each job takes a single VM with 4 GPUs. As we previ-
ously saw in Figure 3, the three jobs benefit differently from
caching. The jobs use three datasets: ImageNet, OpenImages,
and LibriSpeech respectively.

Figure 6 shows the steady state timeline (for about 1000
seconds after cache warmup) of normalized cluster through-
put. To quantify relative cluster throughput, we calculate
the relative improvement in job progress rate (mini-batches
processed) for all the 12 jobs compared to the baseline (no
cache) configuration. We show cluster throughput under dif-
ferent cache sizes: no caching, 100 GB cache, 200 GB cache,
and 700 GB cache. Note that the complete size of the three
datasets is about 780 GB. As the 700 GB configuration is
close to the complete dataset size, the performance of LRU
comes close to Quiver. However, thrashing on the remain-
ing 80 GB results in only a 2.2x higher throughput for LRU
compared to 2.32x for Quiver.

More interesting is the performance of Quiver under more
constrained caching scenarios, i.e., when the cache size is
much lower than the combined sizes of the datasets. In these
configs (100 GB and 200 GB), Quiver is able to intelligently
allocate cache space based on its dynamic mini-batch-aware
probing (§ 5.3), besides using co-operative miss handling and
substitutable hits to improve throughput. For 100G, it uses co-

USENIX Association 18th USENIX Conference on File and Storage Technologies 293

operative misses for all three datasets, using a fixed chunksize
of 15GB (a total of about 90GB for double buffering of three
datasets). At 200 GB cache, Quiver automatically chooses to
completely cache the ImageNet dataset (as ResNet50 bene-
fits the most from caching), while performing co-operative
misses on the other two. At 700G cache, it caches both the
ImageNet and OpenImages dataset. Quiver is able to preferen-
tially allocate cache space to the jobs benefiting the most, thus
maximizing cluster throughput. In both these configurations,
LRU performs quite poorly compared to Quiver, as it suffers
from thrashing because of the random access pattern of the
DLT jobs. Overall, even with a tiny cache (100G), Quiver
still yields sizeable benefits of around 1.6x; the improvement
in overall cluster throughput ranges between 1.6x to 2.3x
depending on cache size.

8 Related Work

Improving I/O performance for DLT jobs has received some
recent attention. DeepIO [39] explored pipelining of I/O
fetches with computation by using an in-memory cache, and
using an entropy-aware sampling technique. DeepIO looks at
an individual DLT job in isolation; the benefits from caching
for a single job are minimal unless the entire data fits in cache,
because workers of a single DLT job read each data item
exactly once per epoch. In contrast, Quiver achieves cache
reuse across multiple jobs securely. As a result, even when
only a small part of data fits in cache, it improves performance
by using substitutable hits and co-operative miss handling to
co-ordinate I/O access across multiple jobs. Quiver is also
benefit-aware in its placement and thus uses the cache fru-
gally, prioritizing jobs that benefit the most. As the authors
of DeepIO note, the (modest) benefits from DeepIO in the
partial caching scenario are a result of reduced copy over-
heads and thread scheduling cost by using RDMA shuffling;
in contrast, Quiver actually reduces the time spent waiting on
I/O by employing co-operative miss handling.

Distributed caching in the cluster context has been explored
more broadly in the analytics community. For instance, Pac-
Man [5] explored co-ordinated caching of data across differ-
ent workers of an analytics job to extract most benefit for
query performance. Similarly, intelligent scheduling of big
data jobs to maximize cross-job sharing of cached data was
explored in Quartet [8] The co-ordinated eviction policy in
Quiver has some parallels to these, but the ability to handle
partial data caching without thrashing is unique to Quiver,
as it’s possible only because of the substitutability property
of DLT jobs. EC-cache [27] is at a distributed cluster cache
that uses erasure coding for dynamic load balancing during
reads. Because of the regularity of the DLT workload, the
simple static partitioning in Quiver seems sufficient. There
has been other work on caching of various forms in the big
data world [15, 19, 38].

Quiver is also related to recent work on systems for deep

learning, that use predictability of DLT jobs to improve effi-
ciency. Gandiva [37] uses predictability across mini-batches
to introspect on job performance, and uses it to migrate jobs
across GPUs or to pack jobs tightly within the same GPU.
Astra [31] exploits mini-batch predictability to perform dy-
namic compilation and optimization of a DLT job by online
profiling of multiple choices of optimizations. Quiver draws
on a similar insight, but uses the predictability for intelligent
cache prioritization and prefetching.

Making caching and prefetching decisions informed by
application-provided hints has also been studied [26]. General-
purpose hints that are application-agnostic are both challeng-
ing and limiting; by building a vertically integrated, domain-
specific cache exclusively for DLT jobs, the interface in
Quiver is both simple and powerful. Co-operative caching
has also been studied [18, 30]; unlike past work, Quiver man-
ages a partial working set with substitutable caching and
co-ordinated evictions.

The content hash-based addressing in Quiver is based on
the notion of using a hash as a capability; a similar approach
has been explored in content-indexed file systems [9, 23].
Quiver applies this idea to the context of a shared cache that
simultaneously provides both data isolation and cache reuse.

9 Conclusion

Deep learning has become an important systems workload
over the last few years: the number of hardware startups on
accelerators for deep learning is testament to its popularity.
Systems for deep learning have mostly focused on improving
compute efficiency and network efficiency, and the storage
layer has been largely handled by ad hoc solutions such as
manual staging of data to local SSD, that have significant
limitations. With Quiver, we provide an automated caching
mechanism that helps bridge the storage performance gap in
the face of ever-increasing compute capacity for deep learn-
ing. Quiver achieves cache efficiency by tightly integrating
with the deep learning workflow and the framework, and ex-
ploits characteristics such as I/O substitutability to ensure
an efficient cache even when only a subset of data can fit in
cache.

Acknowledgments

We thank our shepherd Robert Ross and the anonymous re-
viewers for their valuable comments and suggestions. We
thank Ashish Raniwala, Subir Sidhu, Venky Veeraraghavan,
Tanton Gibbs, and Chandu Thekkath from Microsoft Azure
AI Platform team for their useful discussions, as well as pro-
viding access to GPU clusters.

294 18th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] AMAZON. Amazon ec2 spot instances. run
fault-tolerant workloads for up to 90% off. In
https://aws.amazon.com/ec2/spot/.

[2] AMAZON. Amazon s3: Object storage built to store
and retrieve any amount of data from anywhere. In
https://aws.amazon.com/s3/.

[3] AMAZON. Train deep learning models on
gpus using amazon ec2 spot instances. In
https://aws.amazon.com/blogs/machine-learning/train-
deep-learning-models-on-gpus-using-amazon-ec2-
spot-instances/.

[4] AMODEI, D., ANUBHAI, R., BATTENBERG, E.,
CASE, C., CASPER, J., CATANZARO, B., CHEN,
J., CHRZANOWSKI, M., COATES, A., DIAMOS, G.,
ELSEN, E., ENGEL, J. H., FAN, L., FOUGNER, C.,
HAN, T., HANNUN, A. Y., JUN, B., LEGRESLEY,
P., LIN, L., NARANG, S., NG, A. Y., OZAIR, S.,
PRENGER, R., RAIMAN, J., SATHEESH, S., SEE-
TAPUN, D., SENGUPTA, S., WANG, Y., WANG, Z.,
WANG, C., XIAO, B., YOGATAMA, D., ZHAN, J., AND
ZHU, Z. Deep speech 2: End-to-end speech recognition
in english and mandarin. CoRR abs/1512.02595 (2015).

[5] ANANTHANARAYANAN, G., GHODSI, A., WARFIELD,
A., BORTHAKUR, D., KANDULA, S., SHENKER, S.,
AND STOICA, I. Pacman: Coordinated memory caching
for parallel jobs. In Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12) (2012), pp. 267–280.

[6] BOYD, T., CAO, Y., DAS, S., JOERG, T., AND LEBAR,
J. Pushing the limits of gpu performance with
xla. https://medium.com/tensorflow/pushing-the-limits-
of-gpu-performance-with-xla-53559db8e473.

[7] BREWER, E. A. Kubernetes and the path to cloud native.
In Proceedings of the sixth ACM symposium on cloud
computing (2015), ACM, pp. 167–167.

[8] DESLAURIERS, F., MCCORMICK, P., AMVROSIADIS,
G., GOEL, A., AND BROWN, A. D. Quartet: Harmoniz-
ing task scheduling and caching for cluster computing.
In 8th {USENIX} Workshop on Hot Topics in Storage
and File Systems (HotStorage 16) (2016).

[9] FU, K., KAASHOEK, M. F., AND MAZIERES, D. Fast
and secure distributed read-only file system. In Proceed-
ings of the 4th conference on Symposium on Operat-
ing System Design & Implementation-Volume 4 (2000),
USENIX Association, p. 13.

[10] GOOGLE. Open images dataset. In
https://github.com/cvdfoundation/open-images-dataset
(2018).

[11] GOOGLE. Overview of the
open images challenge 2018. In

https://storage.googleapis.com/openimages/web/challenge.html
(2018).

[12] GOOGLE. Youtube-8m dataset. In
https://research.google.com/youtube8m/ (2018).

[13] GRAPHCORE, AND TØRUDBAKKEN, O. In-
troducing the graphcore rackscale ipu pod. In
https://www.graphcore.ai/posts/introducing-the-
graphcore-rackscale-ipu-pod (2018).

[14] GROUP, D. Dawnbench: Imagenet training on resnet50.
https://dawn.cs.stanford.edu/benchmark/ .

[15] GUNDA, P. K., RAVINDRANATH, L., THEKKATH,
C. A., YU, Y., AND ZHUANG, L. Nectar: Automatic
management of data and computation in datacenters. In
OSDI (2010), vol. 10, pp. 1–8.

[16] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep
residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition (2016), pp. 770–778.

[17] JOUPPI, N. P., YOUNG, C., PATIL, N., PATTERSON,
D., AGRAWAL, G., BAJWA, R., BATES, S., BHATIA,
S., BODEN, N., BORCHERS, A., ET AL. In-datacenter
performance analysis of a tensor processing unit. In
2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA) (2017), IEEE, pp. 1–
12.

[18] KIM, H., JO, H., AND LEE, J. Xhive: Efficient cooper-
ative caching for virtual machines. IEEE Transactions
on Computers 60, 1 (2010), 106–119.

[19] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S.,
AND STOICA, I. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In Proceedings
of the ACM Symposium on Cloud Computing (2014),
ACM, pp. 1–15.

[20] LINLEY, M. Google announces a new gen-
eration for its tpu machine-learning hardware.
https://techcrunch.com/2018/05/08/google-announces-
a-new-generation-for-its-tpu-machine-learning-
hardware/ .

[21] MICROSOFT. Blob storage: Massively
scalable object storage for unstructured
data. In https://azure.microsoft.com/en-
in/services/storage/blobs/.

[22] MICROSOFT. Use low-priority azure vms with batch.
In https://docs.microsoft.com/en-us/azure/batch/batch-
low-pri-vms.

[23] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES,
D. A low-bandwidth network file system. In ACM
SIGOPS Operating Systems Review (2001), vol. 35,
ACM, pp. 174–187.

[24] OPENSLR. Librispeech asr corpus. In
http://www.openslr.org/12.

[25] PASZKE, A., GROSS, S., CHINTALA, S., AND
CHANAN, G. Pytorch. In https://pytorch.org (2017).

USENIX Association 18th USENIX Conference on File and Storage Technologies 295

[26] PATTERSON, R. H., GIBSON, G. A., GINTING, E.,
STODOLSKY, D., AND ZELENKA, J. Informed prefetch-
ing and caching. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles (New York,
NY, USA, 1995), SOSP ’95, ACM, pp. 79–95.

[27] RASHMI, K., CHOWDHURY, M., KOSAIAN, J., STO-
ICA, I., AND RAMCHANDRAN, K. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In 12th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 16)
(2016), pp. 401–417.

[28] RASLEY, J., HE, Y., YAN, F., RUWASE, O., AND FON-
SECA, R. Hyperdrive: Exploring hyperparameters
with pop scheduling. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (2017),
ACM, pp. 1–13.

[29] ROBBINS, H., AND MONRO, S. aa stochastic approx-
imation method, o annals math. Statistics 22 (1951),
400–407.

[30] SARKAR, P., AND HARTMAN, J. Efficient cooperative
caching using hints. In OSDI (1996), pp. 35–46.

[31] SIVATHANU, M., CHUGH, T., SINGAPURAM, S. S.,
AND ZHOU, L. Astra: Exploiting predictability to opti-
mize deep learning. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems (New
York, NY, USA, 2019), ASPLOS ’19, ACM, pp. 909–
923.

[32] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS,
J., AND WOJNA, Z. Rethinking the inception architec-
ture for computer vision. CoRR abs/1512.00567 (2015).

[33] VOLTA, I. The worlds most advanced data center gpu.

URL https://devblogs. nvidia. com/parallelforall/inside-
volta.

[34] WIKIPEDIA. Gantt chart.
https://en.wikipedia.org/wiki/Gantt_chart.

[35] WIKIPEDIA. Wikipedia: Multiple buffering. In
https://en.wikipedia.org/wiki/Multiple_buffering.

[36] WU, Y., SCHUSTER, M., CHEN, Z., LE, Q. V.,
NOROUZI, M., MACHEREY, W., KRIKUN, M., CAO,
Y., GAO, Q., MACHEREY, K., ET AL. Google’s neu-
ral machine translation system: Bridging the gap be-
tween human and machine translation. arXiv preprint
arXiv:1609.08144 (2016).

[37] XIAO, W., BHARDWAJ, R., RAMJEE, R., SIVATHANU,
M., KWATRA, N., HAN, Z., PATEL, P., PENG, X.,
ZHAO, H., ZHANG, Q., ET AL. Gandiva: Introspective
cluster scheduling for deep learning. In 13th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18) (2018), pp. 595–610.

[38] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A.,
MA, J., MCCAULEY, M., FRANKLIN, M. J., SHENKER,
S., AND STOICA, I. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation (2012),
USENIX Association, pp. 2–2.

[39] ZHU, Y., CHOWDHURY, F., FU, H., MOODY, A.,
MOHROR, K., SATO, K., AND YU, W. Entropy-aware
i/o pipelining for large-scale deep learning on hpc sys-
tems. In 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS) (2018), IEEE,
pp. 145–156.

296 18th USENIX Conference on File and Storage Technologies USENIX Association

CRaft: An Erasure-coding-supported Version of Raft for Reducing Storage Cost
and Network Cost

Zizhong Wang†‡∗ Tongliang Li†‡∗ Haixia Wang‡ Airan Shao†‡ Yunren Bai†‡

Shangming Cai†‡ Zihan Xu†‡ Dongsheng Wang§†‡

†Department of Computer Science and Technology, Tsinghua University
‡Beijing National Research Center for Information Science and Technology, Tsinghua University

Abstract
Consensus protocols can provide highly reliable and avail-
able distributed services. In these protocols, log entries are
completely replicated to all servers. This complete-entry repli-
cation causes high storage and network costs, which harms
performance.

Erasure coding is a common technique to reduce storage
and network costs while keeping the same fault tolerance abil-
ity. If the complete-entry replication in consensus protocols
can be replaced with an erasure coding replication, storage
and network costs can be greatly reduced. RS-Paxos is the
first consensus protocol to support erasure-coded data, but
it has much poorer availability compared to commonly used
consensus protocols, like Paxos and Raft. We point out RS-
Paxos’s liveness problem and try to solve it. Based on Raft,
we present a new protocol, CRaft. Providing two different
replication methods, CRaft can use erasure coding to save
storage and network costs like RS-Paxos, while it also keeps
the same liveness as Raft.

To demonstrate the benefits of our protocols, we built a
key-value store based on CRaft, and evaluated it. In our ex-
periments, CRaft could save 66% of storage, reach a 250%
improvement on write throughput and reduce 60.8% of write
latency compared to original Raft.

1 Introduction

Consensus protocols, such as Paxos [12] and Raft [14], can
tolerate temporary failures in distributed services. They al-
low a collection of servers to work as a coherent group by
keeping the commands in each server’s log in a consistent
sequence. These protocols typically guarantee safety and live-
ness, which means they always return correct results and can
fully functional if no majority of the servers fail. Using these
consensus protocols, commands can be properly replicated
into each server in the same order, even if machine failures

*These authors contributed equally to this work.
§Dongsheng Wang (wds@tsinghua.edu.cn) is the corresponding author.

may happen. Google’s Chubby [3] is one of the earliest sys-
tems using consensus protocols. In Chubby, metadata, like
locks, are replicated through different nodes by Paxos. Since
Gaios [2], consensus protocols have been used to replicate all
user data (typically much larger than metadata) rather than
only metadata. Recently, Raft and Paxos have been applied in
real large-scale systems like etcd [8], TiKV [1] and FSS [11],
to replicate terabytes of user data with better availability.

In such systems, data operations will be translated into log
commands and then replicated into all servers by consensus
protocols. Thus, data will be transferred to all servers, and
then flushed to disks. In consensus problems, to tolerate any F
failures, at least N =(2F+1) servers are needed. Otherwise, a
network partition may cause split groups to agree on different
contents which is against the concept of consensus. Therefore,
using consensus protocols to tolerate failures may cause high
network and storage costs which can be around N times of
the original amount of data. Since these protocols are now
applied in large-scale systems and the data volume is growing
larger, these costs become real challenges and they can prevent
systems from achieving low latency and high throughput.

Erasure coding [16] is an effective technique to reduce
storage and network costs compared to full-copy replication.
It divides data into fragments, and encodes the original data
fragments to generate parity fragments. The original data can
be recovered from any large-enough subset of fragments, so
erasure coding can tolerate faults. If each server only needs
to store a fragment (can be either an original data fragment
or a parity one), not the complete copy of the data, storage
and network costs can be greatly reduced. Based on the above
properties, erasure coding may be a good solution to the chal-
lenges of storage and network costs in consensus protocols.
Erasure coding is deployed in FSS [11] for reducing stor-
age cost. However, FSS uses a pipelined Paxos to replicate
complete user data and metadata 5-ways before encoding.
Therefore, extra network cost of FSS is still four times of the
amount of data, which harms performance.

RS-Paxos [13] is the first consensus protocol to support
erasure-coded data. Combining Paxos and erasure coding, RS-

USENIX Association 18th USENIX Conference on File and Storage Technologies 297

Paxos reduces storage and network costs. However, RS-Paxos
has poorer availability compared to Paxos. RS-Paxos trades
liveness to use erasure coding for better performance. In other
words, a RS-Paxos-applied system of N = (2F +1) servers
cannot tolerate F failures any longer. This may be a serious
problem since the system should tolerate enough failures. At
the theoretical level, we tend to design a consensus protocol
with the same level of liveness as Paxos and Raft. We examine
this liveness problem and point out that this problem exists
because the requirement of committing becomes stricter in
RS-Paxos.

We present an erasure-coding-supported version of Raft,
CRaft (Coded Raft). In CRaft, a leader has two methods to
replicate log entries to its followers. If the leader can commu-
nicate with enough followers, it will replicate log entries by
coded-fragments for better performance. Otherwise, it will
replicate complete log entries for liveness. Like RS-Paxos,
CRaft can handle erasure-coded data, so it can save storage
and network costs. However, one major difference between
CRaft and RS-Paxos is that CRaft has the same level of live-
ness as Paxos and Raft while RS-Paxos does not.

To verify the benefits of CRaft, we designed and built key-
value stores based on different protocols, and evaluated them
on Amazon EC2. In our experiments, CRaft could greatly
save network traffic, leading to a 250% improvement on write
throughput and a 60.8% reduction of write latency compared
to original Raft. In addition, we proved that CRaft has the
same availability as Raft.

In the remainder, first we briefly go through the background
knowledge of Raft, erasure coding and RS-Paxos in Section 2.
Next, we explain the details of our CRaft protocol in Section 3
and prove the safety property of CRaft in Section 4. Section 5
describes our implementation, experiments and evaluation.
Finally, we discuss related work in Section 6 and conclude in
Section 7.

2 Background

We begin by briefly describing Raft, erasure coding, RS-Paxos
and then discuss RS-Paxos’s liveness problem.

2.1 Raft
Raft [14] is one of the consensus protocols and it provides
a good foundation for building practical systems. There are
three server states in Raft, as shown in Figure 1. A leader is
elected when a candidate receives votes from a majority of
servers. A server can vote for a candidate only if the candi-
date’s log is at least as up-to-date as the server’s. Each server
can vote at most once in each term, so Raft guarantees that
there is at most one leader in one term.

The leader accepts log entries from clients and tries to
replicate them to other servers, forcing the others’ logs to
agree with its own. When the leader finds out that one log

Follower Candidate Leader
times out and
starts election

discovers current
leader or new term

receives votes from
majority of servers

discovers server
with higher term

times out and starts
new election

starts

Figure 1: Three server states in Raft [14]

entry accepted in its term has been replicated to a majority of
servers, this entry and its previous ones can be safely applied
to its state machine. The leader will commit and apply these
entries, and then inform followers to apply them.

Consensus protocols for practical systems typically have
the following properties:

• Safety. They never return incorrect results under all non-
Byzantine conditions.

• Liveness. They are fully functional as long as any ma-
jority of the servers are alive and can communicate with
each other and with clients. We call this group of servers
healthy.

The safety property in Raft is guaranteed by the Leader
Completeness Property [14]: if a log entry is committed in a
given term, then that entry will be present in the logs of the
leaders for all higher-numbered terms.

Liveness is guaranteed by Raft’s rules. Typically, the num-
ber of servers in systems using consensus protocols, N, is odd.
Assume that N = 2F +1, then Raft can tolerate any F failures.
We define a consensus protocol’s liveness level as the number
of failures that it can tolerate, so Raft has an F liveness level.
Higher liveness level means better liveness. No protocol can
reach an (F +1) liveness level. If there exists a protocol with
an (F +1) liveness level, there can be two split groups of F
healthy servers and these two groups can agree on different
contents respectively, which is against the safety property.

Safety and liveness are the most important properties of
consensus protocols. Raft can guarantee that the safety prop-
erty always holds and it also reaches the highest possible
liveness level F . Furthermore, Raft has been proved to be
a good foundation for system building. According to these
properties, we choose Raft as the basis to design our new
protocol CRaft.

2.2 Erasure Coding
Erasure coding is a common technique to tolerate faults in
storage systems and network transmissions. A large num-
ber of codes have been put forward, but Reed-Solomon (RS)
codes [16] are the most commonly used ones. There are two
configurable positive integer parameters in RS codes, k and m.

298 18th USENIX Conference on File and Storage Technologies USENIX Association

In this technique, data are divided into k fragments with equal
sizes. Then, using these k original data fragments, m parity
fragments can be computed by an encoding procedure. So
there will be (k+m) fragments generated from the original
data. The magic of a (k,m)-RS code is that any k out of total
(k+m) fragments are enough to recover the original data, and
that is how RS codes tolerate faults.

When a consensus protocol is applied, the number of the
servers, N, is usually fixed. If each server only stores one
fragment produced by a (k,m)-RS code whose parameters k
and m are subject to k+m = N, storage and network costs can
be reduced to 1/k compared to full-copy replication. However,
how to guarantee the safety property and keep liveness as
good as possible cannot be ignored.

2.3 RS-Paxos
Combining erasure coding and Paxos, RS-Paxos is a reform
version of Paxos which can save storage and network costs.
In Paxos, commands are transferred completely. However,
commands are transferred by coded-fragments in RS-Paxos.
According to this change, servers can store and transfer only
fragments in RS-Paxos, so storage and network costs can be
reduced. The complete description of RS-Paxos can be found
in the RS-Paxos paper [13].

To guarantee safety and liveness, Paxos and Raft are based
on the inclusion-exclusion principle as follows.

|A∪B|= |A|+ |B|− |A∩B| (1)

The inclusion-exclusion principle guarantees that there is at
least one server in two different majorities of servers,1 and
then the safety property can be guaranteed.

The insight of RS-Paxos is to increase the size of the inter-
section set. Specifically, after choosing a (k,m)-RS code, the
read quorum QR, the write quorum QW , and the number of
the servers N, should fit the following formula.

QR +QW −N ≥ k (2)

Then if a command is chosen (like committed in Raft), at least
QW servers have accepted it. If a server wants to propose its
own command, it will contact at least QR servers in Prepare
phase. Because of (2) and (1), at least k among this QR servers
have a fragment of the chosen command. So the proposer can
recover the original command by using the k fragments and
then it proposes the chosen value rather than its own.

With the benefits of erasure coding, using RS-Paxos can
greatly reduce storage and network costs when k > 1. How-
ever, RS-Paxos decreases the fault tolerance number of failed
servers. As Theorem 1 shows, RS-Paxos’s liveness cannot be
as good as Paxos or Raft.

Theorem 1. Liveness level of RS-Paxos, LRSP, is always less
than F when k > 1.

1If |A|> |A∪B|/2 and |B|> |A∪B|/2, |A∩B|= |A|+ |B|− |A∪B|> 0.

Proof. RS-Paxos works only if at least max{QR,QW} servers
are alive, so LRSP ≤ N−max{QR,QW}.

According to (2), we have

max{QR,QW} ≥ (QR +QW)/2≥ (N + k)/2.

Therefore, LRSP ≤ N − (N + k)/2 = F − (k− 1)/2 < F .

RS-Paxos roughly solves the consensus problem with era-
sure coding, but it cannot reach an F liveness level any longer
as Theorem 1 shows. RS-Paxos requires more healthy servers
than Paxos or Raft to function. It is important to present a
consensus protocol that not only supports erasure coding but
also possesses the same liveness level as Paxos and Raft.

3 CRaft, a Reform Version of Raft that Sup-
ports Erasure Coding

Liveness is one of the most important properties of consensus
protocols. However, the previous erasure-coding-supporting
protocol, RS-Paxos, fails to reach an F liveness level. Thus,
our goal is to design a new erasure-coding-supporting proto-
col (so it can save storage and network costs) that possesses
an F liveness level. This new protocol is based on Raft, so it
inherits the basic concepts in Raft.

To reduce network cost, leaders in the new protocol should
be able to replicate their log entries to followers by us-
ing coded-fragments, like RS-Paxos. However, as Theo-
rem 1 shows, a protocol with only coded-fragment replication
method cannot reach an F liveness level. In fact, Theorem 2
shows that the complete-entry replication method in Raft is
necessary for an F liveness level protocol.

Theorem 2. When there are only (F +1) healthy servers in
an F liveness level protocol, an entry e can be committed only
after the complete entry has been stored in all (F +1) healthy
servers’ logs.

Proof. If a healthy server S did not store complete entry e
when e was committed, the protocol could not guarantee that
it could work fully functionally in any (F +1) healthy servers.
Suppose only S and the previous unhealthy servers were
healthy at the next moment, these (F +1) currently healthy
servers could not recover complete e, then the protocol had to
wait for other servers. So when e was committed, all (F +1)
healthy servers had this complete entry.

Both coded-fragment replication and complete-entry repli-
cation are required in our new protocol. Using coded-
fragment replication can save storage and network costs, while
complete-entry replication can keep liveness.

Next we will discuss the details of these two replication
methods, and then we try to integrate them into a complete
protocol, CRaft. To explain the details of CRaft, we first de-
fine some parameters. We assume that there are N = (2F +1)

USENIX Association 18th USENIX Conference on File and Storage Technologies 299

content

content fragment 1

content fragment 2

content fragment 3

content fragment 1

content fragment 2

content fragment 3

content fragment 4 (parity)

content fragment 5 (parity)

Index Term

content

Index Term

Index Term

content fragment 1

Index Term

content fragment 2

Index Term

content fragment 3

Index Term

content fragment 4 (parity)

Index Term

content fragment 5 (parity)

split

encode

combine

Figure 2: The encoding procedure in CRaft.

Table 1: Comparisons among Different Protocols

Performance Different Protocols
Indicators CRaft Raft RS-Paxos
storage cost 222FFF///kkk+++111 2F +1 222FFF///kkk+++111
network cost 222FFF///kkk 2F 222FFF///kkk

disk I/O 222FFF///kkk+++111 2F +1 222FFF///kkk+++111
liveness level FFF FFF F− (k−1)/2

servers in the protocol. Since CRaft should have the same
availability as Raft, its liveness level should be F , which
means that CRaft can still work when at least (F +1) servers
are healthy. We choose a (k,m)-RS code for CRaft. k and
m should satisfy k+m = N, so each server in the protocol
can correspond to one coded-fragment for each log entry. As
Table 1 shows, CRaft supports erasure coding so it can save
storage and network costs, while it possesses an F liveness
level at the same time.

3.1 Coded-fragment Replication

When a leader in CRaft tries to replicate an entry by coded-
fragment replication method, it first encodes the entry. In Raft,
each log entry should contain its original content from clients
and also its term and index in the protocol. When a CRaft
leader tries to encode an entry, the content can be encoded
into N = (k+m) fragments by the (k,m)-RS code that the
protocol chooses. Term and index should not be encoded,
since they play important roles in the protocol. Figure 2 shows
the encoding procedure.

After encoding, the leader will have N coded-fragments of
the entry. Then it will send the corresponding coded-fragment
to each follower. After receiving its corresponding coded-
fragment, each follower will reply to the leader. When the

leader confirms that at least (F + k) servers store a coded-
fragment, the entry and its previous ones can be safely applied.
The leader will commit and apply these entries, and then
inform followers to apply them. The commitment condition
of coded-fragment replication is stricter than Raft’s. This
commitment condition also implies that a leader cannot use
coded-fragment replication to replicate an entry and then
commit it when there are not (F + k) healthy servers.

When a leader is down, a new leader will be elected. If an
entry is already committed, the election rule of Raft guaran-
tees that the new leader at least has a fragment of the entry,
which means the safety property can be guaranteed. Since at
least (F + k) servers store a fragment of a committed entry,
there should be at least k coded-fragments in any (F + 1)
servers.2 So the new leader can collect k coded-fragments and
then recover the complete entry when there are at least (F+1)
healthy servers, which means liveness can be guaranteed.

Figure 3 shows an example of coded-fragment replication
and explains why the commitment condition becomes stricter
in this replication method. If a leader can commit an entry
when it only confirms that F +1 = 4 servers store the entry,
new leaders may be unable to recover committed entries. Like
the Index 3 entry in Figure 3, it should not be committed
because only five servers stored it.3 If it was committed, con-
sider the situation that first three servers could not connect to
other servers while other four servers were all healthy. CRaft
should still be able to work because its liveness level is F = 3.
However, there were at most two fragments of the Index 3
entry in the healthy servers, so new leaders were not able to re-
cover the complete entry. The protocol had to wait for the first
three servers, which means liveness cannot be guaranteed.

In coded-fragment replication, followers can receive and

2According to (1), the number of the servers storing a fragment of a
committed entry is at least (F + k)+(F +1)−N = 2F +1−N + k = k.

3The entry can be committed only if at least (F +k) servers store it. Since
F + k = 3+3 > 5, the Index 3 entry should not be committed.

300 18th USENIX Conference on File and Storage Technologies USENIX Association

T=0 T=1 T=2

1 2 3 1 2 3 1 2 3 log index

of fragments

in healthy serverscommitted entries

leader

follower 2

(,)=(,)

 ,
data amount:

 □ △

follower 1

follower 3

follower 4

follower 5

follower 6

Figure 3: An example of coded-fragment replication. A square
represents a complete entry, while a triangle represents a frag-
ment of an entry. Yellow shadow means that the corresponding
servers of the entries were not healthy. At T = 0, the leader got
three entries and it tried to replicate them. At T = 1, followers
received entry fragments with varying degrees of success. At
T = 2, three servers, including the leader, failed.

store coded-fragments of entries. However, in Raft, followers
must receive and store complete entries. According to the
encoding procedure, the size of coded-fragments are about
1/k of the size of complete entries. So storage and network
costs can be greatly reduced when using coded-fragment
replication.

3.2 Complete-entry Replication

To reduce storage and network costs, leaders are encouraged
to use coded-fragment replication. However, coded-fragment
replication will not work when there are not (F + k) healthy
servers. When the number of healthy servers is greater than
F and less than (F + k), the leader should use complete-entry
replication method to replicate entries.

In complete-entry replication, the leader has to replicate the
complete entry to at least (F +1) servers before committing
the entry, just like Raft. Since the committing rule is the same
as Raft, safety and liveness are not problems. However, since
CRaft supports coded-fragments, the leader can replicate an
entry by coded-fragments rather than the complete entry to
remaining followers after committing the entry.

In practical implementations, there are many strategies to
replicate an entry via complete-entry replication. Define an
integer parameter 0≤ p≤ F . The leader can first send com-
plete copies of an entry to (F + p) followers and then send
coded-fragments to remaining (F− p) followers. A smaller
p means less storage and network costs, but it also means
a higher probability to have longer committing latency (if
no F out of (F + p) answers return in time, more rounds of

communications may be required before commitment). When
p = F , the strategy becomes the same as Raft’s replication
method. Figure 4 shows different strategies when p = 0,1,F .
In our implementation for experiments, we choose p = 0.

3.3 Prediction
Using coded-fragment replication rather than complete-entry
replication can achieve better performance, if both methods
can replicate successfully. A greedy strategy is that the leader
always tries to replicate entries by coded-fragment replication.
If it finds out that there are not (F +k) healthy servers, it turns
to replicate the entry by complete-entry replication. However,
if the leader already knows that the number of healthy servers
is less than (F + k), the first replication attempt via coded-
fragments is meaningless.

Choosing the replication method accurately can reach the
best performance. However, the leader cannot be sure about
the status of other servers. So it can only predict how many
healthy servers it could communicate with when it tries to
replicate an entry. The leader can use the most recent heart-
beat answers to estimate the number of healthy servers. This
prediction should be accurate enough.

When a leader tries to replicate an entry, it should use
this prediction method to determine how to replicate. If the
number of most recent heartbeat answers are not less than
(F+k), the leader should use coded-fragment replication first,
and then it tries complete-entry replication if coded-fragment
replication does not work. Otherwise, the leader directly uses
complete-entry replication. Figure 5 concludes this process.

It is worth noting that this prediction is independent of
the method that the leader chose to replicate last entry. It
only relies on the most recent heartbeat answers. So it is
quite possible that a leader used complete-entry replication
to replicate the last entry and then it automatically chose
coded-fragment replication to replicate a new entry.

3.4 Newly-elected Leader
Both replication methods can guarantee safety and liveness
when leaders have all complete entries. However, when a
leader is newly elected, it is likely that the newly-elected
leader’s log does not have complete copies but only coded-
fragments of some entries. These incomplete entries are not
guaranteed recoverable when there are only (F +1) healthy
servers. If some of these unrecoverable entries have not been
applied by the newly-elected leader, the leader has no way to
deal with these entries. The leader cannot send AppendEntries
RPCs containing any one of these entries to the followers who
need them,4 so these unrecoverable entries will retain unap-
plied. According to the rules of Raft, the leader’s new entries
received from clients cannot be replicated to the followers as

4CRaft inherits Raft’s RPCs [14], the only difference between their RPCs
is that entries can be encoded in CRaft’s AppendEntries RPC.

USENIX Association 18th USENIX Conference on File and Storage Technologies 301

leader commit

follower

follower

follower

follower

follower

follower

(a)

leader commit

follower

follower

follower

follower

follower

follower

(b)

leader commit

follower

follower

follower

follower

follower

follower

(c)

Figure 4: Examples of complete-entry replication with parameter p = 0,1,F when N = 7. A square represents a complete entry,
while a triangle represents a fragment of an entry.

Yes

Number
of most recent

heartbeat answers
less than

(+)?

Leader starts to
replicate an entry

Complete-entry
replication

Leader commits
the entry

No

Coded-fragment
replication

No

Success?

Success?

Yes

Yes

No

Figure 5: Flow chart of log entry replication.

well. So the protocol fails to function fully and the protocol’s
liveness property cannot be guaranteed. Therefore, some extra
operations are required to guarantee liveness.

The coded-fragments in the newly-elected leader’s log can
be applied or unapplied by the leader. If a coded-fragment is
applied, the entry must have been committed by a previous
leader. According to the commitment condition of two repli-
cation methods, at least k coded-fragments or one complete
copy of the entry are stored in any (F + 1) servers. So the
leader can always recover this entry when there are (F +1)
healthy servers. However, if a coded-fragment is unapplied,
no rules can guarantee that this entry can be recovered when
there are (F +1) healthy servers.

To deal with unapplied coded-fragments, newly-elected
leaders in CRaft should do the LeaderPre operation, before
they can become fully-functioned leaders.

When a leader is newly-elected, it first checks its own log,
finds out its unapplied coded-fragments. Then it asks follow-
ers for their own logs, focusing on the indexes of the unap-
plied coded-fragments. At least (F +1) answers (including
the new leader itself) should be collected or the new leader
should keep waiting. The new leader should try to recover
its unapplied coded-fragments in sequence. For each entry, if

there are at least k coded-fragments or one complete copy in
(F + 1) answers, it can be recovered, but not allowed to be
committed or applied immediately. Otherwise, the new leader
should delete this entry and all the following ones (includ-
ing complete entries) in its log. After recovering or deleting
all the unapplied entries, the whole LeaderPre operation can
be done. During LeaderPre, the newly-elected leader should
keep sending heartbeats to other servers, preventing them
from timing out and starting new elections.

Figure 6 shows examples of LeaderPre. In Figure 6, N = 5
and k = 3. S1 committed the first two entries and then crashed,
and other servers had only applied the first entry. S2 was
elected as a new leader, and it would do LeaderPre. It first
asked followers about the entries in Index 2 and Index 3. In
Figure 6(a), after receiving answers from itself, S3 and S4, it
tried to recover the two entries. There were three fragments
of the Index 2 entry and two fragments of the Index 3 entry.
So S2 should recover the Index 2 entry and delete the Index 3
entry. While in Figure 6(b), S3, S5 and S2 itself all had the
Index 2 entry and the Index 3 entry. So S2 could recover
both of them. Though the uncommitted Index 3 entry would
be handled differently if S2 collected answers from different
groups of servers, the committed Index 2 entry would be
guaranteed to be recovered by LeaderPre.

After adding LeaderPre, the Leader Append-Only Property
in Raft has an exception: deletion in LeaderPre. In original
Raft, the original Leader Append-Only Property is the key to
prove safety, so it is necessary to prove that LeaderPre will
not harm safety. The proof can be found in Section 4.

There are two major reasons that leaders in original Raft
do not delete entries. First, leaders have no way to find out
whether an unapplied entry was committed by old leaders or
not. Second, even though an entry is unapplied, leaders can
still replicate it to followers since it has the entry’s complete
copy, so there is no need to delete it. In CRaft, if there are
enough fragments of an unapplied entry, the new leader can
recover it and be able to replicate it. Otherwise, the new leader
can conclude that this entry is uncommitted. Unrecoverable

302 18th USENIX Conference on File and Storage Technologies USENIX Association

(a) S2 receives answers from itself, S3 and S4 (b) S2 receives answers from itself, S3 and S5

(,)=(,)

 ,
data amount:

 □ △

1 2 3

committed entries

S1

S2

S3

S4

S5

new
leader

previous
leader

1 2 3

committed entries

S1

S2

S3

S4

S5

1 2 3

committed entries

S1

S2

S3

S4

S5

new
leader

previous
leader

1 2 3

committed entries

S1

S2

S3

S4

S5

Figure 6: Examples of LeaderPre. A square represents a complete entry, while a triangle represents a fragment of an entry.

entries may harm CRaft’s liveness, but unrecoverable also
means uncommitted, so it is reasonable to delete them.

Based on Raft, CRaft provides two different replication
methods for supporting erasure coding while keeping live-
ness. A prediction based on the most recent heartbeat answers
helps the leader to choose replication method. In addition, to
guarantee liveness, LeaderPre can help newly-elected leaders
deal with unapplied coded-fragments.

3.5 Performance

The advantages of CRaft are shown in Table 1. Using a
(k,m)-RS code, CRaft has advantages in reducing storage
and network costs. In CRaft, ideally, only coded-fragments
are needed to be transferred between the leader and followers,
which indicates that the network cost can be saved to 1/k.
With this huge saving, CRaft can reach a much shorter latency
and a higher throughput compared to original Raft.

The major difference between CRaft and RS-Paxos is live-
ness. To tolerate F failures, CRaft only needs to deploy
(2F +1) servers. However, RS-Paxos needs to deploy at least
(2F +3) servers. With the same parameter k in erasure cod-
ing, less servers required means that CRaft can save more
storage and network costs compared to RS-Paxos.

One of the major concerns is the extra consumption when
a leader is newly-elected. The new leader has to collect en-
try fragments if there are some behind followers. However,
storage and network costs of CRaft in the worst situations are
basically the same as Raft in any situations. Also, in most
cases, the first new leader can replicate the old entries to all
behind followers, so each entry only needs to be collected
once extra. This harms the performance a little, but network
cost is still greatly reduced generally, compared to Raft.

LeaderPre latency may affect election time, so it may af-
fect the protocol’s availability. This kind of latency is possibly
affected by the number of the new leader’s unapplied entries.
However, a new leader can get brief information of its un-
applied entries first and then collect them later. The time
consumption of communicating brief information is quite

short so that LeaderPre latency will not harm the protocol’s
availability seriously.

It is optional that a newly-elected leader first collect the
whole state machine by communicating with its healthy fol-
lowers. This operation is helpful to reduce read latency in
the future, while it may significantly increase election time
so that it may harm the protocol’s availability. So there is a
trade-off between using it or not.

If there are far behind followers, we recommend that the
followers should catch up with the leader entry by entry when
they become healthy again. Snapshots can be used to compact
logs in CRaft. However, the deployment of snapshots can be
much more complex than original Raft, since different servers
store different fragments in CRaft.

Encoding time can be a problem too. However, many stud-
ies showed that encoding time is short enough compared to
transfer time in practical systems [6]. It is worth having a
slightly longer encoding time to reduce network cost.

4 Safety Argument

The key of safety in Raft is the Leader Completeness Property.
Since we add a new operation LeaderPre in CRaft, we have to
prove that the property still holds. First we give the proofs of
the Log Matching Property and its two related lemmas, then
we use them to prove the Leader Completeness Property.

Lemma 1. A server S has a log entry e, and e was first added
into the protocol in Term T, then e and its previous entries in
S’s log now are the same as the entries in leaderT ’s log when
e was first added into the protocol.

Proof. Guaranteed by contents in AppendEntries RPC [14].
Noticing deletions in LeaderPre always delete the newest part
in a log, this Lemma can be proved by the same induction
technique in the Raft paper [14].

Theorem 3. Log Matching Property: if two logs contain an
entry with the same index and term, then the logs are the same
in all entries up through the given index.

USENIX Association 18th USENIX Conference on File and Storage Technologies 303

Proof. As Lemma 1 holds, these two logs are the same as the
leader’s log when the entry was first added into the protocol.

Lemma 2. A server S has a log entry e, then entries with the
same term and smaller index are in S’s log.

Proof. A leader cannot add entries to its log until LeaderPre
is done. When e was accepted, entries with the same term
and smaller index must be in the leader’s log. According to
Lemma 1, Lemma 2 holds.

Theorem 4. Leader Completeness Property: if a log entry e
is committed in a given term (Term T), then e will be present
in the logs of the leaders for all higher-numbered terms, and e
will not be deleted in any higher-numbered term’s LeaderPre.

Proof. We assume that the Leader Completeness Property
does not hold, then we prove a contradiction. Since indexes
are positive integers, there is a log entry e with a smallest
index that breaks the property.

Consider two kinds of events: one, LeaderU (U > T) does
not have e at the time of its election; and two, e is deleted in
LeaderPre by LeaderU (U > T).

Assume that event one first appears. According to as-
sumption, leaders between Term T and Term U had e at
the time of their own elections, and e was never deleted in
LeaderPre. So e was never deleted from anyone’s log since
Term T . LeaderT replicated e on at least (F + 1) servers
(no matter which replication method LeaderT used), and
LeaderU received votes from at least (F +1) servers. Since
(F + 1)+ (F + 1) = N + 1 > N, at least one server both ac-
cepted e from LeaderT and voted for LeaderU . This server
must have accepted e from LeaderT before voting for LeaderU ,
otherwise it would reject LeaderT ’s AppendEntries request.
Since e was never deleted since Term T , this voter had e and
voted for LeaderU at the same time. So LeaderU ’s log must
have been as up-to-date as the voter’s. If the voter and LeaderU
shared the same last log term, then LeaderU ’s log must have
been at least as long as the voter’s. According to Lemma 2,
LeaderU ’s log must have e and this is a contradiction. Other-
wise, LeaderU ’s last log term must have been larger than the
voter’s. Since e was in the voter’s log, LeaderU ’s last log term,
P, was larger than T . According to assumption, in Term P,
LeaderP’s log had e. According to Lemma 1, LeaderU ’s log
must have e and this is a contradiction.

So event two must appear earlier than event one. According
to assumption, leaders after Term T had e at the time of their
own elections, and e was never deleted in LeaderPre before.
So e was never deleted from anyone’s log since Term T . Since
e was deleted in LeaderPre, there was an unrecoverable entry
e1. If e1 was not e, since e was deleted, the index of e1 must be
smaller than e’s. Because e was committed by LeaderT , and
e1 had a smaller index than e, so e1 had been committed. Then
e1 broke the Leader Completeness Property and had a smaller

RPC

Client

Other

Server

Persister

(to disk)

Consensus Protocol

Erasure

Coding
State Machine

Leader

CandidateFollower

Figure 7: The structure of each server in our key-value store.

index than e, this is a contradiction. So e was deleted because
it was unrecoverable. In Term T , LeaderT replicated e to at
least (F +1) servers by complete copies, or at least (F + k)
servers by coded-fragments. Since e was never deleted from
anyone’s log since Term T , According to (1), there were at
least one complete copy or k coded-fragments in any (F +1)
answers. Then e was recoverable and this is a contradiction.

Then the contradiction is completely proved. The Log
Matching Property guarantees that future leaders will also
contain entries that are committed indirectly (not by its term’s
leader). So, the Leader Completeness Property holds.

After proving the Leader Completeness Property, we can
conclude the State Machine Safety Property effortlessly.

Theorem 5. State Machine Safety Property: if a server has
applied a log entry at a given index to its state machine, no
other server will ever apply a different log entry for the same
index.

Proof. Suppose T is the lowest term in which any server
applies an entry at the given index i. If a server applied an
entry at Index i in Term U , the entry’s term must be the same
as the term of the Index i entry in LeaderU ’s log. According
to the Leader Completeness Property, the term of the Index i
entry in LeaderU ’s log should be identical to the term of the
Index i entry in LeaderT ’s log. Since T is constant when i is
given, the State Machine Safety Property holds.

5 Experiments and Evaluation

To evaluate our protocol, we first designed a key-value store
based on Raft. Then we modified it to adapt CRaft. Since RS-
Paxos is based on Paxos but not Raft, it is difficult to compare
RS-Paxos with CRaft or Raft directly. We took the insight
of RS-Paxos and implemented an equivalent protocol named
RS-Raft onto our key-value store. The parameters in RS-Raft
have the same meanings as the ones in RS-Paxos, which are
described in Section 2.3. We ran experiments on the key-value
store with different protocols to present an evaluation.

304 18th USENIX Conference on File and Storage Technologies USENIX Association

1 4 16 64 128 256 512 10242048
Value Size (kB)

0
10
20
30
40
50
60
70
80
90

W
rit

e
La

te
nc

y
(m

s)
Raft
RS-Raft
CRaft

Figure 8: Latency in different value sizes when N = 5.

5.1 Key-value Store Implementation
The key-value store we design supports three kinds of op-
erations: Set, Append and Get. Set and Append operations
must be logged, while Get operations are not. The keys were
accessed uniformly in our experimental workloads. Follow-
ers can just store fragments of their entries to reduce storage
cost. However, the leader should keep complete copies of
entries to ensure performance of Get. After a new leader is
elected, if there is a Get operation and the new leader only
has a fragment of the data, it should first force at least (k−1)
followers’ log to catch up with its own, then collect enough
data fragments from them and decode the data. If the leader
can directly respond to client’s Get, we call this operation a
fast read. Otherwise, if the leader should collect fragments
from followers first, we call this operation a recovery read.

We used C++ to implement our key-value store. The struc-
ture of each server in our key-value store is shown in Figure 7.
The consensus protocol can be Raft, CRaft and RS-Raft. We
used RCF 3.0 [18] to implement RPC, and we chose TCP as
transmission protocol. Jerasure 2.0 [15] is the library that we
used for erasure coding.

5.2 Setup
We ran experiments on the configurations of N = 5 and N = 7,
which are reasonable choices when using consensus protocols
supporting erasure coding. k was set to 3, so the erasure code
we used is a (3,2)-RS code (when N = 5) or a (3,4)-RS code
(when N = 7).

In N = 5 configuration, F = 2, so Raft and CRaft can tol-
erate any two failures. We chose QR = QW = 4 for RS-Raft,
so it can tolerate one failure. In N = 7 configuration, F = 3,
so Raft and CRaft can tolerate any three failures. We chose
QR = QW = 5 for RS-Raft, so it can tolerate two failures.

Our experiments were run on Amazon EC2 platform. We
used six (when N = 5) or eight (when N = 7) instances, one
of them played the role of clients and the other instances were
servers. Each instance has two virtual CPU cores and 8 GiB

1 4 16 64 128 256 512 10242048
Value Size (kB)

0
10
20
30
40
50
60
70
80
90

W
rit

e
La

te
nc

y
(m

s)

Raft
RS-Raft
CRaft

Figure 9: Latency in different value sizes when N = 7.

memory. The network bandwidth of each instance is about
550 Mbps. The storage devices we used are Amazon EBS
General Purpose SSDs, each with 80000 IOPS and 1750 MB/s
throughput.

5.3 Evaluation
We evaluated the protocols by measuring write latency, write
throughput, network cost, liveness level and recovery read
latency. Each experiment is repeated at least 100 times.

5.3.1 Latency

Figure 8 and Figure 9 show commitment latency of various
value-sized write requests with error bars. Operations with
a value size that larger than 2 MB can be solved by splitting
it into multiple Append operations. Each latency consists of
two parts. The part at the bottom with shadow in Figure 8
and Figure 9 is communication time from clients to the leader.
This part of time is only influenced by value size. The other
part is latency from the moment that the leader starts the entry
to the moment that the leader commits it, and it is the part
that we focus.

When value size is lower than 128 kB, three protocols per-
form evenly. In these situations, latency is mainly dominated
by disk I/O. Since data amount is too small, even though
CRaft and RS-Raft can save the amount of data flushed to
disks, the I/O time usage remains almost the same, so there is
not much difference between these protocols on latency.

When value size becomes larger, the advantage of CRaft
and RS-Raft can be revealed. Network traffic and disk I/O
both affect latency. Since CRaft and RS-Raft save network
cost and disk I/O greatly, they reduce 20%–45% of latency
compared to Raft when N = 5, and 20%–60.8% when N = 7.

5.3.2 Throughput

Since CRaft and RS-Raft can save the amount of data trans-
ferred and flushed to disks, they are expected to have bet-

USENIX Association 18th USENIX Conference on File and Storage Technologies 305

1 4 16 64 128 256 512 10242048
Value Size (kB)

0

50

100

150

200

250

300

350

400
Th

ro
ug

hp
ut

 (M
bp

s)
Raft
RS-Raft
CRaft

Figure 10: Throughput in different value sizes when N = 5.

ter throughput than Raft. We simulate the situation that 100
clients raise write request, and evaluate throughput of the
leader. Figure 10 and Figure 11 show the experiment results.

The results show that CRaft and RS-Raft can improve
throughput compared to Raft. They can reach about 150%–
200% improvements when value size is relatively large.

With value size grows larger, throughput first increases
and reaches a peak, then it will fall. Throughput will fall
because of network congestion. How to prevent this network
congestion problem is interesting, but it is not our concern
in this paper. We compare the peak throughput of these three
protocols. CRaft and RS-Raft can have a 180% improvement
on write throughput when N = 5 and 250% when N = 7.
Also, the throughput peaks of CRaft and RS-Raft both appear
much later than Raft’s. This is another advantage of CRaft
and RS-Raft because of their reductions on network cost.

RS-Raft’s throughput can be slightly better than CRaft’s
when the numbers of servers are equal, because more Ap-
pendEntries replies are needed before commitment in CRaft.
However, it is unfair to compare these two protocols’ through-
put in such way, since RS-Raft’s liveness is worse than
CRaft’s. To tolerate two failures, seven servers are required
when using RS-Raft, while only five servers are required when
using CRaft. So it is fairer to compare RS-Raft’s throughput
when N = 7 with CRaft’s throughput when N = 5. According
to Figure 10 and Figure 11, in this comparison, CRaft has an
advantage.

5.3.3 Network Cost

We monitored the amount of data transferred from the leader
to directly prove that our protocol can save network cost. In
this experiment, clients raised a write request every 70 ms.
Figure 12 shows the monitoring results when N = 7. The
leader in Raft transfers about 250% of data amount compared
to the leader in CRaft. This result directly proves that CRaft
can greatly reduce network cost. However, ideally, when k= 3,
the ratio between the amount of data transferred from a Raft

1 4 16 64 128 256 512 10242048
Value Size (kB)

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (M

bp
s)

Raft
RS-Raft
CRaft

Figure 11: Throughput in different value sizes when N = 7.

leader and a CRaft leader should be close to 300%. The gap
between 250% and 300% may be caused by costs that are not
generated by the consensus protocols.

5.3.4 Liveness

The major difference between CRaft and RS-Raft is liveness.
CRaft can tolerate any two failures when N = 5, and it can
tolerate any three failures when N = 7. Though we choose the
parameters for RS-Raft to reach its highest possible liveness
level, RS-Raft can only tolerate one failure when N = 5, and
it can only tolerate two failures when N = 7.

Figure 13 shows the throughput of different protocols when
the number of healthy servers changes in N = 7 experiments
with error bars. RS-Raft performs very well when the number
of healthy servers is no less than 5, but it cannot work when
the number is 4. CRaft performs just like RS-Raft when the
number of healthy servers is 6 or 7, while it performs worse
than RS-Raft when the number is 5. This is because CRaft
can only use complete-entry replication when the number of
healthy servers is 5, so its throughput is degraded. However,
CRaft can still work when the number of healthy servers is 4,
just like Raft. And this proves CRaft’s liveness advantage to
RS-Raft.

5.3.5 Recovery Read

One of our concerns is that recovery read will take too much
time compared to fast read. The leader in Raft always does
fast read, but sometimes new leaders in CRaft may have to
do recovery read. Noticing that a new leader only needs to
do at most one recovery read to a specific key. If a leader
needs to handle several Get operations of one key in its term,
only the first time it has to do recovery read. So the existence
of recovery read may not harm performance too much when
servers do not crash too often. We made a new leader handle
a Get operation in different protocols, and then we repeated
this Get operation nine more times and calculated average
latency. The results are shown in Figure 14. CRaft takes at

306 18th USENIX Conference on File and Storage Technologies USENIX Association

0 20 40 60 80
Time (s)

0

100

200

300

400

500

600

700

Ba
nd

wi
dt

h
(M

bp
s)

Raft
CRaft

Figure 12: The leader’s network con-
sumption in Raft and CRaft when
N = 7.

7 6 5 4
Number of Healthy Servers

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (M

bp
s)

Raft
RS-Raft
CRaft

Figure 13: Throughput when the num-
ber of healthy servers changes in N = 7
experiments.

512 1024 2048 4096 8192 16384
Value Size (kB)

0

100

200

300

400

500

600

Av
er

ag
e

Re
ad

 L
at

en
cy

 (m
s)

Raft (1 time/10 times)
CRaft (10 times)
CRaft (1 time)

Figure 14: Average latency of Get op-
erations when k = 3. Only the first Get
operation harms performance in CRaft.

most 140% more time compared to Raft handling the first Get
operation. However, time usages of ten operations between
different protocols become close enough. So we can conclude
that extra time usage of recovery read is acceptable.

6 Related Work

Many systems use consensus protocols to provide highly
reliable and available distributed services. In early years, most
of them use Paxos to achieve consistency, like Chubby [3]
and Spanner [5]. After the presence of Raft, many systems are
using it for understandability, such as etcd [8] and TiKV [1].

Recent years, consensus protocols are not only used to
replicate small size database records, but also files and data
objects. Using Paxos, Gaios [2] builds a high performance
data store. To prevent the service from compromising avail-
ability, FSS [11] uses a pipelined Paxos to replicate both user
data and metadata. Also, etcd and TiKV use Raft to consis-
tently distribute user data to different servers. This kind of
systems are target systems of CRaft.

Erasure coding is first developed in network transmission
area and now it is applied in many distributed storage systems,
such as Ceph [19], HDFS [17] and Microsoft Azure [10]. The
most focus problem about erasure coding now is that its recov-
ery cost is too high compared to simple replication, and there
are many works trying to solve this problem [7,10]. Our work
does not focus on this area, but we have another contribution
on erasure coding. The methods that most systems replicate
erasure-coded fragments are similar to using the two-phase
commit protocol [9]. This kind of methods have a high prob-
ability to fail in an asynchronous network, while CRaft can
still work well in this situation.

RS-Paxos [13] is the first consensus protocol supporting
erasure coding. However, it cannot reach the best liveness
level and it misses important details to build a practical system.
Our new protocol CRaft solves the above problems. Giza [4]
uses metadata versioning to provide consistency for erasure

coding objects. However, its method mainly focuses on safety
and ignores liveness when transferring user data. Liveness
can be optimized by using CRaft.

7 Conclusions

We presented CRaft, an erasure-coded version of Raft. CRaft
is based on Raft while it extents Raft to support erasure coding.
With the help of erasure coding, storage and network costs
can be greatly reduced.

The previous erasure-coding-supporting protocol, RS-
Paxos, fails to retain an F liveness level like Paxos or Raft.
CRaft solves this problem. In other words, to tolerate F faults,
CRaft only needs (2F + 1) servers while RS-Paxos needs
more. So CRaft can save more storage and network costs.

We analyzed the performance of different protocols and
we concluded that CRaft can reduce storage and network
costs most while it has the best liveness. We designed a key-
value store and ran experiments on it. The results show that
CRaft can reduce 60.8% of latency and improve throughput
by 250% compared to Raft. In the future, we will attempt to
implement CRaft onto practical systems.

Acknowledgments

We thank all reviewers for their insightful comments, and es-
pecially our shepherd Darrell D. E. Long for his guidance
during our camera-ready preparation. We also thank Yinx-
ing Hou, Hongmin Lou and Rui Mao for helpful discussions.
This work is supported by the National Key Research and De-
velopment Program of China (Grant No. 2016YFB1000303)
and the Guangdong Province Key Research and Development
Program of China (Grant No. 2018B010115002).

USENIX Association 18th USENIX Conference on File and Storage Technologies 307

References

[1] TiKV Authors. TiKV: A distributed transactional key-
value database. 2019. https://tikv.org/.

[2] William J. Bolosky, Dexter Bradshaw, Randolph B. Haa-
gens, Norbert P. Kusters, and Peng Li. Paxos repli-
cated state machines as the basis of a high-performance
data store. In Proceedings of the 8th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI ’11), pages 141–154, 2011.

[3] Michael Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), pages 335–350, 2006.

[4] Yu Lin Chen, Shuai Mu, Jinyang Li, Cheng Huang, Jin
Li, Aaron Ogus, and Douglas Phillips. Giza: Erasure
coding objects across global data centers. In Proceed-
ings of the 2017 USENIX Annual Technical Conference
(USENIX ATC ’17), pages 539–551, 2017.

[5] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally distributed database. ACM
Transactions on Computer Systems (TOCS), 31(3):8:1–
8:22, 2013.

[6] Loic Dachary. Ceph Jerasure and ISA plugins bench-
marks. 2015. https://blog.dachary.org/2015/05/12/ceph-
jerasure-and-isa-plugins-benchmarks/.

[7] Alexandros G. Dimakis, Brighten Godfrey, Yunnan Wu,
Martin J. Wainwright, and Kannan Ramchandran. Net-
work coding for distributed storage systems. IEEE
Transactions on Information Theory, 56(9):4539–4551,
2010.

[8] The etcd authors. etcd: A distributed, reliable key-value
store for the most critical data of a distributed system.
2019. https://etcd.io/.

[9] Jim Gray. Notes on database operating systems: oper-
ating systems: an advanced course. Lecture Notes in
Computer Science, 1979.

[10] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey

Yekhanin. Erasure coding in Windows Azure Storage.
In Proceedings of the 2012 USENIX Annual Technical
Conference (USENIX ATC ’12), pages 15–26, 2012.

[11] Bradley C. Kuszmaul, Matteo Frigo, Justin Mazzola
Paluska, and Alexander (Sasha) Sandler. Everyone loves
file: File Storage Service (FSS) in Oracle Cloud Infras-
tructure. In Proceedings of the 2019 USENIX Annual
Technical Conference (USENIX ATC ’19), pages 15–32,
2019.

[12] Leslie Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems (TOCS), 16(2):133–169,
1998.

[13] Shuai Mu, Kang Chen, Yongwei Wu, and Weimin Zheng.
When Paxos meets erasure code: Reduce network and
storage cost in state machine replication. In Proceed-
ings of the 23rd International ACM Symposium on
High-Performance Parallel and Distributed Computing
(HPDC’14), pages 61–72, 2014.

[14] Diego Ongaro and John K. Ousterhout. In search of
an understandable consensus algorithm. In Proceed-
ings of the 2014 USENIX Annual Technical Conference,
(USENIX ATC ’14), pages 305–319, 2014.

[15] James S. Plank and Kevin M. Greenan. Jerasure: A
library in C facilitating erasure coding for storage ap-
plications version 2.0. Technical report, Department of
Electrical Engineering and Computer Science, Univer-
sity of Tennessee, 2014. http://jerasure.org/jerasure-2.0/.

[16] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of The Society for Industrial
and Applied Mathematics, 8(2):300–304, 1960.

[17] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop distributed file sys-
tem. In Proceedings of the 26th IEEE Symposium on
Massive Storage Systems and Technologies (MSST2010),
pages 1–10, 2010.

[18] Delta V Software. Remote call framework. 2019.
http://www.deltavsoft.com/index.html/.

[19] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable,
high-performance distributed file system. In Proceed-
ings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), pages 307–320, 2006.

308 18th USENIX Conference on File and Storage Technologies USENIX Association

Hybrid Data Reliability for Emerging Key-Value Storage Devices

Rekha Pitchumani
Memory Solutions Lab

Samsung Semiconductor Inc.

Yang-suk Kee
Memory Solutions Lab

Samsung Semiconductor Inc.

Abstract
Rapid growth in data storage technologies created the modern
data-driven world. Modern workloads and application have
influenced the evolution of storage devices from simple block
devices to more intelligent object devices. Emerging, next-
generation Key-Value (KV) storage devices allow storage and
retrieval of variable-length user data directly onto the devices
and can be addressed by user-desired variable-length keys.
Traditional reliability schemes for multiple block storage de-
vices, such as Redundant Array of Independent Disks (RAID),
have been around for a long time and used by most systems
with multiple devices.

Now, the question arises as to what an equivalent for such
emerging object devices would look like, and how it would
compare against the traditional mechanism. In this paper,
we present Key-Value Multi-Device (KVMD), a hybrid data
reliability manager that employs a variety of reliability tech-
niques with different trade-offs, for key-value devices. We
present three reliability techniques suitable for variable length
values, and evaluate the hybrid data reliability mechanism
employing these techniques using KV SSDs from Samsung.
Our evaluation shows that, compared to Linux mdadm-based
RAID throughput degradation for block devices, data reli-
ability for KV devices can be achieved at a comparable or
lower throughput degradation. In addition, the KV API en-
ables much quicker rebuild and recovery of failed devices,
and also allows for both hybrid reliability configuration set au-
tomatically based on, say, value sizes, and custom per-object
reliability configuration for user data.

1 Introduction
Modern applications require a simpler, fast and flexible stor-
age model than what the traditional relational databases and
file systems offer, and key-value stores have emerged as the
popular alternative and the backbone of many scalable storage
systems [1–3]. To meet the needs of such applications and
to simplify the process of storing such user data even fur-
ther (without added software bloat), modern storage devices
have undergone a new key-value face-lift [4–8].

The Samsung Key-Value (KV) SSDs [4, 5] have incorpo-
rated the key-value store logic with the NAND flash SSD
firmware, and has adopted a key-value user interface, instead
of the traditional block interface to store and retrieve user data.
The commercial success and widespread adoption of devices
such as these will be the first step towards more intelligent
and smart storage devices. A practical issue in the adoption of
these devices is the identification and evaluation of suitable
data reliability techniques for data stored in these devices.

Traditional systems with multiple block storage devices em-
ploy fixed-length, block-based data reliability techniques to
overcome data loss due to data corruptions and device failures,
and Redundant Array of Independent Disks (RAID) [9] has
been the de-facto standard for these devices. KV devices,
on the other hand, allows for the storage and retrieval of
variable-length objects associated with variable-length user
keys. Their storage semantics and as such, the data reliabil-
ity techniques/recovery mechanisms are different from tradi-
tional block devices.

In this work, we address this need for a tailored data reliabil-
ity solution for KV devices and present KVMD, a hybrid data
reliability manager for such devices. KVMD is to KV devices
as RAID is to block devices. We present four different config-
urable reliability techniques, all suitable for variable-length
data addressed by variable-length keys, to be used in KVMD:
Hashing, Replication, Splitting and Packing. These techniques
serve as counterparts to the traditional RAID0, RAID1, and
RAID6 architectures. We also present the different through-
put, storage and reliability trade-offs of these mechanisms,
enabling the users to make an informed decision.

In addition, we present three different modes of KVMD op-
eration: a standalone mode, where the workload size and char-
acteristics may remain more or less the same and is known
beforehand to the user, and the user can choose a single relia-
bility technique for all data, a hybrid mode, where the user can
configure different reliability techniques for KVs with value
sizes in different pre-configured ranges, and a custom mode,
where the user can specify a reliability technique per KV pair
and can be used in combination with either the standalone

USENIX Association 18th USENIX Conference on File and Storage Technologies 309

mode or the hybrid mode.
We also evaluate the above individual techniques for dif-

ferent value sizes, in both the standalone and the hybrid
mode (since custom mode is just a functional extension and
the performance characteristics does not require a separate
evaluation), using Samsung’s NVMe Key-Value SSDs (KV
SSDs). We show that, when compared to the Linux mdadm-
based RAID throughput degradation for block devices, data
reliability for KV devices can be achieved at a comparable or
lower throughput degradation. KVMD, enabled by the flex-
ible KV interface, also provides much quicker rebuild and
recovery compared to Linux mdadm-based RAID. Finally, we
conclude that, thanks to the flexible, modern device interface,
KVMD for KV devices not only provides custom configura-
tion convenience for the users, but is also either equivalent or
superior to schemes for block devices in many ways.

2 Key-Value SSDs
Storage device technologies have undergone tremendous
changes since the first disk drive was introduced several
decades ago. Yet, the traditional random access block inter-
face is still being used to access most modern storage devices,
even the NAND flash SSDs, until recently. Here, we describe
the enterprise grade NVMe Key-Value Solid State Drives
from Samsung [4].

Figure 1: Key-Value SSD IO path. Key Lookup logic is
added to the device.

NAND flash density has grown tremendously over the
years; internal parallelism and read/write bandwidth of the
devices have improved drastically. In addition, a NAND flash
memory cell can be read and programmed only in units of
pages of size 8-32 KB, and a page can be programmed only
after an erase, done in larger units of size 4-8 MB. To han-
dle such device characteristics and manage the placement

API Kind APIs
Device API kvs_[open/close]_device,

kvs_get_device_[info/capacity/utilization],
kvs_get_[min/max]_[key/value]_length,
kvs_get_optimal_value_length

Container API kvs_[create/delete/open/close]_container,
kvs_list_containers,
kvs_get_container_info

Key-Value API kvs_[store/retrieve/delete]_tuple[_async],
kvs_get_tuple_info,
kvs_exist_tuples[_async]

Iterator API kvs_[open/close]_iterator,
kvs_iterator_next[_async]

Table 1: Samsung Key-Value SSD API

and retrieval of the host-addressable 4 KB logical blocks to
the storage media, traditional NAND flash solid state drives
already come equipped with very capable hardware and en-
hanced firmware.

The KV SSDs used for evaluation in this paper use the
same hardware resources as those of their block SSD coun-
terparts used for evaluation. The KV firmware is based on
the block firmware and has modifications to support the stor-
age, retrieval and cleanup of variable-length values and key.
Whether the KV IO throughput matches the block IO through-
put, or what the effects of increased hardware resources on
KV IO throughput would be, are the topics for another pa-
per altogether, and will not be discussed here for the sake of
brevity.

Figure 1 illustrates the major components in the IO path
of a KV SSD. The Samsung KV-SSDs use the Non-Volatile
Memory express (NVMe) interface protocol, developed for
low-latency, high-performance non-volatile memory devices
connected via PCIe. As seen in the figure, the variable-length
KV pair is stored along with any internal metadata in the
NAND flash page in a log-like manner, and the index stores
the physical location/offset of this variable-length blob, in-
stead of storing a fixed 4 KB data in a log-like manner and
indexing the 4 KB block location. The firmware now also has
hash-based key lookup logic instead of the traditional logical
block number based lookup. In addition, the garbage collec-
tion logic is also equipped to deal with variable-length KV
pair cleanup. Kang et al. [5] describe the design and benefits
of these devices in more detail.

User applications in the storage server can use the KV
library API, and the KV library in turn talks to the KV SSD
device driver to talk to the KV SSDs. The open-source KV-
SSD host software package provides the KV API library and
access to both a user-space and kernel device driver for the
KV SSDs [10]. Samsung Key-Value SSD API is listed in
Table 1 and the detailed description of the API can be found
in the KV API spec provided with the host software package.

As can be seen in the table, the API provides management

310 18th USENIX Conference on File and Storage Technologies USENIX Association

calls to open/close a device and get information such as device
capacity/utilization, min/max key and value lengths supported
and optimal value length. The API also includes the concept
of containers to group KV pairs. The KV API includes both
asynchronous and synchronous calls to store, retrieve and
delete KV pairs. Further, a user can get information about KV
pair or check the existence of keys in the device. Finally, a
user can open an iterator set on a predicate and can iterate
over either key only or key and value in lexicographic key
ordering.

3 KVMD Design
KVMD is a virtual device manager for multiple KV devices.
As shown in Figure 2, KVMD handles the KV operations sent
to the virtual device and stores the user data chunks in under-
lying KV devices it manages. KVMD’s reliability manager
relies on multiple pluggable reliability mechanism (RM) im-
plementations, and can handle huge value sizes unsupported
by the underlying KV devices. It can also have an optional
data/metadata caching layer to improve performance.

Figure 2: KVMD Reliable Device. Reliability device en-
capsulated the underlying KV devices and employs a hybrid
reliability manager.

The virtual device layer works in a stateless manner, i.e., it
does not have to maintain any KV to device mapping to work.
KVMD can operate in three modes:

• A standalone mode, where the workload size and char-
acteristics may remain more or less the same and/or is
known beforehand to the user, and the user chooses a
single reliability mechanism for all KV data stored in
the group of devices,
• A hybrid mode, where the user pre-configures different

reliability mechanisms for KVs in different value size
ranges, and
• A custom mode, where the user can by default set either

the standalone mode or the hybrid mode, and in addition
specify a reliability technique per KV pair, upon which
the specified technique will be used for the KV pair
regardless of the default setting.

The size-thresholds and the corresponding reliability mech-
anisms of the hybrid mode are specified using a configuration

file. The custom mode is activated if the individual store call
specifies a RM different than the default configuration. The
configuration file is also used to specify any RM specific pa-
rameters and the erasure code implementation to use for the
RM.

The KVMD manager is responsible for the creation and
deletion of the underlying device abstraction layer, which
handles queue-depth maintenance and calls to the underlying
storage devices. The individual RMs share the underlying
device abstraction objects owned by the hybrid manager. The
underlying device order specified during the virtual device
creation is retained by the KVMD manager. This ordering is
used to determine the adjacent devices (preceding and follow-
ing devices) in a circular manner. The virtual device’s API is
designed to be very similar to that of the KV SSD API as seen
in Table 1, with an additional rebuild device call, to recover
from entire device failure and rebuild the device contents,
and the ability to optionally specify custom RM for stores.
KVMD supports both the synchronous and asynchronous ver-
sions of the store, retrieve and delete calls, in addition to the
synchronous rebuild device call.

3.1 Hybrid-Mode Operations
We will describe the operations of KVMD in the hybrid mode,
since custom mode is similar and the standalone mode is the
simpler straightforward version.

RM Determination. Since KVMD is stateless and can op-
erate without the optional caching layer, when the user issues
a KV call, KVMD does not know if the key already exists.
The underlying RMs can handle inserts and updates differ-
ently. Hence, all Store/Retrieve/Delete operations has to first
determine which RM was used to write a KV pair previously,
if the KV pair already exist. This information, along with
other metadata is stored in the beginning of all values, as
shown in Figure 3, the structure of internal values.

Figure 3: Internal Key and Value Structures. KVMD Meta-
data is stored along with user key and values.

’RM ID’ identifies the RM used to store the KV pair, ’EC
ID’ identifies the erasure code used by the RM, ’Total splits’
stores the number of splits a huge object was split into (dis-
cussed next under ’Huge Object Handling’), and ’Checksum’
field stores checksum and ensures that the data read back
hasn’t been corrupted and is used to detect failure. Individual
RMs determines how the checksum is calculated and stored.
Other RM specific metadata is also stored with the value,
followed by padding.

KVMD reads part/entire KV pair for every operation, to

USENIX Association 18th USENIX Conference on File and Storage Technologies 311

determine the RM used to write the KV pair and then proceed
with the operation, by forwarding the request to the corre-
sponding RM. To aid in this determination by the hybrid
manager, all RMs adhere to the below rules:

1. Place the first copy/chunk of the KV pair on the primary
device, determined using the same hash function on the
key, modulo the number of devices,

2. Store at-least the first copy/chunk/info using the same
key as the user key,

3. Store metadata such as RM identifier, EC identifier, at
the beginning of the value.

Huge Object Handling. Underlying KV SSD devices may
have limits on the max value sizes supported, owing to their
internal limitations. For example, the Samsung KV SSD used
in this work has an upper size limit of 2 MB. Individual RMs
may also have a maximum value size it can support for a KV-
pair, based on the underlying device’s maximum size minus
the metadata size and its own configuration parameters, such
as the number of devices a value is split and stored into. If
the value size exceeds the maximum size supported by a RM,
then KVMD splits the KV pair into multiple KV pairs, where
each split’s size is determined by maximum size supported
by the RM and stores them all using the same RM no matter
the residual size of the splits.

As Figure 3 shows, internal keys have additional metadata
bytes in addition to the user key field, such as ’split number’
and any ’RM specific metadata’. Split number is zero for both
the first split of a huge value and a KV that does not have any
splits. Thus, the min and max key sizes supported by KVMD
are 2 bytes lesser than the underlying KV SSD supported key
sizes. During a read, if the metadata in the value indicates
that it is part of a huge object, KVMD issues additional IO
requests to deal with the huge objects as needed.

Store. After huge objects are split into multiple objects,
the RM to use to store the key is determined using the con-
figured size-threshold. The KV pair is then read from the
primary device. If the KV already exists, RMprev that was
previously used to store the KV pair is extracted from the
metadata stored with the value, along with the number of
splits stored. Then, RMprev’s update (for matching split num-
bers) and delete (for excess splits stored previously) methods
are called to let RMprev handle these in a RM specific way.
Finally, the new RM’s store method is called to store all the
KV pair splits.

Retrieve. The KV pair is read from the primary device. If
it exists, RMprev is determined, along with the user value size
and the number of splits for the KV pair. The retrieve request
could require additional calls to read from multiple splits, or
just call RMprev’s complete_retrieve method to complete the
initial read as the RM sees fit. Finally, the user requested data
is assembled to the user value buffer.

Delete. The KV pair is first read from the primary device.
If it exists, RMprev and the number of splits are determined
from the metadata. Then, RMprev’s delete method is called
for all the splits.

Rebuild Device. On device failure, KVMD can rebuild all
the KVs that would have been present in the failed device to a
new device by iterating over all the keys present in the devices
adjacent to the failed device, and performing per-KV repairs.
Some RMs may require iterating over both the device in front
of a failed device and that which is after, while some may
require iterating over just one of device. The hybrid manager
first obtains the list of drives to iterate from, from all of the
underlying RMs, before starting the rebuild process.

3.2 Reliability Mechanisms
This section describes the 4 different reliability mechanisms
we implemented and can be plugged into our framework. Ta-
ble 2 shows the metadata information stored with the different
RMs, and will be discussed further below.

3.2.1 Hashing

Hashing does not add any redundancy/data protection. Similar
to RAID 0, its purpose is load balancing and request distri-
bution to all underlying devices. It simply hashes the key
and stores a single copy in the primary device, and directs
all retrieve and delete calls to the primary device. When a
device fails, any recovery attempt fails and user data stored in
the device will be lost.

3.2.2 Single Object Replication

Replication is a simple, popular redundancy mechanism in
many storage systems that is applied per object (KV pair).
The primary device, determined by the key hash, stores the
primary copy of the object. As shown in Figure 4, copies of the
object are written to r−1 consecutive devices when any write
happens, in addition to the primary copy, where r is the user-
configurable number of replicas, and consecutive devices are
determined in a circular fashion. Since 3-way replication is a
popular configuration in many systems, including distributed
systems, r is set to be 3, by default.

Figure 4: Replication stores r copies (3 here) of the data in r
consecutive devices.

All copies are identical and stored under the same key in
the different devices. r, the number of replicas, is also stored
along with other metadata, as shown in Table 2. All RM’s

312 18th USENIX Conference on File and Storage Technologies USENIX Association

also have a num_user_key method to return the number of
devices from the primary device that would store the user key
as is, without any RM specific key-metadata. Replication’s
num_user_key returns r, for example. The update method of
all RMs obtain uknew, the return value from the new RM’s
num_user_key method. If uknew is less than r, Replication
deletes the final r−uknew KVs. Finally, the store is passed on
to the new RM, and its store method is called.

The retrieve method reads the entire value from the pri-
mary device, verifies the checksum, strips the metadata from
the value and copies the user requested data onto the user
buffer and returns it, if the checksum verifies. If checksum
error occurs, the value is retrieved from one of the replicas,
rewritten to the device that failed, and the correct data is re-
turned to the user. The delete method issues delete calls on
all r consecutive devices starting from the primary device.

Replication has high storage costs and write overhead, but
low read and recovery costs. Since the mechanism works per-
object and does not have any dependency on any other KV
pair, there is no added update overhead. Replication is a good
choice for very small values, where the high storage overhead
is not a big strain on the system, and keeping the object intact
in one piece and independent of other objects is better for
performance.

Figure 5: Splitting splits the value into k equal-sized objects
and add r parity objects.

3.2.3 Single Object Erasure Coding - Splitting

Splitting is a single object erasure coding mechanism, that
splits the user object into k equal-sized objects, adds r par-
ity objects using a systemic MDS code and writes the k+ r
objects to k+ r consecutive devices using the same user key.
The code is (4,2) Reed Solomon code, by default, similar to
RAID 6, though the code and parameters are configurable by
the user.

As shown in Figure 5, the first data shard is placed in the
primary device determined by the hash, and the other data
and parity shards are placed in consecutive devices in a circu-
lar fashion. The size of the shard has to be supported by the
erasure code implementation and the underlying devices, and
the final shard is zero padded for parity calculation purposes,
if shards cannot be evenly divided into k shards of supported
size. The ec in Table 2 indicates the erasure code implemen-
tation to use with splitting. Due to space considerations, we
will only describe one ec implementation, our best performing
equivalent to RAID 6 that is used for all evaluations in the
Evaluation section. The original user value size before split-
ting is also stored as part of the metadata, to be of use when
the last shard is lost or needs recovery, in order to recover the
right value content without the zero padding.

Similar to Replication, the update method obtains uknew
from the new RM and if uknew is less than k + r, deletes
the final k+ r−uknew devices. Delete method issues deletes
for all k+ r KVs. The retrieve method reads all splits from
the k data devices asynchronously. If all their checksums
verify, then metadata is stripped from the splits and they are
reassembled and sent to the user. If f <= r checksums fail,
the required number of parity shards are read and the failed
shards are recovered, rewritten to the failed devices and the
user requested value is returned back to the user. If the number
of failures, f > r, then recovery will fail and an error will be
returned back to the user.

Splitting reduces the storage overhead. The read and write
overhead and throughput reduction is determined by the era-
sure coding mechanism, code parameters and the size of the
values. Similar to replication, splitting does not have any
dependency to any other object; hence, no added update over-
head. Splitting is recommended for big value sizes where the
multiple request processing overhead does not have a huge
impact on overall throughput.

3.2.4 Multi-Object Erasure Coding - Packing

Packing is a multi-object erasure coding mechanism that
packs up-to k independent objects from k different devices
into a single reliability set. The packing is a logical packing,
purely for the sake of parity calculation. The user objects are
stored in their own primary devices as determined by their
hash values, independent of each other, and thus, do not intro-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 · · ·
RM Value Metadata Key Metadata
Hashing 1 0 Splits Checksum Padding None
Replication 2 r Splits Checksum Padding None
Splitting 3 ec Splits Checksum Value Size k r Padding None
Packing 4 ec Splits Checksum k r Padding U/M/P

Metadata Value
Packing ck r Key Size Var-length Key Value Size Repeat · · ·(k+ r−1 more KVs)

Table 2: KVMD Metadata stored per RM.

USENIX Association 18th USENIX Conference on File and Storage Technologies 313

duce any privacy concerns. It adds r parity objects to every
reliability set and stores them in r devices different from the
original k devices. Erasure code can be any implemented us-
ing any systemic MDS code. The default, as before, is (4,2)
Reed-Solomon code, similar to RAID6 erasure coding.

Figure 6: Packing packs k different objects into a single relia-
bility set.

Figure 6 shows different keys placed in different KV SSDs
based on their hashes, say key i in KV SSD 1, key j in KV-
SSD 2 and key k in KV-SSD 4, etc.,. Packing queues recent
write requests for each device, and chooses up-to k objects,
each from a different device’s queue, to be erasure coded in a
set (for example, keys x, y, b, and c, the ones marked in blue
in the figure, can form a reliability set). Erasure coding of the
set of selected objects results in r parity objects, which are
written to r different devices.

Erasure coding requires the data sizes to be the same, but
there is a difference in size of the objects in a set. This chal-
lenge is overcome by virtual zero padding, i.e., the objects are
padded with zero’s for erasure coding, but the zero padding is
not actually written to the device, as shown in Figure 7. The
object value buffers and the parity objects are of the same size
as the largest object in the set, rounded to a size supported by
the erasure code implementation and the underlying devices.

Figure 7: Packing pads the different values virtually with
zeroes, for the sake of erasure coding.

Retrieve is straightforward; the object is read from the
primary device and the checksum is verified to ensure the
value isn’t corrupted. Object recovery, in case of device failure
or checksum failure, and recalculation of parity, in case of
updates to an object in a set, requires knowledge of the erasure
code set. The RM needs to know which keys were grouped
together to calculate parity, and hence are in a set.

Set information together with the actual size of each ob-
ject (to recreate the objects with actual size without any zero
padding) is stored as metadata objects in each of the devices.
The metadata objects store the number of user objects, ck and

parity objects, r in the set, along with all keys in the set, and
their value sizes, as shown in Table 2. Here, ck stands for
current k. We want k objects to be packed every time, but we
don’t want to wait too long in the queue. Hence, after a wait
time threshold, available number of objects, ck <= k is cho-
sen to be packed. The RM specific identifier byte in the key
is used to store indicators identifying the key as a user object
or parity object or metadata object. The Metadata object for
each user key is replicated and the number of replicas is set
be r.

The update method first regroups the erasure code set the
key is part of, without the key, before the write can be passed
on to the new RM that will be used to store the key. First,
the metadata object is read from the device, followed by the
rest of the KV objects in the set and they are rewritten into
a new reliability set. Once complete, the metadata object for
the key is deleted, following which the store if forwarded
to the new RM. Delete happens in a similar manner, except
the user object is also deleted along with the deletion of the
metadata object. While KVMD supports both synchronous
and asynchronous calls, the underlying grouping operation
in case of updates and deletes are synchronous in our current
implementation, affecting performance. Hence, it is recom-
mended to use packing for objects not expected to be updated
much; reads are fast for such objects and storage overhead is
also small. Similar to splitting, write throughput degradation
is determined by the erasure code implementation, parameters
and the size of the objects.

4 Evaluation
In this section, we evaluate both software RAID for block
devices and KVMD reliability mechanisms for KV SSDs and
present the results. The evaluation is done on a Linux server
running CentOS 7.4. The machine has Intel(R) Xeon(R) Gold
6152 CPU @ 2.10GHz with two NUMA nodes and 22 cores
per CPU, and 64 GB memory. The machine has 6 NVMe
SSDs, and the same SSDs are used in both the RAID and
KVMD evaluations. For the RAID evaluation with block
devices, enterprise-grade block firmware is used, while a KV
firmware is used for the KVMD evaluation with KV-SSDs.
The KVMD virtual device is formed with all 6 devices for all
tests in all evaluations. Replication is configured with total
3 replicas, while packing and splitting is configured to use 4
data devices and 2 parity devices.

KVMD is implemented as a user-space reliability library
that works on top of Samsung’s open source KVAPI library to
access the KV-SSD devices. Unlike RAID, KVMD has hash
calculation and 32-bit checksum calculation and verification
overhead for every operation. After a test of couple of differ-
ent implementations, we settled on the crc32 IEEE checksum
calculation function using Intel’s ISA-L library [11], since
we found it to have the least performance degradation. For
erasure coding, we use a Reed Solomon coding implementa-
tion for any k and r using the Intel ISA-L library [11]. Ad-

314 18th USENIX Conference on File and Storage Technologies USENIX Association

ditional KVMD overhead includes memory allocations/frees
and memory copies during external to internal key/value con-
versions and vice-versa.

The goal of the experiments in this section is to evaluate the
performance degradation incurred by the different RMs under
different settings and to compare it against the performance
degradation incurred by Linux software RAID. But, a RAID
vs KVMD comparison is not an apples-to-apples comparison.
The device capabilities and internal operations are different.
Hence, their absolute throughput numbers are also different.
In more realistic KVS settings, KV SSDs outperform block
SSDs with host KV software stack. To learn more, we refer
the readers to the work by Kang et al. [5].

The results in this section are presented with 2 y-axis. The
left-hand y-axis and the bar plots show the absolute through-
put numbers, and the secondary right-hand y-axis represents
the percentage throughput achieved and is the axis for the
lollipop plot (the red sticks with the small spheres at the end,

on top of the bars). The lollipops on top of each bar shows the
percentage throughput achieved by the RM or RAID scheme
represented by the bar, with respect to the first bar in the
category, and provides a sense of the performance overhead.
Since this work is not about the device implementation, and
the numbers are from prototype firmware, and absolute per-
formance numbers of final products are likely to be different
from those presented here, we encourage the readers to fo-
cus on the lollipop plots rather than the bar plots, as we
do in the rest of the section.

Our evaluation uses Fio’s [12] asynchronous engine for
RAID device and kvbench’s [13] asynchronous benchmark
supplied with the KV SSD host software package for KVMD
device. Hence, we use fixed block and value sizes for our
experiments. Since, this is a new emerging device, we also
do not make any assumptions regarding the popularity of KV
sizes based on previous studies, and have chosen 1 KB, 4 KB,
16 KB and 64 KB value and block sizes.

Figure 8: RAID Throughput for block sizes from 1 KB to 64 KB.

Figure 9: KVMD RM throughput for various value sizes. The Hybrid mode runs of each RM shows the performance impact due
to the extra reads in the mode.

USENIX Association 18th USENIX Conference on File and Storage Technologies 315

4.1 Block Device RAID Performance
Mdadm software RAID is used to create RAID devices on top
of NVMe block devices, in striping, mirroring, raid4, raid5
and raid6 configurations, and were tested with both 4 KB
and 256 KB chunk size. Mirroring is configured as 2 virtual
devices each with 3 physical devices, for 3-way mirroring
similar to 3-way replication, with default settings. We mea-
sured performance with a total of 6, 12, 24 and 36 threads
and found 24 threads to be lowest number of threads to per-
form the best. The results shown in the Figure 8 are all with
24 fio threads. Our workload sequence was sequential write,
followed by sequential read, followed by random write and
finally random reads.

Striping achieves the aggregated throughput of all 6 devices.
As can be seen from the figure, most RAID writes incur
heavy throughput degradation and perform at a much lower
rate, compared to striping. The throughput degradation of
mirrored writes is as expected, roughly 1/3rd of the aggregated
throughput. But all other writes are unexpectedly worse, due
to ready-modify-write operations.

Reads perform much better, though we can see significant
performance degradation for small block sizes and for small
stripe sizes, even though no additional functionality such as
read verification or decoding is performed. Read performance
is degraded even for larger block sizes, if the stripe size is
smaller than the block size.

We observe mirroring to be the best option for performance,
with a constant, understandable performance degradation for
writes of all block sizes and best read performance in most
cases, but has high storage costs. While erasure coding has
better storage costs, very high write throughput degradation
and uncalled for read throughput degradation in some configu-
rations makes mdadm RAID erasure coding very undesirable
for high performance NVMe SSDs.

4.2 KV SSD KVMD Performance
In the presented results, ’None’ signifies pure KV SSD
read/write throughput, obtained with 6 threads (one for each
device). The same number of threads (6) is used to issue IO
to the KVMD device, in all cases.

4.2.1 Fixed Value Sizes

KVMD is evaluated only in the standalone (configured only
with the RM tested) and the hybrid (configured with all RMs,
but only the RMs being tested are exercised) mode, since
custom mode is only a functional extension. Even though only
one RM is being exercised in the hybrid mode, the possibility
of multiple RMs triggers an additional read request for every
operation (to check if it already exists) before continuing
with the operation. Hence, we observe a slight throughput
degradation in the hybrid mode, compared to the standalone
mode.

Store and Retrieve. Figure 9 shows the store and retrieve
performance for the RMs. Replication achieves roughly 1/3rd

the aggregated 6 drive throughput, since it writes 3 objects for
every object the user writes, similar to RAID 3-way mirroring.
As seen in the figure, the write performance degradation is
as expected, in spite of the additional hashing, checksum
calculation and memory copy operations. Replication-Hybrid
issues 4 requests for every write operation and hence incurs
a higher, but expected performance degradation. The read
throughput is very close to that of the drives without any
reliability, and the slight performance degradation observed
is due to checksum verification and memory copy operations
for every read operation.

Packing issues the additional read request in both the stan-
dalone and the hybrid mode. Hence, the write throughput is
similar in both modes. In the tested configuration, it groups
every 4 user write into 14 total writes to the device - 4 user
writes + 2 parity writes + 8 metadata object writes. The meta-
data writes are of smaller size than user writes; hence, for
small value sizes where metadata write throughput is simi-
lar to object write throughput, the write throughput is close
to 4/14 of the aggregated device throughput, but for larger
value sizes where metadata writes are not as significant as
object writes, the write throughput is close to 1/2 of the ag-
gregated device throughput. The read throughput is similar
to replication read throughput, since both read the user ob-
ject in a similar fashion without any other dependency and
additional IO requests. Hence, performance characteristics
become similar to replication in many cases, even though the
space amplification is way less.

Splitting splits the objects into 4 equal parts of size 1/4th
the user object size and writes 2 more parity objects of same
size as the splits. Hence, splitting issues 6 writes 1/4th the size
of the user object, and its write throughput can only be 1/6th
of the KV-SSD throughput for the smaller value size. As can
be seen in the figure, its write throughput is the lowest among
all the RMs for small value sizes, but catches up as value size
increases and becomes better than others for larger value sizes.
As in the case of replication, additional read request in case of
hybrid mode results in slightly more throughput degradation.
Reads have the same pattern as writes, but the smaller object
performance is better than writes, because every user read
only issues 4 read requests to the devices (to read all 4 splits),
while every user write issues 6 write requests to the device (to
write the 4 splits + 2 parity objects).

Updates and Deletes. For updates and deletes, we show
the 4 KB value size results only in Figure 10, since other
value sizes follow a similar pattern. The normalized through-
put degradation of replication and splitting is similar to the
read and write pattern observed earlier. This is because there
are no other special update and delete handling procedure
for both and they are both limited by the underlying device
throughput for the workload and the number of IO requests.
But packing performs poorly in both cases, as expected, be-
cause our current implementation operates synchronously and
has to rewrite objects in a group to new groups before the

316 18th USENIX Conference on File and Storage Technologies USENIX Association

update/delete could proceed. We believe packing’s update
and delete performance can be improved further with more
engineering effort, but will still be inherently limited.

Figure 10: Update and delete throughput for 4 KB values.

4.2.2 Mixed Value Sizes

In this section, we measured the store and retrieve throughput
for mixed value sizes, 4 KB, 16 KB and 64 KB in the ratio
30:40:30, and present the results in Figure 11. KVMD was
configured in the hybrid mode with value size thresholds
configured in such a way that 4 KB objects are handled by
replication, 16 KB objects by packing and 64 KB objects by
splitting. As can be seen in the figure, the read and write
throughput degradation is as expected, retaining the perfor-
mance characteristics of the underlying RMs exercised by the
workload.

Figure 11: Mixed value size throughput measured in hybrid
mode configured with all 3 RMs.

4.3 Rebuild Performance
In this section, we present the time taken to rebuild a failed
device with very little user data. For this test, we write 1
million 4 KB user objects using the individual RMs/blocks
for RAID that is roughly about 4 GB of user data, and then
format/fail one of the underlying devices. We present the
run time of RAID device repair and KVMD rebuild device
functionality in Figure 12. As shown, KVMD reduces repair
time drastically compared to RAID, since it is able to and is
designed to rebuild only the user data that was written to the
failed device as opposed to RAID which traditionally rebuilds
the entire failed device. Reduced repair time further increases
the reliability of the data stored, as shown in next section.

Time taken, in case of KVMD, is proportional to the RM
read/write throughput, decode speed and the number of user

Figure 12: Single device failure rebuild times for RAID and
the various KVMD RMs.

objects in the device. Replication has higher write through-
put, no decode cost and fewer user objects in the devices and
is the quickest. Packing has fewer user objects, but slightly
lower write throughput than replication and decode cost, and
hence, is slightly slower than replication. Splitting has the
lowest write throughput for the workload size, decode size
and number of objects, and hence, takes the most time among
the RMs. While these KVMD measurements are done using
a synchronous, one key at-a-time recovery implementation, it
can be improved further with a multi-threaded and/or asyn-
chronous implementations.

5 Analysis
In this section, we provide reliability analysis for KVMD and
provide a comparison between the RAID levels and KVMD
reliability mechanisms.

5.1 Reliability Analysis
We provide reliability analysis for KVMD, using standard
Markov model, and follow the methodology commonly fol-
lowed by other researchers [14, 15]. As is common in lit-
erature, for the sake of simplicity, we are going to assume
that data failures are independent and are exponentially dis-
tributed, and do not consider correlated failures, even though
we are aware that correlated failures are common, and their
presence changes the model.

We use the metric mean time to data loss (MTTDL), to
compare the reliability of the different mechanisms against
each other. The MTTDL of the system is determined by the
MTTDL of a reliability set, MTTDLset, normalized by the
total number of reliability sets in the system, NRS.

MT T DL =
MT T DLset

NRS
(1)

Let the average size of a user object be O, and the capac-
ity of the underlying devices be C. Then, under replication,
NRS =C/nO, where n is the number of replicas. Under split-
ting, NRS = C/n(O/k), where n is determined by the code
parameters, k and r, and is equal to k + r. Under packing,

USENIX Association 18th USENIX Conference on File and Storage Technologies 317

NRS =C/n(O+M), where n is equal to k+ r as well and M
is the average size of a metadata object.

MTTDLset is a function of mean time to failure (MTTF),
mean time to repair (MTTR), the total number of objects in
the set (N), and the number of parity/redundant objects in the
set (G). MTTF is the average interval of time that an object
will be available before failing, and MTTR is the average
amount of time needed to repair an object after a failure.

Since MTTF is out of our control and is dependent on the
underlying device failure rates, MTTDLset is affected by two
factors: a) the number of object failures that can be tolerated
before losing user data, and b) the speed at which objects can
be repaired. The reliability of the system is also dependent on
the number of valid sets stored in the system, unlike RAID
which is dependent on the capacity of the system, and not just
valid data.

Figure 13: The Markov model used to calculate MTTDLset.

We compute MTTDLset using a standard Markov model
depicted in Figure 13. The numbers on the states represent
the number of objects lost in the set, and f denotes the number
of object losses that result in a failure and unrecoverable data
loss for data in the set. The number of states for a given system
depends on the configuration parameters and characteristics
of the reliability mechanism. For replication, f = n, where
n is the number of replicas, and for splitting and packing,
f = r + 1, where r is the number of parities in the erasure
code configuration.

The forward state transitions happen on failures and back-
ward transitions happen on recovery. Failures are assumed to
be independent, at the rate λ = 1/MT T F . Since the objects
in a set are distributed to N different devices, when the state is
i, there are N− i objects intact in a set, and the rate at which
an object is lost, λi is equal to (N− i)λ. For recoveries, we
assume a fixed recovery rate, µ for recovering a single object
and moving from state i to i−1. While it is possible for some
RMs to recover chunks in parallel and/or to move from state
i to 0 directly with slightly different recovery rates, for the
sake of simplicity, we model only serial recovery.

MT T DLset '
µ f−1

(N)(f−1)λ
f (2)

In equation 2, (a)(b) stands for (a)(a−1) · · ·(a−b).
Table 3 lists the factors affecting the reliability of the sys-

tem and how. While increasing the MTTF of the underlying

Control Factors Impact on MTTDL
↑MT T F/ ↓ λ ↑
↑ N ↓
↑ f ⇑
↓MT T R/ ↑ µ ⇑
↓ µ×NRS ⇑
↓Write Amplification (WA) ⇑

Table 3: Factors affecting the reliability of the system.

devices will increase the reliability of the system, and vendors
try their best to do the same, for a given hardware type they
do not change much and out of user control. But the rest can
be controlled by the user. For same number of parity objects,
increasing the number of data objects decreases MTTDL, but
not so much. But, adding an additional parity/replica to a set
increases MTTDL by orders of magnitude.

Reducing the time taken to recover an object has a high
positive impact on the reliability system. Because µ >> λ,
reducing MTTR by half has a much higher impact on MTTDL
than doubling MTTF. Similarly, reducing the total time taken
to repair and rebuild a device by working only on the reli-
ability sets instead of the entire device as done by RAID,
improves reliability tremendously.

Finally, for devices such as SSDs, write amplification has
a negative impact on the lifetime of the device and reduces
the MTTDL. Even though increased space utilization reduces
MTTDL, it has been shown that data protection provided
by parity improves data lifetime if the configurations are
right [16]. Replication has a high space utilization negatively
affecting the MTTDL. Splitting can be configured to have
lower space utilization for the same MTTDL. The space uti-
lization of packing can vary based on how many writes are
available in the device queues and can be higher than config-
ured. Further, updates on packed objects can increase write
amplification even further, as the parity needs to be updated
again.

5.2 RAID vs KVMD Comparison
Table 4 provides a comparison between the characteristics
of RAID for block SSDs and KVMD for KV SSDs. For the
read/write characteristics of RAID, we refer the readers to the
original RAID publication [9]. KVMD calculations are given
for the standalone mode, derived by calculating the number
of IO requests issued for a given number of user requests.

Since Replication writes everything r times, its write over-
head and space utilization is 1/r, but reads are straight-
forward, with no additional overhead. Splitting has N writes
for every user write and k to 1 reads for every read based
on the whether the read is a partial read or not. Packing can
end up packing 1 to k user object in a group, and in case
of updates can rewrite the whole group for a single update
similar to RAID6. Similar to RAID6 calculation, we do not
show additional reads required. While metadata writes are

318 18th USENIX Conference on File and Storage Technologies USENIX Association

Block SSD KV SSD
RAID 1 RAID 6 Replication Packing Splitting

Writes 1/r [1/N,(N−2)/N] 1/r [1/(N +m),
k/(N +m)]

where m (metadata)
= [r,rk)]

1/N

Reads 1 1 1 1 [1/k,1]
Rebuild Time ⇑⇑ (∝ Device

capacity)
⇑⇑ (∝ Device

capacity
↓ (∝ Number of

user objects)
↑ (∝ Number of

user objects)
⇑ (∝ Number of

user objects)
Space
Utilization

1/r (N−2)/N 1/r [1/(r+1),k/N]
metadata is

additional, but
assumed small

k/N

Write
Amplification

⇑ [↑ for stripe aligned
and sized writes,
⇑⇑ for most writes]

⇑ ↑ for inserts
⇑⇑ for updates

↑

Pros & Cons Similar writes
for all sizes. Best

reads. Low
MTTDL due to

WA.

Very poor writes
and good reads.
Poor, workload-

dependent MTTDL
due to WA.

Similar to RAID
1. Best for small,

hot objects.

Best reads. Best
inserts. Very poor

updates. Good,
workload-dependent

MTTDL.

Writes/reads ∝

value & request
sizes. Best

MTTDL. Best for
large values.

Table 4: Comparison between RAID levels and KVMD RMs. Here, N is the total number of devices in a group, r is the number
of replicas or parity devices, and k = N− r.

additional, it is the cost paid for high read performance while
keeping space overhead lower than Replication. But as seen
from the results, bigger the objects, lesser the metadata impact.
Variable sizes complicate the space overhead calculation, but
we keep it rounded and simple and ignore metadata space
since it is assumed small (but is dependent on the key sizes).

The RM specific factors affecting MTTDL are also shown,
for easier comparison and informed selection. Finally, the pros
and cons of each and how they compare against each other
is given. The comparison shows KVMD can provide for KV-
SSDS all that RAID provides for block SSDs and more. While
the table provides the characteristics of individual RMs under
KVMD, the overall read/write performance and MTTDL in
the hybrid mode in the presence of mixed value sizes will be
determined by the RM configuration for value size ranges,
ratio of the user requests and the average size of the objects
served by the different RMs configured.

6 Related Work
Plenty of Maximum Distance Separable (MDS) block erasure
codes exist to add data redundancy and failure tolerance, such
as Reed-Solomon codes [17], Cauchy Reed-Solomon [18],
Blaum-Roth [19], etc.,. Our work presents ways to use them
all for variable-length key-value data as well. Qin et al., [20]
investigated reliability issues in object-based storage devices,
but considers them only as network-attached devices and
study mechanisms for very large systems with thousands of

nodes. While they provide reliability analysis for replication
and object grouping, they do not discuss practical considera-
tions such as variable length handling while grouping, or the
impact the various schemes have on read/write performance.

Even though many modern distributed, cloud scale systems
are built on top of an object-based model, they still use block
storage devices underneath and either rely on the redundancy
mechanism the underlying block devices employ, such as
RAID [21], or provide redundancy at a higher level such as
file-level redundancy rather than at a variable-length object
level [15, 22, 23], where, the writes are buffered until a fixed-
length block (mostly append-only large blocks) is full and
replication/erasure coding is applied to these blocks and the
resultant blocks are spread across different storage nodes.

In recent years, researchers have proposed a number of
resilient, in-memory, distributed key-value caching solutions.
Though they need to maintain key to physical location map-
pings, which is not required for KV devices, and do not have
the same performance characteristics and workloads as that
of our target system, they do share commonalities such as
variable-length values and addressing scheme. Cocytus [24]
uses replication for metadata and keys, and erasure coding for
values by splitting the value into k parts, adding m parity parts
and storing the resulting k+m parts. EC-Cache [25] erasure
codes the variable-length objects by splitting and storing the
k+m resulting parts in k+m servers. KVMD also explores
both replication and splitting as one of the options.

USENIX Association 18th USENIX Conference on File and Storage Technologies 319

7 Limitations & Future Directions
While we cover a variety of reliability techniques and a hybrid
reliability manager to use the different techniques simultane-
ously, for different user needs and value sizes, by no means is
the work complete. In this section, we will discuss some of
the limitations of the current design and implementation, and
directions for future enhancements of our work.

Concurrency Control. Currently, KVMD does not imple-
ment concurrency control, and assume that the applications
will implement concurrency control at their desired level.
While the device guarantees consistency in case of concur-
rent asynchronous operations on the same key, it does not
guarantee any ordering. If the application does not implement
concurrency control, KVMD can be in an inconsistent state.
Though Packing synchronizes all updates and deletes to pro-
tect against the concurrent update of two members in a group,
it does not protect against concurrent inserts of the same key.
Replication might result in different versions of the data in
different devices. Splitting might have shards from two dif-
ferent versions in a mingled state, resulting in an inconsistent
state. This can be avoided by a lock-based implementation,
or through a multi-version implementation.

Crash Consistency. KVMD returns a success only after all
replicas/shards (including the parity shards)/entire reliability
sets (including the parity objects) are written to the device.
It is once again assumed that the user/application can replay
the write if it receives a failure. In cases where it cannot do
so, such as during a crash, a consistency check module and
KV restoration mechanism is required. While implementing
a consistency check module similar to device rebuild is sim-
ple, an efficient mechanism requires design changes. Once
detected, inconsistency in case of Replication can be resolved
using a consensus algorithm. In case of Packing, inconsistent
groups can be regrouped as long as the KV pair (actual or
recovered) checksum can be verified. Partial writes in case
of Splitting that has <= r shards in a different version can
also be recovered, others can’t be. A multi-version based up-
date mechanism can provide crash consistency with some
additional impact on performance.

Optional Data/Metadata Caching Layer. The optional
data/metadata caching layer shown in Figure 2 has also not
yet been implemented. The benefits of a read cache is known.
KVMD’s value metadata is small in size and caching the
metadata can avoid the initial read in case of hybrid mode
and reduce the performance gap between the hybrid mode
and the standalone mode. While the read of non-existent keys
is quick in Samsung KV SSDs, it might not be the case with
other devices, and the metadata cache could be very useful
in those cases. Packing’s metadata object can also be cached
in the metadata caching tier, and can help improve the up-
date/delete performance by eliminating the metadata object
reads. With the metadata objects in memory and with addi-

tional in-memory only metadata per object and group, better
regrouping of objects across multiple sets can be performed.

Performance. Current Packing implementation has high
update and delete performance penalty, due to inefficient syn-
chronous regrouping. A multi-version based design can en-
able delaying the regrouping and make room for more effi-
cient regroup operations. Combined with the above metadata
caching and in-memory metadata, current Packing inefficien-
cies can be greatly reduced making it a viable and competing
choice. Since the current update performance of the device
is roughly half the insert/delete performance, a new version
insert and old version delete should have similar performance
as the current update, and can solve many of the current limi-
tations.

Picking the Right RM. Picking the right RM can be chal-
lenging for users, since the throughput is a function of the
device capabilities, the RM parameters, and workload charac-
teristics. Users usually have some intuitive knowledge about
the average size of the objects in their system, and their update
and delete characteristics. With some performance measure-
ments of the underlying devices, workload information and
our evaluation, the right size thresholds can be picked by an
informed user. The application/user can also use the custom
mode for outliers in a size threshold. Nevertheless, in real-
ity, manual picking is hard due to the changing nature of
the workload and/or limited user knowledge. Automatic size
threshold determination, size threshold outlier detection and
outlier custom mode utilization, to minimize space overhead
while maintaining a performance level, are promising future
directions for our work.

Capacity Utilization. We have also not considered the
value sizes and capacity utilization of the underlying devices.
Object distribution that avoids uneven capacity utilization,
while maintaining the stateless design is an important future
work as well.

8 Conclusion
KVMD, our hybrid reliability manager for multiple key-value
storage devices, is configurable per the user needs and work-
load needs. KVMD can be used in the standalone mode by
tiered storage systems that have fixed object size/other work-
load characteristics, while the hybrid mode enables object-
size based configuration for a more general setting. The cus-
tom mode can be used to switch RMs for objects with certain
characteristics, say hot objects, and is applied per object, giv-
ing maximum control to the user. We presented four RMs
for KVMD: hashing, replication, packing and splitting, all
suitable for variable-length KV objects, with different stor-
age, throughput and reliability trade-offs. We also presented
a theoretical analysis and practical evaluations of the RMs
using Samsung KV SSD prototypes. Finally, we conclude
that KVMD is superior to schemes for block devices in many
ways.

320 18th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM
Transactions on Computer Systems (TOCS), 2008.

[2] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. SIGOPS Oper. Syst. Rev., 2007.

[3] Avinash Lakshman and Prashant Malik. Cassandra:
A Decentralized Structured Storage System. SIGOPS
Oper. Syst. Rev., 2010.

[4] Samsung Key Value SSD enables High Perfor-
mance Scaling. http://www.samsung.com/
semiconductor/global/file/insight/2017/
08/Samsung_Key_Value_SSD_enables_High_
Performance_Scaling-0.pdf, August 2017.

[5] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel D. G. Lee. Towards Build-
ing a High-performance, Scale-in Key-value Storage
System. In Proceedings of the 12th ACM International
Conference on Systems and Storage, SYSTOR ’19.

[6] Y. Jin, H. W. Tseng, Y. Papakonstantinou, and S. Swan-
son. KAML: A Flexible, High-Performance Key-Value
SSD. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages
373–384, Feb 2017.

[7] The Seagate Kinetic Open Storage Vision.
https://www.seagate.com/tech-insights/
kinetic-vision-how-seagate-new-developer-
tools-meets-the-needs-of-cloud-storage-
platforms-master-ti/, 2016.

[8] Rekha Pitchumani, James Hughes, and Ethan L. Miller.
SMRDB: Key-value Data Store for Shingled Magnetic
Recording Disks. In Proceedings of the 8th ACM In-
ternational Systems and Storage Conference, SYSTOR
’15, pages 18:1–18:11, 2015.

[9] Peter M. Chen, Edward K. Lee, Garth A. Gibson,
Randy H. Katz, and David A. Patterson. RAID: High-
performance, Reliable Secondary Storage. ACM Com-
puting Surveys, June 1994.

[10] OpenMPDK. KV SSD host software package. https:
//github.com/OpenMPDK/KVSSD.

[11] Intel(R) Intelligent Storage Acceleration Library.
https://github.com/01org/isa-l, 2018.

[12] Flexible I/O Tester. https://github.com/axboe/
fio.

[13] KV Benchmark. https://github.com/OpenMPDK/
KVSSD/tree/master/application/kvbench.

[14] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G. Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. XORing Ele-
phants: Novel Erasure Codes for Big Data. Proceedings
of the VLDB Endowment, March 2013.

[15] Daniel Ford, François Labelle, Florentina I. Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, 2010.

[16] Sangwhan Moon and A. L. Narasimha Reddy. Does
RAID Improve Lifetime of SSD Arrays? ACM Transac-
tions on Storage (TOS), June 2016.

[17] I. S. Reed and G. Solomon. Polynomial Codes Over Cer-
tain Finite Fields. Journal of the Society for Industrial
and Applied Mathematics, 1960.

[18] Johannes Blömer, Malik Kalfane, Richard Karp, Marek
Karpinski, Michael Luby, and David Zuckerman. An
XOR-Based Erasure-Resilient Coding Scheme. Techni-
cal Report TR-95-048, International Computer Science
Institute, 1995.

[19] M. Blaum and R. M. Roth. On Lowest Density MDS
Codes. IEEE Transactions on Information Theory, Jan-
uary 1999.

[20] Qin Xin, Ethan L. Miller, Thomas Schwarz, Darrell D. E.
Long, Scott A. Brandt, and Witold Litwin. Reliability
mechanisms for very large storage systems. In Proceed-
ings of the 20 th IEEE/11 th NASA Goddard Conference
on Mass Storage Systems and Technologies (MSST’03),
MSST ’03, 2003.

[21] Introduction to Lustre Architecture. http://wiki.
lustre.org/images/6/64/LustreArchitecture-
v4.pdf, 2017.

[22] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew
Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad
Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram Sankaran,
Kavitha Manivannan, and Leonidas Rigas. Windows

USENIX Association 18th USENIX Conference on File and Storage Technologies 321

http://www.samsung.com/semiconductor/global/file/insight/2017/08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2017/08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2017/08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2017/08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.seagate.com/tech-insights/kinetic-vision-how-seagate-new-developer-tools-meets-the-needs-of-cloud-storage-platforms-master-ti/
https://www.seagate.com/tech-insights/kinetic-vision-how-seagate-new-developer-tools-meets-the-needs-of-cloud-storage-platforms-master-ti/
https://www.seagate.com/tech-insights/kinetic-vision-how-seagate-new-developer-tools-meets-the-needs-of-cloud-storage-platforms-master-ti/
https://www.seagate.com/tech-insights/kinetic-vision-how-seagate-new-developer-tools-meets-the-needs-of-cloud-storage-platforms-master-ti/
https://github.com/OpenMPDK/KVSSD
https://github.com/OpenMPDK/KVSSD
https://github.com/01org/isa-l
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/OpenMPDK/KVSSD/tree/master/application/kvbench
https://github.com/OpenMPDK/KVSSD/tree/master/application/kvbench
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

Azure Storage: A Highly Available Cloud Storage Ser-
vice with Strong Consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, 2011.

[23] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable,
high-performance distributed file system. In Proceed-
ings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI), November 2006.

[24] Haibo Chen, Heng Zhang, Mingkai Dong, Zhaoguo

Wang, Yubin Xia, Haibing Guan, and Binyu Zang. Effi-
cient and Available In-Memory KV-Store with Hybrid
Erasure Coding and Replication. ACM Transactions on
Storage, 2017.

[25] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. EC-cache: Load-
balanced, Low-latency Cluster Caching with Online Era-
sure Coding. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’16, 2016.

322 18th USENIX Conference on File and Storage Technologies USENIX Association

Strong and Efficient Consistency with Consistency-Aware Durability
Aishwarya Ganesan, Ramnatthan Alagappan,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau
University of Wisconsin – Madison

Abstract
We introduce consistency-aware durability or CAD, a new ap-
proach to durability in distributed storage that enables strong
consistency while delivering high performance. We demon-
strate the efficacy of this approach by designing cross-client
monotonic reads, a novel and strong consistency property
that provides monotonic reads across failures and sessions
in leader-based systems. We build ORCA, a modified version
of ZooKeeper that implements CAD and cross-client mono-
tonic reads. We experimentally show that ORCA provides
strong consistency while closely matching the performance of
weakly consistent ZooKeeper. Compared to strongly consis-
tent ZooKeeper, ORCA provides significantly higher through-
put (1.8 – 3.3×), and notably reduces latency, sometimes by
an order of magnitude in geo-distributed settings.

1 Introduction
A major focus of distributed storage research and practice
has been the consistency model a system provides. Many
models, from linearizability [20] to eventual consistency [16],
with several points in-between [27, 29, 30, 48–50] have been
proposed, studied, and are fairly well understood.

Despite many years of research, scant attention has been
paid to a distributed system’s underlying durability model,
which has strong implications on both consistency and per-
formance. At one extreme, synchronous durability requires
writes to be replicated and persisted on many nodes before
acknowledgment. This model is often employed to achieve
strong consistency. For example, to prevent stale reads, a
linearizable system (such as LogCabin [28]) synchronously
makes writes durable; otherwise, an acknowledged update
can be lost, exposing stale values upon subsequent reads. Syn-
chronous durability avoids such cases, but at a high cost: poor
performance. Forcing writes to be replicated and persisted,
even with performance enhancements such as batching, re-
duces throughput and increases latency dramatically.

At the other extreme is asynchronous durability: each write
is only lazily replicated and persisted, perhaps after buffer-
ing it in just one node’s memory. Asynchronous durability
is utilized in systems with weaker consistency models (such
as Redis [42]); by acknowledging writes quickly, high per-
formance is realized, but this model leads to weak semantics,
exposing stale and out-of-order data to applications.

In this paper, we ask the following question: is it possible
for a durability layer to enable strong consistency, yet also
deliver high performance? We show this is possible if the dura-

bility layer is carefully designed, specifically by taking the
consistency model the system intends to realize into account.
We call this approach consistency-aware durability or CAD.
We show how cross-client monotonic reads, a new and strong
consistency property, can be realized with high performance
by making the durability layer aware of this model. Cross-
client monotonicity cannot be realized efficiently without a
consistency-aware layer: synchronous durability can enable it
but is slow; it simply cannot be realized upon asynchronous
durability. In this paper, we implement CAD and cross-client
monotonic reads in leader-based replicated systems.

Cross-client monotonic reads guarantees that a read from a
client will return a state that is at least as up-to-date as the state
returned to a previous read from any client, irrespective of fail-
ures and across sessions. To realize this property efficiently,
CAD shifts the point of durability from writes to reads: data is
replicated and persisted before it is read. By delaying dura-
bility of writes, CAD achieves high performance; however, by
making data durable before it is read, CAD enables monotonic
reads across failures. CAD does not incur overheads on every
read; for many workloads, data can be made durable in the
background before applications read it. While enabling strong
consistency, CAD does not guarantee complete freedom from
data loss; a few recently written items that have not been
read yet may be lost if failures arise. However, given that
many widely used systems adopt asynchronous durability and
thus settle for weaker consistency [32, 43, 44], CAD offers a
path for these systems to realize stronger consistency without
compromising on performance.

Existing linearizable systems do provide cross-client
monotonic reads. However, to do so, in addition to using
synchronous durability, most systems restrict reads to the
leader [23, 34, 38]. Such restriction limits read throughput and
prevents clients from reading from nearby replicas, increasing
latency. In contrast, we show how a storage system can realize
this property while allowing reads at many replicas. Such a
system can achieve low-latency reads from nearby replicas,
making it particularly well-suited for geo-distributed settings.
Further, such a system can be beneficial in edge-computing
use cases, where a client may connect to different servers over
the application lifetime (e.g., due to mobility [41]), but still
can receive monotonic reads across these sessions.

We implement CAD and cross-client monotonic reads in
a system called ORCA by modifying ZooKeeper [3]. ORCA

applies many novel techniques to achieve high performance
and strong guarantees. For example, a durability-check mecha-
nism efficiently separates requests that read non-durable items

USENIX Association 18th USENIX Conference on File and Storage Technologies 323

from those that access durable ones. Next, a lease-based ac-
tive set technique ensures monotonic reads while allowing
reads at many nodes. Finally, a two-step lease-breaking mech-
anism helps correctly manage active-set membership.

Our experiments show that ZooKeeper with CAD is signif-
icantly faster than synchronously durable ZooKeeper (opti-
mized with batching) while approximating the performance
of asynchronously durable ZooKeeper for many workloads.
Even for workloads that mostly read recently written data,
CAD’s overheads are small (only 8%). By allowing reads
at many replicas, ORCA offers significantly higher through-
put (1.8 – 3.3×) compared to strongly consistent ZooKeeper
(strong-ZK). In a geo-distributed setting, by allowing reads
at nearby replicas, ORCA provides 14× lower latency than
strong-ZK in many cases while providing strong guarantees.
ORCA also closely matches the performance of weakly con-
sistent ZooKeeper (weak-ZK). We show through rigorous
tests that ORCA provides cross-client monotonic reads under
hundreds of failure sequences generated by a fault-injector;
in contrast, weak-ZK returns non-monotonic states in many
cases. We also demonstrate how the guarantees provided by
ORCA can be useful in two application scenarios.

2 Motivation
In this section, we discuss how strong consistency requires
synchronous durability and how only weak consistency can
be built upon asynchronous durability.

2.1 Strong Consistency atop Synchronous Durability
Realizing strong consistency requires synchronous durability.
For example, consider linearizability, the strongest guarantee
a replicated system can provide. A linearizable system offers
two properties upon reads. First, it prevents clients from see-
ing non-monotonic states: the system will not serve a client
an updated state at one point and subsequently serve an older
state to any client. Second, a read is guaranteed to see the
latest update: stale data is never exposed. However, to provide
such strong guarantees upon reads, a linearizable system must
synchronously replicate and persist a write [25]; otherwise,
the system can lose data upon failures and so expose inconsis-
tencies. For example, in majority-based linearizable systems
(e.g., LogCabin), the leader synchronously replicates to a ma-
jority, and the nodes flush to disk (e.g., by issuing fsync). With
such synchronous durability, linearizable systems can remain
available and provide strong guarantees even when all servers
crash and recover.

Unfortunately, such strong guarantees come at the cost of
performance. As shown in Table 1, Redis with synchronous
majority replication and persistence is 10× slower than the
fully asynchronous configuration in which writes are buffered
only on the leader’s memory. While batching concurrent re-
quests may improve throughput in some systems, synchronous
durability fundamentally suffers from high latency.

Replication Persistence Throughput (ops/s) Avg. Latency (µs)
async async 24215 330
sync async 9889 (2.4× ↓) 809
sync sync 2345 (10.3× ↓) 3412

Table 1: Synchronous Writes Costs. The table shows the overheads
of synchronous writes in Redis with five replicas and eight clients. The arrows
show the throughput drop compared to asynchronous durability. The replicas
are connected via 10-Gbps links and use SSDs for persistence.

a,b acked;
clients read a,b

S1
L

S2

S3

S4

S5
follow leader;
b overwritten

a,b acked;
clients read a,b

S1 fails; S2-new leader
clients see only a(ii

) a
sy

nc
hr

on
ou

s r
ep

lic
at

io
n

an
d

pe
rs

ist
en

ce

a b

a

a

a

a

a b

a

a

a

a

a

a

a

a

a

S3 crashes S3, S4, S5 form majority;
clients see only a

a b

a b

a b

a

a b

a b

a b

a

aa

a b

a b

a

a

aa

a

aa

a

aa

aa

S1 follows
new leader

a

(i)
 a

sy
nc

hr
on

ou
s p

er
sis

te
nc

e

L

L

L

Figure 1: Poor Consistency atop Asynchronous Durability. (i)
shows how non-monotonic reads result upon failures with systems that persist
asynchronously. (ii) shows the same for systems that replicate and persist
asynchronously. Data items shown in grey denote that they are persisted.

Synchronous durability, while necessary, is not sufficient
to prevent non-monotonic and stale reads; additional mech-
anisms are required. For example, in addition to using syn-
chronous durability, many practical linearizable systems re-
strict reads to the leader [23, 28, 34, 38]. However, such a
restriction severely limits read throughput; further, it prevents
clients from reading from their nearest replica, increasing
read latencies (especially in geo-distributed settings).

2.2 Weak Consistency atop Asynchronous Durability
Given the cost of synchronous durability, many systems prefer
asynchronous durability in which writes are replicated and
persisted lazily. In fact, such asynchronous configurations are
the default [32, 44] in widely used systems (e.g., Redis, Mon-
goDB). However, by adopting asynchronous durability, as we
discuss next, these systems settle for weaker consistency.

Most systems use two kinds of asynchronous-durability
configurations. In the first kind, the system synchronously
replicates, but persists data lazily (e.g., ZooKeeper with
forceSync [4] disabled). In the second, the system performs
both replication and persistence asynchronously (e.g., default
Redis, which buffers updates only on the leader’s memory).

With asynchronous persistence, the system can lose data,
leading to poor consistency. Surprisingly, such cases can oc-
cur although data is replicated in memory of many nodes
and when just one node crashes. Consider ZooKeeper with
asynchronous persistence as shown in Figure 1(i). At first, a

324 18th USENIX Conference on File and Storage Technologies USENIX Association

majority of nodes (S1, S2, and S3) have committed an item b,
buffering it in memory; two nodes (S4 and S5) are operating
slowly and so have not seen b. When a node in the majority
(S3) crashes and recovers, it loses b. S3 then forms a major-
ity with nodes that have not seen b yet and gets elected the
leader†. The system has thus silently lost the committed item
b and so a client that previously read a state containing items
a and b may now notice an older state containing only a, ex-
posing non-monotonic reads. The intact copies on S1 and S2
are also replaced by the new leader. Similar cases arise with
fully asynchronous systems too as shown in Figure 1(ii).

In essence, systems built upon asynchronous durability can-
not realize strong consistency properties in the presence of
failures. Such systems can serve a newer state before the fail-
ure but an older one after recovery, exposing non-monotonic
reads. Only models weaker than linearizability such as causal
consistency can be built atop asynchronous durability; such
models offer monotonic reads only in the absence of failures
and within a single client session. If the server to which the
client is connected crashes and recovers, the client has to es-
tablish a new session in which it may see a state older than
what it saw in its previous session [30].

Weakly consistent systems can expose non-monotonic
states also because they usually allow reads at many
nodes [14]. For example, a client can reconnect to a different
server after a disconnection, and may read an older state in the
new session if a few updates have not been replicated to this
server yet. For the same reason, two sessions to two different
servers from a single application may receive non-monotonic
states. While the above cases do not violate causal consistency
by definition (because it is a different session), they lead to
poor semantics for applications.

To summarize our discussion thus far, synchronous durabil-
ity enables strong consistency but is prohibitively expensive.
Asynchronous durability offers high performance, but only
weak consistency can be built upon it. We next discuss how
the seemingly conflicting goals of strong consistency and high
performance can be realized together in a storage system by
carefully designing its durability layer.

3 Strong, Efficient Consistency with CAD
Our goal in this paper is to design a durability primitive that
enables strong consistency while delivering high performance.
To this end, we first observe that asynchronous durability
can lose data arbitrarily upon failures, and so prevents the
realization of both non-stale and monotonic reads together.
While preventing staleness requires expensive synchronous
durability upon every write, we note that monotonic reads
across failures can be useful in many scenarios and can be
realized efficiently. We design consistency-aware durability

†While a node that has lost its data can be precluded from joining the clus-
ter (like in Viewstamped Replication [26]), such solutions affect availability
and practical systems do not employ such a strategy.

or CAD, a new durability primitive that enables this strong
property with high performance.

The main idea underlying CAD is to allow writes to be
completed asynchronously but enforce durability upon reads:
data is replicated and persisted before it is read by clients. By
delaying the durability of writes, CAD achieves high perfor-
mance. However, by ensuring that the data is durable before
it is read, CAD enables monotonic reads even across failures.
CAD does not always incur overheads when data is read. First,
for many workloads, CAD can make the data durable in the
background well before applications read it. Further, only the
first read to non-durable data triggers synchronous replication
and persistence; subsequent reads are fast. Thus, if clients do
not read data immediately after writing (which is natural for
many workloads), CAD can realize the high performance of
asynchronous durability but enable stronger consistency. In
the case where clients do read data immediately after writing,
CAD incurs overheads but ensures strong consistency.

Upon CAD, we realize cross-client monotonic reads, a
strong consistency property. This property guarantees that
a read from a client will always return a state that is at least
as up-to-date as the state returned to a previous read from any
client, irrespective of server and client failures, and across
sessions. Linearizability provides this property but not with
high performance. Weaker consistency models built atop asyn-
chronous durability cannot provide this property. Note that
cross-client monotonicity is a stronger guarantee than the
traditional monotonic reads that ensures monotonicity only
within a session and in the absence of failures [10, 30, 49].

Cross-client monotonic reads can be useful in many sce-
narios. As a simple example, consider the view count of a
video hosted by a service; such a counter should only increase
monotonically. However, in a system that can lose data that
has been read, clients can notice counter values that may seem
to go backward. As another example, in a location-sharing
service, it might be possible for a user to incorrectly notice
that another user went backwards on the route, while in reality,
the discrepancy is caused by the underlying storage system
that served the updated location, lost it, and thus later reverted
to an older one. A system that offers cross-client monotonic
reads avoids such cases, providing better semantics.

To ensure cross-client monotonic reads, most existing lin-
earizable systems restrict reads to the leader, affecting scal-
ability and increasing latency. In contrast, a system that pro-
vides this property while allowing reads at multiple replicas
offers attractive performance and consistency characteristics
in many use cases. First, it distributes the load across repli-
cas and enables clients to read from nearby replicas, offering
low-latency reads in geo-distributed settings. Second, similar
to linearizable systems, it provides monotonic reads, irrespec-
tive of failures, and across clients and sessions which can be
useful for applications at the edge [36]. Clients at the edge
may often get disconnected and connect to different servers,
but still can get monotonic reads across these sessions.

USENIX Association 18th USENIX Conference on File and Storage Technologies 325

4 ORCA Design
We now describe ORCA, a leader-based majority system that
implements consistency-aware durability and cross-client
monotonic reads. We first provide a brief overview of leader-
based systems (§4.1) and outline ORCA’s guarantees (§4.2).
We then describe the mechanisms underlying CAD (§4.3).
Next, we explain how we realize cross-client monotonic reads
while allowing reads at many nodes (§4.4). Finally, we ex-
plain how ORCA correctly ensures cross-client monotonic
reads (§4.5) and describe our implementation (§4.6).

4.1 Leader-based Majority Systems
In leader-based systems (such as ZooKeeper), all updates flow
through the leader which establishes a single order of updates
by storing them in a log and then replicating them to the fol-
lowers [21, 39]. The leader is associated with an epoch: a slice
of time, in which at most one leader can exist [6, 39]. Each
update is uniquely identified by the epoch in which it was
appended and its position in the log. The leader constantly
sends heartbeats to the followers; if the followers do not hear
from the leader for a while, they elect a new leader. With syn-
chronous durability, the leader acknowledges an update only
after a majority of replicas (i.e., bn/2c+1 nodes in a n-node
system) have persisted the update. With asynchronous dura-
bility, updates are either buffered in memory on just the leader
(asynchronous replication and persistence) or a majority of
nodes (asynchronous persistence) before acknowledgment.

When using synchronous durability and restricting reads to
the leader, the system provides linearizability: a read is guar-
anteed to see the latest update and receive monotonic states.
With asynchronous durability and when allowing reads at all
nodes, these systems only provide sequential consistency [8],
i.e., a global order of operations exists but if servers crash and
recover, or if clients read from different servers, reads may be
stale and non-monotonic [8, 38].

4.2 Failure Model and Guarantees
Similar to many majority-based systems, ORCA intends to
tolerate only fail-recover failures, not Byzantine failures [24].
In the fail-recover model, nodes may fail at any time and
recover at a later point. Nodes fail in two ways; first, they
could crash (e.g., due to power failures); second, they may
get partitioned due to network failures. When a node recovers
from a crash, it loses its volatile state and is left only with its
on-disk state. During partitions, a node’s volatile state remains
intact, but it may not have seen data that the other nodes have.
Guarantees. ORCA preserves the properties of a leader-based
system that uses asynchronous durability, i.e., it provides se-
quential consistency. However, in addition, it also provides
cross-client monotonic reads under all failure scenarios (e.g.,
even if all replicas crash and recover), and across sessions.
ORCA is different from linearizable systems in that it does not
guarantee that reads will never see stale data. For example, if
failures arise after writing the data but before reading it, ORCA

(i)
 B

as
el

in
e:

 a
sy

nc
 re

pl
ica

tio
n

an
d

pe
rs

ist
en

ce

state up to at least
index 2 durable;

serve b

read(b)
durable-index:1
update-index:2

read(a)
durable-index:1
update-index:1

S1
L a a b

a

a

a

a

S2

S3

S4

S5

durability check
passes: serve a

c a b

a b

a

a

a

c a b

a b

a b

a

a

b

c

c

c

b,c
appended
and acked durability check fails

make data durable

S1
L a

a

a

a

a

a b

a b

a b

a

a

S2

S3

S4

S5

b

c

c

c

a b

a b

a b

a

a

b

c

c

c

a b

a b

a b

a

a

b

c

c

c

a

a

a acked

a

a

a

a

(ii
) B

as
el

in
e:

 a
sy

nc

pe
rs

ist
en

ce

re
pl

ica
te

 a
nd

pe

rsi
st

pe
rsi

st

Figure 2: CAD Durability Check. The figure shows how CAD works.
Data items shown in grey are durable. In (i), the baseline is fully asyn-
chronous; in (ii), the baseline synchronously replicates but asynchronously
persists. At first, when item a is durable, read(a) passes the durability check.
Items b and c are appended then. The check for read(b) fails; hence, the
leader makes the state durable after which it serves b.

may lose a few recent updates and thus subsequent reads can
get an older state. Majority-based systems remain available
as long as a majority of nodes are functional [7, 39]; ORCA

ensures the same level of availability.

4.3 CAD Durability Layer
In the rest of this section, we use asynchronous durability as
the baseline to highlight how CAD is different from it. CAD

aims to perform similarly to this baseline but enable stronger
consistency. We now provide intuition about how CAD works
and explain its mechanisms; we use Figure 2 to do so.

4.3.1 Updates
CAD preserves the update path of the baseline asynchronous
system as it aims to provide the same performance during
writes. Thus, if the baseline employs asynchronous replication
and persistence, then CAD also performs both replication and
persistence asynchronously, buffering the data in the memory
of the leader as shown in Figure 2(i). Similarly, if the baseline
synchronously replicates but asynchronously persists, then
CAD also does the same upon writes as shown in Figure 2(ii).
While preserving the update path, in CAD, the leader keeps
replicating updates in the background and the nodes flush to
disk periodically. We next discuss how CAD handles reads.

4.3.2 State Durability Guarantee
When a read for an item i is served, CAD guarantees that the
entire state (i.e., writes even to other items) up to the last
update that modifies i are durable. For example, consider a
log such as [a,b1,c,b2,d]; each entry denotes a (non-durable)
update to an item, and the subscript shows how many up-
dates are done to a particular item. When item b is read, CAD

326 18th USENIX Conference on File and Storage Technologies USENIX Association

guarantees that all updates at least up to b2 are made durable
before serving b. CAD makes the entire state durable instead
of just the item because it aims to preserve the update order
established by the leader (as done by the base system).

CAD considers the state to be durable when it can recover
the data after any failures including cases where all replicas
crash and recover and in all successive views of the cluster.
Majority-based systems require at least a majority of nodes to
form a new view (i.e., elect a leader) and provide service to
clients. Thus, if CAD safely persists data on at least a majority
of nodes, then at least one node in any majority even after
failures will have all the data that has been made durable (i.e.,
that was read by the clients) and thus will survive into the
new view. Therefore, CAD considers data to be durable when
it is persisted on the disks of at least a majority of nodes.

4.3.3 Handling Reads: Durability Check
When a read request for an item i arrives at a node, the node
can immediately serve i from its memory if all updates to i
are already durable (e.g., Figure 2, read of item a); otherwise,
the node must take additional steps to make the data durable.
As a result, the node first needs to be able to determine if all
updates to i have been made durable or not.

A naive way to perform this check would be to maintain
for each item how many nodes have persisted the item; if
at least a majority of nodes have persisted an item, then the
system can serve it. A shortcoming of this approach is that the
followers must inform the leader the set of items they have
persisted in each response, and the leader must update the
counts for all items in the set on every acknowledgment.

CAD simplifies this procedure by exploiting the ordering
of updates established by the leader. Such ordering is an at-
tribute common to many majority-based systems; for example,
the ZooKeeper leader stamps each update with a monotoni-
cally increasing epoch-counter pair before appending it to the
log [5]. In CAD, with every response, the followers send the
leader only a single index called the persisted-index which
is the epoch-counter of the last update they have written to
disk. The leader also maintains only a single index called
the durable-index which is the index up to which at least a
majority of nodes have persisted; the leader calculates the
durable-index by finding the highest persisted-index among
at least a majority (including self).

When a read for an item i arrives at the leader, it com-
pares the update-index of i (the epoch-counter of the latest
update that modifies i) against the system’s durable-index. If
the durable-index is greater‡ than the update-index, then all
updates to i are already durable and so the leader serves i
immediately; otherwise, the leader takes additional steps (de-
scribed next) to make the data durable. If the read arrives at a
follower, it performs the same check (using the durable-index
sent by the leader in the heartbeats). If the check passes, it

‡An index a is greater than index b if (a.epoch > b.epoch) or (a.epoch
== b.epoch and a.counter > b.counter).

serves the read; otherwise, it redirects the request to the leader
which then makes the data durable.

4.3.4 Making the Data Durable
If the durability check fails, CAD needs to make the state (up
to the latest update to the item being read) synchronously
durable before serving the read. The leader treats the read for
which the check fails specially. First, the leader synchronously
replicates all updates upto the update-index of the item being
read if these updates have not yet been replicated. The leader
also informs the followers that they must flush their logs to
disk before responding to this request.

When the followers receive such a request, they syn-
chronously append the updates and flush the log to disk and
respond. During such a flush, all previous writes buffered are
also written to disk, ensuring that the entire state up to the
latest update to the item being read is durable. Fortunately,
the periodic background flushes reduce the amount of data
that needs to be written during such foreground flushes. The
persisted-index reported by a node as a response to this re-
quest is at least as high as the update-index of the item. When
the flush finishes on a majority, the durable-index will be up-
dated, and thus the data item can be served. The fourth column
of Figure 2 shows how this procedure works. As shown, the
durability check fails when item b is read; the nodes thus flush
all updates upto index 2 and so the durability-index advances;
the item is then served.

As an optimization, ORCA also persists writes that are after
the last update to the item being read. Consider the log [a,b,c]
in Figure 2; when a client reads b, the durability check fails.
Now, although it is enough to persist entries up to b, CAD also
flushes update c, obviating future synchronous flushes when
c is read as shown in the last column of the figure.

To summarize, CAD makes data durable upon reads and so
guarantees that state that has been read will never be lost even
if servers crash and recover. We next discuss how upon this
durability primitive we build cross-client monotonic reads.

4.4 Cross-Client Monotonic Reads
If reads are restricted only to the leader, a design that many
linearizable systems adopt, then cross-client monotonic reads
is readily provided by CAD; no additional mechanisms are
needed. Given that updates go only through the leader, the
leader will have the latest data, which it will serve on reads (if
necessary, making it durable before serving). Further, if the
current leader fails, the new view will contain the state that
was read. Thus, monotonic reads are ensured across failures.

However, restricting reads only to the leader limits read
scalability and prevents clients from reading at nearby repli-
cas. Most practical systems (e.g., MongoDB, Redis), for this
reason, allow reads at many nodes [31, 33, 45]. However,
when allowing reads at the followers, CAD alone cannot en-
sure cross-client monotonic reads. Consider the scenario in
Figure 3. The leader S1 has served versions a1 and a2 after

USENIX Association 18th USENIX Conference on File and Storage Technologies 327

S1
L

S2

S3

S4

S5

a1

a1

a1

a1

a1

a1

a1

a2

a1

a1

a1

a2

a2

a1

a1

a2

a1

a1

a1

a2

a2

a1

read(a)
a2

read(a)

a1

read(a)
a2 a2

Figure 3: Non-monotonic Reads. The figure shows how non-
monotonic states can be exposed atop CAD when reading at the followers.

making them durable on a majority. However, follower S5 is
partitioned and so has not seen a2. When a read later arrives
at S5, it is possible for S5 to serve a1; although S5 checks
that a1 is durable, it does not know that a has been updated
and served by others, exposing non-monotonic states. Thus,
additional mechanisms are needed which we describe next.

4.4.1 Scalable Reads with Active Set
A naive way to solve the problem shown in Figure 3 is to make
the data durable on all the followers before serving reads from
the leader. However, such an approach would lead to poor
performance and, more importantly, decreased availability:
reads cannot be served unless all nodes are available. Instead,
ORCA solves this problem using an active set. The active
set contains at least a majority of nodes. ORCA enforces the
following rules with respect to the active set.
R1: When the leader intends to make a data item durable
(before serving a read), it ensures that the data is persisted
and applied by all the members in the active set.
R2: Only nodes in the active set are allowed to serve reads.

The above two rules together ensure that clients never see
non-monotonic states. R1 ensures that all nodes in the active
set contain all data that has been read by clients. R2 ensures
that only such nodes that contain data that has been previously
read can serve reads; other nodes that do not contain the
data that has been served (e.g., S5 in Figure 3) are precluded
from serving reads, preventing non-monotonic reads. The key
challenge now is to maintain the active set correctly.

4.4.2 Membership using Leases
The leader constantly (via heartbeats and requests) informs
the followers whether they are part of the active set or not. The
active-set membership message is a lease [12, 18] provided
by the leader to the followers: if a follower F believes that
it is part of the active set, it is guaranteed that no data will
be served to clients without F persisting and applying the
data. The lease breaks when a follower does not hear from
the leader for a while. Once the lease breaks, the follower
cannot serve reads anymore. The leader also removes the
follower from the active set, allowing the leader to serve reads
by making data durable on the updated (reduced) active set.

To ensure correctness, a follower must mark itself out be-
fore the leader removes it from the active set. Consider the
scenario in Figure 4(i), which shows how non-monotonic
states can be exposed if the leader removes a disconnected
follower from the active set hastily. Initially, the active set con-
tains all the nodes, and so upon a read, the leader tries to make

S1
L

S2

a2

read(a)

a2 written
active set:{12345}

 read at L;
L hastily removes
S5 from active set

S5 later
serves a1

a1 a2

a1

read(a)

read(a) a2

L cannot commit
a2 in active set;

wait for rt

L can now
safely serve a2

rt triggered
mt must have
passed for S5

remove S5
from active set:

{12345} → {1234}

(i) Unsafe if leader hastily removes follower (ii) Two-step breaking of lease

a1 a2

S3 a1 a2

a1

a1

S4

S5

a1 a2

a1 a2

a1 a2

a1 a2

a1

a1 a2

a1 a2

a1 a2

a1 a2

a1

a1 a2

a1 a2

a1 a2

a1 a2

a1

a1 a2

a1 a2

a1 a2

a1 a2

a1

Figure 4: Active Set and Leases. (i) shows how removing a follower
hastily can expose non-monotonic states; (ii) shows how ORCA breaks leases.

a2 durable on all nodes; however, follower S5 is partitioned.
Now, if the leader removes S5 (before S5 marks itself out)
and serves a2, it is possible for S5 to serve a1 later, exposing
out-of-order states. Thus, for safety, the leader must wait for
S5 to mark itself out and then only remove S5 from the active
set, allowing the read to succeed.

ORCA breaks leases using a two-step mechanism: first, a
disconnected follower marks itself out of the active set; the
leader then removes the follower from the active-set. ORCA re-
alizes the two-step mechanism using two timeouts: a mark-out
timeout (mt) and a removal timeout (rt); once mt passes, the
follower marks itself out; once rt passes, the leader removes
the follower from the active set. ORCA sets rt significantly
greater than mt (e.g., rt >= 5∗mt) and mt is set to the same
value as the heartbeat interval. Figure 4(ii) illustrates how
the two-step mechanism works in ORCA. The performance
impact is minimal when the leader waits to remove a failed
follower from the active set. Specifically, only reads that ac-
cess (recently written) items that are not durable yet must
wait for the active set to be updated; the other vast majority
of reads can be completed without any delays.

Like any lease-based system, ORCA requires non-faulty
clocks with a bounded drift [18]. By the time rt passes for the
leader, mt must have passed for the follower; otherwise, non-
monotonic states may be returned. However, this is highly
unlikely because we set rt to a multiple of mt; it is unlikely for
the follower’s clock to run too slowly or the leader’s clock to
run too quickly that rt has passed for the leader but mt has not
for the follower. In many deployments, the worst-case clock
drift between two servers is as low as 30 µs/sec [17] which
is far less than what ORCA expects. Note that ORCA requires
only a bounded drift, not synchronized clocks.

When a failed follower recovers (from a crash or a parti-
tion), the leader adds the follower to the active set. However,
the leader ensures that the recovered node has persisted and
applied all entries up to the durable-index before adding the
node to the active set. Sometimes, a leader may break the
lease for a follower G even when it is constantly hearing from
G, but G is operating slowly (perhaps due to a slow link or
disk), increasing the latency to flush when a durability check
fails. In such cases, the leader may inform the follower that it
needs to mark itself out and then the leader also removes the
follower from the active set.

328 18th USENIX Conference on File and Storage Technologies USENIX Association

The size of the active set presents a tradeoff between scala-
bility and latency. If many nodes are in the active set, reads
can be served from them all, improving scalability; however,
reads that access recently written non-durable data can incur
more latency because data has to be replicated and persisted
on many nodes. In contrast, if the active set contains a bare
majority, then data can be made durable quickly, but reads
can be served only by a majority.
Deposed leaders. A subtle case that needs to be handled is
when a leader is deposed by a new one, but the old leader
does not know about it yet. The old leader may serve some
old data that was updated and served by the other partition,
causing clients to see non-monotonic states. ORCA solves
this problem with the same lease-based mechanism described
above. When followers do not hear from the current leader,
they elect a new leader but do so after waiting for a certain
timeout. By this time, the old leader realizes that it is not the
leader anymore, steps down, and stops serving reads.

4.5 Correctness
ORCA never returns non-monotonic states, i.e., a read from a
client always returns at least the latest state that was previously
read by any client. We now provide a proof sketch for how
ORCA ensures correctness under all scenarios.

First, when the current leader is functional, if a non-durable
item (whose update-index is L) is read, ORCA ensures that the
state at least up to L is persisted on all the nodes in the active
set before serving the read. Thus, reads performed at any node
in the active set will return at least the latest state that was
previously read (i.e., up to L). Followers not present in the
active set may be lagging but reads are not allowed on them,
preventing them from serving an older state. When a follower
is added to the active set, ORCA ensures that the follower
contains state at least up to L; thus any subsequent reads on
the added follower will return at least the latest state that
was previously read, ensuring correctness. When the leader
removes a follower, ORCA ensures that the follower marks
itself out before the leader returns any data by committing
it on the new reduced set, which prevents the follower from
returning any older state.

When the current leader fails, ORCA must ensure that latest
state that was read by clients survives into the new view. We
argue that this is ensured by how elections work in ORCA

(and in many majority-based systems). Let us suppose that
the latest read has seen state up to index L. When the leader
fails and subsequently a new view is formed, the system must
recover all entries at least up to L for correctness; if not, an
older state may be returned in the new view. The followers, on
a leader failure, become candidates and compete to become
the next leader. A candidate must get votes from at least
a majority (may include self) to become the leader. When
requesting votes, a candidate specifies the index of the last
entry in its log. A responding node compares the incoming
index (P) against the index of the last entry in its own log

(Q). If the node has more up-to-date data in its log than the
candidate (i.e., Q > P), then the node does not give its vote to
the candidate. This is a property ensured by many majority-
based systems [2, 6, 39] which ORCA preserves.

Because ORCA persists the data on all the nodes in the ac-
tive set and given that the active set contains at least a majority
of nodes, at least one node in any majority will contain state
up to L on its disk. Thus, only a candidate that has state at
least up to L can get votes from a majority and become the
leader. In the new view, the nodes follow the new leader’s
state. Given that the leader is guaranteed to have state at least
up to L, all data that have been served so far will survive into
the new view, ensuring correctness.

4.6 Implementation
We have built ORCA by modifying ZooKeeper (v3.4.12). We
have two baselines. First, ZooKeeper with synchronous repli-
cation but asynchronous persistence (i.e., ZooKeeper with
forceSync disabled). Second, ZooKeeper with asynchronous
replication; we modified ZooKeeper to obtain this baseline.

In ZooKeeper, write operations either create new key-value
pairs or update existing ones. As we discussed, ORCA follows
the same code path of the baseline for these operations. In ad-
dition, ORCA replicates and persists updates constantly in the
background. Read operations return the value for a given key.
On a read, ORCA performs the durability check (by comparing
the key’s update-index against the system’s durable-index)
and enforces durability if required.

ORCA incurs little metadata overheads compared to unmod-
ified ZooKeeper to perform the durability check. Specifically,
ZooKeeper already maintains the last-updated index for every
item (as part of the item itself [9]) which ORCA reuses. Thus,
ORCA needs to additionally maintain only the durable-index,
which is 8 bytes in size. However, some systems may not
maintain the update indexes; in such cases, CAD needs eight
additional bytes for every item compared to the unmodified
system, a small price to pay for the performance benefits.

Performing the durability check is simple in ZooKeeper
because what item a request will read is explicitly specified
in the request. However, doing this check in a system that
supports range queries or queries such as “get all users at
a particular location” may require a small additional step.
The system would need to first tentatively execute the query
and determine what all items will be returned; then, it would
enforce durability if one or more items are not durable yet.

We modified the replication requests and responses as fol-
lows. The followers include the persisted-index in their re-
sponse and the leader sends the followers the durable-index
in the requests or heartbeats. These messages are also used
to maintain the active-set lease. We set the durable-index as
the maximum index that has been persisted and applied by all
nodes in the active set. We set the follower mark-out timeout
to the same value as the heartbeat interval (100 ms in our
implementation). We set the removal timeout to 500 ms.

USENIX Association 18th USENIX Conference on File and Storage Technologies 329

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40

L
at

en
cy

 (
µ

s)

Throughput (Kops/sec)

sync-no-batch
sync

async
cad

Figure 5: Write-only Workload: Latency vs. Throughput. The
figure plots the average latency against throughput by varying the number of
clients for a write-only workload for different durability layers.

5 Evaluation
In our evaluation, we ask the following questions:
• How does CAD perform compared to synchronous and

asynchronous durability?
• How does ORCA perform compared to weakly consistent

ZooKeeper and strongly consistent ZooKeeper?
• Does ORCA ensure cross-client monotonic reads in the

presence of failures?
• Does ORCA provide better guarantees for applications?

We conduct a set of experiments to answer these questions.
We run our performance experiments with five replicas. Each
replica is a 20-core Intel Xeon CPU E5-2660 machine with
256 GB memory running Linux 4.4 and uses a 480-GB SSD to
store data. The replicas are connected via a 10-Gbps network.
We use six YCSB workloads [15] that have different read-
write ratios and access patterns: W (write-only), A (w:50%,
r:50%), B (w:5%, r:95%), C (read-only), D (read latest, w:5%,
r:95%), F (read-modify-write:50%, r:50%). We do not run
YCSB-E because ZooKeeper does not support range queries.
Numbers reported are the average over five runs.

5.1 CAD Performance
We first evaluate the performance of the durability layer in
isolation; we compare CAD against synchronous and asyn-
chronous durability. With asynchronous durability and CAD,
the system performs both replication and persistence asyn-
chronously. With synchronous durability, the system repli-
cates and persists writes (using fsync) on a majority in the
critical path; it employs batching to improve performance.

5.1.1 Write-only Micro-benchmark
We first compare the performance for a write-only workload.
Intuitively, CAD should outperform synchronous durability
and match the performance of asynchronous durability for
such a workload. Figure 5 shows the result: we plot the aver-
age latency seen by clients against the throughput obtained
when varying the number of closed-loop clients from 1 to
100. We show two variants of synchronous durability: one
with batching and the other without. We show the no-batch
variant only to illustrate that it is too slow and we do not use
this variant for comparison; throughout our evaluation, we
compare only against the optimized synchronous-durability

Workload Throughput (Kops/s) % of reads triggering
durability in CADsync async CAD

A 10.2 35.3 (3.5×) 33.7 (3.3 ×) 5.1 (of 50% reads)
B 23.1 39.4 (1.7×) 38.7 (1.7 ×) 0.83 (of 95% reads)
D 23.3 40.1 (1.7×) 36.9 (1.6 ×) 4.32 (of 95% reads)
F 11.8 35.7 (3.0×) 34.6 (2.9 ×) 4.07 (of 67% reads)

Table 2: CAD Performance. The table compares the throughput of
the three durability layers; the numbers in parenthesis in columns 3 and 4
are the factor of improvement over synchronous durability. The last column
shows the percentage of reads that trigger synchronous durability in CAD.

variant that employs batching.
We make the following three observations from the fig-

ure. First, synchronous durability with batching offers better
throughput than the no-batch variant; however, even with ag-
gressive batching across 100 clients, it cannot achieve the high
throughput levels of CAD. Second, writes incur significantly
lower latencies in CAD compared to synchronous durability;
for instance, at about 25 Kops/s (the maximum throughput
achieved by synchronous durability), CAD’s latency is 7×
lower. Finally, CAD’s throughput and latency characteristics
are very similar to that of asynchronous durability.

5.1.2 YCSB Macro-benchmarks
We now compare the performance across four YCSB work-
loads that have a mix of reads and writes. A, B, and F have a
zipfian access pattern (most operations access popular items);
D has a latest access pattern (most reads are to recently modi-
fied data). We run this experiment with 10 clients. We restrict
the reads only to the leader for all three systems as we are
evaluating only the durability layers. Table 2 shows the result.

Compared to synchronous durability with batching, CAD’s
performance is significantly better. CAD is about 1.6× and 3×
faster than synchronous durability for read-heavy workloads
(B and D) and write-heavy workloads (A and F), respectively.

CAD must ideally match the performance of asynchronous
durability. First, performance of writes in CAD should be
identical to asynchronous durability; making data durable on
reads should not affect writes. Figure 6(a) shows this aspect
for YCSB-A; results are similar for other workloads too.

Second, most read operations in CAD must experience la-
tencies similar to reads in asynchronous durability. However,
reads that access non-durable items may trigger synchronous
replication and persistence, causing a reduction in perfor-
mance. This effect can be seen in the read latency distribu-
tions shown in Figure 6(b) and 6(c). As shown, a fraction
of reads (depending upon the workload) trigger synchronous
durability and thus incur higher latencies. However, as shown
in Table 2, for the variety of workloads in YCSB, this frac-
tion is small. Therefore, the drop in performance for CAD

compared to asynchronous durability is little (2% – 8%).
A bad workload for CAD is one that predominantly reads

recently written items. Even for such a workload, the per-
centage of reads that actually trigger synchronous durability
is small due to prior reads that make state durable and peri-
odic background flushes in CAD. For example, with YCSB-D,

330 18th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100

 0 300 600 900 1200 1500

C
D

F

Latency (µs)

sync
async

cad

(a) YCSB-A (write latencies)

 0

 20

 40

 60

 80

 100

 0 400 800 1200

C
D

F

Latency (µs)

async
cad

close-up

 97

 100

 300 700 1100

0.8%

(b) YCSB-B (read latencies)

 0

 20

 40

 60

 80

 100

 0 400 800 1200

C
D

F

Latency (µs)

async
cad

close-up

 92

 96

 100

 300 700 1100

4.3%

(c) YCSB-D (read latencies)

Figure 6: Operation Latencies. (a) shows the latency distribution of writes in YCSB-A for the three durability layers. (b) and (c) show read latencies for
for async and CAD in YCSB-B and YCSB-D; the annotation within a close-up shows the percentage of reads that trigger synchronous durability in CAD.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

L
at

en
cy

 (
µ

s)

Throughput (Kops/sec)

strong-zk
weak-zk

orca

(a) Read-only Micro-benchmark

0

20

40

60
T

h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Workload
A B D F

1
.0

1
.0

1
.0

1
.0

3
.7

8 2
.0

9

2
.0

9

3
.4

4

3
.2

8 1
.9

7

1
.7

5

3
.0

4

strong-zk weak-zk orca

(i) Baseline: async replication & persistence

0

20

40

60

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Workload
A B D F

1
.0

1
.0

1
.0

1
.0

2
.9

1

2
.0

1

2
.0

1

2
.8

3

2
.6

6

1
.8

6

1
.6

7

2
.5

1

strong-zk weak-zk orca

(ii) Baseline: async persistence

(b) YCSB Macro-benchmark

Figure 7: ORCA Performance. (a) plots the average latency against throughput by varying the number of clients for a read-only workload for the three
systems. (b) compares the throughput of the three systems across different YCSB workloads. In (b)(i), weak-ZK and ORCA asynchronously replicate and persist;
in (b)(ii), they replicate synchronously but persist data lazily. The number on top of each bar shows the performance normalized to that of strong-ZK.

although 90% of reads access recently written items, only
4.32% of these requests trigger synchronous replication and
persistence; thus, CAD’s overhead compared to asynchronous
durability is little (only 8%).
CAD performance summary. CAD is significantly faster
than synchronous durability (that is optimized with batching)
while matching the performance of asynchronous durability
for many workloads. Even for workloads that mostly read
recently modified items, CAD’s overheads are small.

5.2 ORCA System Performance
We now evaluate the performance of ORCA against two ver-
sions of ZooKeeper: strong-ZK and weak-ZK. Strong-ZK
is ZooKeeper with synchronous durability (with batching),
and with reads restricted to the leader; strong-ZK provides
linearizability and thus cross-client monotonic reads. Weak-
ZK replicates and persists writes asynchronously, and allows
reads at all replicas; weak-ZK does not ensure cross-client
monotonic reads. ORCA uses the CAD durability layer and
reads can be served by all replicas in the active set; we config-
ure the active set to contain four replicas in our experiments.

5.2.1 Read-only Micro-benchmark
We first demonstrate the benefit of allowing reads at many
replicas using a read-only benchmark. Figure 7(a) plots the av-
erage latency against the read throughput for the three systems
when varying the number of clients from 1 to 100. Strong-ZK
restricts reads to the leader to provide strong guarantees, and
so its throughput saturates after a point; with many concurrent
clients, reads incur high latencies. Weak-ZK allows reads at

many replicas and so can support many concurrent clients,
leading to high throughput and low latency; however, the cost
is weaker guarantees as we show soon (§5.3). In contrast,
ORCA provides strong guarantees while allowing reads at
many replicas and thus achieving high throughput and low
latency. The throughput of weak-ZK and ORCA could scale
beyond 100 clients, but we do not show that in the graph.

5.2.2 YCSB Macro-benchmarks
We now compare the performance of ORCA against weak-
ZK and strong-ZK across different YCSB workloads with 10
clients. Figure 7(b) shows the results.

In Figure 7(b)(i), weak-ZK and ORCA carry out both repli-
cation and persistence lazily; whereas, in 7(b)(ii), weak-ZK
and ORCA replicate synchronously but persist to storage lazily,
i.e., they issue fsync-s in the background. As shown in Fig-
ure 7(b)(i), ORCA is notably faster than strong-ZK (3.04 –
3.28× for write-heavy workloads, and 1.75 – 1.97× for read-
heavy workloads). ORCA performs well due to two reasons.
First, it avoids the cost of synchronous replication and persis-
tence during writes. Second, it allows reads at many replicas,
enabling better read throughput. ORCA also closely approxi-
mates the performance of weak-ZK: ORCA is only about 11%
slower on an average. This reduction arises because reads that
access non-durable items must persist data on all the nodes
in the active set (in contrast to only a majority as done in
CAD); further, reads at the followers that access non-durable
data incur an additional round trip because they are redirected
to the leader. Similar results and trends can be seen for the
asynchronous-persistence baseline in Figure 7(b)(ii).

USENIX Association 18th USENIX Conference on File and Storage Technologies 331

 0

 25

 50

 75

 100

 20 40 60

(i
)

le
ad

er

 0

 25

 50

 75

 100

 20 40 60

(i
i)

 f
o

ll
o

w
er

Latency (ms)

14x

(a) Read-only

 20 40 60 80

14x

 20 40 60 80
Latency (ms)

2x

(b) Write-only

 20 40 60

reads queued behind
 writes in strong-zk

 20 40 60
Latency (ms)

(c) Read-heavy (YCSB-B)

 20 40 60 80

close-up

 95

 100

 20 40

3%

 20 40 60 80
Latency (ms)

(d) Write-heavy (YCSB-A)

Legend:

strong-zk

weak-zk

orca

Figure 8: Geo-distributed Latencies. (i) shows the distribution of latencies for operations originating near the leader; (ii) shows the same for requests
originating near the followers. The ping latency between a client and its nearest replica is <2ms; the same between the client and a replica over WAN is ∼35 ms.

5.2.3 Performance in Geo-Replicated Settings
We now analyze the performance of ORCA in a geo-replicated
setting by placing the replicas in three data centers (across the
US), with no data center having a majority of replicas. The
replicas across the data center are connected over WAN. We
run the experiments with 24 clients, with roughly five clients
near each replica. In weak-ZK and ORCA, reads are served at
the closest replica; in strong-ZK, reads go only to the leader.
In all three systems, writes are performed only at the leader.

Figure 8 shows the distribution of operation latencies across
different workloads. We differentiate two kinds of requests:
ones originating near the leader (the top row in the figure)
and ones originating near the followers (the bottom row). As
shown in Figure 8(a)(i), for a read-only workload, in all sys-
tems, reads originating near the leader are completed locally
and thus experience low latencies (∼2 ms). Requests originat-
ing near the followers, as shown in 8(a)(ii), incur one WAN
RTT (∼33 ms) to reach the leader in strong-ZK; in contrast,
weak-ZK and ORCA can serve such requests from the nearest
replica and thus incur 14× lower latencies.

For a write-only workload, in strong-ZK, writes originating
near the leader must incur one WAN RTT (to replicate to a
majority) and disk writes, in addition to the one local RTT
to reach the leader. In contrast, in weak-ZK and ORCA, such
updates can be satisfied after buffering them in the leader’s
memory, reducing latency by ∼14×. Writes originating near
the followers in strong-ZK incur two WAN RTTs (one to
reach the leader and other for majority replication) and disk
latencies; such requests, in contrast, can be completed in one
WAN RTT in weak-ZK and ORCA, reducing latency by ∼2×.

Figure 8(c) and 8(d) show the results for workloads with
a read-write mix. As shown, in strong-ZK, most operations
incur high latencies; even reads originating near the leader
sometimes experience high latencies because they are queued
behind slow synchronous writes as shown in 8(c)(i). In con-
trast, most requests in ORCA and weak-ZK can be completed
locally and thus experience low latencies, except for writes
originating near the followers that require one WAN RTT, an
inherent cost in leader-based systems (e.g., 50% of operations
in Figure 8(d)(ii)). Some requests in ORCA incur higher la-

r-
dr-
c

r-
ar-
a

12345 245 1245 145 1345 12345

w
-a

w
-b

final state

w
-d w
-e

crash 1,3 recover 1 crash 2 recover 3

r-
c

w
-c

recover 2

Figure 9: An Example Failure Sequence. The figure shows an
example sequence generated by our test framework.

tencies because they read recently modified data. However,
only a small percentage of requests experience such higher
latencies as shown in Figure 8(d)(i).
ORCA performance summary. By avoiding the cost of syn-
chronous replication and persistence during writes, and allow-
ing reads at many replicas, ORCA provides higher throughput
(1.8 – 3.3×) and lower latency than strong-ZK. In the geo-
distributed setting, ORCA significantly reduces latency (14×)
for most operations by allowing reads at nearby replicas and
hiding WAN latencies with asynchronous writes. ORCA also
approximates the performance of weak-ZK. However, as we
show next, ORCA does so while enabling strong consistency
guarantees that weak-ZK cannot offer.

5.3 ORCA Consistency
We now check if ORCA’s implementation correctly ensures
cross-client monotonic reads in the presence of failures and
also test the guarantees of weak-ZK and strong-ZK under
failures. To do so, we developed a framework that can drive
the cluster to different states by injecting crash and recovery
events. Figure 9 shows an example sequence. At first, all
nodes are alive; then nodes 1,3 crash; 1 recovers; 2 crashes; 3
recovers; finally, 2 recovers. In addition to crashing, we also
randomly choose a node and introduce delays to it; such a
lagging node may not have seen a few updates. For example,
1 2345→ 245→ 1 2 45→ 145→ 134 5→ 12345 shows how
nodes 1, 2, and 5 experience delays in a few states.

We insert new items at each stage and perform reads on the
non-delayed nodes. Then, we perform a read on the delayed
node, triggering the node to return old data, thus exposing non-
monotonic states. Every time we perform a read, we check
whether the returned result is at least as latest as the result of

332 18th USENIX Conference on File and Storage Technologies USENIX Association

System
Outcomes (%)

Correct
Non-

monotonic
weak-ZK 17 83
strong-ZK 100 0

sync-ZK-all 63 37
ORCA 100 0

(a) Async persistence

System
Outcomes (%)

Correct
Non-

monotonic
weak-ZK 4 96
strong-ZK 100 0

sync-ZK-all 63 37
ORCA 100 0

(b) Async replication & persistence

Table 3: ORCA Correctness. The tables show how ORCA provides
cross-client monotonic reads. In (a), weak-ZK and ORCA use asynchronous
persistence; in (b), both replication and persistence are asynchronous.

any previous read. Using the framework, we generated 500
random sequences similar to the one in Figure 9. We subject
weak-ZK, strong-ZK, and ORCA to the generated sequences.

Table 3(a) shows results when weak-ZK and ORCA syn-
chronously replicate but asynchronously persist. With weak-
ZK, non-monotonic reads arise in 83% of sequences due to
two reasons. First, read data is lost in many cases due to crash
failures, exposing non-monotonic reads. Second, delayed fol-
lowers obliviously serve old data after other nodes have served
newer state. Strong-ZK, by using synchronous durability and
restricting reads to the leader, avoids non-monotonic reads in
all cases. Note that while synchronous durability can avoid
non-monotonic reads caused due to data loss, it is not suffi-
cient to guarantee cross-client monotonic reads. Specifically,
as shown in the table, sync-ZK-all, a configuration that uses
synchronous durability but allows reads at all nodes, does not
prevent lagging followers from serving older data, exposing
non-monotonic states. In contrast to weak-ZK, ORCA does not
return non-monotonic states. In most cases, a read performed
on the non-delayed nodes persists the data on the delayed
follower too, returning up-to-date data from the delayed fol-
lower. In a few cases (about 13%), the leader removed the
follower from the active set (because the follower is experi-
encing delays). In such cases, the delayed follower rejects
the read (because it is not in the active set); however, retry-
ing after a while returns the latest data because the leader
adds the follower back to the active set. Similar results can be
seen in Table 3(b) when weak-ZK and ORCA asynchronously
replicate and persist writes.

5.4 Application Case Studies

We now show how the guarantees provided by ORCA can be
useful in two application scenarios. The first one is a location-
sharing application in which an user updates their location
(e.g., a → b → c) and another user tracks the location. To
provide meaningful semantics, the storage system must ensure
monotonic states for the reader; otherwise, the reader might
incorrectly see that the user went backwards. While systems
that provide session-level guarantees can ensure this property
within a session, they cannot do so across sessions (e.g., when
the reader closes the application and re-opens, or when the
reader disconnects and reconnects). Cross-client monotonic
reads, on the other hand, provides this guarantee irrespective
of sessions and failures.

Outcome(%) Location-tracking Retwis
weak-ZK strong-ZK ORCA weak-ZK strong-ZK ORCA

Inconsistent 13 0 0 8 0 0
Consistent (old) 39 0 7 20 0 12

Consistent (latest) 48 100 93 72 100 88

Table 4: Case Study: Location-tracking and Retwis. The table
shows how applications can see inconsistent (non-monotonic), and consistent
(old or latest) states with weak-ZK, strong-ZK, and ORCA.

We test this scenario by building a simple location-tracking
application. A set of users update their locations on the stor-
age system, while another set of users reads those locations.
Clients may connect to different servers over the lifetime of
the application. Table 4 shows result. As shown, weak-ZK ex-
poses inconsistent (non-monotonic) locations in 13% of reads
and consistent but old (stale) locations in 39% of reads. In con-
trast to weak-ZK, ORCA prevents non-monotonic locations,
providing better semantics. Further, it also reduces staleness
because of prior reads that make state durable. As expected,
strong-ZK never exposes non-monotonic or old locations.

The second application is similar to Retwis, an open-source
Twitter clone [46]. Users can either post tweets or read their
timeline (i.e., read tweets from users they follow). If the time-
line is not monotonic, then users may see some posts that may
disappear later from the timeline, providing confusing seman-
tics [14]. Cross-client monotonic reads avoids this problem,
providing stronger semantics for this application.

The workload in this application is read-dominated: most
requests retrieve the timeline, while a few requests post new
content. We thus use the following workload mix: 70% get-
timeline and 30% posts, leading to a total of 95% reads and
5% writes for the storage system. Results are similar to the
previous case study. Weak-ZK returns non-monotonic and
stale timelines in 8% and 20% of get-timeline operations, re-
spectively. ORCA completely avoids non-monotonic timelines
and reduces staleness, providing better semantics for clients.

6 Discussion
In this section, we discuss how CAD can be beneficial for
many current systems and deployments, and how it can be im-
plemented in other classes of systems (e.g., leaderless ones).
Application usage. As we discussed, most widely used sys-
tems lean towards performance and thus adopt asynchronous
durability. CAD’s primary goal is to improve the guarantees of
such systems. By using CAD, these systems and applications
atop them can realize stronger semantics without forgoing the
performance benefits of asynchrony. Further, little or no mod-
ifications in application code are needed to reap the benefits
that CAD offers.

A few applications such as configuration stores [19] cannot
tolerate any data loss and so require immediate synchronous
durability upon every write. While CAD may not be suitable
for this use case, a storage system that implements CAD can
support such applications. For example, in ORCA, applications

USENIX Association 18th USENIX Conference on File and Storage Technologies 333

can optionally request immediate durability by specifying a
flag in the write request (of course, at the cost of performance).
CAD for other classes of systems. While we apply CAD to
leader-based systems in this paper, the idea also applies to
other systems that establish no or only a causal order of up-
dates. However, a few changes compared to our implementa-
tion for leader-based systems may be required. First, given
that there is no single update order, the system may need
to maintain metadata for each item denoting whether it is
durable or not (instead of a single durable-index). Further,
when a non-durable item x is read, instead of making the en-
tire state durable, the system may make only updates to x or
ones causally related to x durable. We leave such extension
as an avenue for future work.

7 Related Work
Consistency models. Prior work has proposed an array of
consistency models and studied their guarantees, availability,
and performance [10, 19, 27, 29, 30, 48–50]. Our work, in
contrast, focuses on how consistency is affected by the un-
derlying durability model. Lee et al., identify and describe
the durability requirements to realize linearizability [25]. In
contrast, we explore how to design a durability primitive that
enables strong consistency with high performance.
Durability semantics. CAD’s durability semantic has a sim-
ilar flavor to that of a few local file systems. Xsyncfs [37]
delays writes to disk until the written data is externalized, re-
alizing high performance while providing strong guarantees.
Similarly, file-system developers have proposed the O_RSYNC
flag [22] that provides similar guarantees to CAD. Although
not implemented by many kernels [22], when specified in
open, this flag blocks read calls until the data being read
has been persisted to the disk. BarrierFS’ fbarrier [52] and
OptFS’ osync [13] provide delayed durability semantics sim-
ilar to CAD; however, unlike CAD, these file systems do not
guarantee that data read by applications will remain durable
after crashes. Most of the prior work resolves the tension
between durability and performance in a much simpler single-
node setting and within the file system. To the best of our
knowledge, our work is the first to do so in replicated systems
and in the presence of complex failures (e.g., partitions).
Improving distributed system performance. Several ap-
proaches to improving the performance of replicated systems
using speculation [19, 51], exploiting commutativity [35], and
network ordering [40] have been proposed. However, these
prior approaches do not focus on addressing the overheads
of durability, an important concern in storage systems. ORCA

avoids durability overheads by separating consistency from
freshness: reads can be stale but never out-of-order. Lazy-
Base [14] applies a similar idea to analytical processing sys-
tems in which reads access only older versions that have been
fully ingested and indexed. However, such an approach often
returns staler results than a weakly consistent system. In con-

trast, ORCA never returns staler data than a weakly consistent
system; further, ORCA reduces staleness compared to weak
systems by persisting data on many nodes upon reads (as
shown by our experiments). SAUCR reduces durability over-
heads in the common case but compromises on availability
for strong durability in rare situations (e.g., in the presence
of many simultaneous failures) [1]. ORCA makes the opposite
tradeoff: it provides better availability but could lose a few
recent updates upon failures.
Cross-client monotonic reads. To the best of our knowledge,
cross-client monotonic reads is provided only by lineariz-
ability [25, 38]. However, linearizable systems require syn-
chronous durability and most prevent reads at the followers.
ORCA offers this property without synchronous durability
while allowing reads at many nodes. Gaios [11] offers strong
consistency while allowing reads from many replicas. Al-
though Gaios distributes reads across replicas, requests are
still bounced through the leader and thus incur an additional
delay to reach the leader. The leader also requires one addi-
tional round trip to check if it is indeed the leader, increasing
latency further. In contrast, ORCA allows clients to directly
read from the nearest replica, enabling both load distribution
and low latency. ORCA avoids the extra round trip (to verify
leadership) by using leases. ORCA’s use of leases to provide
strong consistency is not new; for example, early work on
cache consistency in distributed file systems has done so [18].

8 Conclusion
In this paper, we show how the underlying durability model
of a distributed system has strong implications for its consis-
tency and performance. We present consistency-aware dura-
bility (CAD), a new approach to durability that enables both
strong consistency and high performance. We show how cross-
client monotonic reads, a strong consistency guarantee can
be realized efficiently upon CAD. While enabling stronger
consistency, CAD may not be suitable for a few applications
that cannot tolerate any data loss. However, it offers a new,
useful middle ground for many systems that currently use
asynchronous durability to realize stronger semantics without
compromising on performance.

Acknowledgments
We thank Yu Hua (our shepherd) and the anonymous review-
ers of FAST ’20 for their insightful comments and suggestions.
We thank the members of ADSL for their excellent feedback.
We also thank CloudLab [47] for providing a great environ-
ment to run our experiments. This material was supported by
funding from NSF grants CNS-1421033, CNS-1763810 and
CNS-1838733, and DOE grant DE-SC0014935. Aishwarya
Ganesan is supported by a Facebook fellowship. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and may not reflect
the views of NSF, DOE, or any other institutions.

334 18th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Ramnatthan Alagappan, Aishwarya Ganesan, Jing Liu,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.
Fault-Tolerance, Fast and Slow: Exploiting Failure Asyn-
chrony in Distributed Systems. In Proceedings of the
13th USENIX Conference on Operating Systems Design
and Implementation (OSDI ’18), Carlsbad, CA, October
2018.

[2] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Pa-
tel, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Corre-
lated Crash Vulnerabilities. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation (OSDI ’16), Savannah, GA, November
2016.

[3] Apache. ZooKeeper. https://zookeeper.apache.org/.

[4] Apache. ZooKeeper Configuration Parame-
ters. https://zookeeper.apache.org/doc/r3.1.

2/zookeeperAdmin.html#sc_configuration.

[5] Apache. ZooKeeper Guarantees, Properties,
and Definitions. https://zookeeper.apache.

org/doc/r3.2.2/zookeeperInternals.html#sc_

guaranteesPropertiesDefinitions.

[6] Apache. ZooKeeper Leader Activation.
https://zookeeper.apache.org/doc/r3.2.2/

zookeeperInternals.html#sc_leaderElection.

[7] Apache. ZooKeeper Overview. https://zookeeper.

apache.org/doc/r3.5.1-alpha/zookeeperOver.html.

[8] Apache ZooKeeper. ZooKeeper Consistency Guar-
antees. https://zookeeper.apache.org/doc/r3.3.3/

zookeeperProgrammers.html#ch_zkGuarantees.

[9] Apache ZooKeeper. ZooKeeper Program-
mer’s Guide - ZooKeeper Stat Structure.
https://zookeeper.apache.org/doc/r3.1.2/

zookeeperProgrammers.html#sc_zkStatStructure.

[10] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion
Stoica. Bolt-on Causal Consistency. In Proceedings of
the 2013 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’13), New York, NY,
June 2013.

[11] William J. Bolosky, Dexter Bradshaw, Randolph B. Haa-
gens, Norbert P. Kusters, and Peng Li. Paxos Replicated
State Machines As the Basis of a High-performance
Data Store. In Proceedings of the 8th Symposium on
Networked Systems Design and Implementation (NSDI
’11), Boston, MA, April 2011.

[12] Randal C Burns, Robert M Rees, and Darrell DE Long.
An Analytical Study of Opportunistic Lease Renewal.
In International Conference on Distributed Computing
Systems (ICDCS ’01), Phoenix, AZ, April 2001.

[13] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceedings
of the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’13), Farmington, PA, November 2013.

[14] James Cipar, Greg Ganger, Kimberly Keeton, Charles B
Morrey III, Craig AN Soules, and Alistair Veitch. Lazy-
Base: Trading Freshness for Performance in a Scalable
Database. In Proceedings of the EuroSys Conference
(EuroSys ’12), Bern, Switzerland, April 2012.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC ’10), In-
dianapolis, IA, June 2010.

[16] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart,
and Doug Terry. Epidemic Algorithms for Replicated
Database Maintenance. In Proceedings of the 26th ACM
Symposium on Principles of Distributed Computing,
Vancouver, British Columbia, Canada, August 1987.

[17] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji
Prabhakar, Mendel Rosenblum, and Amin Vahdat. Ex-
ploiting a Natural Network Effect for Scalable, Fine-
grained Clock Synchronization. In Proceedings of the
15th Symposium on Networked Systems Design and Im-
plementation (NSDI ’18), Renton, WA, April 2018.

[18] Cary G. Gray and David Cheriton. Leases: An Efficient
Fault-tolerant Mechanism for Distributed File Cache
Consistency. In Proceedings of the 12th ACM Sym-
posium on Operating Systems Principles (SOSP ’89),
Litchfield Park, Arizona, December 1989.

[19] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian
Seredinschi. Incremental Consistency Guarantees for
Replicated Objects. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI ’16), Savannah, GA, November 2016.

[20] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst., 12(3), July 1990.

[21] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free Coordination for
Internet-scale Systems. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’10), Boston,
MA, June 2010.

USENIX Association 18th USENIX Conference on File and Storage Technologies 335

https://zookeeper.apache.org/
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html#sc_configuration
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html#sc_configuration
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_leaderElection
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_leaderElection
https://zookeeper.apache.org/doc/r3.5.1-alpha/zookeeperOver.html
https://zookeeper.apache.org/doc/r3.5.1-alpha/zookeeperOver.html
https://zookeeper.apache.org/doc/r3.3.3/zookeeperProgrammers.html#ch_zkGuarantees
https://zookeeper.apache.org/doc/r3.3.3/zookeeperProgrammers.html#ch_zkGuarantees
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_zkStatStructure
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_zkStatStructure

[22] Jonathan Corbet. O_*SYNC. https://lwn.net/

Articles/350219/.

[23] Karthik Ranganathan. Low Latency Reads in
Geo-Distributed SQL with Raft Leader Leases.
https://blog.yugabyte.com/low-latency-reads-in-

geo-distributed-sql-with-raft-leader-leases/.

[24] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[25] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushita, and John Ousterhout. Implementing Lineariz-
ability at Large Scale and Low Latency. In Proceedings
of the 25th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’15), Monterey, California, October 2015.

[26] Barbara Liskov and James Cowling. Viewstamped
Replication Revisited. Technical Report MIT-CSAIL-
TR-2012-021, MIT CSAIL, 2012.

[27] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky,
and David G Andersen. Don’t Settle for Eventual: Scal-
able Causal Consistency for Wide-Area Storage with
COPS. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11), Cascais,
Portugal, October 2011.

[28] LogCabin. LogCabin. https://github.com/logcabin/
logcabin.

[29] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux,
Jim Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Ku-
mar, and Wyatt Lloyd. Existential Consistency: Mea-
suring and Understanding Consistency at Facebook. In
Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP ’15), Monterey, California,
October 2015.

[30] Syed Akbar Mehdi, Cody Littley, Natacha Crooks,
Lorenzo Alvisi, Nathan Bronson, and Wyatt Lloyd. I
Can’t Believe It’s Not Causal! Scalable Causal Consis-
tency with No Slowdown Cascades. In Proceedings of
the 14th Symposium on Networked Systems Design and
Implementation (NSDI ’17), Boston, MA, March 2017.

[31] MongoDB. MongoDB Read Preference. https://docs.
mongodb.com/manual/core/read-preference/.

[32] MongoDB. MongoDB Replication. https://docs.

mongodb.org/manual/replication/.

[33] MongoDB. Non-Blocking Secondary Reads.
https://www.mongodb.com/blog/post/mongodb-40-

nonblocking-secondary-reads.

[34] MongoDB. Read Concern Linearizable.
https://docs.mongodb.com/manual/reference/read-

concern-linearizable/.

[35] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is More Consensus in Egalitarian Parlia-
ments. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP ’13), Nemacolin
Woodlands Resort, Farmington, Pennsylvania, October
2013.

[36] Seyed Hossein Mortazavi, Bharath Balasubramanian,
Eyal de Lara, and Shankaranarayanan Puzhavakath
Narayanan. Toward Session Consistency for the Edge.
In USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18), Boston, MA, July 2018.

[37] Edmund B Nightingale, Kaushik Veeraraghavan, Pe-
ter M Chen, and Jason Flinn. Rethink the sync. In
Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’06), Seattle,
WA, November 2006.

[38] Diego Ongaro. Consensus: Bridging Theory and Prac-
tice. PhD thesis, Stanford University, 2014.

[39] Diego Ongaro and John Ousterhout. In Search of
an Understandable Consensus Algorithm. In 2014
USENIX Annual Technical Conference (USENIX ATC
14), Philadelphia, PA, June 2014.

[40] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr
Sharma, and Arvind Krishnamurthy. Designing Dis-
tributed Systems Using Approximate Synchrony in Data
Center Networks. In Proceedings of the 12th Sympo-
sium on Networked Systems Design and Implementation
(NSDI ’15), Oakland, CA, March 2015.

[41] David Ratner, Peter Reiher, Gerald J Popek, and Geof-
frey H Kuenning. Replication Requirements in Mo-
bile Environments. Mobile Networks and Applications,
6(6):525–533, 2001.

[42] Redis. Redis. http://redis.io/.

[43] Redis. Redis Persistence. https://redis.io/topics/

persistence.

[44] Redis. Redis Replication. http://redis.io/topics/

replication.

[45] Redis. Scaling Reads. https://redislabs.com/ebook/
part-3-next-steps/chapter-10-scaling-redis/10-

1-scaling-reads/.

[46] Retwis. Retwis. https://github.com/antirez/retwis.

336 18th USENIX Conference on File and Storage Technologies USENIX Association

https://lwn.net/Articles/350219/
https://lwn.net/Articles/350219/
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://github.com/logcabin/logcabin
https://github.com/logcabin/logcabin
https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.org/manual/replication/
https://docs.mongodb.org/manual/replication/
https://www.mongodb.com/blog/post/mongodb-40-nonblocking-secondary-reads
https://www.mongodb.com/blog/post/mongodb-40-nonblocking-secondary-reads
https://docs.mongodb.com/manual/reference/read-concern-linearizable/
https://docs.mongodb.com/manual/reference/read-concern-linearizable/
http://redis.io/
https://redis.io/topics/persistence
https://redis.io/topics/persistence
http://redis.io/topics/replication
http://redis.io/topics/replication
https://redislabs.com/ebook/part-3-next-steps/chapter-10-scaling-redis/10-1-scaling-reads/
https://redislabs.com/ebook/part-3-next-steps/chapter-10-scaling-redis/10-1-scaling-reads/
https://redislabs.com/ebook/part-3-next-steps/chapter-10-scaling-redis/10-1-scaling-reads/
https://github.com/antirez/retwis

[47] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. USENIX ;login:,
39(6), 2014.

[48] Doug Terry. Replicated Data Consistency Explained
Through Baseball. Communications of the ACM,
56(12):82–89, 2013.

[49] Douglas B. Terry, Alan J. Demers, Karin Petersen,
Mike J. Spreitzer, Marvin M. Theimer, and Brent B.
Welch. Session Guarantees for Weakly Consistent Repli-
cated Data. In Proceedings of the Third International
Conference on on Parallel and Distributed Information
Systems (PDIS ’94), Autin, TX, September 1994.

[50] Paolo Viotti and Marko Vukolić. Consistency in non-
transactional distributed storage systems. ACM Comput.

Surv., 49(1):19:1–19:34, June 2016.

[51] Benjamin Wester, James Cowling, Edmund B Nightin-
gale, Peter M Chen, Jason Flinn, and Barbara Liskov.
Tolerating Latency in Replicated State Machines
through Client Speculation. In Proceedings of the 6th
Symposium on Networked Systems Design and Imple-
mentation (NSDI ’09), Boston, MA, April 2009.

[52] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-Enabled IO Stack for Flash Storage. In
Proceedings of the 16th USENIX Conference on File
and Storage Technologies (FAST ’18), Oakland, CA,

February 2018.

USENIX Association 18th USENIX Conference on File and Storage Technologies 337

	fast20-wang_li
	Introduction
	Background
	CRUSH Overview
	The Main Drawback of CRUSH

	MapX Design
	Migration-Free Expansion
	Migration Control
	Implementing MapX in Ceph

	Evaluation
	I/O Performance during Expansions
	Computational Overhead
	I/O Performance during Shrinking
	Layer Merging

	Related Work
	CRUSH in Ceph
	Load Balancing & Migration Overhead
	Storage Systems

	Conclusion

	fast20-chen_jian
	Introduction
	Design Challenges
	Study Methodology
	Results and Findings
	Implications

	Our Solution
	True and False Conflicts
	Explicit and Implicit Operations
	Operation Inference (OI)
	Operational Transformation (OT)
	Merging Conflicts of Multiple Versions
	Maintenance of Historic Versions

	Implementation and Evaluation
	Implementation
	Experiment Results

	Related Work
	Conclusion

	fast20-cao_wei
	Introduction
	Background and Motivation
	POLARDB: Basic Architecture
	POLARDB: Table Scan Pushdown
	Computational Storage Drive

	Design and Implementation
	Support Table Scan Pushdown Across the Entire Software Stack
	Enhancement to POLARDB Storage Engine
	Enhancement to PolarFS
	Enhancement to Computational Storage Driver

	Reduce Hardware Implementation Cost
	Hardware-Friendly Data Block Format
	FPGA Implementation

	Evaluation
	Experimental Setup
	Table Scan Performance Evaluation
	System-level Evaluation
	Summary

	Related Work
	Conclusions

	fast20-cao_zhen
	fast20-he
	fast20-zhan
	Introduction
	BetrFS Background
	Cloning in BetrFS 0.5
	Lifted B-DAGs
	Creating clones with GOTO messages
	Flushes, splits, and merges
	Putting it all together
	Asymptotic Analysis

	Implementation and Optimizations
	Evaluation
	Cloning Performance
	General Filesystem Performance
	Cloning Containers

	Related work
	Conclusion

	fast20-patel_uncovering
	Introduction
	Background and Methodology
	Selecting I/O-Intensive Files
	File Classification
	Run Classification

	Result Discussion and Analysis
	File Reuse Characteristics
	Characteristics of I/O Data Accesses

	Scope of the Findings
	Related Work
	Conclusion

	fast20-patel_gift
	fast20-zhang_jie
	Introduction
	Background
	High Performance NVMe SSDs
	Software Support

	Challenges to Exceeding 1MIOPS
	Many-to-Many Threading Firmware
	Overview
	Queue-gather Stage
	Trans-apply Stage
	Flash-scatter Stage

	Optimizing DeepFlash
	Parallel Processing for NVMe Queue
	Index Lock Optimization
	Non-blocking Cache

	Evaluation
	Performance Analysis
	CPU, Energy and Power Analyses
	Performance Analysis of Optimization

	Related Work and Discussion
	Conclusion
	Acknowledgement

	fast20-maneas
	Introduction
	Background
	Description of the Systems
	Description of the Data

	Summary Statistics
	Drive characteristics and usage
	Health metrics
	High-level observations

	Reasons for replacements
	Factors impacting replacement rates
	Usage and Age
	Flash and drive type
	Capacity
	Lithography
	Firmware Version
	All Flash FAS (AFF) Systems
	Device Role
	Over-provisioning
	Number of bad blocks

	Correlations between drive failures
	Related Work
	Lessons learned
	Acknowledgements

	fast20-lu
	Introduction
	Background and Methodology
	Definition of Disk Failure
	Disk SMART Data
	Performance Data
	Disk-level Performance Metrics
	Server-level Performance Metrics

	Disk Spatial Location Data
	Other Methodological Considerations

	Selection of SMART and Performance Attributes
	How does J-Index (JIC) work?

	ML Problem Formulation and Solution
	Results and Analysis
	Related Work
	Conclusion

	fast20-yang
	Introduction
	Background and Methodology
	Optane Memory
	Intel's Optane DIMM
	Operation Modes
	ISA Support

	System Description
	Experimental Configurations

	Performance Characterization
	LATTester
	Typical Latency
	Tail Latency
	Bandwidth

	Comparison to Emulation
	Microbenchmarks in Emulation
	Case Study: Optimizing RocksDB

	Best Practices for Optane DIMMs
	Avoid small random accesses
	Case Study: RocksDB
	Case Study: The NOVA filesystem

	Use non-temporal stores for large writes
	Case Study: Micro-buffering for PMDK

	Limit the number of concurrent threads accessing a Optane DIMM
	Case Study: Multi-NVDIMM NOVA

	Avoid mixed or multi-threaded accesses to remote NUMA nodes
	Case Study: PMemKV

	Discussion
	Related Work
	Conclusion

	fast20-kwon
	Introduction
	Divided SSD: Hardware Level Design
	I/O Tacker: System Level Support
	Evaluation
	Eliminating Noisy Neighbors
	Device-level Analysis
	I/O Tacker Performance Impact

	Related Work
	Discussion
	Conclusion

	fast20-nachman
	Introduction
	Background and Related Work
	Deduplication
	Data migration
	Existing data migration approaches
	Integer linear programming (ILP)

	GoSeed ILP optimization
	GoSeed Acceleration Methods
	Solver timeout
	Fingerprint sampling
	Container-based aggregation

	Evaluation
	Experimental setup
	Results

	Discussion
	Conclusions

	fast20-cao_zhichao
	Introduction
	Background
	Key-Value Stores and RocksDB
	Background of Three RocksDB Use Cases

	Methodology and Tool Set
	General Statistics of Workloads
	Query Composition
	KV-Pair Hotness Distribution
	QPS (Queries Per Second)

	Key and Value Sizes
	Key-Space and Temporal Patterns
	Modeling and Benchmarking
	How Good Are the Existing Benchmarks?
	Key-Range Based Modeling
	Comparison of Benchmarking Results
	Verification of Benchmarking Statistics

	Related Work
	Conclusion and Future Work
	Appendix
	Trace Replay
	Trace Analyzing
	New benchmarks

	fast20-zhang_teng
	Introduction
	Background and Motivation
	LSM-tree KV-Store
	Motivations
	FPGA offloading

	Design and Implementation
	Overview
	Driver
	Managing Compaction Tasks
	Instruction and Data Paths

	Compaction Unit
	Analytical Model for CU

	EVALUATION
	Experimental Setup
	Evaluating the FPGA-based Compaction
	Evaluating a KV Store with FPGA-offloading of Compactions
	Workloads
	The Impacts of Compactions
	The Impacts of Read Ratio
	Macro Benchmarks

	Related Work
	Software Optimizations of Compactions
	Hardware Accelerations in Databases

	Conclusion

	fast20-chen_jiqiang
	Introduction
	Background & Motivation
	Hash Indexes and Hotspot Issues
	Potential Benefits of Hotspot-Awareness
	Challenges and Design Principles

	Design of HotRing
	Ordered-Ring Hash Index
	Hotspot Shift Identification
	Random Movement Strategy
	Statistical Sampling Strategy
	Hotspot Inheritance

	Concurrent Operations
	Lock-free Rehash

	Evaluation
	Experimental Setup
	Comparison to Existing Systems
	Investigation of Detailed Designs

	Related Work
	Conclusion and Future Work

	fast20-wang_shucheng
	fast20-wang_ao
	Introduction
	Background and Motivation
	Large Object Caching
	Building a Memory Cache on Cloud Functions: Opportunities and Challenges

	InfiniCache Design
	Client Library
	Proxy
	Lambda Function Runtime
	Reliable Lambda Connections

	Data Availability and Fault Tolerance
	AWS Lambda Properties
	Maximizing Data Availability
	Data Availability and Cost Analysis

	Evaluation
	Microbenchmark Performance
	Production Workload

	Discussion
	Related Work
	Conclusion

	fast20-kumar
	Introduction
	Background
	IO Characteristics of DLT
	Design of Quiver
	System Architecture
	Security model
	Content-addressed Cache
	Quiver Server
	Cache Manager
	Quiver Client
	Substitutable hits
	Failure recovery
	Locality of cache servers

	Cache Management
	Co-ordinated eviction
	Co-operative cache miss handling
	Benefit-aware Cache placement
	Cache sharing scenarios

	Implementation
	Evaluation
	Experimental setup
	Accuracy with substitutability
	Improvement in job throughput
	Interaction with I/O pipelining
	Cache-constrained scenario
	Benefit-aware caching

	Related Work
	Conclusion

	fast20-wang_zizhong
	Introduction
	Background
	Raft
	Erasure Coding
	RS-Paxos

	CRaft, a Reform Version of Raft that Supports Erasure Coding
	Coded-fragment Replication
	Complete-entry Replication
	Prediction
	Newly-elected Leader
	Performance

	Safety Argument
	Experiments and Evaluation
	Key-value Store Implementation
	Setup
	Evaluation
	Latency
	Throughput
	Network Cost
	Liveness
	Recovery Read

	Related Work
	Conclusions

	fast20-pitchumani
	Introduction
	Key-Value SSDs
	KVMD Design
	Hybrid-Mode Operations
	Reliability Mechanisms
	Hashing
	Single Object Replication
	Single Object Erasure Coding - Splitting
	Multi-Object Erasure Coding - Packing

	Evaluation
	Block Device RAID Performance
	KV SSD KVMD Performance
	Fixed Value Sizes
	Mixed Value Sizes

	Rebuild Performance

	Analysis
	Reliability Analysis
	RAID vs KVMD Comparison

	Related Work
	Limitations & Future Directions
	Conclusion

	fast20-ganesan
	Introduction
	Motivation
	Strong Consistency atop Synchronous Durability
	Weak Consistency atop Asynchronous Durability

	Strong, Efficient Consistency with CAD
	ORCA Design
	Leader-based Majority Systems
	Failure Model and Guarantees
	CAD Durability Layer
	Updates
	State Durability Guarantee
	Handling Reads: Durability Check
	Making the Data Durable

	Cross-Client Monotonic Reads
	Scalable Reads with Active Set
	Membership using Leases

	Correctness
	Implementation

	Evaluation
	CAD Performance
	Write-only Micro-benchmark
	YCSB Macro-benchmarks

	ORCA System Performance
	Read-only Micro-benchmark
	YCSB Macro-benchmarks
	Performance in Geo-Replicated Settings

	ORCA Consistency
	Application Case Studies

	Discussion
	Related Work
	Conclusion

	Blank Page
	Blank Page
	Blank Page

