
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

The Measured Access Characteristics of
World-Wide-Web Client Proxy Caches

Bradley M. Duska, David Marwood, and Michael J. Feeley
University of British Columbia



The Measured Access Characteristics of
World-Wide-Web Client Proxy Caches

Bradley M. Duska, David Marwood, and Michael J. Feeley
Department of Computer Science
University of British Columbia

fbduska,marwood,feeleyg@cs.ubc.ca

Abstract

The growing popularity of the World Wide Web is plac-
ing tremendous demands on the Internet. A key strategy
for scaling the Internet to meet these increasing demands
is to cache data near clients and thus improve access la-
tency and reduce network and server load. Unfortunately,
research in this area has been hampered by a poor un-
derstanding of the locality and sharing characteristics of
Web-client accesses. The recent popularity of Web proxy
servers provides a unique opportunity to improve this un-
derstanding, because a small number of proxy servers see
accesses from thousands of clients.

This paper presents an analysis of access traces col-
lected from seven proxy servers deployed in various lo-
cations throughout the Internet. The traces record a to-
tal of 47.4 million requests made by 23,700 clients over
a twenty-one day period. We use a combination of static
analysis and trace-driven cache simulation to character-
ize the locality and sharing properties of these accesses.

Our analysis shows that a 2- to 10-GB second-level
cache yields hit rates between 24% and 45% with 85% of
these hits due to sharing among different clients. Caches
with more clients exhibit more sharing and thus higher hit
rates. Between 2% and 7% of accesses are consistency
misses to unmodified objects, using the Squid and CERN
proxy cache coherence protocols. Sharing is bimodal. Re-
quests for shared objects are divided evenly between ob-
jects that are narrowly shared and those that are shared by
many clients; widely shared objects also tend to be shared
by clients from unrelated traces.

1 Introduction

The growing popularity of the World Wide Web is placing
tremendous demands on the Internet and is increasing the
importance that the Internet function effectively.

The scale problems facing the Web can be addressed on

three fronts. The first is to scale Web servers to handle
the increasing demands being placed on them. The sec-
ond is to ensure that the Internet itself will scale by con-
tinuing to increase its capacity and by deploying new net-
work technologies. The third is to focus on the clients:
Web browsers and a hierarchy of proxy servers to which
they may be connected.

Client-side solutions such as caching and prefetching
are attractive because they improve the performance of
both client and server. Caching, in particular, aids scaling
by reducing the amount of data requested from servers and
transferred through the network.

The potential benefit of client-side caching has drawn
considerable research and practical attention. A general
framework is emerging that organizes client-side caches
as a hierarchy. At the bottom are Web browser caches.
Browsers can be configured to direct requests to a nearby
proxy server, which then provides the second level of
caching; some proxy caches are themselves connected to
a third-level cache. The highest-level cache is typically a
cooperative cache that connects lower-level caches to each
other so that a miss in one cache can be satisfied by one
of its siblings. This cooperation can be achieved either by
multicasting misses to siblings [7, 5, 17] or by maintain-
ing a shared directory of cache contents [9, 18]. Caching
can also be provided by geographically distributed caches
to which servers push popular data [12].

The promise of client-side caching has been demon-
strated by several research prototypes and by some large-
scale experiments in higher-level Web caching [5]. To
date, however, researchers have had little data about client
access patterns on which to base their designs and with
which to assess them. There are two main reasons for
this lack of workload information. First, the nature of
Web clients continues to change rapidly and thus workload
characterization is a moving target. Second, until recently,
there has been little machinery in place for collecting data
from a significant sample of Web clients.



Workload characterization is important because caching
and prefetching are techniques that exploit specific access
properties to improve performance: temporal locality and
sharing in the case of caching, and spatial locality in the
case of prefetching. Filesystem research, for example, has
relied heavily on studies of Unix filesystem workloads that
show that files tend to be small, accessed sequentially from
beginning to end, read more than written, and rarely shared
concurrently [3, 1, 19].

1.1 Key Issues for Cache Design

The lack of Web-client workload information has left a
number of crucial cache-design issues poorly understood.
The analysis presented in this paper addresses the follow-
ing four sets of design issues.

Cache Size and Hit Rate First, what hit rate can we
expect for a given cache configuration; that is, how does
hit rate depend on the number of clients connected to the
cache and how does the number of clients effect cache
size?

Configuration of Cache Hierarchy Does a cache hi-
erarchy make sense and if so, how many clients should
be connected to each level, how many levels should there
be, and how should higher-levels of the hierarchy be con-
nected to each other?

Cache Coherence Is the coherence protocol currently
used by most proxy caches (i.e., Squid [5] and CERN [14])
causing unnecessary cache misses?

Sharing How much sharing is there; are all Web ob-
jects shared equally; does sharing increase with the num-
ber of clients; and how does sharing within a group of
clients (e.g., a company or a university) compare to shar-
ing among unrelated clients?

1.2 Summary of Our Results

This paper presents our analysis of the client request
stream collected from a sample of second- and third-level
proxy caches located throughout the Internet. We col-
lected twenty-one days of access traces from each proxy,
totaling 23,700 clients and 47.4 million accesses. The fol-
lowing list summarizes our findings, discussed in detail in
Section 3.

� Second-level cache hit rates vary from 24% to 45%;
a higher request rate yields a higher hit rate. The

NLANR third-level cache has a lower hit rate of 19%
due to the expected filtering of locality and sharing
from the request stream by lower-level caches.

� Ideal cache sizes ranged from 2 to 10 GBs, depend-
ing on client population size. Roughly 1-GB of cache
is needed for each 70,000 to 100,000 requests/day
(35,000 requests/day for small populations). A trace
whose client population is artificially reduced, how-
ever, requires a somewhat larger cache.

� Using the Squid and CERN cache coherence proto-
col, 2% to 7% of requests are consistency misses to
up-to-date cached objects, requests that would other-
wise be hits.

� 85% of cache hits are due to sharing between clients.
Sharing hit rates range from 20% to 38%; a higher re-
quest rate yields more sharing.

� Requests for shared objects account for up to 71% of
all requests; but, only 15% to 24% of requested ob-
jects are shared (only half of these requests are hits
due to first-time requests and consistency misses).

� Sharing is bimodal. Requests for shared objects are
divided evenly between objects that are narrowly
shared and those that are shared by many clients;
widely shared objects also tend to be shared by clients
from unrelated traces.

2 Methodology

This section details the methodology of our study. We be-
gin with a discussion of client-side Web caching and is-
sues for collecting access traces. We then provide a de-
tailed description of the trace data we collected. Finally,
we describe the trace-driven cache simulator we built to
evaluate this data and we discuss its validation.

2.1 Collecting Access Traces from Proxy
Servers

The main reason that little is known about Web client ac-
cess patterns is that collecting information about these ac-
cesses is difficult. While it is easy to collect access data
from a Web server, the accesses to a particular server shed
little light on overall client access patterns. Web browsers,
on the other hand, are not a practical source of data because
of the logistical complexities of collecting data from a suf-
ficiently large number of users. A feasible alternative is
to collect data from Web proxy servers to which browsers



Trace Collection Period Number of Client ID Requests Maximum Simulated
Clients Preserved (Millions) Cache Size (GBs)

HAN Jun 17 – Jul 7, 1997 1858 full period 5.28 14
KOR Apr 20 – May 10, 1997 2247 full period 3.19 8
DEC Aug 29 – Sep 18, 1996 16,663 full period 21.47 unlimited

GMCC Jun 4 – Jun 26, 1997 953 full period 1.36 4
AU Jun 4 – Jun 24, 1997 310 one day 1.86 6
UU May 1 – May 21, 1997 990 full period 1.59 4

NLANR Jun 3 – Jun 27, 1997 711 one day 12.65 8

Table 1: Summary of proxy-server access traces.

can optionally be connected. It is only very recently, how-
ever, that Web proxies have been deployed widely enough
to provide a sufficiently large and diverse sample of client
accesses.

Web proxies are found in most corporate organizations
that use a firewall to protect their internal network from the
vagaries of the Internet. To access the Web from within
such a protected domain, Web browsers are configured
to direct all outgoing Web-data requests to a designated
proxy machine. The proxy forwards requests between the
protected corporate network and the outside Internet.

A proxy can also act as a second-level Web cache (the
Web browser being the first-level). In this configura-
tion, proxies are becoming popular in unprotected en-
vironments such as universities due to caching benefits
alone.

It is typically a simple matter to configure a proxy
to record all object requests it receives from its client
browsers. Access traces can also be collected from third-
level proxies, whose clients are collections of second-level
proxy servers. Third-level proxies were first suggested by
the Harvest project [7].

Finally, we must ensure that any use of Web client ac-
cess traces does not compromise user privacy. A client
request includes the requesting host’s IP address, which
may identify the user, and the requested object’s URL. Pri-
vacy concerns prohibit exposing information that identi-
fies users with the objects they access. Our solution was
to pre-process all traces used in our study to disguise the
requesting host’s IP address using a one-way function that
permits us to compare two disguised addresses for equal-
ity while protecting user privacy.

2.2 Web Data Access Traces

We have collected access traces from the following seven
proxy servers distributed throughout the Internet. Some
of these traces are publicly available and others have been

provided to us directly.

� The University of Hannover, Germany (HAN)

� The Nation Wide Caching Project of Korea (KOR)

� Digital Equipment Corporation (DEC)

� Grant MacEwan Community College, Alberta,
Canada (GMCC)

� A major American University that has chosen to re-
main anonymous (AU)

� Utrecht University, the Netherlands (UU)

� The National Laboratory for Applied Network Re-
search (NLANR)

Table 1 summarizes the traces, listing: the data collec-
tion period, the number of client hosts making requests,
whether a client’s disguise was preserved across days,
the total number of requests, and the maximum simulated
cache size. Every trace contains twenty-one days of Web
access; some traces, however, have slightly longer collec-
tion periods because data was not available for all days in
the period.

All of these organizations are using the Squid proxy
server (and cache) [5], a derivative of the Harvest research
system [7]. The DEC trace was collected by Digital using
a specially instrumented cacheless version of Squid; the
trace is available via anonymous ftp [21]. NLANR makes
several traces available [8]; we selected the Silicon Val-
ley trace, which includes caches from the San Francisco
Bay area and from overseas. The KOR traces are from the
gateway that connects Korea to the Internet. We used a
modified version of this trace that excludes a large third-
level cache, because second-level cache characteristics are
more interesting to our study. The remaining traces are
from proxies serving the general computing community of
various colleges and universities.



The traces capture all Web user requests except those
satisfied by browser caches or directed to the interal net-
work thus bypassing the proxy. Each trace entry includes
the request time, the disguised client IP address, and the
requested object’s URL and size. All traces but DEC also
include the cache action taken by the cache (e.g., hit, miss,
etc.). DEC, instead, includes the object’s last-modified
time as reported by the Web server that holds the object.

Unfortunately, the technique used to disguise client
identity in the AU and NLANR traces does not preserve a
unique disguise for a client for the entire collection period.
Instead, in these two traces clients are assigned a new dis-
guise every day. As a result, a client that makes requests on
two different days appears to our simulator as if it were two
different clients. We have taken a conservative approach
to dealing with this limitation. The client count for AU and
NLANR in Table 1 lists the maximum number of clients
making requests on any given day, an underestimate of the
actual number for the entire trace. In addition, we exclude
AU and NLANR from our analysis of sharing presented in
Section 3.4.

2.3 Simulator

To conduct our analysis, we built a trace-driven proxy
cache simulator, called SPA. SPA faithfully simulates the
collected traces at a cache size and request rate different
from the original proxy.

To simulate a different request rate, a trace is first
reduced by extracting all of the requests made by a
randomly-chosen subset of clients, such that the remain-
ing clients produce the desired request rate.

To simulate a different cache size from the original
proxy, SPA follows a simplified version of the replace-
ment and coherence policies used by the Squid proxy-
cache version 1.1 [5] and appropriately configured ver-
sions of CERN [14]. The replacement policy is a variant
of LRU.

The cache coherence protocol assigns a time to live
based on either a configurable portion of the last-modified
time or a default if no value is supplied. Expired objects
remain cached. When an expired object is requested, the
proxy sends an if-modified-since request to the server and
receives a new copy from the server only if the object was
actually modified. The results of certain requests such as
dynamic scripts (e.g., cgi) and Web query forms are never
cached.

For all but the DEC trace, SPA infers the time to
live from the cache consistency operations of the original
proxy. This inference is accurate only up to the cache size
of the original proxy, because a larger SPA cache would

hold objects not cached by the orginal proxy and thus the
trace would contain no consistency information for these
objects. The Maximum Simulated Cache Size in Table 1
shows the maximum size we simulated, a size not larger
than the original proxy cache size.

Unlike the other traces, DEC includes the expiry and
last-modified times returned by the server, which can be
used directly to calculate time to live (i.e., no inference is
necessary). Where these times are not supplied in the DEC
trace, SPA sets the last-modified time and time to live ac-
cording to the default Squid cache coherence protocol.

We validated SPA by simulating each trace with a cache
size equal to the proxy’s actual size. We then compared
the simulated and actual hit rates and byte hit rates. DEC
was excluded, because its proxy did not include a cache. In
every case, the simulated hit rates were slightly lower than
the actual hit rates; the average error was 3% (i.e., a hit rate
difference of around 1.5%) and all errors were less than
4.5%. We believe the reason for the slight discrepancy is
that the actual proxy caches were slightly larger than what
we simulated.

We validated our trace-reduction scheme in two ways.
First, we compared each reduction’s per-client request
rate to confirm that reducing a trace did not significantly
change per-client request rate; average variance was 5%
and maximum was 16%. Second, we measured the hit-
rate variance among different versions of the same reduc-
tion, by computing 30 versions of the 5% GMCC reduc-
tion (i.e., each had a request rate that was 5% of the orig-
inal). We simulated the 30 reduced traces and measured
standard deviations of 1.9% hit rate and of 3.6% byte hit
rate, even though each of the 30 reductions included a dif-
ferent randomly-chosen subset of the original client pop-
ulation.

3 Analysis

This section summarizes our analysis in five parts. First,
we examine the relationship between cache size and hit
rate. Second, we explain how increasing request rate in-
creases hit rate. Third, we examine the impact of cache
coherence on hit rate. Fourth, we provide a detailed anal-
ysis of Web-client sharing. Finally, we discuss how these
workload characterizations impact cache design.

3.1 Cache Size and Hit Rate

The first question we address is: what is the hit rate and
how does cache size impact hit rate?

Figure 1 shows each trace’s simulated hit rate as cache



0

10

20

30

40

50

0 2 4 6 8 10

Cache Size (GB)

H
it 

R
at

e 
(%

)

HAN
KOR
DEC
GMCC
AU
UU
NLANR

Figure 1: Cache hit rate for each trace as a function of
cache size.

size is varied; hit rate is the ratio of cache hits to total re-
quests. A trace’s line on the graph stops at its maximum
simulated cache size.

Figure 2 shows the byte hit rate for the same simula-
tions; byte hit rate is the ratio of the total number of bytes
supplied by the cache to the total number of bytes re-
quested. The two graphs have the same shape but hit rates
are roughly one third larger than byte hit rates, because
smaller objects tend to have a slightly higher hit rate than
larger objects.

Figure 1 shows that the hit rate of the NLANR third-
level cache is considerably lower than that of the second-
level caches. This lower hit rate is expected and is a com-
mon feature of higher-level disk caches [23]. The lower-
levels of a cache hierarchy act as a filter, removing tem-
poral locality and lower-level sharing from the reference
stream. The resulting references received by the higher-
level cache consist only of the lower-level caches’ capac-
ity misses, consistency misses, and first-time requests (i.e.,
references to objects that have been evicted, have expired,
or have never been requested). Nevertheless, the NLANR
third-level cache achieves a non-trivial 19% hit rate.

The two figures also show that most of the second-level
cache hit rates level off at cache sizes smaller than 10 GBs.
Hit rates for DEC and HAN continue beyond the largest
cache size shown in Figure 1. DEC hit rates reach 41.1%
for a 20 GB cache and increase very slowly to 42.1% for a
100 GB cache. HAN hit rates increase slightly to 44.7%
for a 14 GB cache. These graphs seem to indicate that
the largest cache needed to eliminate most capacity misses
is dictated by a cache’s request rate. For smaller traces,
a cache size of 1-GB per 35,000 requests/day is adequate
and for the larger traces, 1-GB per 70,000 to 100,000 re-
quests/day is needed. We will see in the next section, how-

0

10

20

30

40

50

0 2 4 6 8 10
Cache Size (GB)

B
yt

e 
H

it 
R

at
e 

(%
)

HAN
KOR
DEC
GMCC
AU
UU
NLANR

Figure 2: Cache byte hit rate for each trace as a function
of cache size.

ever, that the relationship between request rate and cache
size is not quite this straightforward.

3.2 Request Rate and Hit Rate

Figure 1 shows that, for the second-level traces, hit rate in-
creases with request rate. The reason for this correlation
is that a higher request rate causes more sharing and in-
creases the number of hits an object receives before it ex-
pires.

The correlation between request rate and hit rate, how-
ever, is not perfect. There are two exceptions. First, DEC
has the highest request rate but its hit rate is slightly lower
than HAN and KOR. Second, GMCC’s request rate is
lower than UU and AU, but its hit rate is higher. Further-
more, the relationship between request rate and hit rate
is not linear, as is seen by KOR, AU, and HAN. KOR’s
request rate is 1.7 times higher than AU and 1.7 times
lower than HAN, but KOR’s hit rate is twice AU’s and
only slightly smaller than HAN’s. We examine this rela-
tionship in greater detail throughout the remainder of this
section.

Reduced Traces

To gain a better understanding of the impact of request rate
on hit rate, we examined the hit rate of each trace at various
artificially reduced request rates.

To conduct this experiment, we produced a set of seven
reduced traces for each of the original traces at 5%, 10%,
20%, 40%, 60%, 80%, and 100% of the original request
rate, as described in Section 2.3. We then simulated the
behavior of each of the 49 reduced traces.



22

24

26

28

30

32

34

36

38

40

42

0 2 4 6 8

Cache Size (GB)

H
it 

R
at

e 
(%

)

152,000 req/day (100%)
120,000 req/day (80%)
90,000 req/day (60%)
59,000 req/day (40%)
30,000 req/day (20%)
14,000 req/day (10%)
7,000 req/day (5%)

Figure 3: Cache hit rate for KOR as a function of cache
size for a range of request rates.

Figure 3 shows the hit rate for the seven KOR reduc-
tions as cache size is varied. The request rate of each re-
duction is shown in the legend. The top line of the graph,
152,000 requests/day, represents the full trace and is the
same as the KOR line in Figure 1. The lines for lower re-
quest rates stop when the cache is big enough to hold every
object referenced; increasing cache size beyond this point
would have no impact on hit rate so we do not show the
line.

For each KOR reduction in Figure 3, hit rate increases
with request rate, just as we saw in Section 3.1 when com-
paring the request rates of different traces. The details of
the two relationships, however, are somewhat different.
Figure 3 shows that reducing KOR’s request rate does not
significantly reduce desired cache size. For example, the
hit rates for the 60%, 80%, and 100% reductions all ap-
pear to level off at the same cache size, around 6 GBs.
We believe that the reason cache size does not decrease as
rapidly as hit rate is that clients in the same cache share
common interests. As a result, a 40%-reduced client pop-
ulation requests virtually the same set of shared objects as
the full population. This characteristics of Web sharing is
discussed in detail in Section 3.4.

Figure 4 shows the relationship between hit rate and re-
quest rate for all traces. For each trace we show hit rates
for two size caches: 4-GB caches are shown using light-
colored lines and 8-GB caches are shown with dark lines.
Some traces do not have an 8-GB line, because their max-
imum simulated cache size is less than 8-GBs. This graph
confirms that, like KOR, hit rate increases with request
rate for all traces. Notice that in the 4-GB DEC run, hit
rate decreases slightly with request rate due to thrashing.

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000

Request Rate (Thousand of Requests per Day)

H
it 

R
at

e 
(%

)

HAN
KOR
DEC
GMCC
AU
UU
NLANR
HAN

Figure 4: Cache hit rate for each trace (and selected cache
sizes) as a function of request rate; generated by reducing
the number of clients. Light colored lines are 4 GB caches.
Dark colored lines are 8 GB caches.

847

285

135
76 68 68 61

0

100

200

300

400

500

600

700

800

900

1000

N
LA

N
R

A
U

H
A

N

U
U

G
M

C
C

K
O

R

D
E

C

R
eq

ue
st

s 
pe

r 
D

ay
 p

er
 C

lie
nt

 H
os

t

Figure 5: Average number of requests a client host makes
per day.

Requests per Client

We now extend our analysis to determine how a cache’s
hit rate is affected by the number of clients hosts that are
connected to it.

Figure 5 shows the average number of requests/day per
client for each trace. These averages were computed by
dividing each trace’s request count by its total number of
clients and then dividing by twenty one. The client counts
for NLANR and AU shown in Table 1 are underestimated,
because client disguises change from day to day, as dis-
cussed in Section 2.2. As a result, the values presented in
Figure 5 for these two traces are upper bounds.

From Figure 5 we see that, for most of the second-level
caches, clients made an average of 70 requests/day. AU
and HAN have higher request rates, possibly because they



0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500
Clients

H
it 

R
at

e 
(%

)

HAN
KOR
DEC
GMCC
AU
UU
NLANR
HAN GB

Figure 6: Cache hit rate for each trace as a function of
the number of client hosts. Light colored lines are 4 GB
caches. Dark colored lines are 8 GB caches.

0

10

20

30

40

50

60

H
A

N

K
O

R

D
E

C

G
M

C
C

A
U

U
U

N
LA

N
R

P
er

ce
nt

 o
f T

ot
al

 R
eq

ue
st

s

Changed Misses
Unchanged Misses
Hits

Figure 7: Portion of requests resulting in consistency
misses to changed and unchanged objects in each trace.

have more multi-user hosts than the other traces. As ex-
pected, clients of the NLANR third-level cache have a
much higher request rate than the second level caches (i.e.,
847 request/day), because these clients are other caches
and not browsers.

Figure 6 restates Figure 4, changing the x-axis from re-
quest rate to client count; the DEC line on this graph would
extend to 16,700 clients. Notice that the shape of some of
the lines has changed from Figure 4 to 6 due to the variety
in the per-client request rates from different traces. The
differences between these two graphs suggest that while
client-count information is interesting, request rate is a
better metric of cache performance.

0
5

10
15
20
25
30
35
40
45
50

0.2 0.5 1 2 4 6 8
Cache Size (GB)

P
er

ce
nt

 o
f T

ot
al

 R
eq

ue
st

s

Changed Misses

Unchanged Misses

Locality Hits

Figure 8: Portion of requests resulting in consistency
misses to changed and unchanged objects in the KOR
trace.

3.3 Web Cache Coherence Protocols

We now examine how hit rate is impacted by the cache
coherence protocol used by the Squid and CERN proxy
caches; this protocol was described in Section 2.3.

Figure 7 shows each trace’s maximum hit rate from Fig-
ure 1 with two additional bars, one labeled Unchanged
Misses and the other Changed Misses. The total of these
two bars is the consistency miss rate (i.e., the percentage
of requests that found expired objects in the cache). An
unchanged miss is a request for an expired but unmodi-
fied cached object. In this case, the coherence protocol re-
quires an if-modified-since request to the object’s server to
verify that the object is still valid and to update its expiry
time. In contrast, a changed miss is a request for a cached
object that had changed at the Web server.

The height of the Unchanged Misses bar is a measure
of the inefficiency of the coherence protocol. This pro-
tocol uses the time since an object was last modified to
predict its next modification time and thus set an expiry
time for the object. If an object expires before it actu-
ally changes, an unchanged miss results. Figure 7 shows
that unchanged misses account for between 2% and 7% of
all references. This percentage represents the hit rate im-
provement possible for coherence protocols that do a bet-
ter job of predicting object expiry (e.g., [13] proposes one
such protocol).

Figure 8 shows the same information as Figure 7 for the
KOR trace and a variety of cache sizes. We now see that as
cache size increases, the consistency miss rate grows much
more quickly than hit rate. This faster growth is explained
by the fact that a larger cache holds more expired objects
and thus some capacity misses of a smaller cache become



0

5

10

15

20

25

30

35

40

45
H

A
N

K
O

R

D
E

C

G
M

C
C

U
U

P
er

ce
nt

 o
f T

ot
al

 R
eq

ue
st

s

Locality Hits
Sharing Hits

Figure 9: Hit rate divided into hits due to sharing and due
to locality of a single client.

consistency misses in the larger cache.

3.4 Sharing

We begin our discussion of sharing by dissecting the hit
rates we have already presented to show how many hits
are due to sharing. We then examine how requests are
distributed to shared objects and what portion of these re-
quests are actually hits. Finally, we examine the sharing
among clients from unrelated traces.

All simulation results presented in this section use the
maximum cache size for each trace as shown in Table 1,
or 8 GB for DEC.

A fundamental limitation of the available trace data is
that requests are identified with client hosts and not with
users. Our analysis thus includes some false sharing (i.e.,
due to users who move from host to host) and missed shar-
ing (i.e., due to hosts that serve multiple users).

The Sharing Hit Rate

To determine how may hits result from sharing, we mod-
ified our simulator to count locality and sharing hits sep-
arately. Any hit that could have been satisfied by a suffi-
ciently large browser cache is classified as a locality hit; all
other hits are shared hits. The modified simulator detects
shared hits using a post-processing phase that conceptu-
ally examines every hit, checking backward in the input
trace for previous references to the same object. A hit is
shared if and only if a previous reference was made by a
different client and all intervening references to the object
are also hits by other clients.

Figure 9 shows the hit rates from Figure 1 divided into
Locality Hits and Sharing Hits. The figure includes data

0

10

20

30

40

50

60

70

80

S
ha

re
d 

U
R

Ls
 a

nd
 R

eq
ue

st
s 

(%
) URLS

Requests

DEC GMCC HAN KOR UU

Figure 10: The percent of a total URLs in a trace requested
by two or more clients and the percent of total requests to
these shared objects.

for only five of the seven traces. NLANR and AU are
excluded because the daily changing of client disguise
in these traces makes it impossible to distinguish sharing
from locality, as discussed in Section 2.2.

The most important feature of Figure 9 is that sharing
is high and increases with client population and request
rate. In every trace, sharing accounts for at least 85% of
all hits. Furthermore, traces with higher request rates also
have more sharing. For example, DEC, the trace with the
highest request rate, also has the highest sharing hit rate at
38%. Notice that sharing rate is more closely correlated
with request rate than hit rate was; DEC’s hit rate, for ex-
ample, was not the highest of the traces.

In contrast, locality hits do not increase with request
rate. All traces have roughly the same locality hit rate of
5% (the exception is DEC at 1.5%). In other words, clients
from both small and large populations request roughly the
same proportion of non-shared objects, even though there
is more sharing in a large population. It thus appears that
adding a new client to a cache turns some of the misses of
other clients into hits but does not change locality hits into
shared hits.

Distribution of Requests to Shared Objects

We now examine how shared requests are distributed to
Web objects. Figure 10 shows two bars for each of the
five traces that preserve client identity. The first bar indi-
cates the percentage of objects that are requested by mul-
tiple clients and the second bar indicates the percentage of
requests that ask for one these shared objects. Notice that
the shared request rate is much higher than the shared hit
rate shown in Figure 9, because not all requests to shared



0

10

20

30

40

50

60

70

80

DEC GMCC HAN KOR UU

S
ha

re
d 

R
eq

ue
st

s 
(%

)

Misses
Hits

Figure 11: Accesses to shared objects divided into those
that hit in cache (shared hits) and those that miss (i.e., first-
time access or consistency or capacity misses).

objects are hits.
Figure 11 provides additional detail for the Shared Re-

quests bar in Figure 10. The total height of each trace’s
request bar is the same in both figures. Figure 11, how-
ever, indicates the number of shared requests that hit in
the simulated cache. The remainder of these requests are
misses due to first-time accesses, consistency misses, and
some capacity misses. In most cases, roughly half of the
requests are hits, though HAN has slightly more hits than
misses and UU has slightly less.

The key feature of Figure 10 is that while a very large
portion of accesses are to shared objects (71% for DEC),
only a small portion of objects are shared (23% for DEC).
Notice further that the ratio between object count and re-
quest count is roughly the same for all traces, thought the
actual sharing is lower for the smaller client populations.

Figures 12 and 13 provide additional detail about how
requests are distributed among shared objects. Figure 12
is a histogram of Web-object popularity. The y-axis indi-
cates the number of objects (using log scale) and the x-axis
indicates the number of hosts that share an object (using a
bin size of 25). There is a line for each of the five traces.
A point on a line indicates the number of objects that are
requested by the specified number of hosts. For example,
the graph shows that, in the UU trace, roughly 10 objects
were requested by between 126 and 150 hosts.

Figure 12 shows three important features. First, most
objects are accessed by a small number of hosts; the log
scale of the y-axis somewhat hides this feature. Second,
the distributions appear tail heavy, as has been observed
by Cunha et al. [4]. For example, at around 150 to 200
hosts, the number of shared objects has dropped consider-

1

10

100

1000

10000

100000

1000000

0 200 400 600 800
Hosts

O
bj

ec
ts

DEC
GMCC
HAN
KOR
UU

Figure 12: Histogram showing the distribution of Web ob-
ject popularity (represented with lines in order to show
multiple traces on the same graph). The y-axis is a log-
scale of the number of object and the x-axis in the number
of hosts that request the object.

ably; after that, however, the decline from 200 to 800 hosts
is much more gradual. In fact, the line for DEC contin-
ues out to 4000 hosts and varies between zero and ten ob-
jects all the way out. Third, the object-popularity pattern
for all traces is similar, though traces with higher reference
counts have more widely shared objects, as expected.

Figure 13 graphs the normalized request rate for objects
as a function of the number of hosts that share them. No-
tice that every object is summarized at the same x-axis
point in both Figure 12 and 13. In Figure 13, however,
the y-axis indicates the average per-host per-object request
rate for objects with the specified degree of sharing. The
important thing to notice about this graph is that a host’s
per-object request rate is mostly independent of an object’s
popularity, though very popular objects are requested at a
higher rate; this is also true for DEC, which starts to trend
upward toward six at around 2200 hosts (not shown in Fig-
ure 13).

Sharing Between Clients from Different Traces

To further understand the distribution of requests to shared
objects, we conducted a series of experiments in which we
looked for sharing patterns among clients from different
traces. These comparisons are interesting because each
trace represents a totally distinct collection of users. An
object shared by users from multiple traces might be con-
sidered to be of global interest to Internet users in general.
In contrast, objects shared only within a given trace are of
only local interest to the particular user community. In ad-
dition, we mentioned above that some degree of false shar-



0

2

4

6

8

10

0 200 400 600 800
Hosts

R
eq

/U
R

L/
H

os
t

DEC
GMCC
HAN
KOR
UU

Figure 13: Graph showing the per-URL per-host request
rate for objects based popularity of URL (from Figure 12).

ing occurs within a trace, because some users use multiple
client hosts. False sharing, however, is eliminated when
considering sharing among multiple traces.

Figure 14 compares six traces: HAN, KOR, GMCC,
AU, UU, and NLANR; DEC is excluded because its trace
stores URLs using a hash code that can not be compared
with the URL strings in other traces. There are five pairs
of bars on the x-axis; of each pair, one bar shows shared
objects and the other shows shared requests. Each pair of
bars shows the amount of sharing that exists among the
specified number of traces. For example, 18% of the total
objects requested by the six traces are requested in at least
two of the traces and 56% of total requests ask for one of
these objects.

From Figure 14 we see that, as in Figure 10, the por-
tion of requests that ask for shared objects is much larger
than the portion of objects that are shared. Furthermore,
we see that this gap widens as we look at sharing across
more of the traces. For example, we see that only 0.2% of
objects are shared by all six traces, but 16% of all of the
requests ask for one of these objects. A second important
observation is that a surprisingly large number of requests
(16%) ask for objects that are globally shared among all
six traces; recall, however, that not all of these requests
will be cache hits.

Finally, we examine the nature of narrow and wide shar-
ing. Figure 15 compares the inter-trace sharing for objects
that are narrowly shared in one of the traces (i.e., requested
by two to nine client hosts in that trace) and those that
are widely shared in one of the traces (i.e., requested by at
least ten clients); we also show objects that are only nar-
rowly shared (i.e., narrowly shared in every trace in which
they appear). This figure compares only four traces: HAN,
KOR, GMCC, and UU; AU and NLANR are excluded be-

0

10

20

30

40

50

60

2 3 4 5 6

Number of Traces that Share URL

P
er

ce
nt

 o
f 6

-T
ra

ce
 T

ot
al

 
(U

R
Ls

/R
eq

ue
st

s)

URLs
Requests

Figure 14: Inter-trace sharing among HAN, KOR, GMCC,
AU, UU, and NLANR. Shows percent of shared URLs and
requests for those URLs for sharing between a given num-
ber of six traces.

cause we can not distinguish sharing from locality, as de-
scribed above. There are four sets of bars, each set with
two bars for narrowly-shared objects, two bars for only-
narrowly-shared objects, and two bars for widely-shared
objects. As before, objects are counted only if they are
requested from the number of traces specified under the
bar on the x-axis (notice that this graph starts with one,
while Figure 14 starts with two). An object that is nar-
rowly shared in one trace and widely-shared in another
trace counts as being both narrowly and widely shared, but
not as only-narrowly shared.

Figure 15 shows that Web sharing tends to be bi-
modal. First, notice that the one-trace bars on the far
left of the figure show that sharing requests are divided
almost evenly between narrowly- and widely-shared ob-
jects, while there are many more narrowly-shared objects
than widely-shared objects. Furthermore, the other sets of
bars show that a significant portion of widely-shared ob-
jects are also globally shared, while narrowly shared ob-
jects are almost exclusively locally shared. For example,
for sharing among all four traces, only-narrow-sharing re-
quests drop to 0.2% while wide-sharing requests remain
relatively high at 9%; note that 4% of requests asked
for objects that were both narrowly and widely shared
(i.e., narrowly shared). We thus conclude that Web shar-
ing tends to be divided roughly evenly between objects
that are shared narrowly and locally and those that are
shared widely, and that many widely-shared objects are
also shared globally.



0

5

10

15

20

25

30

35

40

1 2 3 4
Number of Traces that Share URL

P
er

ce
nt

 o
f 4

-T
ra

ce
 T

ot
al

 
(U

R
Ls

/R
eq

ue
st

s)

URLs (Narrowly Shared)
URLs (Only Narrowly Shared)
URLs (Widely Shared)
Requests (Narrowly Shared)
Requests (Only Narrowly Shared)
Requests (Widely Shared)

Figure 15: Inter-trace sharing among HAN, KOR, GMCC,
and UU. Divides sharing into Narrow sharing, objects
shared by less than ten distinct hosts, and Wide sharing,
objects shared by at least ten hosts.

Summary

Our analysis presented in this section shows several key
characteristics of Web client sharing patterns.

� Sharing is high (20% to 38%) and dominates single-
client locality as the primary factor that determines
hit rate.

� Sharing increases as the number of clients, and thus
request rate, increases, while single-client locality
does not increase.

� Up to 71% of requests are to shared objects, though
roughly half are misses due to first-time accesses,
consistency, and capacity misses. Only 15% to 28%
of objects are shared.

� Most shared objects are accessed by only a few
clients, though the distribution of object popularity
appears to be tail heavy.

� Sharing is bimodal. Half of a trace’s sharing is lo-
cal to the trace and involves only a few hosts, the rest
is more global, overlapping with other traces, and in-
volves many hosts.

3.5 Implications for Cache Design

Our analysis shows that high hit rates depend on caches
having sufficient clients to generate a high request rate.
For example, a one-thousand client cache with 70,000
requests/day had a hit rate no higher than 28%, while
a two-thousand client cache with 250,000 requests/day

achieved a 45% hit rate. Furthermore, the NLANR third-
level cache, whose requests are lower-level cache misses,
had a hit rate of 19%. These two observations suggest
that a client connected to a three-level hierarchy such as
NLANR might see hits rates as high as 55% (i.e., the best
hit rate of the second-level caches plus an additional 19%
of that cache’s misses).

The fact that sharing and hit rate increase with request
rate might seem to argue for a monolithic cache structure
consisting of a single-level cache designed to handle thou-
sands or tens of thousands of clients. Latency and scalabil-
ity concerns, however, argue for a more hierarchical struc-
ture.

A hierarchical structure allows caches to be placed
closer to clients than does a monolithic structure, because
the monolithic cache must be far enough away from clients
to include the entire client pool. We have shown, however,
that a relatively small group of one-thousand clients gener-
ates substantial sharing, with hit rates in the range of 25%.
A more distant monolithic cache would increase request
latency for the quarter of requests that could have been sat-
isfied more locally.

A hierarchical structure also aids cache scalability. A
substantial request rate is needed to achieve the 55% hit
rate that our analysis indicates may be possible. For exam-
ple, Table 1 shows that DEC has an average request rate of
12 requests/s. We have also computed the request rate as
a function of time for every trace. This data shows that
DEC has a peak request rate of 78 request/s and a peak
miss rate of 55 misses/s; miss rates is important because it
determines the impact a cache has on its parent in the cache
hierarchy. For comparison, the proxy-cache performance
study by Maltzahn and Richardson shows that peak per-
processor throughput of the Squid v1.1 proxy is less than
35 request/s (when running on a Digital AlphaStation 250
4/266). 1

We thus conclude that a hierarchical structure is the
best solution for providing low-latency hits for local shar-
ing, while achieving the substantial hit rates that are only
achievable when thousands of clients share a cache.

4 Limitations of Trace Data

During the course of our study, we identified four limita-
tions of the trace data we analyzed. We outline these lim-
itations here in the hope of influencing proxy providers
to remove these limitations from future versions of their
servers.

1The study shows per-request CPU utilization of the CERN and Squid
v1.1 servers at 15-million cycles and 7.5 million cycles respectively.



1. Including the last-modified and expiry time returned
by servers would have allowed us to simulate larger
caches. The lack of this information in all but the
DEC trace limited simulated cache size to be no
greater than actual cache size.

2. Preserving a single unique client name over time (ap-
propriately disguised to protect user privacy) is nec-
essary for any analysis of sharing. If a client’s dis-
guised name changes from day to day, sharing cannot
be distinguished from multi-day client locality.

3. Identifying users (again appropriately disguised) in
addition to their host IP address would eliminate
the false-sharing problems that occur with multi-user
hosts and with users that use multiple hosts.

4. The ability to compare URLs from different traces is
needed in order to measure inter-trace sharing. If a
hash function is used to store URLs in a more com-
press form, the same function should be used by all
proxies.

5. Including response codes returned by servers is im-
portant for distinguishing error responses (e.g., object
not found). Most traces do include response codes,
but some do not (e.g., the traces used by Gribble
et al. [11]). Fortunately, experiments we conducted
show that the lack of response codes causes less than
a 1% hit rate difference.

5 Related Work

Since the Web became the primary consumer of Internet
bandwidth, studies of Web traffic have become common.
Some early studies include analysis of Web access traces
from the perspective of browsers [6, 4], proxies [10, 20,
22], and servers [16]. Arlitt et al. conducted a recent
study of Web server workloads [2]. Our work is unique in
two ways. First, we examine many more requests, much
larger caches, and much higher request rates; we also in-
clude data from many more sites. Second, unlike the ear-
lier studies, we use a cache simulator to examine dynamic
workload characteristics such as request rates and sharing.

More recent research has used simulators to vary
individual parameters on large traces. Gribble and
Brewer [11] simulate a trace with 20 million requests.
They show a hit rate of 56% for a 6 GB cache. By
comparison, our DEC and HAN traces see a 37% and
42% hit rate, respectively, for a 6 GB cache. Gadde
et al. [9, 18] evaluate their proposed directory-based
cooperative proxy cache using simulation of twenty-five

days of the DEC trace. They see sharing hit rates of 45%
for an 8 GB cache compared to our 38%, because their
simulator does not model cache coherence.

Others have analyzed Web proxy traces for different
purposes. In [15], Malzahn et al. compared the per-
formance of the two most popular Web proxy servers
(CERN [14] and Squid [5]). They show how the CPU,
memory, and disk utilization of the proxy servers scales
with increasing request rate.

6 Conclusions

Client-side caching is a key solution for improving Web
client performance and for scaling the Internet and Web
servers to meet ever increasing demands. The design and
assessment of cache designs can benefit greatly from a de-
tailed understanding of Web client access characteristics.
This paper characterizes Web-client access, based on an
analysis of proxy cache traces containing a total of 47 mil-
lion requests from 23,700 clients at seven different loca-
tions (including one third-level cache).

Our analysis shows that cache hit rates for second-level
caches vary from 24% to 45%. Sharing accounts for 85%
of these hits and sharing increases with request rate. The
hit rate of the third-level cache we examined was lower at
19%, because lower-level caches filter locality and lower-
level sharing from its request stream.

Desired cache size varies between 2 and 10 GB. Small
client populations need 1-GB of cache per 35,000 re-
quests/day and larger populations 1-GB per 70,000 to
100,000 requests/day, though artificially removing clients
from a population does not cause a proportional reduction
in cache size.

Using the Squid v1.1 and CERN cache coherence pro-
tocol, between 2% and 7% of all requests are consistency
misses to unmodified objects; that is these requests were
hits on expired objects that had not actually changed at the
Web server.

Requests to shared objects account for 71% of total re-
quests, but only 24% of requested objects are shared. Most
of these shared objects are accessed by only a few clients,
though object popularity appears to be tail heavy and a
few objects are accessed by most clients. Shared requests
exhibit bimodality based on an even division of requests
to objects shared narrowly by a few clients and objects
shared widely by many clients. Unlike narrow sharing,
wide sharing tends to be global. 6% of the total 11.7-
million requests in HAN, KOR, GMCC, and UU, for ex-
ample, ask for objects shared by all four traces.

Finally, our results argue for a cache hierarchy whose



first level is close to clients; a one-thousand client cache
should have hit rates of around 25%. One or more higher
levels of caching are needed to expose the additional shar-
ing present only in larger client populations (i.e., popula-
tions of a few thousand clients or more). For large popula-
tions, we have observed hit rates of 45% and, for the entire
hierarchy, hit rates of 55% seem achievable.

Acknowledgments

We would like to thank everyone who provided us with
proxy traces, particularly: Christain Grimm at the Univer-
sity of Hanover, Germany; Jaeyeon Jung with the Nation
Wide Caching Project of Korea; Tom Kroeger, Jeff Mogul,
and Carlos Maltzahm for making the DEC logs available;
Tim Crisall at Grant MacEwan Community College, Al-
berta; Henny Bekker at Utrecht University, the Nether-
lands; Duane Wessels at NLANR; Maciej Kozinski at
Nicolas Copernicus University, Poland; and our anony-
mous university. Thanks also to Norm Hutchinson and our
shepard, Richard Golding, for their comments on earlier
versions of this paper. Finally, thanks to the folks in the
UBC system’s lab for putting up with our long-running
data-intensive simulations.

References
[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.

Roselli, and R. Y. Wang. Serverless network file systems. ATM
Transactions on Computer Systems, 14(1):41–79, February 1996.

[2] M. Arlitt and C. Williamson. Web server workload characteriza-
tion: The search for invariants. In Proceedings of ACM SIGMET-
RICS’96, May 1996.

[3] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirrif, and J. K.
Ousterhout. Measurements of a distributed file system. In Proceed-
ings of the 13th ACM Symposium on Operating Systems Principles,
pages 198–212, October 1991.

[4] A. Bestavros C. R. Cunha and M. E. Crovella. Characteristics of
www client-based traces. Technical report, Boston University, Jul
1995.

[5] Squid Internet Object Cache.
URL: http://squid.nlanr.net.

[6] L. D. Catledge and J. E. Pitkow. Characterizing browsing strage-
gies in the World-Wide Web. In Proceedings of the Third WWW
Conference, 1994.

[7] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F. Schwartz, and
K. J. Worrell. A hierarchical Internet object cache. In USENIX
1996 Annual Technical Conference, January 1996.

[8] National Laboratory for Advanced Network Research (NLANR)
Proxy Traces.
URL: ftp://ircache.nlanr.net/Traces/.

[9] S. Gadde, M. Rabinovich, and J. Chase. Reduce, reuse, recycle:
An approach to building large Internet caches. In Sixth Workshop
on Hot Topics in Operating Systems, 1996.

[10] Steven Glassman. A caching relay for the world wide web. In Pro-
ceedings of the First Interntional Conference on the WWW, 1994.

[11] S. D. Gribble and E. A. Brewer. System design issues for internet
middleware services: Deductions from a large client trace. In Pro-
ceedings of the Usenix Symposium on Internet Technologies and
Systems ’97, 1997.

[12] J. Gwertzman and M. Seltzer. The case for geographical push-
caching. In Fifth Workshop on Hot Topics in Operating Systems,
1995.

[13] B. Krishnamurthy and C. E. Wills. Study of piggyback cache val-
idation for proxy caches in the world wide web. In Proceedings of
the Usenix Symposium on Internet Technologies and Systems ’97,
1997.

[14] A. Luotonen, H. Frystyk, and T. Berners-Lee. W3C httpd. URL:
http://www.w3.org/hypertext/WWW/Daemon/.

[15] C. Maltzahn and K. J. Richardson. Performance issues of enter-
prise level web proxies. In ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems, June
1997.

[16] J. Pitkow and M. Recker. A simple yet robust caching algorithm
based on dynamic access patterns. In Electronic Proceedings of
the Second World Wide Web Conference ’94: Mosaic and the Web,
1994.

[17] J. Lorch R. Malpani and D. Berger. Making world wide web
caching servers cooperate. In Fourth International World-wide
Web Conference, pages 107–110, Dec 1995.

[18] J. Chase S. Gadde and M. Rabinovich. Directory structures for scal-
able internet caches. Technical Report CS-1997-18, Duke Univer-
sity, 1997.

[19] P. Sarkar and J. Hartman. Efficient cooperative caching using hints.
In Proceedings of the USENIX Conference on Operating Systems
Design and Implementation, Oct 1996.

[20] Jeff Sedayao. ”mosaic will kill my network!” - studying network
traffic patterns of mosaic use. In Electronic Proceedings of the Sec-
ond World Wide Web Conference ’94: Mosaic and the Web, 1994.

[21] Digital Equipment Corporation Proxy Traces.
URL: ftp://ftp.digital.com/pub/DEC/traces/proxy/tracelistv1.2.html.

[22] D. Wessels. Intelligent caching for world-wide web objects. Mas-
ter’s thesis, Washington State University, 1995.

[23] D. L. Willick, D. L. Eager, and R. B. Bunt. Disk cache replace-
ment policies for network fileservers. In Proceedings of the IEEE
International Conference on Distributed Computer Systems, pages
2–11, June 1993.


