
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Caubweb: Detaching the Web with Tcl

John R. LoVerso and Murray S. Mazer
The Open Group Research Institute

Cambridge, MA

1. Introduction

CaubwebTM is a research system for investigating
ways to provide adaptive, ongoing read and update
interaction with Web-based information, even under
conditions of variable or intermittent network
connectivity. Caubweb is part of our group’s Distributed
Clients project [17], which has the broad goal of
increasing the availability and customization of Web-
based information services for mobile computing users.
The expected benefits include increasing the availability
of information, reducing the latency of servicing
requests, and adapting information to the specific user
and context.

Caubweb currently focuses on support for
disconnected operation, implementing caching of user-
specified “weblets” for access when disconnected.
Caubweb also demonstrates the staging of user changes
to stored documents when disconnected and integration
of those changes into origin servers upon reconnection.
These features are analogous to support for disconnected
operation in file systems. In addition, a prototype
visualizer named CaubView (which uses library
components from Caubweb) provides views of the
relationships among elements in a Caubweb cache.

Caubweb is architecturally an HTTP proxy
augmented with appropriate value-adding capabilities.
This accommodates our design principle of vendor

neutrality, meaning that the functionality is not restricted
for use with one vendor’s browser or server. This is
increasingly important as Microsoft, Netscape, and
others work on increasingly incompatible technology. As
identified by Brooks et al. [2], vendor neutrality can be
achieved in many cases by adding application-specific
capabilities to HTTP proxies, which can transparently
filter, transform, and otherwise process the stream of
HTTP requests and responses generated by the user’s
browser and the Web’s origin servers[22].

To accommodate our design principles of platform-
portability and extensibility, we chose Tcl[19] as our
implementation language. This paper reports on our
experience in using Tcl/Tk to build Caubweb. We discuss
the structure of our implementation, identify strengths
and weaknesses of the language and its tools, contrast
Tcl/Tk with alternatives, and present a “call to arms” for
the Tcl/Tk community, to promote increased reuse and
cooperation.

Section 2 motivates the need for information access
under variable connectivity conditions. Section 3
discusses the decision to use Tcl. Section 4 discusses the
structure of the Caubweb application and its substantial
use of library components. Section 5 presents an
evaluation of Tcl and its toolset as we experienced it in
building Caubweb. Section 6 revisits the decision to use
Tcl. Section 7 summarizes our findings and urges greater

Caubweb: Detaching the Web with Tcl

John R. Lo Verso and Murray S. Mazer

The Open Group Research Institute
Eleven Cambridge Center, Cambridge MA 02142 USA

{j.loverso,m.mazer}@opengroup.org

Abstract

CaubwebTM is a research system that allows a user to create local collections of Web documents
on the user's computer, for access to those collections when disconnected. The system is part of a
project investigating ways to provide adaptive, ongoing read and update interaction with Web-based
information, even under conditions of variable or intermittent network connectivity. Caubweb is
architecturally an HTTP proxy augmented with value-adding capabilities. To accommodate our
design principles of platform-portability and extensibility, we used Tcl as our implementation
language. This paper reports on our experience in using Tcl/Tk to build Caubweb. We discuss the
structure of our implementation, identify strengths and weaknesses of the language and its tools,
contrast Tcl/Tk with alternatives, and present a “call to arms” for the Tcl/Tk community, to promote
increased reuse and cooperation.

Keywords: World Wide Web, Detachable Webs, HTTP proxy servers, Tcl, Tk, Disconnected
operation, Mobility.

cooperation and interaction within the Tcl community, in
order to promote increased use of Tcl as “programming
for the Internet” takes on greater urgency.

2. The Detachable Web

The World Wide Web has revolutionized information
access, dramatically broadening the set of users and tasks
for which network-based publishing and information
access has become commonplace. We now think nothing
of clicking on a hyperlink that points halfway around the
world to retrieve even trivial bits of information.

Traditionally, users have been constrained to
accessing information resources while in designated
workspaces, such as offices or homes. They are
increasingly able to access these resources elsewhere,
with the increased availability of portable computers and
wireless and remote communication systems[13].
Nonetheless, there will be many times when the user
cannot contact remote information resources, and the
user must make do with the data available from the local
machine (in a mode called decoupled computing: the
ability to compute when detached from the existing
computing and communications infrastructure[11]). In
this narrower context, the goal of the work reported here
is to provide the user of a portable computer with
ongoing interaction with Web-based resources when
disconnected from the network infrastructure. We call
this a Detachable Web. Our approach applies equally
well to portable and “non-portable” user machines; the
key technical challenge is to cope with periods of
disconnection.

The intersection of these two trends (hyperlinked
multimedia documents and portable computers) offers
new problems not found in either setting. For example,
work in disconnected file systems did not consider
support “above” the file system level and did not
consider embedded object references and access to
associated services (e.g., an annotation service).
Likewise, the Web community has only partially
examined issues such as variable bandwidth fetching and
presentation, providing Web-based services while
disconnected, and merging documents created or
modified off-line with available on-line servers.

2.1 The Approach Taken

The essence of the approach described here is: allow
the user to specify weblets (connected subsets of Web
content) of interest; cache those weblets locally; and,
when disconnected, impersonate the servers on which
the cached information resides. (This last aspect is
achieved by trapping the requests for those URLs and
serving them out of the cache.) In addition, if the user
changes a locally stored document and publishes it

toward its origin server, maintain the new and previous
versions while disconnected; upon reconnection,
integrate the new versions back to supportive origin
servers.

The system described here does not depend upon
changes in or specializations to Web browsers or
servers.† Caubweb, as a proxy, is placed in the middle
between the browser and the server. Therefore it can
catch and divert user requests appropriately, acting for
the most part transparently to the user, browser, and
servers. Our specialized proxy provides caching, change
staging and integration, weblet specification and
retrieval, presentation, proxy configuration, and control.

The proxy approach has independently been pursued
by commercial “off-line browsing” software vendors
(e.g., WebEx[28]), who focus on read-only access and
Windows-based platforms. Browser vendors are
integrating off-line browsing support more tightly with
their products, and other approaches use independent
applications that take advantage of browser APIs for
tracking activity and request display (e.g.,
WebWhacker[6])

Detachable Web support is analogous to support for
disconnected file access. The primary target platform is
portable client machines which experience alternating
intervals of connectivity and disconnectivity, both
voluntary and involuntary. The minimal goal of the
system is to permit read-only access to a detached web.
A next step is to support modifications to the detached
web and to integrate those changes into the appropriate
Web servers upon reconnection. As in some
disconnected file systems[14], we assume we cannot
make changes to the implementation of servers (but can
use existing interfaces).

The primary differences between a system for
Detachable Webs and a system for disconnected file
access relate to ways of discovering object references to
be cached, coherence requirements, underlying object
model, and the semantics of object collections. For
example, systems providing disconnected file access do
not make caching decisions based on references to other
files contained in already cached files or external
services. A key notion in a Detachable Web system is
following embedded hyperlinks, images or objects in a
web page being cached or viewed. Other relevant object
references may come from external services (such as
PICS servers)[16].

†. Hence the acronym Caubweb: Caubweb Augments User
Behavior With Every Browser

2.2 Motivation for a Proxy-based Approach

One goal was to build a system that could work with
any existing off-the-shelf browser or HTTP server. This
allows us to avoid the problems that arise from
modifying a browser, even if we could do so. Modifying
a browser limits the new functionality to be available in
a specific browser version or forces the developers to
race to keep up with the ever-burgeoning number of
proprietary browsers and servers. Further, it is no longer
reasonable to assume that one can modify the browser
the user wants to use. For similar reasons, we did not
want to modify any features of the underlying operating
system or network framework.

The kind of support Caubweb needs to provide is best
represented as middleware. Consequently, we chose to
base our system on the notion of application-specific
stream transducers[2]. A stream transducer performs
some specific value-added function for the user, usually
transparently. As a stream transducer between the
browsers and the servers, Caubweb can catch and divert
user requests appropriately, allowing us to retain the use
of unmodified HTTP for a communication medium
between our component and other components.

If the world were not full of huge, monolithic clients
with many features hardcoded into the application, then
there would be more ideal ways to add Detachable Web
support. In particular, if the user-side caching model of a
browser were implemented against a simple API in such
a way that it was replacable when the browser was
deployed, then the caching engine for our system could
be used to replace it. Such a modular approach does exist
for some browsers (such as Internet Explorer), but not for
the bulk of the off-the-shelf browsers with which we
wish to interoperate.

3. The Decision to Use Tcl

Three principles guided our choice of implementation
language: platform-portability, extensibility, and ease of
distribution. Platform-portability means that the system
should be usable on multiple platforms with as much
code re-use across platforms as possible (or,
equivalently, as little platform-specialized code as
possible). Extensibility means that one can extend the
capabilities and functionality of the software easily,
through modular software interfaces, without appealing
to vendors, and without being forced to work within the
constraints of restrictive licensing. Ease of distribution
implies preparing as few executables as possible to
accommodate the set of target platforms.

These criteria pointed toward an interpreted language,
eliminating languages such as C, C++, and Visual Basic.
An interpreted language allows the same code to work on

different operating systems and machine architectures
without any changes. Machine dependencies are hidden
inside of the interpreter, yielding a high degree of
portability. Interpreted languages typically provide
powerful string processing capabilities, appropriate for
dealing with HTML, and thereby avoiding issues of
dynamic string allocation, growth, and reference
management. Interpreted languages often promote rapid
development (typically trading off application
performance) [25]. The end-user need not compile the
sources or download a platform-specialized distribution
in order to use an application. Finally, interpreted
languages often have graphical user interface modules
that are portable across platforms, relieving the
programmer of the details of different windowing
systems.

The primary candidates were Java[7], Tcl, and
Perl[29]. At the time of our evaluation, Java was a
freshly released language with rapidly evolving language
definition, program development support, runtime
support, and portability. That instability recommended
against Java. Perl has been used successfully by many
projects, including some of our own [18]. Perl supports a
reasonable object-oriented programming style, has an
interpreter augmented with a byte-code compiler
(improving performance), has a well-organized,
cohesive, user-contributed library, and is easy to embed
in other programs. Nonetheless, Perl was not generally
available at that time on Windows and Macintosh
platforms and lacked strong visual interface support.

These factors and our own strong experiences led us
to select Tcl, which was an excellent choice for an initial
implementation of the system. The primary reasons were
its ease of use, its interpreted nature, its relative maturity,
and, finally, its promised portability to all the major
computing systems we targeted. Because of our previous
experience with Tcl, we believed that the language is
easy to learn and understand (permitting new team
members to become productive quickly), generally
allows for the creation of highly readable code
(promoting reuse and transfer of code responsibility),
and is immensely fun to use. Section 5 discusses in detail
our perception of the strengths and weaknesses of Tcl,
based on the implementation of Caubweb.

4. The Structure of Caubweb

This section describes both the Caubweb application
and the library components that provide much of the core
functionality. The library, Cobweb†, is intended to be
general purpose and can support applications other than
Caubweb. We first describe Caubweb’s major pieces,

†. Acronym available upon request.

followed by descriptions of modules in Cobweb used to
implement interesting features of Caubweb.

4.1 Caubweb

Caubweb is an implementation of a Detachable Web
proxy. It typically runs as a stand-alone Tcl program,
started separately from (and usually before) the user’s
browser. It listens and responds to HTTP proxy requests
at a given port (usually 8088 with connections restricted
to the local host†).

4.1.1 Usage Model

The intended usage model of the system is simple.
The user first starts a personal copy of Caubweb on a
laptop (or other computer); the user then configures a
web browser to proxy through Caubweb. When the
system is well-connected to the rest of the world (while
at work, for instance), the user browses the web as
normal. Caubweb, as a transparent “middleman” in the
browsing activity, follows the user’s actions and caches
the results of the user’s interactions. The user can direct
Caubweb to apply a weblet retrieval to pre-fetch
resources asynchronously, so that (to some depth)
resources connected by embedded or related hyperlinks
will also be available to the user later. Weblet retrieval
can be explicit (the user provides both the starting URL
and the retrieval criteria) or implicit (the user sets default
retrieval criteria, which are applied to each URL the user
requests). At some point, the user will shut the system
down.

Later on, when the system is no longer connected to
the Internet at large (on the airplane, for instance), the
user can turn on the laptop and start Caubweb, indicating
not to use the network. Caubweb will serve HTTP
requests with resources available in its cache. It can also
note when the user browses outside the range of the
resources in the cache; these cache misses can then be
used to start a new weblet retrieval the next time
Caubweb is told the network is available.

The following subsections list Caubweb’s major
functional components.

4.1.2 Caching HTTP Proxy

Almost everything that Caubweb does (or can do) is
enacted by HTTP flowing into or out of the system. As a
caching HTTP proxy, Caubweb listens for incoming user
requests and directs outgoing HTTP requests. However,
there is not a one-to-one correspondence between the
incoming and outgoing requests. Weblet pre-fetching
results in Caubweb initiating its own outgoing HTTP

†. Except on systems lacking the ability (MacOS).

requests. Some incoming user requests may be to
Caubweb’s control panel, which is original content in a
portion of the URL space for which Caubweb acts purely
as an HTTP server.

Almost every resource that Caubweb receives is saved
in an extended HTTP cache. This cache will be the sole
source of documents when Caubweb is disconnected
from the network. The cache nominally follows the
requirements for an HTTP cache as defined in the HTTP
protocol, RFC 2068 [4]. To provide better off-line
browsing ability, Caubweb caches all documents that
pass through it, including those that a normal caching
proxy would not be allowed to cache. The external
behavior apparent by observing Caubweb when
connected to the network will always be that of a
compliant HTTP caching proxy, meaning that it will
appropriately discard cached documents while
connected. This behavior allows Caubweb to serve
possibly stale documents when disconnected. This is
likely to be exactly what the user wants, since stale data
is better than no data (as long as the user is provided with
appropriate cues about the data’s freshness).

4.1.3 User Interface

Caubweb’s normal interface to allow the user to
interact with and control the system is a control panel
provided by a set of dynamically created HTML pages.
These pages allow the user to view the overall status of
the system, change various preferences and settings, and
get listings of (and control over) the cache contents. The
various changeable controls are implemented via HTML
forms, with a hyperlinked help system for cues on use of
individual controls. The control panel is accessed at a
special URL, http://caubweb/ , which uses a
fictitious host served internally by Caubweb.

Caubweb provides an additional, optional user
interface component that is implemented using Tk. This
interface provides a hierarchical status display showing
the state of events occurring inside the system. The user
can gain, at a quick glance, information about Caubweb’s
activity at any time. The status display also includes
some simple controls that complement those available on
the control panel. More sophisticated user interfaces are
certainly possible, but this was not the focus of our work.

The HTML control panel is the primary interface, and
the Tk display is optional for two reasons. First, Tk is not
required for the core functionality. Caubweb works as
well using tclsh as it does using wish. Requiring the use
of Tk to invoke control features would mean that
Caubweb could not act transparently in the background,
without taking up valuable screen real estate (as is
usually the problem with many Windows programs). If

Tk is not required, then Caubweb can even operate
without access to a display.

Second, while the overhead of the status display is not
large when using Tk with the X Window System, it is
about twice as compute intensive under Windows and on
MacOS. Because of this, the status display can be
disabled by an option or user preference, and the system
simply ignores all the status panel code when Tk is not
available.

4.1.4 Weblets

A weblet is a logical collection of documents that fit
user-defined criteria. Individual documents may be part
of many weblets at the same time, and weblets may
overlap in content. Weblet members are identified
dynamically as needed. As a result, at any instant in time,
it may be impossible to answer “what resources are in
this weblet” because all the possible members are not
known. Weblet membership is ephemeral - Caubweb
does not currently keep persistent membership
information.

A weblet is normally identified by some starting point
(typically a URL) from which all other documents in the
weblet are related. The relationship to the starting point
is established by a weblet template which is a collection
of qualification predicates a document needs to meet. A
weblet template is applied first to the starting point of the
weblet, and then, recursively, to any additional
documents matched by the template. Each qualified
document is parsed into a list of its internal hyperlink
references, such as anchors, images, frames, etc. A
document is added to the cache by virtue of this weblet if
it is (1) referenced in a document already in the weblet
and (2) matches the qualification predicate.

The qualification predicate is one of several forms of
test that may be applied to a document or its properties,
such as the URL. These tests include:

• a pattern match on the URL (e.g., http://
www.opengroup.org/RI/*)

• a pattern match on the anchor associated with the
hyperlink (e.g., “Research Institute*”)

• a depth limit (e.g., no more than three links away from
the start URL)

• tests against other properties (e.g., size, type, etc.)

Predicates are conjoined and disjoined to form the
expression in the weblet template.

The Caubweb control panel has several convenient
ways for the user to create new weblets. The simplest is
a small form that handles most of the typical cases via a
set of pre-defined templates. A more complicated form

allows finer control, while an expert form allows
arbitrary weblet templates to be specified in the weblet
language.

The user can apply a template to a start URL to start a
weblet retrieval. This causes Caubweb to start a
background task fetching the documents that comprise
the weblet. This allows Caubweb to cache documents
that the user may never have visited.

Weblet retrievals may also be started automatically
via a default weblet template. When this is enabled,
Caubweb will apply the template to every URL the user’s
browser requests. When the user utilizes this mechanism
for normal browsing, the result is a cache that is “rich
around the edges” with content (possibly) related to
something the user was interested in.

4.2 The Cobweb Library

As mentioned earlier, our library is intended to be
highly reusable and serve multiple purposes. Cobweb
contains several major subsystems, including:

• an asynchronous execution model based upon events
and callbacks

• an object-oriented execution environment, based on
obTcl [5]

• several Web-centric modules (URL, HTML, HTTP,
caching, weblet, etc.)

In addition, there is a collection of other useful
modules (e.g., host name resolver, splash screen, and
comm facility for implementing Tk send(n) over
sockets).

Cobweb is intended to be architecture-neutral.
However, there are several places where it needed to be
cognizant of the host system, usually to work around
limitations or bugs on the Mac or Windows ports (see
Section 5.1).

Highlights of the library are described below, with
examples of use in Caubweb.

4.2.1 Asynchronous Execution

Most of the library follows an asynchronous, non-
blocking model of execution. This model follows from
the event-driven nature of Tk and Tcl’s fileevent (see also
Section 6.1). Applications such as Caubweb will have
many partial operations in progress at any one time. This
model means that each ongoing operation will get a
chance to accomplish some work when it is able.
However, each operation must gracefully relinquish
control after doing some small amount of work.

Cobweb requires any method that is not short-lived
and non-blocking to use either a callback or a

continuation to guarantee liveliness of the application. A
callback is a small script that a caller passes to a method,
after which the caller is expected to relinquish control.
Upon completion of the request, the callback has a return
value appended and is then evaluated. This results in
control being returned to the caller. The callback will
occur in the context of the facility to which the caller
made the request, meaning that the caller cannot assume
anything about its own state. An example use of callback
in Cobweb is to initiate an asynchronous request to an
HTTP server and later receive a handle for the
connection.

A continuation is used by a component to schedule its
own, long running operation. A continuation is similar to
a callback but adds some state that the caller passes in
and then later receives as part of the upcall. An example
use of continuations is to maintain the state of a weblet
retrieval while other operations gain and relinquish
control.

4.2.2 Web-centric Modules

URL : this is an obTcl class that can manipulate URL
syntax. It can parse a URL string into component parts,
as well as reconstruct it with a tostring operation
that allows the use of a base URL object. This is used to
resolve relative URLs.

HTTP Protocol: this is an obTcl class with a simple
interface and several stackable implementations. Http
uses several structures to track individual connections.
These structures include the message (msg), connection
(conn) and HTTP header (header). Built into the module
is the logic for making outgoing requests directly or via
a proxy.

The basic interface includes methods such as MakeReq
(which uses a callback) and Close. Implementors of the
interface are modules that an application will invoke,
causing the modules to initialize themselves into a
protocol graph. For instance, if an application just
initializes the Http and HttpProxy modules along with a
server loop, the result will be an HTTP tunnel (that is, a
cacheless proxy). If it also initializes the HttpCache
module, then it becomes a caching proxy.

HTTP Server: This includes a server loop and a simple,
mock HTTP server. The server loop enables a socket
listening on a port or ports to process incoming requests.
Each request is broken apart into command and target
and then dispatched to the handler for server using that
socket. The HTTP server reads disk files and returns
their contents to the remote side. It understands several
special CGI-like file types. One is called htcl, which is
Tcl code to be evaluated in a slave interpreter, the output
of which is sent to the remote. Another is thtml, which is

an HTML file with embedded Tcl code that is expanded
via subst. htcl is used to create the Caubweb control
panel pages, which include dynamically updated data
from Caubweb’s state.

HttpCache: This is an obTcl class that configures itself
above Http in order to transparently trap requests from
the higher levels and take appropriate action based on the
state of the cache.

HTML Parser: This is a variant of the HTML parser
from sntl [23] combined with changes from SurfIt [1],
which are based upon Steve Uhler’s html_library.tcl[30].
It has been heavily modified so that it is re-entrant and
can parse incrementally. Additional work went into
cleanly splitting the main logic apart so that it is no
longer driven to render the HTML it parses. Finally, it
can be told to parse against tagsets, so that a document
can have particular information located in it. Caubweb
uses a tagset to find rendering elements (e.g.,),
hyperlinks (e.g., <A HREF>) and other assorted
references.

Weblet: This module implements the “weblet walker,”
which is responsible for identifying and fetching into the
cache all members of each weblet. It makes substantial
use of work list and queue management abilities.

5. Tcl’s Strengths and Weaknesses

Arguments about the suitability of Tcl for any given
project usually focus on several key concepts, such as the
interpreted nature, the “everything is a string” model, its
use as a glue language, and the ease of constructing user
interfaces with Tk. These aspects derive directly from
Tcl’s roots but do not necessarily reflect the use of the
language to implement complete stand-alone
applications such as ours. We used Tcl to construct an
entire application, which allowed us to focus on some
different key aspects of the language. We present some of
our observations here.

5.1 Portability

Tcl, being a scripting language, affords a natural
portability of code. This concept, along with the (at that
time) forthcoming Windows and Mac ports of Tcl 7.5,
meant that an implementation of our system in Tcl could
easily allow us to “buy into” a truly portable system. This
mostly came true. To date, we have run Caubweb
snapshots on Windows95 and Windows NT, most flavors
of UNIX, and the Macintosh (System 7.0 and higher). In
addition, the InfoPad project at the University of
California, Berkeley, has used Caubweb on its base
station running Unix to provide disconnected access to
web pages via the InfoPad. However, support on multiple
platforms required more effort than we originally

expected.

Creating pure Tcl is a useful approach to avoiding
machine dependencies. It means that end users can
utilize scripts without work such as compiling new code.
Prior to Tcl 7.5, the general rule was that a new extension
had to compile its modules and then statically link with
the Tcl libraries itself. This process resulted in large
binaries with limited mixtures of extensions. The new
load command resolves this problem.

However, not everything can be made with pure Tcl.
Caubweb depends upon two key mechanisms (copychan
and host) that are implemented in C as a minor extension.
This requires us to provide source code and force end-
users to compile it. We take the middle approach of also
providing the pre-compiled loadable modules for some
number of supported platforms. This still requires work
to compile the module on all the platforms we support,
but that happens infrequently, when we make a change in
the source of the loadable module.

This work is often well worth doing. We have long
believed that some Tcl/Tk applications win users over
better than others based upon the convenience of
installing and using the application. When the system is
portable with little or no effort, a user will be inclined to
use it. The Tcl community is littered with systems that
have not achieved broad user acceptance, such as tkwww
[27] and tknews [26]. On the other hand, systems such as
exmh [31] match this model.

The negative side effect of using a compiled extension
is that it becomes an additional portability constraint.
Requiring a mechanism that is only available as a
compiled extension (or some other compiled C code)
adds an obstacle for the casually interested party to try
out the system on an unsupported platform. This may
well reduce the set of people who choose to evaluate a
new system.

This trade-off was constantly evaluated during the
project to decide when and what components were to be
used in the system. In the end, we ended up with three
loadable modules, only one of which was required by our
system (copychan). The other two (host and the obTcl
accelerator) are optional; pure Tcl code exists to
implement the functionality of each module if it is not
available. This allows us to get the performance gain of
the loadable module when we have done the compilation
work, allowing us to speed up the system when we are
committed to it on a particular platform.

This trade-off was also partially responsible for us not
using other extensions, like MTtcl [10] or Incr Tcl [15],
although other reasons played a role for these extensions
(i.e., they were not initially available for Windows and

the Mac).

Even with Tcl’s high degree of portability, we still had
significant problems. Our first concern was (at that time)
the ongoing development of Tcl 7.5. The Mac and
Windows ports contained many bugs that prevented the
system from being directly used. For much of 1996, we
had to provide our users with bug fixes for Tcl 7.5 and
later Tcl 7.6. To avoid causing our end users to acquire
the tools to compile under Windows and MacOS, we also
provided binaries of the fixed Tcl/Tk distribution on
those platforms.

5.2 Extensibility for Performance

For Tcl, the extensibility mechanism is a direct trade-
off against portability. But, when performance really
matters, it is time for a compiled C extension. In the end,
we took a cautious approach of only utilizing loadable
modules that were either absolutely required for
Caubweb to work or for which we could easily provide a
workaround that was written in plain Tcl (at a
performance penalty).

We added copychan for this reason. It is a derivation
of unsupported0, which has become fcopy in Tcl 8.0.
However, it has two important characteristics. First, it
properly returns the number of bytes copied and, thus,
never loses data. This allows us to use it reliably to copy
data from a web server into a cache file and know that the
cache file is correct (fcopy also has this characteristic).
Second, it allows us to “multicast” the data to multiple
file channels. This allows us to utilize the same data
stream from a web server to create the cache file and to
return the data to the user’s browser. The result is that we
save significant compute time doing a read/write/write
from a Tcl loop. In addition, prior to Tcl 8.0, it was
impossible to program that loop in Tcl at all, since there
was no reliable way of storing the file data in a Tcl
variable (since the data could contain arbitrary binary
data).†

One area in which additional performance would have
been useful was in parsing and manipulating HTML.
Until the ability was added to parse HTML files
piecemeal (using a trick from SurfIt! [1]), this was a
major cause of perceived sluggishness in Caubweb.
However, when weblet retrievals are in progress, the
overhead of parsing HTML consumes the vast majority
of Caubweb’s compute time. Caching the hyperlink
references derived from the HTML parsing may alleviate
this problem.

†. Several extensions would have helped in this regard, the
most interesting being the memchan extension [12].

6. Revisiting the Decision to Use Tcl

Many of the basic reasons for choosing Tcl have paid
off handsomely. The language has proved suitable for
constructing our system. The ease of writing has proven
itself over and over, as new capabilities are easily added
to the system. The learning curve for producing usable,
good code for project engineers has been short.

A significant advantage has been achieved in the lack
of problems related to fixed size string buffers, data
structures, memory allocation, garbage collection, and
stray pointers. These common problems have plagued
numerous systems, including other web systems (servers
and browsers).

In addition, Tcl mechanisms sometimes lead to
particularly elegant implementation techniques. The best
example of this is the weblet template language, which is
internalized into a form that can be directly evaluated by
the Tcl interpreter. As a result, for very little cost we have
created a powerful and expressive syntax for describing
web page relationships without being burdened with
building the expression evaluation engine.

Nonetheless, some aspects of Tcl were problematic;
we discuss these below.

6.1 Issues in Event Handling

Tcl has an inherent event-driven nature. This is
derived partially from the historic implementation of Tk
and windowing systems, and due to bias on the part of
the language designer [19]. This forces any complex
system such as Caubweb to use an architecture of
asynchronous execution with callbacks. This is a
workable solution, but it does have drawbacks. Any
operation that blocks the return to the event loop causes
the application to appear to hang momentarily. There are
some ways to avoid this, such as the work to make the
HTML parser compute in smaller quanta. However,
there are situations in which one cannot avoid blocking
and for which Tcl provides no help. Hostname (DNS)
lookups in the socket channel code is one example. This
causes the application to become entirely unresponsive,
and the user to complain. This is true for Caubweb and
for other Tcl-based systems (this is a common user
complaint about exmh, which even has a secondary
helper process to avoid this problem).

An alternative to this approach might be to use a
threaded operating system with a threads extension to
Tcl and then partition the application so that significant
work is done in separate interpreters, each in their own
thread. This is the approach take with Audience1 [21].
By having operating system support for threads, a single
thread can block in an operation and not prevent other

threads from continuing execution. This naturally limits
the use of the application to those systems that support
this collection of abilities. Further, the model of separate
interpreters causes other problems, as state (variables)
can not be shared across interpreters and thus must be
duplicated, with the cost being paid in the memory
footprint of the system.

To contrast, even a language like Java designed with
threads in mind only partially escapes this problem.
Threads are supported even on systems where there is no
underlying operating system support. Java forces all I/O
to be asynchronous but does not force the event-driven
model on the programmer. Java actually goes the other
way; whereas I/O is asynchronous, the I/O interfaces are
not. Thus, to read on a stream, a thread is forced to block.

6.2 Tcl Changes

Our work began when Tcl 7.5 was still in alpha
testing. Our initial framework used TclX 7.4 as a stopgap
until 7.5 was stable enough. The process of working
against a moving target has occasionally been painful.
Not having a Windows port of Incr Tcl meant that any
useful object-oriented extension needed to be pure Tcl so
that we could use it on all our platforms. Along the way
we have helped to debug several serious problems in the
socket code for the Windows and Mac ports. It was not
until Tcl 7.6p2 that we finally were able to stop shipping
our own Tcl binaries.

This is not a complaint about the work that the Sun Tcl
Group produces, but rather an observation about
differing priorities. Their priorities have been different
than what we would have liked. Completeness and
correctness in the socket code is more interesting, to us,
than completeness in native look and feel.

6.3 The Impact of Tcl 8.0

The worst shortcoming we have come across in our
Tcl work can be summed up in two quick points: the need
for extensions to support basic language operations (OO
and megawidget paradigms, binary I/O) and the overall
performance of an interpreted system. These have been
identified by many people in the past [21]; as of this
writing, Tcl 8.0 has been released in beta form, and a new
age is upon us.

To be sure, it does not solve all the problems.
However, performance measurements show some
marked improvements in some areas, new I/O
mechanisms will allow arbitrary data to be manipulated
without the potential loss of information, and a common
core mechanism for namespaces opens the door to a
unified OO mechanism.

These potential benefits come with a price. Our

system will need substantial changes to work with the
new incompatibilities introduced with these new
mechanisms. For instance, obTcl uses the familiar “::”
separator between class and instance, but this is now
usurped by the namespace facility. Consequently, none
of our existing obTcl-based code can work with Tcl
8.0b1. With obTcl now no longer being maintained, we
must revisit the decision to use obTcl. Will Incr Tcl be
adapted to the new namespace mechanism quickly?

In addition, while fcopy replaces some of the
mechanism of copychan, it does not handle multiple
destinations. Hence, there will still be a need for our own
modified versions.

6.4 Call to Arms for the Tcl Community

When reviewing features that different languages
have to offer, one notices that Tcl is missing a rich,
cohesive, organized, standard library. The community,
while building many fine components and libraries, does
not have a mechanism in place to collect those
components in a single library structure. Tcl code is too
often reinvented, ignoring the advantages that comes
from reusing existing software [24].

The Tcl contributed archive is a start at constructing
such a library. However, much of the code in the archive
is out of date and little of it can be expected to work
together. The archive is exactly that, a static collection of
what has been done rather than a unifying repository
against which applications can be built.

In contrast, other language environments come with
these components. Java has the JDK (and more). Perl has
a rich set of primitives plus CPAN [3], a well organized
library of additional code. CPAN is so successful that a
single implementation of a module tends to be adopted
by the community; further, changes by the community
are often actively merged back into the library.

We believe that Tcl needs an archive like CPAN. The
existing contributed Tcl archive includes reusable code,
but the cost of reuse is almost always too much work. A
single, cohesive library would mean there would not be
five different HTML parsers or four different HTTP
implementations, and that Tcl developers could create
new and interesting things rather than spending time
reinventing these same old pieces.

Tcl, to date, has avoided providing much in the way of
auxiliary library code. Tcl 8.0 breaks from that tradition
in a significant fashion by providing an new http package
that implements some of the most useful client-side
HTTP operations. This could be the start of a new, useful
extended library, if only other existing useful code is
incorporated.

Additionally, the core needs to embrace other sorely
missing operations as Tcl language constructs. We
believe there is a need for lower level bindings to a
complete set of POSIX C library functions. This
mechanism would support scripts in accomplishing
work that currently requires a loadable module written in
C.

When considering such a community library, one also
needs to consider what might be expected from the Tcl
core to empower reusable code. With the support of
namespaces, an encapsulation mechanism for the
benefits of data hiding can become standard. A full
object-oriented environment is not necessary, but a
mechanism like Incr Tcl’s ensemble or the major/minor
extension alone might be sufficient. Other noteworthy
items include the framework changes for megawidget
support and the core hooks to provide useful debugger
support (such as single stepping).

6.5 Contributed Core Changes

The evolution of the Tcl core has progressed too
slowly, in contrast to Java where change happens too
quickly. This forces the Tcl developer community to
create needed infrastructure themselves. If the core
eventually incorporates this mechanism, it typically uses
an incompatible implementation. By taking the slow
approach to incorporate these changes, the effect of
making the developer’s code out of date is that the
community always has new hurdles to overcome just to
keep current with Tcl.

7. Conclusion

We have developed a substantial server-based
application, targeted to multiple platforms, using Tcl. We
selected Tcl for platform-portability, extensibility, and
ease of distribution, and it satisfied those criteria
relatively well. The extensibility turned out to be
particularly important because of deficiencies in
evolving versions of Tcl that were either platform-
specific or related to core functionality. We identified
strengths and weaknesses of Tcl that stood out during our
work, and we challenged the Tcl community to work
together to create a rich, cohesive, standard library.

The Caubweb application uses a set of components
(Cobweb) which we have already re-used in an ancillary
application called CaubView. It is based upon
HistoryGraph [8][9], the result of another project in our
organization that used Tcl. HistoryGraph was a
visualizer that allowed a user to dynamically view
relationships among web pages retrieved by the user’s
browser. A revised version of HistoryGraph serves as a
prototype for viewing relationships within the Caubweb
cache. Revisions included adding new relationship

calculations and replacing some prototype components
with more robust equivalents from Cobweb, such as the
HTML parser, the URL class, and the HTTP protocol
modules. Incorporating the Cobweb components took
less than one week.

Availability

The latest version of Caubweb (including the Cobweb
library), instructions for its use, release notes, and user
mailing lists are available for our web page:

http://www.opengroup.org/RI/www/dist_client/
caubweb/

Caubweb is covered by distribution terms that allow
free use and redistribution of the system or Tcl source for
non-commercial research and evaluation purposes.

Acknowledgments

This research was supported in part by the Defense
Advanced Research Projects Agency (DARPA) under
the contract number F19628-95-C-0042. The views and
conclusion contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S.
Government.

Stavros Macrakis identified some of the initial
important concepts in the Distributed Clients project.
Charlie Brooks developed the merge-back aspects and
substantially improved CaubView, the initial version of
which was contributed by Scott Meeks, based on the
HistoryGraph work of Meeks, Frederick Hirsch, Charlie
Brooks, and Murray Mazer [8]. Charlie Brooks,
Frederick Hirsch, Susan LoVerso, Mary Ellen Zurko, and
the workshop reviewers provided useful feedback that
improved the contents and presentation.

Caubweb is a trademark of The Open Group Research
Institute. Other trademarks are the property of their
respective companies.

References
[1] S. Ball, “SurfIt! A WWW Browser,” Proc. Fourth Annual

Tcl/Tk Workshop, Monterey, CA, USA, July 1996, pp. 161-
171.

[2] C. Brooks, M.S. Mazer, S. Meeks, and J. Miller,
“Application-Specific Proxy Servers as HTTP Stream
Transducers,” Proc. Fourth International World Wide Web
Conference, Boston, MA, USA, December 1995, pp. 539-
548. http://www.w3.org/pub/Conferences/WWW4/Papers/
56/

[3] Comprehensive Perl Archive Network (CPAN), http://
www.perl.org/CPAN/CPAN.html

[4] R. Fielding et al., “Hypertext Transfer Protocol - HTTP/

1.1,” RFC 2068.
[5] P. Floding, patrik@dynas.se, obTcl 0.57b3,

ftp://ftp.dynas.se/pub/tcl/
[6] Forefront Technologies. http://www.ffg.com/whacker/

whacker_tech.html
[7] J. Gosling, B. Joy, and G. Steele. The JavaTM Language

Specification, Addison-Wesley, 1996.
[8] F.J. Hirsch, W.S. Meeks, and C.L. Brooks, “Creating

Custom Graphical Web Views Based on User Browsing
History,” Sixth International World Wide Web Conference,
Santa Clara, CA, USA, April 1997. http://
www.opengroup.org/RI/www/waiba/papers/www6/
hg.html

[9] F. J. Hirsch, “Building a Graphical Web History Using Tcl/
Tk,” Fifth Tcl/Tk Workshop, Boston, MA, USA, July 1997.

[10]S. Jankowski, booga@netcom.com MTtcl documentation,
ftp://www.neosoft.com/pub/tcl/sorted/devel/
MTtcl1.0.tar.gz

[11]R.H. Katz, “Adaptation and Mobility in Wireless
Information Systems,” IEEE Personal Communications, 1
(First Quarter 1994), pp 6-17.

[12]A. Kupries, a.kupries@westend.com, “Memory Channels
in Tcl,” ftp://ftp.westend.com/pub/aku/memchan1.2.tar.gz

[13]M.S. Mazer et al. “Issues in Mobile Computing Systems:
Guest Editor’s Note,” IEEE Personal Communications,
Special Issue on Mobile Computing, December 1995, pp.
12-13.

[14]M.S. Mazer and J.J. Tardo, “A Client-side-only Approach
to Disconnected File Access,” Proc. IEEE Workshop on
Mobile Computing Systems and Applications, December
1994, pp 104-110.

[15]M. J. McLeannan, “[incr Tcl]: Object-Oriented
Programming in Tcl,” Proc. of the Tcl/Tk Workshop,
University of California at Berkeley, CA, June 10-11, 1993.

[16]J. Miller, P. Resnick, and D. Singer. “Rating Services and
Rating Systems (and Their Machine-Readable
Descriptions),” World Wide Web Journal, Vol. 1, No. 4, Fall
1996, O’Reilly and Associates, Inc.

[17]The Open Group Research Institute, Project Overview for
Distributed Clients,
http://www.opengroup.org/RI/PubProjPgs/
dist_clients.html

[18]The Open Group Research Institute, Project Overview for
Intelligent Browsing Assistance for the WWW, http://
www.opengroup.org/RI/PubProjPgs/waiba.html

[19]J. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley,
1994.

[20]J. Ousterhout, “Why Threads Are A Bad Idea (for most
purposes)”, Proc. 1996 USENIX Technical Conference,
January 1996.

[21]A. Sah, et al., “Programming the Internet from the Server-
Side with Tcl and Audience1TM,” Proc. Fourth Annual Tcl/
Tk Workshop, Monterey, CA, USA, July 1996, pp. 183-188.

[22]M. Schickler, M.S. Mazer and C. Brooks, “Pan-Browser
Support for Annotations and Other Meta-Information on
the World Wide Web,” Proc. Fifth International World
Wide Web Conference, Paris, France, May 1996. http://

http://www.opengroup.org/RI/www/dist_client/caubweb

www5conf.inria.fr/fich_html/papers/P15/Overview.html
[23]S. Shen, slshen@lbl.gov, Sam’s New Tcl Library 0.4, ftp:/

/www.neosoft.com/pub/tcl/sorted/devel/sntl-0.4.2.tar.gz
[24]H. Spencer, “How to Steal Code -or- Inventing The Wheel

Only Once”, Proc. Usenix Conference Winter 1988, Dallas,
TX, USA, February 1988, pp. 335-345.

[25]T.H. Romer et al., “The Structure and Performance of
Interpreters,” Proc. ASPLOS VII, Cambridge MA USA,
October 1996.

[26]tknews news reader, version 1.2b, ftp://www.neosoft.com/
pub/tcl/sorted/net/tknews.1.2b/tknews.1.2b.tar.gz

[27]tkWWW World Wide Web browser, version 0.12, http://
www.mit.edu:8001/afs/athena.mit.edu/course/other/
cdsdev/html/welcome.html

[28]Traveling Software, http://www.gowebex.com/
[29]L. Wall, T. Christiansen, and R.L. Schwartz. Programming

Perl (2nd Edition), O’Reilly and Associates, Inc., 1996.
[30]B. Welch, S. Uhler., “Tcl/Tk HTML Tools,” Proc. Fourth

Annual Tcl/Tk Workshop, Monterey, CA, USA, July 1996,
pp. 172-182.

[31]B. Welch, exmh mail reader, http://www.smli.com/
~bwelch/exmh/

