
The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium

Salt Lake City, Utah, June 1995.

For more information about USENIX Association contact:
1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

MIME Object Security Services:
Issues in a Multi-User Environment

James M. Galvin and Mark S. Feldman
Trusted Information Systems

MIME Object Security Services: Issues in a Multi-User Environment

James M. Galvin <galvin@tis.com>
Trusted Information Systems

Mark S. Feldman <feldman@tis.com>
Trusted Information Systems

1. Introduction
An Internet email message consists of two parts: the
headers and the body. The format of the headers and
how they should be interpreted is described in
RFC822 [1]. The body is text under the user’s control
and is not changed during normal mail transport.

Privacy Enhanced Mail (PEM) [2,3,4,5] was the first
Internet standard to address security in email messages.
It adds structure to message bodies to provide digital
signature and encryption to text-based email messages.
It uses a certificate-based key management system,
based on the X.509 [6] standard.

Multipurpose Internet Mail Extensions (MIME) [7]
was developed to provide for multi-part textual and non-
textual email message bodies. It defines a structure for
the format of the body. However, until recently, MIME
did not include support for security services.

A specification has been proposed that defines a
framework for digitally signing and encrypting MIME
objects: Security Multiparts for MIME [8]. The
framework provides an embodiment of a MIME object
and its digital signature or encryption key. It was
designed to be useful by a variety of security protocols.

The MOSS protocol [9] is a derivative of PEM.
Although a MIME message could carry a PEM object
or a PEM message could carry a MIME object, a better
solution is to combine the features of both and provide
a single, uniform solution in which the protocols
function in a complementary fashion. MOSS is just
such a solution.

MOSS enhances the MIME protocol without changing
its currently supported functions or features. It uses the
security multiparts framework to provide digital
signature and encryption protection to single- and multi-
part textual and non-textual MIME objects. MOSS
expects MIME objects as input and outputs MIME
objects.

MOSS is PEM insofar as it supports all of the
functionality and features included in the PEM protocol.
However, MOSS does not enforce some of the

functionality required to be enforced by PEM. It also
provides more functionality than PEM, including some
that PEM could never provide.

The popularity of the MIME protocol continues to
increase. There are several publicly available
implementations for various hardware/software
platforms and a few off-the-shelf products. In addition,
the need for secure electronic communications is
paramount, and PEM is not meeting the needs of the
user community. The security multiparts framework
and MOSS are a natural evolution of the state-of-the-art.

However, it is not enough for vendors to implement
MOSS. A MOSS implementation must address the
protection of the public/private key pairs used by the
protocol. The MOSS specification includes a
description of the issues that must be addressed but does
not provide specific solutions. Following a brief
summary of the protocol, the next section discusses the
protection of the public/private key pairs and proposes a
software-based solution. This solution is applicable to
other protocols.

2. MOSS Protocol
The basic operation of a single application of the
MOSS protocol is to input a MIME object and to
output a MIME object. The input object may be any
valid MIME object, including an output object from a
previous application of the MOSS protocol. The
output object is an embodiment of the input object and
the control information that specifies which security
service was applied to the object. This embodiment
may be conveyed to a recipient or archived for later use
by its originator. An overview and some details about
each of the security services is described below.

The MOSS protocol is independent of the cryptographic
algorithm used in support of its security services. The
current specification includes recommended choices to
facilitate interoperability. If other choices are desired,
the required features of the algorithms needed are
specified.

2. 1 Overview
The two possible embodiments output by the MOSS
protocol are defined by the security multiparts
framework. When a digital signature is applied to a
MIME object the multipart/signed content type is used.
When encryption is applied the multipart/encrypted
content type is used. Each of these content types is
comprised of two nested objects: one for the MOSS
control information and one for the protected MIME
object. The content of each of these is described in
succeeding sections.

The MOSS protocol assumes that there exists a
public/private key pair for the originator applying the
digital signature. When encryption is applied, the
MOSS protocol assumes that there exists a public key
for each recipient. Specifically, although the MOSS
specification acknowledges the importance of validating
the public keys used and evaluating the degree to which
private keys are protected from disclosure, the issues are
considered independent topics and not addressed.

MOSS differs from PEM in this respect since PEM
requires that public keys be embodied in certificates that
are managed by the Internet Certification Hierarchy
defined in RFC1422. MOSS, in addition to supporting
certificates, has the advantage of supporting bare
public/private key pairs. This makes the protocol
immediately usable by individuals and small
communities of cooperating users.

Since the MOSS protocol uses the security multiparts
framework, it can and does take advantage of the
recursive characteristic of MIME. A MIME object can
have either a digital signature or encryption applied to it
or, if it has already had one applied to it, can have
another applied by simply using the output object of
the previous application as the input object to the next
application of the MOSS protocol. In the case of
encryption, this allows it to be used by itself, in partial
support of encrypted anonymous email.1 It also allows
different protection to be applied to different parts of the
email message, in arbitrarily complex ways.

Here again, MOSS differs from PEM, since PEM
requires that encrypted objects be signed. Also, PEM
does not currently specify how to recursively apply its
services. Although the PEM specifications could be

1 The issue is the headers of the email message typically
provide at least a hint of the origin of the message. So,
while the source of the encrypted MIME object can be
anonymous, the source of the message in which it appears
may not be.

enhanced to include this, MOSS inherits the
characteristic from MIME.

2. 2 Digital Signature
The MOSS protocol supports the application of a
digital signature by hashing the MIME object to be
digitally signed and encrypting the hash value with a
private key of an originator. A set of header/value pairs
is created, formatted according to RFC822, and, where
the header names match header names used by PEM, the
values are set exactly as they are for PEM. In addition
to other management information, the signature
(encrypted hash value) is included in the set of headers.

Prior to hashing the MIME object to be signed, the
object must be represented in 7bit MIME canonical
format. This guarantees both that a forwardable
authentication service is always available and that the
object is uniquely and unambiguously represented on all
hardware/software platforms.

The MOSS headers created are inserted in the control
information body part of the enclosing multipart/signed
content; the signed MIME object is inserted in the other
body part and labeled according to its actual type.

The digital signature is verified by the recipient as
follows.

1. The received signed object is canonicalized.

2. The hash value of the canonical object is re-
computed.

3. The encrypted hash value found in the control
information is decrypted with the originator’s public
key.

4. The re-computed value is compared to the decrypted
value. If the values are equal and the correct public
key is used, the signature is valid.

Determining whether the correct public key has been
used is essential to the validation of the digital
signature. A complete discussion of the issues is
beyond the scope of this paper but may be found
in [10].

2. 3 Encryption
The MOSS protocol supports encryption by generating
a new encryption key for each MIME object to be
encrypted and encrypting the object with it. The
encryption key is then encrypted with the public key of
the recipient(s) for whom the object is intended,
including the originator if that is desired. A set of
header/value pairs is created, formatted according to

RFC822, and, where the header names match header
names used by PEM, the values are set exactly as they
are for PEM. In addition to other management
information, the encrypted encryption key is included in
the set of headers.

The MOSS headers created are inserted in the control
information body part of the enclosing
multipart/encrypted content; the encrypted MIME object
is inserted in the other body part and labeled
application/octet-stream.

A recipient decrypts an encrypted object by obtaining
the encrypted encryption key from the control
information, decrypting it with the recipient’s private
key, decrypting the MIME object with the decrypted
encryption key, and processing the output of the
decryption as a MIME object.

3. Non-Protocol Issues
There are three issues not specifically addressed by the
MOSS protocol specification that are important to any
implementation.2 These issues relate to the security of
local information. In a single-user environment, a user
controls the physical access to the computer. As a
result, the user may not be concerned about what others
may do to or with the information on the computer.
However, a user should still employ additional
protection in case physical security is lost.

However, in a multi-user environment, users must be
concerned about both the integrity and the privacy of
their information beyond physical security. In order to
apply the MOSS protocol, an implementation must be
able to access two kinds of information: private keys
and public keys. The private keys are needed to
digitally sign MIME objects and to decrypt the
encryption keys of encrypted MIME objects. The
public keys are needed to verify digital signatures and to
encrypt the encryption keys of encrypted MIME objects.

With respect to private keys, the principal issue for a
user is preventing the disclosure of the private key to
others. If an adversary learns the user’s private key,
they would be able to sign MIME objects and make it
appear as if the user had signed the object. In addition,
the adversary would be able to read MIME objects
encrypted for the user. When a user’s private key is
disclosed, no security is available to the user with that
public/private key pair.

2 One issue explicitly not addressed at this time is the
vulnerability of the software to Trojan horses. This paper
assumes root is not hostile.

With respect to public keys, a user labels the public
keys owned by other users with their identity. The
principal issue is preventing modification of the binding
between the public key and the identity of its owner. If
an adversary could modify the binding, a recipient would
incorrectly believe the indicated origin of a signed object
or an originator would unintentionally encrypt a
message for the wrong recipient, probably the adversary.
When a binding is compromised, no security is
available between the local user and the owner indicated
by the previously valid binding.

Finally, a MOSS implementation must have access to
a source of randomness, more precisely a source of
unpredictable bits. The unpredictable bits are required
when generating public/private key pairs for users and
when generating encryption keys for sending encrypted
messages. As many as several thousand bits may be
required each time they are needed. Without hardware
support, the bits can be difficult to obtain [11].

There are many solutions for these issues, including
hardware, software, and hybrid approaches. In this paper
we consider only software solutions for several reasons.
First, software solutions are applicable to a broader
range of environments. Any changes required for a new
environment can usually be completed quickly and
easily. Second, software solutions are quick and easy to
install, since they do not require any specialized
hardware or other computing resources. Third, software
solutions are typically less expensive than alternate per-
host or per-user hardware solutions.

3. 1 Protection of Private Keys
If private keys are kept on-line, they are vulnerable to
access by unauthorized users. File permissions alone
are not adequate for protecting private keys on most
systems, though they are part of an overall solution.
Private keys protected only by file permissions are
vulnerable to account intruders and the accidental mis-
setting of the file permissions.

One solution is store the private key in a file on a
removable media, e.g., a diskette. Since diskette drives
are typically included with most hardware
configurations, the user is not burdened with a
significant additional cost. However, if the diskette is
lost or otherwise not physically protected, the private
key is still vulnerable.

Encryption is an accepted solution for protecting
information from disclosure. However, encryption also
requires access to a key that must be protected from
disclosure.

A solution to this problem is to derive the encryption
key needed to encrypt the private key from easily
available information. This process is straightforward
for secret key algorithms, while no similar solution has
been proposed for public key algorithms.

The recommended advice is to make the easily available
information a passphrase selected by the user. A
passphrase is different from a password in that no
restrictions are placed on its length or value. This
accomplishes two important features. First, the domain
from which the passphrase is chosen is limited only by
the input device used by the user. Second, the user can
select an easily remembered value, e.g., a favorite
quotation or other concatenation of many easily
remembered words. Whenever the private key is needed,
the user enters the passphrase, the encryption key is
derived, the private key is decrypted, and then the private
key is available for use.

The combination of file permissions and encryption
provides effective non-disclosure protection to a user’s
private key, if the user chooses an appropriate
passphrase. Better protection is provided if the file
containing the encrypted private key is stored on a
removable media, e.g., a diskette.

3. 2 Protection of Public Keys
There are two issues relevant to the protection of public
keys. The first is establishing the identity of the owner
of the public key and the second is protecting the
binding of the identity and the public key.

With respect to the first (establishing the identity), an
issue that is beyond the scope of this paper is exactly
what constitutes an identity. A discussion of this issue
can be found in [10]. In addition, an originator needs a
mechanism with which an identity and a public key
may be conveyed to recipients for storage in the
recipients’ local databases. The MOSS protocol
includes a specification for just such a mechanism, that
is not described here.

With respect to the second (protecting the binding), the
recommended solution is to create a cryptographic
binding between the public key and the identity. Since
the MOSS protocol works with bare public/private key
pairs, the most basic solution is for each user to
digitally sign entries in their own local databases. This
reduces the problem of protecting public keys to the
problem of protecting private keys.

Preventing the modification of the binding between
public keys and identities is essential to the correct
operation of the MOSS protocol. As indicated in the

MOSS specification, a user must determine that all
public keys received actually belong to the user to
whom they purport to belong. The first time this
validation process is completed is expensive, since it
may involve an out-of-band communication with the
owner of the public key. Thus, upon completion of
this process, the user may choose to store the results
with the public key in the database. However, if the
database is kept on-line, it is vulnerable to modification
by other users.

Digitally signing entries in a local database allows a
user to keep the public keys on-line and to be able to
detect if a binding has been modified. Whenever the
public key is needed the signature would be verified
first, thus guaranteeing that the binding of the public
key and its name has not been modified since it was
stored.

It should be noted that the above protection is useful
even if the public keys are distributed in certificates.
For those correspondents using certificates that are part
of a hierarchy and not just bare public keys, the user
could validate the certificate the first time it is received
and store the result with the certificate, digitally signing
all the information in the entry in the local database.
This would enhance the performance of an
implementation since it may not be necessary to
complete the entire certificate validation each time it is
accessed.

3. 3 Unpredictable Bits
The ready availability of a sequence of unpredictable
bits, which are distinct from random bits, is absolutely
essential to the generation of public/private key pairs
and encryption keys. Randomness is a statistical
property of a sequence of values. The requirement is for
an adversary to be unable to predict the next bit in a
sequence even when all previous bits are known.
Pseudo-random number generators rarely include this
absolutely essential property.

The problem is if it is possible to predict some of the
sequence of bits used, it may be possible to reduce the
size of the domain from which the key being generated
is selected. If the domain is significantly reduced, an
exhaustive search of the domain for the key may be
possible.

Locating a source of unpredictable bits presents a unique
problem on multi-user systems (and most single-user
systems for that matter). Typically, a hardware source
of unpredictable bits is not included with most system
configurations. Although most computer systems
include applications that will display the always

changing status of the local system, the unpredictability
of these bits is limited, especially on a lightly loaded
system on which an adversary has access to the local
system around the same time that the keys are being
generated.

The most effective software-based solution currently
available is to hash with a cryptographically strong one-
way hash function the largest quantity of information
with limited unpredictability available. Since a hash
typically generates a fixed size quantity, the process is
iterated as many times as are necessary to get the
required number of unpredictable bits.

4. Implementation
Trusted Information Systems (TIS) has been developing
an openly available implementation of the MOSS
protocol (TIS/MOSS) [12]. It is software-based and
includes all of the solutions proposed here. In
particular, the private keys are each stored in their own
binary file while all other information, including the
public keys, is stored in a flat ASCII file. A sequence
of unpredictable bits is obtained by hashing system
status information.

4. 1 Private Keys
Each of a user’s private keys is stored in its own file
with permissions that are initially created to allow only
the user to read and write the file. The location of the
private key files is up to the user, with the default being
the user’s home directory. Private key files can be
placed on removable media by simply including the
device specification in the filename.

A user may optionally encrypt the private key in the
file. If it is encrypted, the user must input the
passphrase used to derive the encryption key every time
the private key is accessed; the software retains the
decrypted private key for as short a time period as
possible.

From a security perspective, this is the optimal
behavior. However, users quickly become irritated if
they send or receive more than a few messages in a
short time frame. As a result, TIS/MOSS includes a
feature that allows users to choose usability over
security. A pair of programs, mosslogin and
mosslogout, is included with which users may enter
their passphrase once for a timeframe they choose.

Each file is formatted as a sequence of octets, with the
first octet excluded from any encryption that may be
used to protect the private key. The first octet is used

for bit flags that indicate if the private key is encrypted
and the algorithm with which it is encrypted.

The next 16 octets are a hash of the private key with the
remaining octets comprising the ASN.1 encoding of the
private key. Encrypting the private key entails
encrypting the octets of the hash and the encoded private
key.

The hash in the file is used as an integrity check of the
private key’s value. This is most useful when the
private key has been encrypted. Checking the hash
value after decrypting the file contents provides a fast
mechanism for determining if the correct passphrase was
provided from which to derive the encryption key.
Without the hash value, the only mechanism by which
the private key’s value can be checked would be to use
it and see if it works. This typically causes an incorrect
failure condition to be reported to the user. TIS/MOSS
uses the MD5 [13] hash algorithm for this check.

4. 2 Public Keys
Except for the private keys themselves, all information
needed by MOSS is stored in a flat ASCII file, called
the MOSS database. The permissions on the database
file should be such that only the user owning the file
can make changes. The database may be left readable by
other users if it is desirable to share it. The user may
have multiple databases and may choose the location of
each database. The default is a single database in the
file “.mossdb” in the user’s home directory.

The database is organized as a set of user records
separated by a blank line. Each user record is organized
as a set of tag/value pairs, which conform to the
RFC822 header syntax. This format is extensible and
easily processed using many tools.

The tags described in this paper are those necessary for
implementing local security. TIS/MOSS makes use of
many other tags and silently ignores all unrecognized
tags and their values.

Within a user record, all tags except the “public-key:”
tag are optional but, if present and needed, their values
will be used. All tags except the “alias:” tag must be
unique. If multiple tags are present, all except the first
are silently ignored.

The “public-key:” tag is required to be present in each
user record and its value must be unique with respect to
all other public key values in the database. User records
without this tag are silently ignored. Its value is the
base64 encoded, ASN.1 encoded public key.

The “alias:” tag is a grouping mechanism. Its value is
a string. It provides a convenient way of addressing
multiple recipients, for example when sending an
encrypted message. Aliases can be unique to a single
user record in the database or the same alias may appear
in several user records. A single user record may
contain multiple “alias:” tags, with some aliases that
are unique to it and others that are not.

A local name may be bound to a public key by
selecting a string and placing it in an “alias:” tag in the
user record. Its value is arbitrary from the point of view
of TIS/MOSS; the value is always used exactly as it
appears in the database. TIS/MOSS also uses the first
“alias:” tag in a user record for display purposes,
providing a convenient way for a user to specify a local,
short handle for a public key.

A “trusted:” tag is the mechanism with which a user
creates a cryptographic embodiment for each user record
in the user’s database, including the public key and the
local identity specified in the “alias:” tag. The user
record is canonicalized and a digital signature is created.
The digital signature and the alias of the user that
created it are stored as the value of a “trusted:” tag in the
user record. A user may create their embodiment by
adding their own digital signature to user records or the
user may use the digital signature created by another
user.

Whenever a “trusted:” tag is found in a user record, the
digital signature is validated before the information in
the record is used. This protects all information in the
user record from modification. TIS/MOSS always
indicates to a user whether the public keys used came
from trusted or untrusted user records.

4. 3 Unpredictable Bits
Unpredictable bits are required for key generation and for
padding certain cryptographic values. The largest
amount of unpredictable bits is required when
public/private key pairs are generated. Since
public/private key pair generation is relatively
infrequent and all MOSS security is based on the non-
disclosure of the private key, the cost associated with
generating the unpredictable bits may be allowed to be
quite large. When generating unpredictable bits on a
per-message basis for encryption keys and padding, the
same high-cost method of generating unpredictable bits
used when generating public/private key pairs proves to
be too expensive.

The required number of unpredictable bits in TIS/MOSS
is produced by a cryptographically-strong pseudo-
random number generator (PRNG) based on the MD5

hash of a seed. The seed is incremented and hashed
iteratively to produce the necessary amount of
unpredictable bits. The seed is initialized in one of two
ways depending on how the unpredictable bits will be
used.

If the unpredictable bits are being used to generate a
public/private key pair, the seed is based on the hashing
of the output of a large number of system commands.
The system commands included were chosen because
their output has the greatest probability of being
different across multiple executions and hard to guess.
This can be time consuming, but it is an infrequent
operation and public/private key pair generation is
already slow, so the additional time is inconsequential.

It is essential that only commands that are likely to
produce unpredictable output be included. On multi-
user systems, no special privileges are needed for
another user to execute the same set of commands at
approximately the same time and possibly aid an
exhaustive search of the key space. This is especially
important on a lightly loaded system, since otherwise
the output is almost certain to be unpredictable for most
if not all of the commands.

When unpredictable bits are required for purposes other
than generating public/private key pairs, a faster method
of seeding the PRNG is used that makes use of the
unpredictability inherent in the private key. When
unpredictable bits are required for per-message keys or
padding, a value is signed using an existing private key
to produce the seed. The value being signed need not be
unpredictable, but it must be unique. Signing a unique
value produces a value that is unpredictable to anyone
without the private key used to generate the signature.

The uniqueness of the value to be signed is guaranteed
by concatenating values that are specific to a certain
time, a certain machine, a certain user, and a certain
process. The concatenated values are obtained from
system calls. The combination of the system calls and
the signature are guaranteed to produce a seed with at
least as much unpredictability as that in the private key
and in much less time than the method used to generate
unpredictable bits for public/private key pair generation.

5. Conclusions
Software-based solutions have been proposed for
creating and protecting the signature and encryption
keys used in MOSS. The proposals have been
implemented, tested, and found to provide effective
protection against various disclosure and modification
threats.

The software-based solution proposed for obtaining a
sequence of unpredictable bits has served the TIS/MOSS
implementation (and prior to this the TIS/PEM
implementation) for more than two years. Prior to that
several alternatives methods were tried that failed.
Ideally, the best solution is for hardware manufacturers
to include a source of unpredictable bits in all
configurations. The importance of unpredictable values
must not be underestimated.

The MOSS protocol, in conjunction with MIME,
provides a flexible, extensible means by which the
addition of security services can be studied. While
software-based solutions may be sufficient for many
applications today, future work must include the study
and implementation of hardware- and hybrid-based
solutions. TIS has begun experimenting with hardware-
based cryptography and private key storage. TIS/MOSS
has been modified to integrate an experimental
PCMCIA-based cryptographic engine.

In addition, future work must include the study of the
use of trusted systems for secure email applications.
Trusted systems can protect private keys from disclosure
without the use of encryption. They also provide
protection from Trojan horses and hostile roots.

6. References
[1] David H. Crocker. Standard for the Format of

ARPA Internet Text Messages. RFC822,
University of Delaware, August 1982.

[2] John Linn. Privacy Enhancement for Internet
Electronic Mail: Part I: Message Encryption and
Authentication Procedures. RFC1421, February
1993. Obsoletes RFC1113.

[3] Steve Kent. Privacy Enhancement for Internet
Electronic Mail: Part II: Certificate-Based Key
Management. RFC1422, BBN Communications,
February 1993. Obsoletes RFC1114.

[4] David M. Balenson. Privacy Enhancement for
Internet Electronic Mail: Part III: Algorithms,
Modes, and Identifiers. RFC1423, Trusted
Information Systems, February 1993. Obsoletes
RFC1115.

[5] Burton S. Kaliski. Privacy Enhancement for
Internet Electronic Mail: Part IV: Key Certification
and Related Services. RFC1424, RSA
Laboratories, February 1993.

[6] The Directory—Authentication Framework:
X.509, 1993. Developed in collaboration and
technically aligned with ISO 9594-8.

[7] Nathaniel Borenstein and Ned Freed. MIME
(Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the
Format of Internet Message Bodies. RFC1521,
Bellcore and Innosoft, September 1993. Obsoletes
RFC1341.

[8] James Galvin, Sandy Murphy, Steve Crocker, and
Ned Freed. Security Multiparts for MIME:
Multipart/Signed and Multipart/Encrypted. Trusted
Information Systems and Innosoft. Work in
progress.

[9] Jim Galvin, Sandy Murphy, Steve Crocker, and
Ned Freed. MIME Object Security Services.
Trusted Information Systems and Innosoft. Work
in progress.

[10] James Galvin and Sandra Murphy. Using Public
Key Cryptography: Issues of Binding and
Protection. To be published, INET’95.

[11] Donald Eastlake, Steve Crocker, Jeff Schiller.
Randomness Recommendations for Security.
RFC1750, DEC, Trusted Information Systems, and
MIT, December 1994.

[12] Available via anonymous FTP from the host
ftp.tis.com. Users should retrieve the file
/pub/MOSS/README for details.

[13] Ron Rivest. The MD5 Message Digest
Algorithm. RFC1321, April 1992.

