Enhancing NFS Cross-Administrative Domain Access

Joseph Spadavecchiaand Erez Zadok
Sony Brook University
{j oseph, ezk}@s. sunysb. edu

Abstract

The access model of exporting NFS volumes to clients
suffers from two problems. First, the server depends on
the client to specify the user credentials to use and has
no flexible mechanism to map or restrict the credentials
given by the client. Second, there is no mechanism to
hide data from users who do not have privileges to access
it. Although NFSv4 promises to fix the first problem us-
ing universal identifiers, it does not provide a mechanism
for hiding data and is not expected to be in wide use for
a long time.

We address these problems by a combination of two
solutions. First, range-mapping is a mechanism that al-
lows the NFS server to restrict and flexibly map the cre-
dentials set by the client. Second, file-cloaking allows the
server to control the data a client is able to view or access
beyond normal Unix semantics. Our design is compati-
ble with all versions of NFS, including NFSv4. We have
implemented this work in Linux and made changes only
to the NFS server code; client-side NFS and the NFS pro-
tocol remain unchanged. Our evaluation shows a mini-
mal average performance overhead and, in some cases,
an end-to-end performance improvement.

1 Introduction

NFS was originally designed for use with LANS, where
a single administrative entity was assumed to control all
of the hosts in that site and create unique user accounts
and groups. The access model chosen for exporting NFS
volumes was simple but weak. In a different administra-
tive domain, the password database may define different
users with the same UIDs; a UID clash could occur if
files in one domain are accessed from another. Worse,
users with local root access on their desktops or lap-
tops can easily access files owned by any other user via
NFS, by simply changing their effective UID (i.e., using
/ bi n/ su).

Therefore, NFS servers rarely export their volumes
outside their administrative domain. Moreover, admin-
istrators resist opening up access even to hosts within the
domain, if those hosts cannot be controlled fully. Today,
users and administrators must compromise in one of two
ways. Either volumes are exported across administrative
domains and security is compromised, or the volumes
are not exported across administrative domains, prevent-
ing users from accessing their data. Neither solution is
acceptable.

Current NFS servers implement a simple form of se-
curity check for the super user, intended to stop a root
user on a client host from easily accessing any file on the
exported NFS volume. However, current NFS servers do
not allow the restriction and mapping of any number of
client credentials to the corresponding server credentials.
We provide a mechanism for globally restricting access
and hiding data on the server.

We present a combination of two techniques that to-
gether increase both security and convenience: range-
mapping and file-cloaking. Range-Mapping allows an
NFS server to map any incoming UIDs or GIDs from
any client to the server’s own known UIDs and GIDs.
This allows each site to continue to control their own user
and group name-spaces separately while allowing users
on one administrative domain to access their files more
conveniently from another domain. Range-mapping is
a superset of the usual UID-0 mapping and Linux’s all-
squash option which maps all UIDs or GIDs to -2.

Our second technique, File-cloaking, lets the server
determine which ranges of UIDs or GIDs should a client
be allowed to view or access. We define visibility as the
ability of an NFS server to make some files visible under
certain conditions. We define accessibility as the NFS
server’s ability to permit some files to be read, written, or
executed. Cloaking extends normal Unix file permission
checks by allowing administrators to restrict the visibility
and accessibility of users’ files when those files are ex-
ported via NFS. Cloaking is a superset of the NFS server

export options nosui d and nosgi d which prevent the
execution of set-bit files.

Range-mapping and cloaking complement each other.
Together, they allow NFS servers to extend access to
more clients without compromising the existing security
of those files. Whereas ACLs can allow a greater degree
of flexibility than cloaking, ACLs are not available on all
hosts and all file systems, are not supported in NFSv2,
and are partially implemented in NFSv3. Furthermore,
ACLs are often implemented in incompatible ways; this
is one reason why the new NFSv4 protocol specification
lists ACL attributes on files as optional.

Our system is implemented in the Linux in-kernel NFS
server. No changes were made to the NFS client side and
our system is compatible with existing NFS clients. This
has the benefit that we can deploy our system fairly easily
by changing only NFS servers. Our source code is Open
Source Software and protected under the GPL.

We performed a series of general-purpose benchmarks
and micro-benchmarks. Range-mapping has an overhead
of at most 0.6%. File-cloaking overheads range from
72% for a large test involving 1000 cloaked users—to an
improvement of 26% in performance under certain con-
ditions, reflecting a 4.7 factor reduction in network 1/0.

2 Design

Range-mapping and cloaking are features that offer addi-
tional access-control mechanisms for exporting NFS vol-
umes. These features were designed with three goals:
compatibility, flexibility, and performance.

We maintain two types of compatibility. First, we are
compatible with all NFS clients by requiring no changes
to them. Range-mapping and cloaking are performed
entirely by the NFS server. The modifications to the
server force range-mapping and cloaking behavior on the
clients. Second, we maintain compatibility with stan-
dard Unix semantics. We specify range mappings and
file cloaking using a syntax that leaves traditional Unix
behavior the default.

We provide additional flexible access-control mecha-
nisms that allow both users and administrators to control
who can view or access files. We allow administrators to
mix standard Unix and cloaking semantics to define new
and useful policies such as making all world-writable
files inaccessible, hiding all files for which a user has
no group-read access to, and more.

Both range-mapping and cloaking are defined on the
server. NFS clients do not contain range-mapping or
cloaking configuration information. This satisfies the
compatibility design goal that clients remain unmodified
(even in configuration).

2.1 Range-Mapping

Range-mapping is a mechanism for unifying localized
ID namespaces in a distributed environment. A range-
mapping definition is composed of one or more range-
maps. An NFS range-map takes a contiguous range of
IDs on the client and maps them to a contiguous range
on the server. IDs can be either UIDs or GIDs. To be
flexible, two types of mappings are allowed: N-to-N,
and N-to-1. An N-to-N range-map allows N contiguous
client IDs to be mapped to N contiguous server IDs. Such
a range-map is convenient because many modern user
management systems allocate 1Ds in contiguous blocks.
An N-to-1 mapping is a non-bijective mapping from a
contiguous range of N client IDs to a single server ID.
This type of mapping is typically useful for security pur-
poses.

NFS Server NFS Client
UID 10
\ UID 100
UID 200-300
UID 400-500

Figure 1: Range-mapping client UID 100 to server UID 10
and client UIDs 400-500 to server UIDs 200-300. All other
UIDs are restricted.

Range-mapping is done in bidirectionally: forward
range-mapping and reverse range-mapping. Forward
mapping is done when a client sends a request to the
NFS server and the server maps the user’s client UID
and GID to the corresponding server UID and GID. Re-
verse mapping is done when the server responds to the
client (i.e., when reading files from disk) and must map
the user’s server UID and GID back to the corresponding
client UID and GID.

2.2 File-Cloaking

Cloaking is a mechanism that expands visibility and
access-control policies. A cloaking definition consists
of one or more cloak-lists A cloak list is an unordered
list of ID range and cloak-mask pairs. An ID-range is a
contiguous range of server UIDs or GIDs, and the cloak-
mask is a bitmap defining what type of cloaking policy to
enforce on those IDs. Allowing ranges of IDs to be spec-
ified makes it convenient to define cloak lists. The cloak-
mask adds flexibility to the system by allowing standard
Unix and cloaking semantics to be coalesced.

File-cloaking abstracts the concept of file permissions
to allow the distinction between user and administra-
tor access-control. There are three default file-cloaking
rules. First, files are always visible to their owners. Al-
lowing files to be hidden from their owners is not useful
semantics. Second, files that are not visible are not ac-
cessible. If a hidden file can be accessed then its exis-
tence can be verified. Third, files without any permis-
sions are only visible to the owners. This rule keeps
users from circumventing cloaking by removing all per-
missions. These rules mean the following: accessibility
implies visibility and invisibility implies no accessibility
(by the second default rule of file-cloaking).

File-cloaking entries include a 9-bit mask. The mask
corresponds to the following bits: SETUID, SETGID,
sticky, group read, group write, group execute, other
read, other write, and other execute bits, respectively.
This mask is logically ANDed with the UNIX mode bits
on the file. If the AND succeeds then the file is hidden
(i.e., it is cloaked).

The following example shows a cloaking definition:

/home *.exanple.com(rw, \

cloaklist =\
uid 777 0 1000 \
gid 700 100 200)

In this example, there are two cloaking definitions.
The first places the restriction that only UIDs 0-1000
may see or access their files. That is, files on the server
owned by UIDs 0-1000 cannot be seen or accessed by
any user other than the owner. The second definition
states that files owned by UIDs 100-200 are only visi-
ble if there is world access to them or if there is group
access to them, and the user listing the file belongs to the
group of the file.

3 Evaluation

We ran our benchmarks between an unmodified NFS
client and an NFS server using five different configura-
tions set to illustrate worst-case behavior:

1. VAN: A vanilla setup using an unmodified NFS
server.

2. MNU: Our modified NFS server with all of the new
code included but not used.

3. RMAP: Our modified NFS server with range-
mapping configured in / et c/ exports.

4. cLkK: Our modified NFS server with cloaking con-
figured in/ et ¢/ export s.

5. RMAPCLK: Our modified NFS server with
both range-mapping and cloaking configured in
/etclexports.

3.1 General Purpose Benchmark

Figure 2 shows the results of our am-utils compile bench-
mark. This benchmark exercises a wide variety of file
operations, but the operations affected the most involve
getting the status of files (via st at (2)), something that
does not happen frequently during a large compilation;
more common are file reads and writes. Therefore the
effects of our code on the server are not great in this
benchmark, as can be seen from the individual results.

160 T
Cold-Cache m—

140 7

120 - 1

100 - .
80 - 1
60 - .
40 1
20 1
° VAN MNU CLK

RMAP
Test Name

Figure 2: Results of the am-utils benchmark show a small

difference between all of the tests—Iless than 1% between the

fastest and slowest results.

Elapsed Time (seconds)

Our benchmarks here show an overall performance
difference of less than 1% between the best and worst
tests. These results suggest that range-mapping and
cloaking have a small effect on normal use of NFS
mounted file systems.

3.2 Micro-Benchmark Results

Figure 3 shows results of a our first micro-benchmark:
a recursive listing (I's -1 R) we conducted on an
NFS-mounted directory containing 1000 entries. The
/ et c/ export s file on the server was configured with
range-mapping and cloaking such that the user listing
that directory on the client would always see all files.
This ensures that the amount of client-side work, net-
work traffic, and server-side disk 1/O for accessing the
directory remained constant, while making the server’s
CPU experience different workloads.

When our code is included but not used (MNU vs.
VAN) we see a 17.6% degradation in performance. This
is due to the need to check to see if range-mapping or
cloaking are configured for this client. Although sim-
ple, this these checks reside in a critical execution path
of the server’s code—where file attributes are checked
often. Adding range-mapping (RMAP vS. MNU) Ccosts an

1400 T T
Cold-Cache

1200 - 7

1000 - 7

800 - 7

600 7

400 - 7

200 -]
0 CLK

VAN MNU RMAP RMAPCLK
Test Name

Elapsed Time (milliseconds)

Figure 3: Results of recursive listing of directories containing
exactly 1000 entries on the server. The tests were configured
to result in exactly 1000 files being returned to the client each
time (i.e., worst case).

additional 18.1% in performance. This is due to scan-
ning of possibly long linked lists and changing creden-
tial numbers. The cloaking test (CLK vs. MNU) costs an
additional 30.3% in performance. This is due to the fact
that, to ensure compatibility with all NFS clients, cloak-
ing must guarantee that NFS clients do not use cached
file attributes. Therefore the client gets from the server
all of the files each time it lists the directory. Finally, the
worst-case situation (RMAPCLK VS. VAN) has an over-
head difference of 72.3%.

The micro-benchmarks in Figure 3 show the worst
case performance metrics, when both the server and
client have to do as much work as possible. The next
set of micro-benchmarks was designed to show the per-
formance of more common situations and how our sys-
tem scales with the number of range-mapped or cloaked
entries used. These are shown in Figure 4.

The range-mapping bars (RMAP) show the perfor-
mance of listing directories with 1000 files in them, but
varying the number of users that were range-mapped.
For example, range-mapping with 10 users implies that
each user owns 100 files. Given two orders of magnitude
difference for the number of entries used for the three
RMAP bars, the overall overhead difference is just 13.6%.

The bars for cloaked configurations (CLK) show a dif-
ferent behavior than range-mapped configurations. Here,
all 1000 files were owned by cloaked users, but the user
that listed the files on the client was not one of those
cloaked users and therefore was not able to see any of
those files; what they listed appeared on the client as
an empty directory. This test fixed the amount of work
that the client had to do (list an empty directory) and the
server’s work (scan 1000 files and apply cloak rules to
each file). What changed in this test were the number of

1200 —

RMAP mmm
1000 [gpapshR == 1
RMAPCLK

800 [

600

400

Elapsed Time (milliseconds)

200

0 10 100 1000
Number of User Entries in /etc/exports

Figure 4: Results of recursive listing of directories containing
a different number of files while the server is configured with a
different number of mapped or cloaked entries.

cloaked user entries in/ et ¢/ expor t s. The bars show
a small 4.1% performance difference between the largest
and smallest lists.

The last set of bars in Figure 4 shows the performance
when combining range-mapping with cloaking (RMAP-
CLK). Since all of the users’ files were cloaked and
range-mapped, and the user that listed the directory on
the client was one of those users, then that user saw a
portion of those files (the files they own). This means
that the amount of work performed by the client should
decrease as it lists fewer files and has to wait less time
for network 1/0. The RMAPCLK bars indeed show an
improvement in performance as the number of cloaked
user entries increases. The reason for this improvement
is that the savings in network I/O and client-side pro-
cessing outweigh the increased processing that the server
performs on larger cloak lists. Listing the same directory
when we use 100 cloaked and range-mapped entries is
22.3% faster than the directory with 10 entries, because
we are saving on listing 90 files. Listing the directory
with cloaked 1000 entries is only an additional 4% faster
because we are saving on listing just 9 files.

To find out how much cloaking saves on network 1/0O,
we computed an estimate of the 1/0 wait times by sub-
tracting client-side system and user times from elapsed
times. We found that for a combination of cloaking and
range-mapping with 10 users, network 1/0 is reduced by
a factor of 4.7. However, since cloaking forces clients
not to cache directory entries, these immediate savings
in network 1/0 would be overturned after the fifth listing
of that directory.

For more information as well as sources to the work
described here, see www. f sl . ¢s. sunysb. edu.

