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Abstract

While cooperative DNS resolver systems, such as Co-
DNS, have demonstrated improved reliability and perfor-
mance over standard approaches, their security has been
weaker, since any corruption or misbehavior of a single
resolver can easily propagate throughout the system. We
address this weakness in a new system called ConfiDNS,
which augments the cooperative lookup process with con-
figurable policies that utilize multi-site agreement and
per-site lookup histories. Not only does ConfiDNS pro-
vide better security than cooperative approaches, but for
up to 99.8% of unique lookups, ConfiDNS exceeds the
security of standard DNS resolvers. ConfiDNS provides
these benefits while retaining the other benefits of Co-
DNS, such as incremental deployability, improved perfor-
mance, and higher reliability.

1 Introduction

The use of distributed computing to address performance
and reliability problems in the Domain Name System
(DNS) [4] has recently received much research attention,
and has spawned two widely-deployed distributed sys-
tems, CoDNS [5] and CoDoNS [7]. Both of these systems
provide clients with improved reliability when performing
DNS lookups by distributing the queries across nodes in
the system. These systems fetch name-to-IP translations
from the existing legacy DNS infrastructure as needed to
provide an upgrade path for users.

These systems can be less secure than traditional local
DNS resolvers when interacting with vulnerable legacy
DNS infrastructure. If any node performs a DNS resolu-
tion and receives an incorrect answer, that answer can be
propagated to other nodes, especially if the incorrect an-
swer is returned quickly. The incorrect answer can occur
because of a failure or compromise at a local DNS re-
solver, UDP packet spoofing when the node tries to com-
municate with an external DNS server, local site filtering
policies, etc. CoDNS was designed to mitigate the im-
pact of poisoned DNS responses by disallowing multi-
hop request brokering, and by intentionally performing
no caching. However, it was assumed that the security
of such systems could never beat that of a local resolver,
since content distribution networks (CDNs) and load bal-
ancers will return different DNS lookup results at different
locations, making it difficult to compare lookup results.

Rather than being a fundamental tradeoff in support-

ing legacy DNS while achieving better reliability, worse
security is not integral to cooperative DNS systems. We
show that the scale of cooperative DNS systems can pro-
vide better security than legacy DNS resolvers for the vast
majority of lookups. Where scale cannot be used, observ-
ing the history of DNS lookups can provide some assur-
ance that DNS replies have not been modified. Between
these two options, fewer than 1% of unique DNS lookups
need to trade security for reliability or performance.

Using CoDNS traffic, we gather information on DNS
usage, and perform a month-long study of name lookup
behavior using multiple vantage points. We observe how
DNS is used by various content providers, how name-to-
IP mappings change over time, and how some sites’ DNS
resolvers can poison global DNS caches. Using the sta-
bility over time of name-to-IP mappings and/or the agree-
ment of name lookup results at multiple DNS resolvers,
we devise a range of security policies for our new DNS
lookup system, ConfiDNS. For each policy, we show its
performance and what fraction of names it can satisfy. In
its weakest configuration, ConfiDNS provides better secu-
rity than local DNS resolvers alone for 99.8% of unique
lookups, and 92% can meet significantly stronger require-
ments. Lookup times are comparable to CoDNS, and are
much better than local DNS resolvers.

ConfiDNS is incrementally deployable, using the same
approaches as CoDNS, and requires no change to the ex-
isting global DNS infrastructure to reap its benefits. It can
be installed as a simple proxy on the client or on the local
resolver, requiring no changes to applications.

2 Oveview

We first briefly describe DNS, including our terminol-
ogy for its various components. DNS maps human-
readable machine names to IP addresses using a hierar-
chy of servers, each of which is responsible for a portion
of the global namespace. This system, called the server-
side (global) DNS infrastructure, is run by the owners of
domain names (e.g., example.com) and by organizations
that run the top-level servers (e.g., com) that point to the
per-domain servers. Clients send DNS lookups to ma-
chines within their own organization, called local (client-
side) DNS resolvers, or LDNS. These resolvers perform
the queries and cache the results, sharing lookup over-
head across clients. The CoDNS system stemmed from
the observation that many DNS lookup delays were due
to failures of the local resolvers. CODNS brokered queries



to peer DNS resolvers at remote sites when the local re-
solvers failed, improving performance and reliability.

ConfiDNS tries to provide more confidence in DNS
lookups by using peer resolvers at all times in order to
provide protection against certain attacks and failures, and
by using lookup history to detect changes in name-to-IP
mappings. Users run a ConfiDNS agent, ideally on their
own machines, but it can be run on a (possibly shared) ma-
chine near the user (with some increased risk). This agent
receives DNS lookup requests from the user, and sends
the request to both the local DNS resolver as well as some
number of peer ConfiDNS agents located at remote sites
that use different resolvers than the client. Examples of
policies that could be implemented in ConfiDNS are (a)
the local resolver and at least one peer must agree on the
result, (b) at least three peer sites must agree, (c) if no
peers agree with the local resolver, the IP address must
not have changed in the past week, (d) if no peers agree
within 5 seconds, use any result.

21 Threat Modd & Attacks Handled

ConfiDNS is designed to protect against attacks or fail-
ures at the client-side DNS infrastructure, including cache
poisoning as well as the compromise, spoofing, or non-
failstop failure of the local DNS infrastructure [3]. Since
client-side DNS infrastructure is also used in coopera-
tive DNS lookup services, protecting the client-side in-
frastructure also reduces avenues for polluting the global
lookups in cooperative DNS systems. We have seen sev-
eral client-side resolver behaviors that could pollute a co-
operative DNS service. In one scenario, we saw a site
administrator pollute CoDNS by configuring a resolver to
reply instantly to all requests with the IP address of a local
webserver that served a page saying that the resolver was
being replaced. Unfortunately, if the browser expected
an image and received this error message, the web page
displayed broken image icons, causing problems. We also
measured three other instances of pollution, which are fur-
ther described in Section 3.1. In all of these cases, the
results were returned quickly, so any peer using the re-
solvers at these sites could find its own lookups poisoned
in the process.

We ignore server-side attacks for several reasons, in-
cluding self-interest — as the developers of a CDN and a
name lookup service that is used by the CDN, our most
pressing concern is ensuring the CDN does not weaken
security. Another practical issue is that protecting against
takeover of the server-side infrastructure requires modi-
fying the global DNS infrastructure [2], and is beyond
our control. We also believe that server-side takeovers are
easier to detect than client-side problems — if an attacker
compromises a bank’s DNS servers and redirects all traf-
fic to a spoofed Web site, the bank’s Web site will see a
sharp and easily-detectable drop in activity. However, an

attacker who wants to draw less attention could compro-
mise an ISP’s resolver, and redirect only lookups for one
bank — the resulting drop in traffic may go unnoticed. By
using a client-side solution that requires agreement from
multiple client sites, this kind of attack would be ineffec-
tive unless conducted at scale. However, by attacking at
scale, it is also more likely to be caught.

2.2 Applicability

If DNS was used exactly as originally envisioned, with
only one result per name no matter where the client re-
solves it, ConfiDNS would be a trivial and obvious so-
lution to the problems mentioned. We suspect that the
reason something like it does not already exist is not that
the problem is small, but that researchers (including us)
had assumed that the use of content distribution networks
(CDNs) and DNS-based load balancers would make such
a system unworkable. These systems redirect clients to
nearby data centers, and often use very short DNS re-
sponse TTLs to more aggressively balance load and local-
ity. Particularly for CDNs such as Akamai [1], the number
of possible IPs returned per domain name can number in
the hundreds in these systems, since they will try to place
servers at most large ISPs.

The questions that determine the applicability and ef-
fective of ConfiDNS is what fraction of content providers
are using these techniques, and how do these systems be-
have in practice. While the answers to these questions
may change over time, we expect that the Web will con-
tinue to have a mix of sites hosted at single locations, sites
at a small number of data centers, and some sites hosted
by commercial large-scale CDNs.

3 Continuous Monitoring

To create a DNS trace for analysis, we collected daily
data from all 400+ PlanetLab [6] nodes running CoDNS,
which produced lookups for over 100K unique names per
day. Most of this traffic is generated by the CoDeeN con-
tent distribution network [8], which serves over 25 million
requests per day to a global client population of over 50K
daily users. To create a representative trace, we gathered
one month of data, and selected names based on how fre-
quently they appeared in the daily logs of CoDNS. The
names that occurred daily contained virtually all of the
Alexa top 500 Web site list, excluding some financial
sites. Note that we select unique names, and weight their
chance of inclusion in the list based on how many days
they appear in our trace. The final list contains 40,000
names — the size was chosen to speed the lookup process.
For one month, we resolved these names at every Planet-
Lab site (about 150 on most days), at the rate of one name
per second. The list was randomized on a per-site basis to
avoid overloading any server-side DNS infrastructure.
Figure 1(a) shows the TTL values for these names —
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Figure 1: TTL and lookup time statistics for names in the DNS trace.

most have cacheable lifetimes of 1 hour to 1 day, but a siz-
able fraction includes sub-hour TTLs, suggesting the use
of CDNs, load balancers, or dynamic DNS systems for
machines without static IP addresses. The average lookup
time (per site) for all 40K unique names is shown in Fig-
ure 1(b), with a wide range of performance. Lookup times
for individual names are bimodal — generally requiring
less than 200ms or more than 4 seconds. The high lookup
times reflect retries issued after a failure to receive a re-
sponse, and their fraction is shown in Figure 1(c). Many
sites require retries on half their lookups, resulting in high
average lookup times. These results are worse than the
LDNS measurements in CoDNS because they reflect the
increased failure rate for uncached lookups in the wide
area. Typical resolvers would have lower lookup times as
seen by their clients, due to popular names being cached
and requested multiple times.

3.1 CDNsand Data Centers

ConfiDNS’s protection-by-agreement depends on how
many sites receive the same IP address for each name.
The number of IP addresses returned per hostname is less
important than their pattern. If a domain has two data cen-
ters with addresses IP; and IP5, and returns one IP based
on which data center it believes is closer to the DNS re-
solver, we say that the hostname has two regions. From
our 40K name list, we find that 91.5% return the same
single IP address to all queries. Another 4.2% return mul-
tiple IP addresses, but return the same set of IP addresses
to all queries. The specific order of IPs may vary to aid in
load balancing, but the contents of the set are the same.
The remaining 4.3% of hostnames are not automati-
cally out of reach for ConfiDNS — if they have relatively
few regions, we may have enough ConfiDNS peers in a
region to reach agreement. CDNs with many regions may
use the same region continuously for a particular ISP, so
the rate-of-change of name-to-IP mappings may be low.
The breakdown of the 1738 hostnames with two or
more regions is shown in Figure 2(a), divided into those

served by Akamai (347 hostnames) and the rest (1391
hostnames). The difference between the Akamai and non-
Akamai region counts are quite sharp. Most non-Akamai
hostnames have only two regions, and few have more than
10 regions, while most Akamai-served hostnames have
80-90 regions, as seen from our 150 vantage points.

By comparing the number of sites in each region versus
how many would appear in perfectly-balanced regions,
we calculate a region imbalance factor for each multi-
regioned name in our trace. Given the set of regions with
the number of nodes per region, we calculate a geomet-
ric mean of a series of terms, where each term is either
the ratio of actual region size to average region size, or its
inverse, whichever is larger. For example, if a hostname
has three regions with 15, 55, and 80 sites, its imbalance

§/32 x 28 x 88
identify names that have gross imbalances in the sizes of
their regions. While most names have region sizes that
are within a factor of 2-4 of being fully balanced, we see
a spike where the imbalance ratio exceeds 12 — in these
cases, only one site disagrees over the IP address, and all

of the other sites form a second region.

ratio is This calculation is designed to

To get a sense of the origins of these heavily-
imbalanced regions, we counted how often a site dis-
agreed with all others, and show the daily average for the
top ten sites in Figure 2(c). The worst site has an average
of 469 hostnames per day whose lookups differ from all
others. This set of names is fairly stable, and an exam-
ination of their contents suggests that it is policy-driven
censorship, since they are resolved to IP addresses that
provide no responses. Users will be able to seemingly re-
solve the name, but will be unable to contact any machine
at the address, and may conclude the server does not ex-
ist. The second-worst site appears to have a traffic-sniffing
virus checker working in conjunction with the local DNS
resolver. When it activates, all lookups from the client
are directed to a local Webserver with a message warning
that your client is infected. Unfortunately, the virus snif-
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Figure 3: Rate of change for name-to-IP mappings. The bars, from bottom to top, are for zero changes, 1 change, 2-3
changes, 4-14 changes, and 15+ changes (in white). Note: Y axis truncated to improve detail in first graph.

fer returns false positives, and indicated that our Linux-
based boxes were infected with Windows viruses. The
third-worst site appeared to be having sporadic failures,
and was randomly returning the IP address of the school’s
main Web server for queries, with no discernible pattern
to its behavior. The remaining sites show no strong pat-
terns of poisoning, with most of the imbalances stemming
from slowly-deployed changes in name-to-IP mappings.
In all of these cases, any multi-site agreement policy in
ConfiDNS would automatically prevent these sites from
poisoning the lookup results.

3.2 |P Address Changes

By monitoring over a period of 30 days, we can see how
often name-to-IP mappings really change. While past his-
tory is no guarantee, if a mapping has been the same for an
extended period of time, users may have more confidence
in it. Conversely, a previous stable mapping that suddenly
changes may be cause for concern — it may be as simple
as a server being replaced or migrated, or it may be that
an attacker trying to divert traffic.

We calculate the rate of change of name-to-IP map-
pings during our test period by counting the number of
times the returned IP differs from the previous day’s value

on each site. The change counts are shown in Figure 3(a).
For each site, we group names by the number of changes
observed, and represent these counts as a stacked bar. For
example, node 0 sees no changes for 85% of names, one
change for 7% of names, 2-3 changes for 3% of names,
4-14 changes for 3% of names, and 15 or more changes
for the final 2% of names. At every site, more than
85% of names did not change at all in 30 days. The re-
maining bars group the number of changes and show that
while some names change on virtually every lookup, oth-
ers change much more slowly. We see that most names
are stable for a month at a time, and more than half of the
names that change are stable for two weeks. On average,
only 2% of these names change IP addresses more than
once per week.

Figure 3(b) examines names with a small number of
regions, and indicates that even here, a large number of
names have long periods of stability — decisions to send
clients to nearby data centers are likely to be stable over
time. Figure 3(c) shows the same statistics for those
names that map to more than 10 regions, including most
of the Akamai-served domains, some domains served by
LimeLight Networks (another CDN), and others. The in-
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Figure 4: CoDNS

crease in the count of zero changes beginning near node
100 is largely a function of the size and deployment of
Akamai clusters — these do not appear to use hardware
load balancers, so the larger the cluster, the more IP ad-
dresses get exposed and rotated, causing high rates of IP
address changes. In contrast, Google clusters, despite
having thousands of nodes, advertise only a small num-
ber of IP addresses as entry points.

4 Evaluation

We use this data to evaluate a number of ConfiDNS poli-
cies, beginning with policies that relate only to agreement,
and then combining agreement and history. Our focus
in this evaluation will be coverage (applicability) and la-
tency, so we focus on how many hostnames and how many
sites benefit from the various types of security the differ-
ent policies provide.

We evaluate four agreement policies for ConfiDNS,
varying the numbers of sites agreeing and peer set sizes.
In one policy, we require that the agreement include the
local DNS, but in the rest, the local DNS is just one of the
sites in the agreement process. In each case, we restrict
the number of peers that can be queried in order to reach
agreement. Peers are selected solely by lowest RTT value
from the node.

All policies are evaluated on every node, and per-node
average latencies for a subset of policies are reported in
Figures 4— 6. The baseline policy, using only the local
DNS resolver, suffers from the problem of retries that we
described in Section 3. Likewise, the policy of requiring
that at least one other site (out of the five closest peers)
agree with the local resolver has similar performance be-
cause the local DNS lookup time is the bottleneck. A
simplified form of the CoDNS policy is shown in Fig-
ure 4, and takes the first response of the local resolver and
the three nearest peers. The queries to the peers are stag-
gered using the same delays CoDNS uses in deployment.
It shows a significant response time improvement over the
local DNS resolver, precisely because it does not have to
wait on the local resolver when it is slow.

The more aggressive agreement policies for ConfiDNS
require 3 of the 10 closes sites agreeing (Figure 5), 5 sites
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Figure 5: 3 sites from 10 peers
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Figure 6: 7 sites from 30 peers

# Days IP is Stable
none [ 2-3 [ 7 [ 15] 30
LDNS only 1 2 |33 ] 4
3 peers 2 3 13141 4
LDNS + 1 3 3 14|45
5 peers 3 4 41515
7 peers 4 4 |55 ] 6

Table 1: For simpler analysis, we linearize and collapse
the range of protection policies down to single values, as
shown above. Higher numbers indicate better protection
than lower numbers.

out of 20 agreeing (not shown), or 7 sites out of 30 agree-
ing (Figure 6). For practicality, we stagger lookups in
these policies at the rate of 1000ms every 10 lookups for
fairness. A policy of taking either the local DNS resolver
and one peer, or 3 other peers, is not shown because its
latency characteristics are identical to Figure 5. The most
important latency observation for these more secure poli-
cies is that they perform much better than local DNS re-
solvers, and are in fact generally better than CoDNS. The
3-agreement policy performs surprisingly well, with an
average latency almost half of CoDNS’s.

We combine agreement and rate-of-change to deter-
mine the spectrum of protection policies that are possible,
and how many hostnames per site can be satisfied with
each. To simplify the analysis, we linearize the range of
possibilities, as shown in Table 1. The process of assign-
ing values to policies is subjective, but our goal was to
give an idea of the strength of combinations, with higher
numbers indicating better protection. The per-node break-
down for each label is shown in Figure 7.

The average breakdown for lookups that satisfy only la-
bel 1 (local DNS only) averages only 0.18%, which indi-
cates that ConfiDNS improves the security of 99.82% (on
average) of unique lookups from our collection of van-
tage points. Even if we pick a stronger security require-
ment, such as label 4, which indicates seven peers agree-
ing, 30 days of stability, or some intermediate combina-



% Hostnames by Label

0 50 100

150
Sites Sorted by Label 6 Count

Figure 7: Breakdown of linearized policy labels by node.
The bottom bar is linearized label 6, and the top bar
(white) is label 1. Note: Y axis truncated to show detail

tions, ConfiDNS is able to satisfy 99.63% of the unique
lookups. Even the strongest policy, with 7 peers agreeing
and the lookup being stable for 30 days, still works for
over 92% of unique lookups on average. As we showed
in the earlier results, this extra security does not come at
a high latency cost — latency is better than LDNS alone,
and is comparable to CoDNS.

By using a policy that uses the best available security
and reverts to LDNS otherwise, ConfiDNS can provide
security that is never worse than LDNS. Users that are
interested in lookups with security that is strictly better
than LDNS will not be able to resolve 0.18% of unique
names, assuming policies that meet at least label 2. To
understand the types of names affected, we break down
this fraction into three categories, as shown in Figure 8:
those served by Akamai, those served using Akamai’s
DNS service, and other assorted names. Depending on
how much trust the user has in one or more of these CDNs
or DNS services, they could whitelist these names to fur-
ther improve resolvability. The whitelist could take sev-
eral forms, ranging from automatically whitelisting these
names, whitelisting them if they fail to meet other security
policies, or even whitelisting them as long as they map to
a given set of vetted IP addresses. A full discussion of the
options and their implications is beyond the scope of this

paper.

5 Conclusion

We show that by using peer agreement and storing some
past history, our new cooperative resolver, ConfiDNS,
can provide better security than both traditional DNS re-
solvers as well as the previous cooperative approaches for
the vast majority of domain names. This study also pro-
vides us with information on the real usage of DNS map-
pings, at a variety of domains ranging from small, singly-
hosted sites to sophisticated replicated data centers with
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Figure 8: Breakdown of names in policy label 1

DNS redirection, and finally to commercial third-party
content distribution networks. In all cases, we find that it
is possible to leverage scale, history, or both, and provide
a much more secure result than local DNS alone. All of
these benefits are obtained without changing any server-
side DNS infrastructure, making ConfiDNS incrementally
deployable, requiring only a minimal agent running on ei-
ther client machines or on client-side resolvers.
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