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Abstract

We report on the code caching techniques in an embedded
JavaT™ Virtual Machine with a dynamic adaptive compiler
that is in use in memory-constrained devices such as mobile
phones. In this setting, compiled code cache management
can be performance-critical.

We introduce a combination of sampling and instrumenta-
tion techniques with very low mutator overhead to profile
frequently and recently executed methods. Building on this,
we present an eviction policy featuring a weighting and de-
cay system that accounts for both recency and frequency of
method execution.

Combining the above with garbage collector feedback, the
compiled code cache can be dynamically adjusted in size
while competing with the object allocator for memory.

Due to our improvements in accurate working set detection
and cache size management, our JVM maintains high ex-
ecution speeds at significantly reduced heap sizes and the
eventual performance degradation is smoother.

Running all EEMBC benchmarks for CLDC successively,
we observed large performance increases compared to pre-
vious versions of the same JVM, especially with small heap
sizes below 500 KB and with very large ones above 2 MB.

1 Introduction and Motivation

The first generation of JavaT™-enabled wireless devices
used variants of the KVM, which features an interpreter
loop, but no JIT. Using dynamic adaptive compilation,
the CLDC™ HotSpot Implementation delivers an order of
magnitude increased performance compared to the KVM
while maintaining the constraining footprint requirements
of small devices such as mobile phones [Sun03].

A major implementation challenge when building this high-
performance JVM was the creation of a compiled code
caching scheme that would sustain high performance lev-
els under varying memory availability.

Given a dynamic adaptive compiler, the working set of
methods in execution regularily consists of both interpreted
and compiled methods. Any interpreted method is compiled
when it i1s found to be executing when a periodic sampling
occurs or when its execution counter exceeds a threshold.

Aiming to increase overall performance by minimizing the
portion of time spent interpreting byte codes, we are fo-
cussing in this paper on working set detection and cache
eviction policy.

We regard as working set the set of methods of which any
code has been executed within an interval of a certain

length. This interval is selected to be in the immediate past
and its length needs to be set so that the determined work-
ing set predicts the next working set as closely as possible.

2 Profiling

A prototype version of our JVM used to sample method
execution over the entire interval between full garbage col-
lections by our generational collector. We observed that the
sheer length of these intervals typically rendered most of the
gathered profiling information useless, i.e. there was insuffi-
cient differentiation of recency to support informed eviction
decisions. Furthermore, frequency was only accounted for in
terms of executing during several full collections.

We know that many other VMs avoid the above prob-
lems by instrumenting generated code (and the interpreter)
to record execution events and decaying the latter over
time. Whereas this approach is capable of gathering suf-
ficiently accurate information, compiled code instrumenta-
tion causes noticable performance reduction.

Another alternative is sampling, i.e. inspecting the stack
contents in periodic intervals. Apparently less intrusive
than instrumentation, this approach may suffer from ei-
ther scarcity of information when the sampling rate is too
low or unacceptable overhead when the sampling rate is too
high. We refrained from attempting to tune this technique,
because it appears to be unstable with varying applications.
Our solution in our current production JVM consists in
a combination of some of the above techniques. First, we
chose interpreter instrumentation, which has benign over-
head since by far most execution happens in compiled code.
Interpreted methods are recorded in a short, cyclical buffer.
Compiled code is also instrumented, but with the shortest
possible insertion of code, a single instruction that updates
a flag in a global array, which represents activity sensor
flags for all cache-resident compiled methods.

In principle, instrumentation could be placed at certain sub-
sets of 3 out of the following 5 situations to achieve complete
coverage of possible program execution: calling a method,
getting called, returning from a method, getting returned
to, backwards branch. Our experiments indicate that pick-
ing just one of them, instrumenting the method prologue,
vields practically the same quality of results as any other
combination.

Avoiding the pitfalls of long observation intervals, we sum-
marize the gathered activity flags at periodic, relatively
short intervals. Thus we combine instrumentation and sam-
pling.

The concrete interval length is mainly device-dependent
and is tuned once per installation on a different hardware



device. Typical lengths on mobile phones are in the low tens
of milliseconds.

3 Compiled Method Weighting

According to [ST85], LRU eviction comes close to the the-
orectical optimum and frequency is less important than re-
cency. Furthermore, on phase transitions, frequency can be
even more misleading than recency. Frequency is neverthe-
less rather important in our case, because the performance
payofl of compiling hot methods can be enormous. (In con-
trast, paging mechanisms in OSs can ignore frequency, as
they must cache any given page even on a single access.)

As an exact implementation of LRU would be too expen-
sive, we use an approximation based on a fixed point num-
ber weighting system for compiled methods.

The integer part of each weight reflects the frequency of
very recent activity. The fractional part stores a measure
of activity further in the past. Currently we use 2 integer
bits and 4 fractional bits. Weights are updated on every
sampling event and on every attempt to compile a method,
which together represent cache time progression.

During a sampling event, we add 1.0 to the weight of every
method that has its flag set in the activity sensor array. If
any weight overflows, all weights are normalized by a logi-
cal shift right by one bit. The primary reason for decaying
weights 1s the limited weight precision. This can be inter-
preted as when the amount of recent activity exceeds the
limit, time has to move forward and so some activity is
shifted to the past.

Though frequency of weight updates is driven by compiler
activity, this does not yet take into account the interpreted
portion of the working set.

Decay progression is supplemented by the interpreter: if
the number of execution events in its log exceeds a certain
limit, decay is triggered. This feature makes the cache more
responsive to new compilations and ensures quick phase
transitions, in which the interpreted portion of the working
set quickly grows temporarily. It also deals with the rare
pathological case when uncompilable (e.g. extremely large)
methods keep preventing compiled code execution and thus
would effectively stall cache time.

Weights are organized as a linear fixed-size byte array. Dur-
ing profiling summarization and decay processing, weights
are accessed efficiently by quads (double words).

4 Method Eviction

On small devices, only a fairly limited amount of mem-
ory is available for compiled code caching. Additionally, we
need to keep the code cache small to relieve pressure on the
garbage collector, since in our JVM, we allocate all com-
piled methods on the object heap. This uniform resource
management not only supports scaling down to rather small
devices, it also provides a handy way to adjust the size of
the code cache.

We base the size target for the code cache on a heap occu-
pancy prediction, which is an extrapolation of the observed
occupancy after the most recent GC. Thus we avoid in-
strumenting the marking phase of the GC to determine the
actual current occupancy.

During every GC, we try to "right-size” the code cache:
large enough to capture the current working set, but small
enough to avoid depleting heap memory available to the
mutator. In this scenario, method eviction can be seen as a
side effect of cache size adjustment after the mutator had
time to grow the cache (and prepare victim selection).

To evict a specified amount of memory we logically sort
methods by their weights and evict methods one by one
starting from the lowest weight until the requested amount
is freed or there are no more methods left except currently
executing ones. Instead of actually sorting, we quickly build
and scan a histogram of allocated method space per weight.
Currently executing methods are retained in the cache by
setting the high bit of their weight, so that they automati-
cally supercede any other methods.

Finally, we need to address potential eviction thrashing
caused by a working set that is larger than our target cache
size. If we cannot increase the latter, we let compilation and
cache insertion only proceed if there is a prospect of freeing
enough space due to a sufficient amount of cache-resident
methods with relatively low weights.

5 Related Work

[CCK*03] present several alternative eviction strategies, in-
cluding an LRU-like weighting system for interpreted and
compiled methods, which are kept in different memory ar-
eas.

There are many related efforts in operating systems
concerning virtual memory. See for instance [Kap99] for a
comprehensive classification of eviction policies.
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