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Abstract

The wide availability of cloud computing offers an un-
precedented opportunity to rethink how we construct ap-
plications. The cloud is currently mostly used to pack-
age up existing software stacks and operating systems
(e.g. LAMP) for scaling out websites. We instead view
the cloud as a stable hardware platform, and present a
programming framework which permits applications to
be constructed to run directly on top of it without inter-
vening software layers. Our prototype (dubbed Mirage)
is unashamedly academic; it extends the Objective Caml
language with storage extensions and a custom run-time
to emit binaries that execute as a guest operating system
under Xen. Mirage applications exhibit significant per-
formance speedups for I/O and memory handling versus
the same code running under Linux/Xen. Our results can
be generalised to offer insight into improving more com-
monly used languages such as PHP, Python and Ruby,
and we discuss lessons learnt and future directions.

1 Introduction

Cloud computing has changed the economics of hosting
in recent years. As large datacenters have grown to pro-
vide modern Internet services, deployment of virtualisa-
tion platforms has enabled their computing power to be
rented by customers to run their own applications. The
first such service was Amazon’s Elastic Computing [1],
which provides resources to customers dynamically and
scales up and down according to demand.
Unfortunately, this extremely dynamic resource avail-
ability within the cloud is not well supported by tra-
ditional software stacks, e.g., LAMP (Linux, Apache,
MySQL, PHP). These are very “thick,” containing ex-
tensive support for legacy systems and code built up over
years. This makes them cumbersome to build and deploy,
inefficient to run, and complex to administer securely.
Some of these concerns are being tackled via prepack-

aged binary images, bolt-on “accelerators” which dy-
namically optimise scripting code such as PHP, and au-
tomated security update infrastructure.

In this paper we propose departing from this approach
of layering systems, instead developing a software stack
designed explicitly for use in the cloud. Standard in-
terfaces such as POSIX are less relevant in this highly
distributed environment, and a fresh software stack can
also help to exploit the new capabilities of virtualisa-
tion more effectively, such as live relocation. Software
efficiency now brings direct financial rewards in cloud
environments, providing a much greater impetus to im-
prove on the current state-of-the-art and reducing resis-
tance to change from the open source community (e.g.
the “NoSQL” movement [15]).

This paper makes several contributions:

(i) the motivation for constructing a new software stack
(82), and its architecture (§3);

(if) early performance results that demonstrate signifi-
cant improvements in I/O and memory speeds, sug-
gesting this is an area worth exploring (§4); and

(iii) a discussion which generalises our results to other
programming frameworks (§5).

Finally, we examine related work and conclude (§6).

2 A New Approach: Mirage

The key principle behind Mirage is to treat cloud vir-
tual hardware as a compiler target, and convert high-level
language source code directly into kernels that run on it.
Our prototype compiler uses the OCaml language (§3) to
further remove dynamic typing overheads and introduce
more safety at compile time. We now break down our
design considerations into efficiency, security, simplic-
ity, purpose, and ease-of-use, as follows:
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Figure 1: A conventional software stack (left) and the
statically-linked Mirage approach (right).

Efficiency Multiplexed interfaces in modern software
stacks generate substantial overheads which, when de-
ployed at scale, waste energy and thus money [32]. Mak-
ing efficient use of the cloud requires the ability to instan-
tiate and destroy virtual machines (VMs) with low la-
tency, difficult with today’s heavyweight software stacks
such as LAMP. We discuss concurrency (§3.2) and stor-
age (§3.3) later, and how Mirage improves the situation.

Security Mirage applications are bootable images gen-
erated from code written in a strongly type-checked lan-
guage. The language eliminates low-level memory is-
sues such as buffer overflows. The application’s config-
uration is analysed during compilation to remove unused
features, reducing the attack surface for attackers while
also reducing memory usage.

Simplicity The semantics of many OS interfaces are
inconsistent, due to having to support a wide applica-
tion base which has evolved over time—both network-
ing [4] and filesystem [23] APIs have known deficien-
cies. OS kernels often favour performance over strict
safety [6], and when applications such as databases need
strong guarantees (e.g., writing blocks to disk), they are
forced to make conservative assumptions and suffer per-
formance drops.

Current software stacks are already heavy with lay-
ers: (i) an OS kernel; (i) user processes; (iii) a language-
runtime such as the JVM or .NET CLR; and (iv) threads
in a shared address space. The main driver for virtualisa-
tion to date has been to consolidate under-utilised phys-
ical hosts, and this adds another runtime software layer
with the hypervisor. This is essential to run existing OSs
and software to run unmodified (Figure 1 (left)).

Focus Most operating systems try to solve
everything—from desktops to network servers to
fast-paced games. In some cases, such as concur-
rency, researchers have spent a lot of time examining
individual models, e.g., threading versus event archi-
tectures [34, 37], and a general-purpose kernel has to

support all of them. Mirage focusses on the domain of
I/O intensive cloud servers, which lets us specialise the
stack (see Figure 1 (right)) and reap the benefits.

Ease of Deployment There have been many brave at-
tempts in the past to build systems like this which use
high-level languages [11, 13] or radically different de-
signs [8], but they all hit the issue of research OSs be-
coming rapidly obsolete with advances in physical hard-
ware [24]. In contrast, the hypervisors being used for
cloud computing (mostly Xen and Hyper-V) provide a
standard but complex and low-level interface to pro-
gram against [26]. Mirage hides this complexity behind
the compiler toolchain, and gives a programmer usable,
high-level language abstractions whilst targeting the low-
level virtual hardware interface directly.

3 Design and Implementation

Objective Caml [17], or OCaml, is a modern functional
language supporting a variety of programming styles, in-
cluding functional, imperative, and object-oriented. It
is a dialect of the ML family, with a well-designed,
theoretically-sound type system that has been developed
since the 1970s [16].

ML is a pragmatic system that strikes a balance be-
tween imperative languages, e.g., C, and pure functional
languages, e.g., Haskell. It features type inference, al-
gebraic data types, and higher-order functions, but also
permits references and mutable data structures while
guaranteeing that all such side-effects are always type-
safe and will never cause memory corruption. Safety is
achieved by two methods: (i) static type-checking; and
(i) dynamic bounds checking of array and buffers.

We have previously shown how to construct se-
cure, high-performance network applications using
OCaml [19]. Our applications were largely OS-
independent, and so a simpler runtime dedicated to
the purpose of running them could deliver significant
cost savings and performance improvements in cloud
environments—now the central goal of Mirage. We do
not modify the OCaml compiler itself, but rather the run-
time libraries it provides to interface with the OS. This
code is mostly written in C, and includes the garbage col-
lector and memory allocator.

3.1 Memory Management

The static type safety guarantees made by OCaml elim-
inate the need for runtime hardware memory protection,
except against other unsafe system components. Mirage
runs applications in a single 64-bit virtual address space
(see Figure 2). Modern OS kernels discourage static
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Figure 2: Virtual memory layout of a 64-bit Mirage ker-
nel running under Xen.

memory mapping in favour of Address Space Randomi-
sation (ASR) for protection against buffer overflows [28].
Mirage does not benefit from ASR since the application
is type-safe, and the runtime itself has little dynamic al-
location and no shared library mappings.

In 64-bit mode, the bottom 128TB and the top 120TB
of virtual address space are available for use by the guest,
with the rest either reserved by the hypervisor or non-
canonical addresses. The application begins with code
and static data mapped into the bottom portion of virtual
memory, and the OCaml heap area and network buffers
placed separately into the top 120TB region. Pages are
transmitted and received in Xen by granting them to the
hypervisor [36]. The exact size allocated to each region
is configurable, but is aligned to 2MB boundaries to use
x86_64 “superpages” resulting in smaller page-tables.

Statically mapping virtual memory in this fashion pro-
vides Mirage with a significant speed boost. Under nor-
mal kernels, the standard OCaml garbage collector can-
not guarantee that its address space is contiguous in vir-
tual memory and maintains a page table to track the al-
located heap regions. In tight allocation loops, the page-
table lookup can take around 15% of CPU time, an over-
head which disappears in Mirage (see Figure 4).

3.2 Concurrency

In Mirage, we collapse all concurrency into two distinct
models: (i) lightweight control-flow threads for manag-
ing I/O and timeouts; and (ii) optimised inter-VM com-
munication for parallel computation. Each Mirage in-
stance runs as on a single CPU core, and depends on
the hypervisor to divide up a physical host into several

single-core VMs. Thus, a parallel program runs as eight
VMs on a single eight-core machine, or be spread across
four two-core physical hosts. Communication is opti-
mised dynamically: if the VMs are running on the same
physical machine, Mirage uses shared memory channels
instead of the network stack.

We believe that these two models are sufficient to
capture the main uses of parallel programming without
running into the difficulty of creating a unified model
suitable for both large-scale distributed computation and
highly scalable single-server I/O [33]. Our control
threads are based on the Lwt co-operative threading li-
brary [35], and has syntax extensions to permit program-
ming in a similar style to pre-emptive threading. Al-
though we do not present a full evaluation of threading in
this paper due to space limitations, informal benchmarks
are available for Lwt which illustrate our points [9].

3.3 Storage

Mirage provides a persistence mechanism as a non-
intrusive language extension to OCaml [12]. For each
datatype specified by the programmer, we statically gen-
erate functions at compile time to save and retrieve val-
ues of this type to and from the Xen virtual block devices.
This approach has several advantages: (i) the program-
mer can persist arbitrary OCaml types with no explicit
conversion: the details are completely abstracted away;
(i) the code is statically generated and highly optimised
for efficiency; and (iii) better static safety is guaranteed
by auto-generating interfaces. For example:

type t = { name: string; mail: string } with orm
let me = { name="Anil"; mail="avsm2@cam.ac.uk" }
let main () =

let db = t_open "contacts" in

t_save db t;

let cam = t_get "mail: (‘Contains "ac.uk") db in
printf "Found %d @ac.uk" (List.length cam)

The type t is a standard OCaml type, with an annotation
to mark it as a storage type. Variables of type t can be
saved and queried via the t _open, t_save and t_get
functions.

The backend uses the SQLite database library, and
SQL is automatically generated from the application’s
datatypes and never used by the programmer directly.
SQLite has a VFS layer to let OSs define their own
I/0 mechanisms. Mirage implements a Xen blkfront
VES which interacts directly with a block device with-
out an intervening filesystem. This layer performs
highly optimised I/O: (i) all database read/writes are 4KB
page-aligned and contiguous segments use blkfront
scatter-gather allowing up to 11 pages to be sent in one
request; (if) the journal file is mostly appended to, and
only needs to be flushed when the VFS layer requests
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Figure 3: Performance of a SQL stress test running as a
direct kernel vs. 64-bit Linux userspace.

a sync; (iii) write barriers can maintain safe journal se-
mantics without needing to wait for a synchronous disk
flush. Although some of these assumptions are invalid
for general-use filesystems, they work very well with a
database engine.

4 Evaluation

So far, we have asserted several performance benefits to
running Mirage kernels. We now confirm our hypothesis
via performance tests on Mirage as kernels versus on vir-
tualised Linux. Tests were conducted on a quad-core In-
tel Xeon 2.83GHz system with 4GB RAM, running Xen
3.4.3 and a 64-bit Linux 2.6.27.29 domO kernel. The
guests were configured with 1GB RAM, 1 vCPU, and
LVM block storage. The Linux guest used the same 64-
bit PV kernel as dom0 and an ext 2 filesystem.

We evaluated the performance of our database stor-
age by running a benchmark that inserts, updates and
deletes records of varying sizes over 5000 iterations. The
database was checked after each iteration and all values
compared to ensure integrity.

Figure 3 shows the results of this benchmark with
varying record sizes. Linux is faster for small record
sizes but performance decreases as individual record
sizes increase. In contrast, Mirage performance is sig-
nificantly faster and scales better with increasing record
size. We attribute this to the specialised buffer cache
in Mirage which takes advantage of page-aligned direct
I/O, as well as the optimised heuristics for journal files
(which are typically short-lived and only require flush-
ing to disk once, memory permitting). One of the main
benefits of implementing the SQLite VFS operations in
OCaml is to let us experiment with different heuristics
and data structures more easily; one of the main benefits
of Mirage is exactly that it makes this kind of specialisa-
tion straightforward.
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Figure 4: Allocation performance under Mirage vs. 64-
bit Linux, for 100 million varied-size allocations.

We tested memory allocation performance by allocat-
ing 100 million strings of varying sizes (see Figure 4).
Again, Mirage is faster than Linux for larger alloca-
tions, illustrating the benefits of running without a ker-
nel/userspace divide. x86_64 does not have segmenta-
tion, and Xen protects its own memory using page-level
checks and runs both the guest kernel and userspace in
ring 3 [25]. This makes system calls and page table
manipulation relatively slow, a problem which Mirage
avoids by not context-switching in ring 3.

In terms of binary size, the Mirage images for the
benchmarks were around 600KB in size, in contrast to
Linux distributions which are difficult to squeeze be-
low 16MB, or Windows which runs into hundreds of
megabytes.

5 Lessons Learnt and Future Directions

Although it is a great platform for trying out ideas,
OCaml is dwarfed by the vast user-bases of Ruby, Python
and PHP. We now consider some of the lessons that can
be pulled out to improve other frameworks, and our plans
for interesting directions based on them:

Multi-scale not multi-core There is much concern
about multi-core scalability of scripting languages
(which often have global interpreter locks). In a vir-
tual platform, this simply isn’t as important as scaling
widely across hosts and letting the hypervisor divide up
cores. Frameworks which currently use (for example)
fork(2) on a host to spawn processes would benefit from
using cloud management APIs to request resources and
eliminate the distinction between cores and hosts. In-
deed, the lack of a standard interface from within a guest
to cloud APIs (as an analogue to kernel syscalls from
userspace) is a glaring omission. We are currently build-
ing a system of cloud syscalls with a view to construct-
ing self-scaling applications that can alter their resource



usages dynamically in a cloud environment. For large-
scale computation, our Skywriting system [22] provides
a task-parallel coordination language that provides effi-
cient job dispatch for individual hosts and their cores,
leaving Mirage instances to do the actual computation
work on reasonably sized chunks of data.

Type-driven meta-programming Using code to gen-
erate more code (a key aspect of our storage mecha-
nism) is also used in dynamic languages to interface to
databases (e.g. ActiveRecord in Ruby on Rails). How-
ever, this generated code does not need to be the same
language as the host, and so dynamic languages could de-
rive a lot of free performance by using code-generation
(e.g. LLVM [14]) to approach the performance of our
statically typed implementation.

One of the more exciting examples of this in Mi-
rage is the ability to run across multiple cloud provider’s
database systems. An application can run on Amazon
EC2 using virtual block devices, and the same source
code also works directly against Google AppEngine
using the Datastore API (via an OCaml-to-Java com-
piler [5]). Support for this only required adding a code
generator to our storage compiler, and we are also im-
plementing Amazon SimpleDB and Tokyo Cabinet back-
ends. This research direction offers a solution to one of
the biggest problems with using cloud infrastructure—
vendor lock-in—since the same source code could run
on several vendor’s infrastructure such as Amazon and
Google (both of whom have had high-profile outages in
2009).

Fat-free code Code size and startup time has tradition-
ally been poor for scripting languages. It is of crucial
importance for client-side Javascript frameworks like
jQuery that offer highly compressed “min” versions, and
normal versions for development use. In a cloud environ-
ment, traffic spikes (e.g. a link from a popular media site)
can drive load up by orders of magnitude in seconds. A
framework which can start instances very quickly (boot
kernel, load code, prime caches, establish database con-
nections) is well positioned to minimise the use and cost
of cloud resources. Mirage demonstrates how little code
is actually required from a cloud kernel, with a typical
web-server binary around 400Kb (and with further room
for improvement). Facebook has taken initial steps in
this direction by pre-compiling PHP to C++/Linux bina-
ries using its HipHop compiler [39], and we are looking
into porting this to run directly under Mirage.

Dont forget to be virtual Cloud platforms offer sev-
eral features not easily available on physical hosts, such
as live relocation. Currently, this happens at the OS level,
and applications have little control over the process. The
simple memory layout in Mirage (§3.1) allows us to opti-
mise live-relocation performance (by garbage collecting
before it begins, and only allocating to the minor heap),

and also to propagate such events to the application via
callbacks. This would permit, e.g. a web server node to
update a DNS entry when it migrates, or a game server
to send more frequent updates to clients to account for
network disruption.

Push the limits of packaging There are a number of
packaging systems which assemble small, crunched dis-
tributions suitable for cloud deployment [38], but odd
limits still exist in the vendor infrastructures. For ex-
ample, the biggest cloud computing vendor—Amazon—
does not permit users to upload their own kernels, instead
limiting them to user-space images or providing custom
kernel modules. This means that a Mirage application
must bootstrap itself as a Linux kernel module (overwrit-
ing the Amazon-supplied kernel once it has booted) in
order to run in this environment. The reasons for this are
probably not technical, but to do with supportability of
custom compiled kernels or new operating systems, but
it will impact the deployment of vertical operating sys-
tems like Mirage somewhat.

6 Related Work and Conclusions

Mirage draws on several research projects for its inspi-
ration. It is structured as a “vertical operating system”
in the style of Exokernel [8], and provided as a series of
component libraries like Flux OSKit [10].

Barrelfish [2] provides an environment specifically for
multicore systems, using fast shared-memory communi-
cation between processes. Mirage uses a hypervisor as its
scheduler, focusing on fast single-vCPU execution. The
Extremely Reliable OS (EROS) had a similar focus on
removing runtime layers [30], and its single-level store
KeyKOS [29] extended the memory system all the way
to the disk, as our language-integrated storage also does.

We derive a great deal of inspiration from Foxnet [3],
which built a TCP/IP stack in Standard ML. However,
they reported very slow performance, and we aim to cap-
ture their elegant interface while meeting modern perfor-
mance demands. Functional programming has enjoyed
more industrial attention in recent years, in mission-
critical systems [7], the financial sector [21], the sys-
tems community (the Xen control stack is written in
OCaml [27]) and even the latest Microsoft language [31].
We believe that the cost-saving opportunity with Mirage
in the cloud will be a great motivating factor encouraging
the adoption of statically-typed languages.

In conclusion, Mirage is a new approach to special-
ising software for cloud computing environments to im-
prove efficiency and thus cut costs. Mirage rethinks sev-
eral aspects of application design by integrating network-
ing and storage closely with the hardware and language
being used. A prime design goal is simplicity, making
formal analysis and debugging easier.



We are concentrating on release a full implementation
at this stage, with several portions already available as

open-source [18].

We are using it to construct large-

scale services dedicated for the cloud, such as version-
controlled databases for scientific computing, and “per-
sonal containers” which provision VMs where individu-
als can store their personal data in privacy [20]. We thank
Jake Donham, Marius Eriksen, lan McEwan, Stephen
Kell, Derek Murray and Steven Smith for helpful feed-
back and debate, and Amazon Web Services for an AWS
in Education Research Grant.
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