
Performance Profiling in a Virtualized Environment

Jiaqing Du
EPFL, Switzerland

Nipun Sehrawat
IIT Guwahati, India

Willy Zwaenepoel
EPFL, Switzerland

Abstract

Virtualization is a key enabling technology for cloud
computing. Many applications deployed in a cloud run
in virtual machines. However, profilers based on CPU
performance counters do not work well in a virtualized
environment. In this paper, we explore the possibilities
for achieving performance profiling in virtual machine
monitors (VMMs) built on paravirtualization, hardware
assistance, and binary translation. We present the de-
sign and implementation of performance profiling for a
VMM based on the x86 hardware extensions, with some
preliminary experimental results.

1 Introduction

Virtualization is a key enabling technology for cloud
computing. Applications deployed in a virtualization-
based cloud, e.g., Amazon’s EC2, run inside virtual ma-
chines, which are dynamically mapped onto a cluster of
physical machines. By providing workload consolida-
tion and migration, virtualization improves the resource
utilization and the scalability of a cloud. In a virtual-
ized environment, the virtual machine monitor (VMM)
exports a set of virtual machines to the guest operating
systems (hereafter referred to as guests) and manages ac-
cesses to the underlying hardware resources shared by
multiple guests. In this way virtualization makes it pos-
sible to run multiple operating systems simultaneously
on a single physical machine [11, 3, 8].

In modern processors, the performance monitoring
unit (PMU) is indispensable for performance debugging
of complex software systems. It is employed by soft-
ware profilers to monitor the micro-architectural behav-
ior of a program. Typical hardware events monitored in-
clude clock cycles, instruction retirements, cache misses,
TLB misses, etc. As an example, Table 1 shows a typ-
ical output of a profiler. It presents the top-five time-
consuming functions of the whole system. Developers

can refer to the output of a profiler to identify bottlenecks
in a program and tune its performance . PMU-based per-
formance profiling in a non-virtualized environment has
been well studied. Mature tools built upon PMUs ex-
ist in almost every popular operating system [9, 6]. They
are used extensively to tune software performance. How-
ever, this is not the case in a virtualized environment.

% CYCLE Function Module
98.5529 vmx vcpu run kvm-intel.ko
0.2226 (no symbols) libc.so
0.1034 hpet cpuhp notify vmlinux
0.1034 native patch vmlinux
0.0557 (no symbols) bash

Table 1: Top five time-consuming functions from profil-
ing both the VMM and the guest

For applications executing in a public cloud, running
a PMU-based profiler directly in a guest does not result
in useful output, because, as far as we know, none of the
current VMMs expose the PMU programming interfaces
properly to a guest1. As more and more applications
are migrated to virtualization-based public clouds, it is
necessary to add support for PMU-based profiling in vir-
tual machines, without requiring access to the privileged
VMM. Profiling results help customers of public clouds
to understand the unique characteristics of their comput-
ing environment, identify performance bottlenecks, and
fully exploit the hardware and software resources they
pay for.

In a private cloud, it is possible to run a profiler di-
rectly in the VMM, but some of its intermediate out-
put cannot be converted to meaningful final output with-
out the cooperation of the guest. The data in Table 1
result from profiling a computation-intensive applica-
tion in the guest. The profiler runs in the VMM, and

1It is possible to obtain limited profiling results by running the pro-
filer in the guest in a timer interrupt driven mode.



it monitors CPU cycles. The first row shows that the
CPU spends more than 98% of its cycles in the func-
tion vmx vcpu run(), which switches the CPU to run
guest code. As the design of the profiler does not con-
sider virtualization, all the instructions consumed by the
guest are accounted to this VMM function. Therefore,
we cannot obtain detailed profiling data of the guest.

Currently, only XenOprof [10] supports detailed pro-
filing of virtual machines running in Xen, a VMM based
on paravirtualization. For VMMs based on hardware as-
sistance and binary translation, no such tools exist. En-
abling profiling in the VMM provides users of private
clouds and developers of both types of clouds a full-scale
view of the whole software stack and its interactions with
the hardware. This will help them tune the performance
of both the VMM and the applications running in the
guest.

In this paper, we address the problem of performance
profiling for three different virtualization techniques:
paravirtualization, binary translation, and hardware as-
sistance. We categorize profiling techniques in a vir-
tualized environment into two types. Guest-wide pro-
filing discloses the runtime characteristics of the guest
kernel and its active applications. It only requires a pro-
filer running in the guest, similar to native profiling, i.e.,
profiling in a non-virtualized environment. The VMM
is responsible for virtualizing the PMU hardware, and
changes introduced to the VMM are transparent to the
guest. System-wide profiling discloses the runtime be-
havior of both the VMM and the active guests. It requires
a profiler running in the VMM and provides a full-scale
view of the whole software stack: both the VMM and the
guest.

The contributions of this paper are as follows. (1) We
analyze the challenges of achieving both guest-wide and
system-wide profiling for each of the three virtualiza-
tion techniques. Synchronous virtual interrupt delivery
to the guest is necessary for guest-wide profiling. The
ability to interpret samples belonging to a guest con-
text into meaningful symbols is required for system-wide
profiling. (2) We present profiling solutions for virtual-
ization techniques based on hardware assistance and bi-
nary translation. (3) We implement both guest-wide and
system-wide profiling for a VMM based on the x86 vir-
tualization extensions and present some preliminary ex-
perimental results.

The rest of this paper is organized as follows. In Sec-
tion 2 we review the structure of a conventional profiler.
In Section 3, we analyze the difficulties of supporting
guest-wide profiling in a virtualized environment, and
present solutions for each of the three aforementioned
virtualization techniques. We discuss system-wide pro-
filing in Section 4. In Section 5 we present the imple-
mentation of both guest-wide and system-wide profiling

for a VMM based on the x86 virtualization extensions
and discuss some preliminary experimental results. In
Section 6 we survey related work, and we conclude in
Section 7.

2 Background

As a hardware component, a PMU consists of a set of
performance counters, a set of event selectors, and the
digital logic to increase a counter after a specified hard-
ware event occurs. When a performance counter reaches
a pre-defined threshold, the interrupt controller sends a
counter overflow interrupt to the CPU.

Generally, a profiler consists of the following major
components:

• Sampling configuration. The profiler registers it-
self as the counter overflow interrupt handler of the
operating system, selects the monitored hardware
events and sets the number of events after which an
interrupt should occur. It programs the PMU hard-
ware directly by writing to its registers.

• Sample collection. When a counter overflow inter-
rupt occurs, the profiler handles it synchronously. In
the interrupt context, it records the program counter
(PC), the virtual address space of the sampled PC
value, and some additional system state.

• Sample interpretation. The profiler converts the
sampled PC values into routine names of the pro-
filed process by consulting its virtual memory lay-
out and its binary file compiled with debugging in-
formation.

Native profiling only involves one OS instance, where
all three profiling components reside. They interact with
each other through facilities provided by the OS. All of
the exchanged information is located in the OS.

In a virtualized environment, multiple OS instances
are involved, namely the VMM and the guest(s). The
three components of a profiler may be spread among dif-
ferent instances, and their interactions may require com-
munication between them. In addition, not all the con-
ditions necessary for implementing these three compo-
nents may be satisfied. We present a detailed discussion
of implementing both guest-wide and system-wide pro-
filing for each of the three virtualization techniques in the
following two sections.

3 Guest-wide Profiling

Challenges. By definition, guest-wide profiling runs a
profiler in the guest and only monitors the guest. Al-
though more information about the whole software stack



can be obtained by employing system-wide profiling,
sometimes guest-wide profiling is the only way to do per-
formance profiling and tuning in a virtualized environ-
ment. As we explained before, users of a public cloud
service are not normally granted the privilege to run a
profiler in the VMM, which is necessary for system-wide
profiling.

To achieve guest-wide profiling, the VMM should pro-
vide facilities that enable the implementation of the three
profiling components in a guest and PMU multiplexing,
i.e., saving and restoring PMU registers. Since sample
interpretation under guest-wide profiling is the same as
in native profiling and PMU multiplexing is trivial, we
only present the required facilities for the sampling con-
figuration and the sample collection components.

To implement the sampling configuration component,
the guest should be able to program the physical PMU
registers, either directly or through the assistance of the
VMM. To implement the sample collection component,
the VMM must support synchronous interrupt delivery
to the guest. In other words, if the VMM injects an in-
terrupt into the guest when it is not running, then that
injected interrupt must be handled immediately when the
guest resumes its execution. For performance profiling,
when a performance counter overflows, a physical in-
terrupt is generated and handled by the VMM. If the
interrupt occurs when the guest code is executing, the
counter overflow is considered to be contributed by the
guest. The VMM injects a virtual interrupt into the guest,
which drives the profiler to collect a sample. If the guest
handles the injected interrupt synchronously when it re-
sumes execution, it can collect a correct sample as in na-
tive profiling. If not, at the time when the injected virtual
interrupt is handled, the real interrupt context has already
been destroyed, and the profiler obtains the wrong sam-
pling information.

Paravirtualization. The major obstacle for imple-
menting guest-wide profiling for VMMs based on par-
avirtualization is synchronous interrupt delivery to the
guest. At least in Xen, this functionality is currently not
available. External events are delivered to the guest asyn-
chronously. Mechanisms similar to synchronous signal
delivery in a conventional OS should be employed to add
this capability to paravirtualization-based VMMs.

Hardware assistance. The x86 virtualization exten-
sions provide facilities that help implement guest-wide
profiling. First, the guest can be configured to allow it
to directly access the PMU registers, which are model-
specific registers (MSRs) in the x86. Second, the CPU
can be configured to automatically save and restore the
relevant MSRs. Third, the guest can be configured to
exit when an interrupt occurs.The interrupt number is
recorded in the exit information field of a control struc-
ture. The VMM injects into the guest a virtual interrupt

by setting a field of the control structure. Event delivery
to a guest is synchronous so the guest profiler samples
correct system states. We present our implementation of
guest-wide profiling based on the x86 hardware exten-
sions in Section 5.1.

Binary translation. For VMMs based on binary
translation, synchronous interrupt delivery is also re-
quired. Another obstacle is that the sampled PC val-
ues point to addresses in the translation cache, not to
the memory addresses holding the original instructions.
Additional work is required to map the sampled PC val-
ues to the original memory addresses. Because only
the VMM has enough information to do the translation,
without explicit communication between the VMM and
the guest, guest-wide profiling is not possible for VMMs
based on binary translation. We present more details
about this address translation problem and a solution for
system-wide profiling in Section 4.

Where to multiplex the PMU? Besides the require-
ments stated previously, another important question is:
what are the right places to save and restore the rele-
vant MSRs? The first answer is to save and restore the
relevant registers when the CPU switches from running
guest code to VMM code, or vice versa. We call this type
of guest-wide profiling CPU switch. Profiling results of
CPU switch reflect the characteristics of the virtualized
physical hardware such as CPU and memory, but not the
devices emulated by software. This is because the PMU
is active only when the guest code is being executed.
When the CPU switches to execute the VMM code that
emulates the effects of a guest I/O operation, although
the monitored hardware events are still being contributed
by the guest, they are not accounted to the guest because
the PMU is off. The second answer is to save and restore
the relevant MSRs when the VMM switches execution
from one guest to a different one. We call this domain
switch. It accounts to a guest all the hardware events trig-
gered by itself and reflects the characteristics of both the
virtualized hardware and the VMM. This method may
introduce inaccuracy in the profiling results, because the
VMM may be interrupted when it is executing on behalf
of a guest. Since the registers are only saved and restored
on a domain switch, the execution resulting from the in-
terruption will be attributed to that guest. This problem is
similar to the resource accounting problem in a conven-
tional operating system [2]. Although sometimes not en-
tirely accurate from the viewpoint of performance profil-
ing, domain switch profiling does give a more complete
picture of the overall system. We present the results of
guest-wide profiling based on CPU switch and domain
switch in Section 5.2.



4 System-wide Profiling

Challenges. System-wide profiling provides the runtime
characteristics of both the VMM and the guests. It first
requires that all three components of a profiler run in the
VMM. Since the profiler resides in the VMM, it can pro-
gram the PMU hardware directly and handle the counter
overflow interrupts synchronously. The major obstacle
for system-wide profiling is to interpret samples not be-
longing to the VMM, but to the guests. This requires at
least the sample interpretation component of a profiler
to be present in the guest. As a result, explicit commu-
nication between the profiler running the VMM and the
sample interpretation component in the guest is required.
The interaction rate between the VMM and the guest ap-
proaches the rate of counter overflow interrupts. Efficient
communication methods, such as zero-copy, should be
used to avoid distortions in the profiling results. In addi-
tion, the interpretation should be finished in time. Other-
wise, if the profiled process terminates before the sample
interpretation starts, there will be no clue to finish it be-
cause the profiler needs to consult the virtual memory
layout of the process to do the interpretation.

Interpreting guest samples. One approach to the
guest sample interpretation problem is to not let the
VMM record samples corresponding to a guest, but del-
egate this task to the guest. We call this approach full-
delegation. It requires guest-wide profiling to be already
supported by the VMM. With this approach, during the
profiling process, one profiler runs in the VMM and an-
other one runs in the guest. The VMM profiler is re-
sponsible for collecting and interpreting samples from
the VMM. For a sample not belonging to the VMM,
a counter overflow interrupt is injected into the corre-
sponding guest. The guest profiler collects and interprets
samples from the guest. A system-wide profile can then
be obtained by merging the outputs of the VMM and the
guest profiler.

An alternative approach to this problem is to let the
VMM profiler collect all the samples and delegate the in-
terpretation of guest samples to the corresponding guest
[10]. We call this approach interpretation-delegation.
With this solution, the VMM saves the samples belong-
ing to a guest in a buffer shared with the guest2. Every
time it adds a sample to a guest’s buffer, the VMM sig-
nals that guest that there are pending samples. After a
guest receives the signal, it notifies its sample interpreta-
tion component to interpret the samples, in the same way
as a native profiler. The results are sent back to the VMM
and merged with those produced by the VMM to obtain
a system-wide profile.

2The cooperation of the guest may also be needed. For example,
the VMM cannot directly figure out the corresponding virtual address
space of the sampled PC value.

Paravirtualization. For VMMs based on paravirtu-
alization, system-wide profiling can be implemented by
the interpretation-delegation approach, as demonstrated
by XenOprof [10]. Xen has a powerful hypercall mech-
anism, which allows for easy sharing of a communica-
tion buffer between the VMM and the guest. The full-
delegation approach may also work if the VMM supports
guest-wide profiling.

Hardware assistance. Since the x86 hardware ex-
tensions have the necessary facilities for implementing
guest-wide profiling, the full-delegation approach can be
employed to achieve system-wide profiling. This ap-
proach only requires minor changes to the VMM, as our
implementation of system-wide profiling for an open-
source VMM in Section 5.1 shows. Similar to XenO-
prof, system-wide profiling can also be achieved by the
interpretation-delegation approach. This requires imple-
menting an efficient communication path between the
guest and the VMM, and extending the profilers running
both in the VMM and in the guest. Therefore, it involves
much more work than the full-delegation approach.

Binary Translation. For VMMs based on binary
translation, system-wide profiling can only be achieved
through the interpretation-delegation approach. Even if
the VMM supports synchronous interrupt delivery to the
guest, the sampled PC values always point to memory
addresses of the translation cache, where the translated
instructions reside. Only the VMM has enough informa-
tion to translate the sampled PC values back to the ad-
dresses where the original guest instructions reside. This
address translation can be achieved as follows. During
the process of an original guest instruction being trans-
lated and stored in the translation cache, we save the re-
verse mapping from the address(es) of one or more trans-
lated instructions to the address of the original guest in-
struction in a reverse address translation cache, a coun-
terpart of the translation cache. For each memory ad-
dress in the translation cache, there is a corresponding
entry in the reverse address translation cache, containing
the address of the corresponding original guest instruc-
tion. For each PC value sampled from a guest context,
the VMM is responsible for rewriting it with the origi-
nal instruction address by looking up the reverse address
translation cache. This should be done before the guest
profiler reads the sampled PC value. A possible rewriting
point is in the virtual interrupt injection procedure. This
rewriting process is transparent to the sample interpreta-
tion component in the guest.

5 Implementation and Evaluation

We describe our extensions to the kernel-based virtual
machine (KVM) [8] that implement both guest-wide and
system-wide profiling. We present some preliminary ex-



perimental results to show the feasibility of implement-
ing guest-wide profiling. We leave the implementation of
system-wide profiling for a VMM based on binary trans-
lation for future work.

5.1 Profiling for KVM

KVM is a Linux kernel subsystem that leverages hard-
ware virtualization extensions to add a virtual machine
monitor capability to Linux. With KVM, the VMM is
a set of kernel modules in the host Linux operating sys-
tem while each virtual machine resides in a normal user-
space process. Although KVM supports multiple hard-
ware architectures, we choose the x86 with virtualization
extensions to illustrate our implementation, because the
x86 version of KVM has the most mature code.

The virtualization extensions augment the x86 with
two new operation modes: host mode and guest mode.
KVM runs in host mode and its guests run in guest mode.
Host mode is compatible with conventional x86 while
guest mode is very similar to it but deprivileged in cer-
tain ways. Guest mode supports all four privilege levels
and allows direct execution of the guest code. The vir-
tual machine control structure (VMCS) controls various
behaviors of a virtual machine. Two transitions are de-
fined: a transition from host mode to guest mode called a
VM-entry, and a transition from guest mode to host mode
called a VM-exit. Regarding performance profiling, if a
performance counter overflows when the CPU is in guest
mode, the currently running guest is forced to exit, i.e.,
the CPU switches from guest mode to host mode. The
VM-exit information in VMCS indicates that the current
VM-exit is caused by a non-maskable interrupt (NMI).
By checking this field, KVM is able to decide whether a
counter overflow is contributed by a guest. We assume all
NMIs in a profiling session are caused by counter over-
flows. KVM can also decide this by checking the content
of all performance counters.

Our guest-wide profiling implementation requires no
modifications to the guest OS and the profiler. The pro-
filer reads and writes the physical PMU registers directly
as it does in native profiling. KVM forwards NMIs due
to performance counter overflows to the guest. When
CPU switch is enabled, KVM saves the relevant MSRs
when a VM-exit happens and restores them when the
corresponding VM resume occurs. This can be done au-
tomatically in hardware, by configuring certain fields in
the VMCS. When domain switch is enabled, we tag all
threads belonging to a guest and group them into one do-
main. When the Linux (host) kernel switches to a thread
not belonging to the current domain, it saves and restores
the relevant registers in software.

We implement system-wide profiling for KVM by the
full-delegation approach since it is built on hardware vir-

tualization extensions and supports synchronous virtual
interrupt delivery in the guest. In a profiling session, we
run one unmodified profiler instance in the host and one
in each guest. These profiling instances work and coop-
erate as we discussed in Section 4. The only changes to
KVM are clearing the bit in an advanced programmable
interrupt controller (APIC) register after each VM-exit
and injecting an NMI to a guest when it causes a perfor-
mance counter overflow.

5.2 Experimental Results
We use our guest-wide profiling extensions to KVM to
profile a guest in an experiment that measures the TCP
receive throughput. The VMM consists of the 2.6.32
Linux kernel with KVM enabled and QEMU [4] 0.11.
The guest runs Linux with the 2.6.32 kernel. The pro-
filer is OProfile [9] 0.9.5. Both the guest kernel and the
profiler remain unmodified. Our machine is equipped
with one Intel Core2 quad-core processor and one Gi-
gabit Ethernet NIC. As much as possible TCP traffic is
pushed to the guest from a Gigabit NIC on a different
machine.

% INSTR Function Module
14.1047 csum partial vmlinux
8.9527 csum partial copy generic vmlinux
6.2500 copy to user vmlinux
3.9696 ipt do table ip tables.ko
3.6318 tcp v4 rcv vmlinux
3.2095 (no symbols) libc.so
2.8716 ip route input vmlinux
2.7027 tcp rcv established vmlinux

Table 2: Eight functions with the highest number of in-
struction retirements, with CPU switch enabled.

Table 2 presents the eight functions with the largest
number of instruction retirements. In this experiment
CPU switch is used for PMU virtualization. The to-
tal number of samples is 1184. Most of the functions
in the table are from the Linux network stack and carry
out packet processing jobs. Table 3 gives the results for
the same experiment, but with domain switch enabled
for PMU virtualization. The total number of samples is
7286. This shows that more than 80% of the retired in-
structions involved in receiving packets in the guest are
spent outside the guest, inside the device emulation code.
This percentage is reasonable since the experiment in-
volves an I/O-intensive application. The top five func-
tions are all related to I/O. The first three are from the
RTL8139 NIC driver, and the last two program the APIC.
This result shows that the VMM spends a large amount
of instructions emulating the effects of the I/O operations
in the virtual RTL8139 NIC and the virtual APIC.



% INSTR Function Module
31.0321 cp interrupt 8139cp.ko
18.3365 cp rx poll 8139cp.ko
14.1916 cp start xmit 8139cp.ko
5.7782 native apic mem write vmlinux
5.1331 native apic mem read vmlinux
2.6215 csum partial vmlinux
1.4411 csum partial copy generic vmlinux
1.2901 copy to user vmlinux

Table 3: Eight functions with the highest number of in-
struction retirements, with domain switch enabled.

The data in both tables demonstrate the feasibility of
conducting guest-wide profiling in a virtualized environ-
ment based on hardware assistance. Both CPU switch
and domain switch are useful, as they show developers
different perspectives of how programs behave in a vir-
tualized computing environment.

6 Related Work

XenOprof [10] is the first profiler that supports virtual
machines. According to our definitions, it does system-
wide profiling. It is specifically designed for Xen, a
VMM based on paravirtualization.

Xen HVM is a version of Xen that supports hardware-
assisted full virtualization. In its support for profiling,
Xen HVM only saves and restores MSRs when it per-
forms domain switches. In Xen’s architecture, I/O de-
vice emulation for all the guests is done in domain 0.
VM exits in a domain that do not require the intervention
of domain 0 are handled in the context of that domain.
As a result, guest-wide profiling in Xen HVM does not
accurately reflect the behavior of a guest.

Linux perf [1] is a new implementation of perfor-
mance counter support for Linux. It runs in the host
Linux and can profile a Linux guest running in KVM.
Linux perf is similar to system-wide profiling discussed
in this paper, but it can only interpret samples belonging
to the kernel of the Linux guest, not its user-space appli-
cations. This is because Linux perf is aware of the virtual
memory layout of the guest Linux kernel, but not of the
virtual memory layout of a user process.

VTSS++ [5] demonstrates a profiling technique sim-
ilar to guest-wide profiling defined in this paper. It re-
quires the cooperation of a profiler running in the guest
and a PMU sampling tool running in the VMM. It relies
on sampling time stamps to attribute counter overflows
to the corresponding threads in the guest. Its profiling re-
sults are not completely precise because the limited res-
olution of the timer interval may result in an inaccurate
attribution of a counter overflow to a thread. It also re-

quires that the VMM does not virtualize the processor
timestamp counter.

VMware vmkperf [7] is a performance monitoring
utility for the VMware ESX server. It runs in the VMM
and only records how many hardware events happen in a
time interval. It does not handle counter overflow inter-
rupts and attribute them to particular procedures. There-
fore, it does not support any of the profiling mechanisms
presented in this paper.

7 Conclusions

In this paper, we studied the problem of supporting per-
formance profiling in a virtualized environment. We gave
solutions that achieve both guest-wide and system-wide
profiling for VMMs based on hardware assistance. We
also described a solution that implements system-wide
profiling for VMMs based on binary translation. In the
end, we demonstrated the feasibility of guest-wide and
system-wide profiling by implementing them in KVM.

References
[1] Performance Counters for Linux. 2010.

http://lwn.net/Articles/310176/.

[2] G. Banga, P. Druschel, and J.C. Mogul. Resource containers: A
new facility for resource management in server systems. Operat-
ing Systems Review, 33:45–58, 1998.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of vir-
tualization. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, page 177. ACM, 2003.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In
Proceedings of the USENIX 2005 Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

[5] Stanislav Bratanov, Roman Belenov, and Nikita Manovich. Vir-
tual machines: a whole new world for performance analysis.
SIGOPS Oper. Syst. Rev., 43(2):46–55, 2009.

[6] Intel Inc. Intel VTune Performance Analyser, 2010.
http://software.intel.com/en-us/
intel-vtune/.

[7] VMware Inc. Vmkperf for VMware ESX 4.0, 2010.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the Linux virtual machine monitor. In Linux Symposium, 2007.

[9] J. Levon and P. Elie. Oprofile: A system profiler for linux. 2010.
http://oprofile.sourceforge.net.

[10] A. Menon, J.R. Santos, Y. Turner, G.J. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the Xen
virtual machine environment. In VEE, volume 5, pages 13–23,
2005.

[11] J. Sugerman, G. Venkitachalam, and B.H. Lim. Virtualizing I/O
devices on VMware workstations hosted virtual machine moni-
tor. In USENIX Annual Technical Conference, pages 1–14, 2001.


