

Conquest: Better Per formance
Through a Disk/Persistent-RAM Hybr id File System

An-I A. Wang, Peter Reiher, and Gerald J. Popek
�

Computer Science Department

University of California, Los Angeles
{awang, reiher, popek}@fmg.cs.ucla.edu

Geoffrey H. Kuenning
Computer Science Department

Harvey Mudd College
geoff@cs.hmc.edu

Abstract

Conquest is a disk/persistent-RAM hybrid file system that
is incrementally deployable and realizes most of the bene-
fits of cheaply abundant persistent RAM. Conquest con-
sists of two specialized and simplified data paths for in-
core and on-disk storage and outperforms popular disk-
based file systems by 43% to 97%.

1 Introduction

�� ��

The declining cost of persistent RAM (e.g., battery-
backed RAM) makes its use as persistent storage feasible
in ordinary computers. Desktops will soon be able to
have 4 to 10 GB of persistent RAM, enough for most file-
system services, except high-capacity storage.

The Conquest file system is designed to make good
use of both persistent-RAM-based storage and of disks.
Unlike existing RAM file systems, Conquest’s storage
capacity is not limited by the size of persistent RAM, and
Conquest can incrementally assume more responsibility
for in-core storage as memory prices decline. Unlike
caching, which treats main memory as a scarce resource,
Conquest anticipates the abundance of cheap persistent
RAM and uses memory as the final storage destination.
Conquest uses disks to store only the data well suited for
disk characteristics, which also allows simpler disk man-
agement. Unlike HeRMES [5], which deploys a rela-
tively modest amount of persistent RAM to alleviate disk
traffic, Conquest assumes an abundance of RAM to per-
form most file system functions. Unlike ad hoc ap-
proaches that would provide only partial solutions, Con-
quest retains the semantics of a single file system (e.g.,
name space, hard links, etc.) while providing significant
performance gains.

�

 Gerald Popek is also associated with United On-Line.

2 Conquest Design

The Conquest file system consists of two specialized and
simplified data paths for in-core and on-disk storage.
Conquest assumes a single-user desktop environment with
1 to 4 GB of persistent RAM, which is affordable today.

2.1 File System Design

Conquest stores small files, metadata, executables, and
shared libraries in persistent RAM; disks hold only the
data content of remaining large files. An in-core file is
stored contiguously (in the virtual sense) in persistent
RAM, accessed by a single pointer to the data and a file
offset. When possible, a file is resized by remapping
rather than copying.

Disks store only the data content of large files, reduc-
ing management overhead. Conquest maintains a per-
large-file segment table in persistent RAM. On-disk allo-
cation is contiguous whenever possible.

For each directory, Conquest maintains a dynami-
cally allocated hash table of metadata entries, keyed by
file names. Multiple names (potentially under different
directories) can hash to the same entry, providing hard
links.

RAM storage allocation uses the existing memory
manager when possible to avoid duplicate functionality.
For example, the storage manager is relieved of maintain-
ing a metadata allocation table and a separate free list by
using the memory address of the file metadata as its
unique ID.

Paging and swapping are disabled for Conquest
memory, but enabled for the non-Conquest memory re-
gion.

2.2 Major Design Considerations

M edia usage strategy: Recent studies [3, 8] confirm
the often-repeated observations [7]: (1) Most files are
small; (2) Most accesses are to small files; and (3) Most
storage is consumed by large files, which are accessed
sequentially most of the time.

Therefore, we use a simple threshold to choose which
files to store on disk instead of complex data placement
algorithms (e.g., LRU-style migration of unused files to
disk). The data content of files above the threshold (cur-
rently 1 MB) are stored on disk. Smaller files, metadata,
executables, and libraries are stored in RAM. The current
arbitrarily chosen threshold keeps 99% of all files in
RAM. Future research will determine the optimum
threshold and examine alternative approaches.

The threshold simplifies the code without wasting
memory, since small files do not consume a large amount
of total space. Accesses to small files and metadata incur
no data duplication or disk-related overhead. For the
large-file-only disk storage, we use a larger access granu-
larity to reduce the seek-time overhead. Because most
accesses to large files are sequential, we relax many his-
torical disk design constraints, such as complex layout
heuristics that reduce fragmentation or average seek
times.

M etadata representation: Conquest does not use
the v-node data structure provided by VFS to store meta-
data, because the v-node is designed to accommodate
widely varying file systems. Conquest does not need
many v-node mechanisms such as metadata caching.
Conquest’s file metadata consists of only the fields (53
bytes) required for POSIX conformance.

The large-file data blocks are currently stored on disk
sequentially as the write requests arrive, without regard to
file membership. We chose this temporal order only for
simplicity in the initial implementation. Unlike LFS [9],
we keep metadata in-core, and existing file blocks are
updated in-place instead of appending data-block versions
to the log’s end. Therefore, Conquest does not consume
contiguous regions of disk space as fast as LFS, and de-
mands no continuous background disk cleaning. We plan
to apply approaches from video-on-demand servers and
traditional file systems research for the final layout.

M emory management: Although it reuses the exist-
ing memory manager’s code, Conquest governs its mem-
ory region with its own instance of the manager, whose
data resides persistently inside Conquest’s dedicated
physical address space. All references within this mem-
ory manager are inside the Conquest region, so we can
save and restore the manager’s runtime states directly in-
core without serialization and deserialization.

Conquest avoids memory fragmentation by using ex-
isting Linux memory-manager mechanisms. For sub-
block allocations, the slab allocator compacts small mem-
ory requests according to object types and sizes [1]. For
block-level allocations, memory mapping assures virtual
contiguity without external fragmentation.

Reliability: Disk storage is considered less vulner-
able to software failure corruption because it is less likely
to perform illegal operations through its rigid interface.
However, [6] has shown that the risk of data corruption
due to kernel failures is low. Assuming one system crash

every two months, one would lose in-memory data about
once a decade.

We currently rely on atomic pointer commits. In the
event of crashes, the system integrity remains intact, at
the cost of potential memory leaks (which can be cleaned
by fsck) for in-transit memory allocations. We also plan
to use approaches similar to Rio [2], which allows volatile
memory to be used as a persistent store with little over-
head. Conventional techniques of access control, system
backup, and fsck also apply.

64-bit Architecture: Our current implementation on
a 32-bit machine demonstrates that 64-bit addressing im-
plications are largely orthogonal to Conquest, although a
wide address space does offer the opportunity for future
extensions.

3 Conquest Per formance

The Conquest prototype is a POSIX-compliant loadable
kernel module under Linux 2.4.2, supporting both in-core
and on-disk storage. Experiments were conducted on a
Dell PowerEdge 4400, with 1 GHz 32-bit Xeon Pentium
and 2 GB of memory. The machine uses a 73.4 GB Sea-
gate disk (ST173404LC) connected through a SCSI inter-
face.

We compared Conquest with ext2 (0.5b), reiserfs
(3.6.25), SGI XFS (1.0), and ramfs by Transmeta. Unless
specified, file systems were configured with default op-
tions. Reiserfs was configured with the notail option, and
SGI XFS was mounted with eight 32-MB buffers for log-
ging.

Note that ramfs cannot be used as persistent storage
because it stores data and metadata in temporary caches
under VFS, which cannot survive reboots. We compared
Conquest to ramfs because ramfs approximates the
achievable bound for file system performance within VFS
legacy constraints,.

Spr ite LFS microbenchmarks: The small-file
benchmark consists of creating, reading, and unlinking
10,000 1-KB files in three phases [9]. Conquest shows
5% and 13% slower transaction rates in file creation and
deletion than ramfs because Conquest has not yet been
tuned. However, Conquest has a 15% faster read transac-
tion rate than ramfs. Conquest is faster because the criti-
cal path to the in-core data path contains no generic disk-
related code built into VFS, such as checking for cache
status. Compared to disk-based file systems, Conquest is
at least 50% faster for creation and deletion, and 19%
faster for read.

We have altered the original large-file benchmark to
perform sequential and random access operations on a set
of large files, rather than a single file. For ten 1-MB
(Conquest in-core) files, Conquest demonstrates an 8 to
16% bandwidth improvement over ramfs in reads and up
to 8% in writes. Compared to disk-based file systems,

Conquest demonstrates at least 800% improvement in
sequential writes, 2800% in random writes, and 8 to 16%
in reads.

For 40 100-MB (Conquest on-disk) files, the working
set size exceeds the memory size, so ramfs is omitted
from our comparison. Compared to disk-based file sys-
tems, Conquest shows 4 to 8% faster disk accesses.

PostM ark macrobenchmark: The PostMark
benchmark models the workload of Internet service pro-
viders by simulating a combination of electronic mail,
netnews, and web-based commerce transactions [4].

We ran experiments with a size range of 512 bytes to
16 KB. Each experiment performs 200,000 transactions
with equally probable creates and deletes, and reads four
times more probable than appends. The transaction block
size is 512 bytes. We varied the total number of files
from 5,000 to 30,000. We configured PostMark to use
one subdirectory level to distribute files uniformly, with
the number of directories equal to the square root of the
file set size.

Unoptimized Conquest performs 1 to 2% better than
ramfs. It outperformed disk-based file systems by 24% to
350% as the number of files increased from 5,000 to
30,000.

M odified PostM ark macrobenchmark: To exer-
cise both the in-core and the on-disk components of Con-
quest, we modified the PostMark benchmark. We gener-
ated a percentage of files in a large-file category, with file
sizes uniformly distributed between 2 MB and 5 MB, the
total number of files fixed at 10,000, and the percentage
of large files varying from 0.0 to 10.0 (0 GB to 3.5 GB).
Again, since the working set exceeds the storage capacity
of ramfs, we omit ramfs from our results.

Without any disk traffic (0% large files), Conquest is
1200% faster than SGI XFS in transaction rate, 510%
faster than reiserfs, and 29% faster than ext2. As more
large-file traffic is injected, all file systems slow down,
but we see a relatively constant performance ratio be-
tween Conquest and disk-based file systems. Conquest is
43% faster than SGI XFS, 76% faster than ext2, and 97%
faster than reiserfs.

4 Conclusion

Conquest is an operational file system that integrates per-
sistent RAM with disk storage to provide significantly
improved performance compared to other approaches. In
general use, we anticipate a 43% to 97% speedup over
popular disk-based file systems.

Removing the disk-based assumptions integrated into
operating systems was difficult, but necessary for Con-
quest to achieve its goals. Obvious ad hoc approaches fail
to provide a complete solution and perform worse than
Conquest due to the high cost of using the buffer cache
and disk-specific code.

The benefits of Conquest arose from rethinking basic
file system design assumptions, suggesting that radical
changes in hardware, applications, and user expectations
of the past decade should lead us to rethink other aspects
of operating system design.

5 References

[1] Bonwick J. The Slab Allocator: An Object-Caching

Kernel Memory Allocator. Proceeding of USENIX
Summer 1994 Technical Conference, June 1994.

[2] Chen PM, Ng WT, Chandra S, Aycock C, Rajamani

G, Lowell D. The Rio File Cache: Surviving Oper-
ating System Crashes. Proceedings of the Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1996.

[3] Douceur JR, Bolosky WJ. A Large-Scale Study of

File-System Contents. Proceedings of the ACM Sig-
metrics '99 International Conference on Measure-
ment and Modeling of Computer Systems, Atlanta,
GA, USA, May 1999.

[4] Katcher J. PostMark: A New File System Bench-

mark. Technical Report TR3022. Network Appli-
cance Inc., October 1997.

[5] Miller E, Brandt S, Long D. HeRMES: High-

Performance Reliable MRAM-Enabled Storage.
Proceedings of the Eighth Workshop on Hot Topics
in Operating Systems, May 2001.

[6] Ng WT, Aycock CM, Rajamani G, Chen PM. Com-

paring Disk and Memory’s Resistance to Operating
System Crashes. Proceedings of the 1996 Interna-
tional Symposium on Software Reliability Engineer-
ing, 1996.

[7] Ousterhout JK, Da Costa H, Harrison D, Kunze A,

Kupfer M, Thompson JG. A Trace Driven Analysis
of the UNIX 4.2 BSD File Systems. Proceedings of
the 10th ACM Symposium on Operating Systems
Principles, pp. 15-24, 1985.

[8] Roselli D, Lorch JR, Anderson TE. A Comparison of

File System Workloads. Proceedings of the 2000
USENIX Annual Technical Conference, San Diego,
CA, 2000.

[9] Rosenblum M, Ousterhout J. The Design and Imple-

mentation of a Log-Structured File System. Proceed-
ings of the 13th ACM Symposium on Operating Sys-
tems Principles, 1991.

