Lazy Parity Update : A Technique to Improve Write I/O
Performance of Disk Array Tolerating Double Disk Failures

Young Jin Nam, Dae-Woong Kim, Tae-Young Choe, Chanik Park

Department of Computer Science and Engineering/PIRL

Pohang University of Science and Technology

Kyungbuk, Republic of Korea

{yjnam,woong, choety,cipark}@postech.ac.kr

1 Introduction

There have been a few RAID algorithms that can
tolerate double disk failures by elaborately main-
taining two distinctive parity information associated
with user data [1, 3, 4]. This breed of algorithms is
formally classified as RAID level 6. However, RAID
level 6 has suffered from relatively low write I/0
performance comparing with other RAID levels [5]
at the expense of providing higher reliability by
maintaining additional parity information. While
RAID level 5 requires four disk accesses, RAID
level 6 demands six disk accesses to process a small
write I/O request. Thus, RAID level 6 might pro-
vide about 66% of write I/O performance of RAID
level 5.

Let us briefly consider the following recent technol-
ogy trends. Large-scale RAID systems containing
a large number of disks become prevailing with the
advent of SAN using Fiber Channel and Gigabit
Ethernet. These systems are much more susceptible
to multiple disk failures than a small-scale system,
though. Disk capacity has been growing rapidly,
resultingly a disk recovery time gets longer which
proportionally increases the chance of a subsequent
disk failure. Thus, we expect that RAID level 6 al-
gorithms will be gaining its importance. Having said
that, customers will be still reluctant to sacrifice
write I/O performance by keeping additional parity
information to increase reliability of a RAID system.
In order to overcome this fundamental problem of
RAID level 6, we aim at devising a technique to dra-
matically enhance a write I/O performance of RAID
level 6 by delaying the process of updating one of
two parity information, called the Lazy Parity Up-
date technique. We apply this technique to a RAID
level 6 algorithm RM2 and evaluate its performance
in terms of reliability and I/O throughput.

2 The Proposed Algorithm

RM2 [4] is used as our base algorithm among the
existing RAID level 6 algorithms. After briefly de-
scribing the features of RM2, let us present a Lazy
Parity Update technique to improve write I/O per-
formance of RM2. Figure 1(a) presents data/parity
placement in RM2. A data stripe represents a stripe
containing only data stripe units and a parity stripe
means a stripe containing only parity stripe units.
A parity group is a set of data stripe units and a
parity stripe unit where the parity stripe unit is cal-
culated from the set of data stripe units. A stripe
group is defined as a set of data stripes and a parity
stripe which covers all stripe units in a given par-
ity group. This data/parity placement of RM2 is
mainly determined based on the redundancy matriz
which maps each stripe unit to its corresponding two
parity stripe units within a stripe group for given N
disks as shown in Figure 1(b). A column and a row
in the redundancy matrix correspond to a disk and a
parity group, respectively. Entries in a column have
a —1 and a pair of ¥’'s (1 < k < M — 1) where M
is a stripe group size. Denote RM; ; as the i-th row
and j-th column entry in the redundancy matrix. If
RM; ; = —1, then a parity stripe unit of disk j be-
longs to parity group ¢, if RM; ; = 0, then it has no
information, and if RM; ; =k for 1 <k < M —1,
then the k-th data stripe unit of disk j belongs to
parity group i. P; represents the parity stripe unit
in the i-th parity group and D;; means that the
data stripe unit is involved in computing parity in-
formation of both the i-th and j-th parity groups.
As an example in Figure 1(a), the the parity unit P
is related with the four data units which are Dy s,
Dy, Ds g, and D5 g. Conversely, the data unit Da 5
is related with P, and Ps.

Let us introduce new nomenclature which will be
used in the Lazy Parity Update technique. Fore-
ground Parity Group(F PQ) refers to as a subset of

Disk 0 1 2 3 4 5 6 7
Parity group

Y N G Y G | | i |
stipegrowp (| Po || Py || P2 || Ps || Pa|(Ps)| Pe || P7 |
H _/ i

7|/ D7o| | Doa|| D1zl

Dia &2} D3g| | Da7|{Dsof| Dea| | Drz|| Doa

il Ps Py Piwo|| Pu||Pw|| P P || Pis Parity stripe

| D101} [D1113 [D1213 [D1sg | Daags| Disg | Deo| | Doag| Datastripe

| S
Doz | D10ag | D114 | Da2as | Dizgl | Diaso| | Dasap(Dsay

D N N B N i N L N N e

Stripe unit

(a) Data/parity distribution

PO | - oo

Pl

oo

Disk 0 1 2 3 4 5

6 7
oo [[[= = =]
o] o] o] e[[ora [o]
o) os] e o s [ona fre o]

13
Data and parity layout P7

2
0
-1o | o
[

R
3 8

-

°ololo|n|=|=

&

2| -

2
1] 2
1
2|1

12|t

2

o2 |1]2|~

Redundancy Matrix

(b) Data/parity layout and redundancy matrix

Figure 1: Architecture of the RM2 algorithm

P = {P;|0 < i < N — 1} such that it can cover all
data stripe units in a stripe group. Especially, the
minimum set of F'PG is denoted as F PG ;- Also,
the number of parity groups in F PG ,;, is written
as |FPGpin|- Background Parity Group(BPQ) is
defined as P — FPG. In Figure 2, Py, Py, Py, P
fall into FPG when N = 8. We have proved that
|FPGpin|is & if N =evenand [+ M-2if N =
odd for given N disks, where M is a stripe group
size.

Po| oo o [BIDIOIE)

P1

=110 0 0 2 1 1

P2 @77® -1]0 ol o @77®

P3| 1|12

P [(3)[0| @] @] 1[0 [0 |0 5"
PS5 o2 |1 |1 2|10 o/
P60 | 0 @M@ 1o
PZlojlojo|2]1|1]2]|-

Figure 2: An illustrative example of configuring
FPG and BPG with N=8and M =3

Lazy Parity Update (LPU) Technique: The
proposed algorithm makes an exploit of the LPU
technique on the basis of the existing RM2. The

key idea of the LPU scheme is to update only one
of two parity groups associated with data in fore-
ground while delaying the process of the other par-
ity group until the system becomes idle. For this,
the LPU scheme needs to initially determine F PG
and BPG sub-sets for given N disks and then to
process each write I/O request based on the FPG
and BP(information. We have developed a scheme
which determines the F'PG,,;, for given N disks.
A description of this scheme is omitted in this pa-
per. We assume that a write-through buffer cache
is used, first. As shown in Figure 3, given two par-
ity groups related with data, if a parity group is
included in FPG, then it should be updated be-
fore a completion message is returned to its host.
If a parity group belongs to BPG, its parity group
number is added to Background Parity Group List
(BPGL), i.e., postponing its process until a RAID
system becomes idle.

1. send write /O request BPG

e e

3.send done
>
Host System

T

2. BPG (delayed to BPGL)

FPG m FPG (process immediately)
Processed wheA system’s idlle
2. read & yrite
2. read & write

Figure 3: Key idea of the Lazy Parity Update tech-
nique

With a write-back buffer cache, the above behavior
occurs when destaging process begins, resultingly
destaging rate can be doubled theoretically. Once a
disk failure occurs, however, two parity groups as-
sociated with data are regarded as being included
in FPG. Thus, processing of parity groups is no
longer delayed. In the presence of a faulty disk, a
RAID system gets ready to tolerate an additional
disk failure by processing all delayed parity groups
in BGPL, not by reconstructing the whole associate
parity groups in a faulty disk. This is why the pro-
posed algorithm is much more reliable than RAID
level 5.

3 Preliminary Performance Results

Let us provide a brief description of our experimen-
tal environment and preliminary results on reliabil-
ity and I/O throughput of the proposed algorithm
which enhances write I/O performance of RM2 with
the LPU technique.

Current Experimental Environment : The
proposed algorithm has been implemented on a
real RAID system called PosRAID along with
RAID level 5 and RM2. Hardware components
of the PosRAID encompass Pentium IIT 800MHz,
256MB memory, two QLogic’s QLA2200 FC cards,
32bit/33MHz PCI bus, and 8 FC disks. Note that
the PosRAID does not support a hardware XOR.
Software components of the PosRAID include Vx-
Works version 5.4 RTOS, a communication module
in charge of communicating with hosts and internal
disks via 1Gbps FC HBAs, a RAID engine module
mapping a logical block address to a physical block
address according to a RAID algorithm and man-
aging a buffer cache, and a resource/configuration
management module taking care of allocating, deal-
locating, and configuring all hardware and software
resources within a system. For the measurement of
I/0 throughput, sizes of LUNs configured by differ-
ent RAID algorithms are set to equal. In result, the
number of disks used in RAID level 5, RM2, and the
proposed algorithm are different, i.e., while RAID
level 5 uses three disks, RAID Level 6(RM2) and
the proposed algorithm does four disks. Also, each
disk capacity is 3GB and a stripe unit size is 64KB
for all LUNs.

Reliability Analysis : We analyze reliabil-
ity (MTT Fproposea) of the proposed algorithm by
using the state transition diagram shown in Fig-
ure 4 and a stochastic transitional probability ma-
trix scheme [2].

NA,f

g ssrate —NTDM T
P

o diskfallro |
P 1 P,

system fallure
0

A

Hs

no disk failure NA asngle disk failure
BPGLI=0 BPGLI=0
P, P,

Figure 4: State transition diagram for the proposed
algorithm

It can be expected that the reliability of the pro-
posed algorithm will vary from that of RAID level 5
at the worst case to that of RAID level 6 at the best
case, depending on increasing and decreasing rates
of BGPL (A2, pu2) and processing rates of BGPL in
the presence of a disk failure (u3). By regenerating
I/O requests in traced I/O requests of cello [6],
we obtain 5 = 0.26, - = 0.009, and - = 0.74.
Figure 5 and 6 presents that the reliability of the
proposed algorithm using those realistic values is

very high, about 0.2 times of RAID level 6 (RM2)
and 1000 times of RAID level 5.

(a) RAID level 5

Figure 5: Reliability of RAID level 5 and RAID
level 6 with the increase of the number of disks,
where MTTF of a disk - = 30,000 and MTTR of

a disk -1- =24 (unit : hour)

M TFeme

of Disks

Figure 6: Reliability of the proposed algorithm with
empirically obtained 5~ = 0.26, ;—2 = 0.009, and
-L = 0.74, where MTTF of a disk {- = 30,000 and

M3

MTTR of a disk ;- =24 (unit : hour)

I/0 Throughput Analysis : For I/O through-
put measurement, a well-known I/O benchmark
(IOMeter) issues 4KB and 128KB random I/O
workloads to each LUN configured with a differ-
ent RAID algorithm. The number of concurrent
I/O processes so called queue depth increases ev-
ery 180 seconds including 60-second warm-up time.
Figure 7(a)—(b) show that read I/O performance of
RM2 and the proposed algorithm is better than that
of RAID level 5. This is due to the use of extra disk
in both algorithms. As for write I/O performance,
the proposed algorithm using the LPU technique
improves write I/O performance of RAID level 6
(RM2) by 100%. It also outperforms write I/O per-
formance of RAID level 5 due to the existence of an
additional disk as in read I/O performance.

4 Status Quo and Future Work

Our on-going and near-term work puts an empha-
sis on performing the same experiment with differ-

400

350

300 g
250 .
Ry ——RAID5

200 = - = RM2
/ —a Propose(

150 /

100 -

50

10PS

1 9 17 25 33
of Outstanding 1/Os

(a) 4KB random read 1/0

——RAID5

4 .

& 15 —=—RM2

= / —a Proposec
10 .

.
1 9 17 25 33
of Qutstanding I/Os

(c) 128KB random read I/0O

70

60

50

40

10PS

30

20

MBPS
o =4 M W s a e N ® ©

——RAID5
- = RM2
—a Proposed

1 9 17 25 33
of Qutstanding 1/0s

(b) 4KB random write I/0

T — A — - — A —-— -4

——RAID5

- == RM2

—a Proposed

.
1 9 17 25 33
of Outstanding 1/Os

(d) 128KB random write I/O

Figure 7: I/O performance of RAID level 5, RAID level 6(RM2), and the proposed algorithm under no disk
failures for given 4KB/128KB random read/write requests

ent configurations and devising a more sophisticated
idle detection scheme.

e We are using other traced I/O requests to
measure more accurate reliability of the pro-
posed algorithm, various types of I/O work-
load patterns to obtain write I/O performance
of different algorithms, and different configu-
rations of LUNs including the odd number of
disks, the fixed number of disks for all algo-
rithms, and a larger number of disks.

e Detecting system idleness relies on a real-time
scheduling facility of an underlying RTOS
by giving a relatively lower priority to a
task which processes delayed parity groups in
BPGL. This idle detection mechanism should
be enhanced.

Finally, our long-term future work includes the fol-
lowing items:

e The LPU technique will be applied to other
RAID level 6 algorithms such as EVEN-ODD,
DATUM, and P+Q.

e We will look into the problem of enhancing
performance in the presence of a disk failure.

References

[1]

G. Alvarez, et. al., “Tolerating multiple failures
in RAID architectures with optimal storage and
uniform declustering,” Proceedings of the 24th
ISCA, Jun. 1997.

R. Billinton and R. Allan, Reliability Evalua-
tion of Engineering System: Concepts and Tech-
niques. Boston, Pitman Advanced Publishing
Program.

M. Blaum and et. al., “EVENODD: An effi-
cient scheme for tolerating double disk failures
in RAID architectures,” IEEE Transactions on
Computers, vol. 44, no. 2, Feb. 1995.

C. Park, “Efficient placement of parity and data
to tolerate two disk failures in disk array sys-
tems,” IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 6, No. 11, pp. 1177-1184,
November 1995.

D. Patterson, G. Gibson, and R. Katz,
“A case for redundant arrays of inexpensive
disks(RAID),” Proceedings of IEEE COMP-
CON, pp. 112-117, Spring 1989.

C. Ruemmler and J. Wilkes, “Unix disk ac-
cess patters,” Proceedings of Winter USENIX,
pp-405-420, Jan. 1993.

