An Iterative Technique for Distilling a Workload’s Important
Performance Information

Zachary Kurmas
Georgia Tech
kurmasz@Qcc.gatech.edu

Introduction

We are developing a method of automatically find-
ing and extracting information from a workload trace
that can be used to synthetically generate a workload
with similar performance. We hypothesize that any
set of information that can be used to generate a
workload with similar performance can also be used
to predict performance. Thus, we see this work as
a step toward our long-term goal of predicting the
performance of an I/O workload using performance-
related information extracted from a trace of that
workload.

The ability to predict performance has many uses.
For example, it has the potential to greatly simplify
the process of configuring large, complex disk arrays
by allowing us to quickly evaluate the performance
benefits of several possible configurations. Unfortu-
nately, predicting performance of disk arrays is very
difficult. The disk array cache, cache replacement
policy, disk controllers, SCSI buses, RAID configura-
tion, reorder logic, and data layout all interact with
the workload and affect performance in ways that are
not yet well understood. To help overcome these diffi-
culties, we have defined an intermediate goal of learn-
ing how to automatically find and extract information
from a workload trace that can be used to syntheti-
cally generate a workload with similar performance.

We believe that our biggest contribution will be
the reduction of the human effort needed to iden-
tify a workload’s performance related characteristics.
Because every workload and storage system inter-
act differently, the set of workload attributes that
most affect performance will differ between work-
loads. A performance model will be of little practical
use if many man-hours of calibration through trial-
and-error are required for each new workload or stor-
age system modeled. Our research emphasizes the
development of methods of automatically identifying
performance-related attributes instead of emphasiz-
ing the search for the particular performance-related
attributes of a single workload. The application we
are developing will identify the performance-related
attributes of new workloads easily with little human
intervention.

Kimberly Keeton
HP Labs
kkeeton@hpl.hp.com

Description of Method

Our basic approach is to iteratively add attributes
to a workload characterization until it can be used
to generate a synthetic workload with similar perfor-
mance. We use the term attribute to refer to the de-
scription of some property or characteristic of a work-
load that can be measured. For example, the mean
request size, the distribution of interarrival times, and
the mean run count are all attributes. We use the
term attribute-value to refer to an attribute paired
with its value for a specific workload; for example, a
mean request size of 64KB is an attribute-value. We
call a collection of attributes a characterization con-
figuration; and we call the resulting set of attribute-
values a characterization. Notice that a characteri-
zation configuration distinguishes between the many
different possible characterizations of a workload.
We classify attributes into attribute groups accord-
ing to the request parameters (request size, location,
read/write type, and (inter)arrival time) measured.
For example, the mean request size measures only re-
quest sizes, while a distribution of locations of read
requests measures both location and read/write type.

Given a workload, we are seeking a set of infor-
mation (i.e. attribute-values) that can be used to
generate a synthetic workload with similar perfor-
mance. More specifically, we are seeking a set of
attributes for which any two workloads with similar
attribute-values have similar performance (on a given
storage system). Our approach is to iteratively select
attributes and add them to a characterization con-
figuration of a workload under test until a synthetic
workload with similar attribute-values has the simi-
lar performance. The challenge is to efficiently select
useful attributes from infinitely many possibilities.

To address this challenge we break each iteration
into three steps:

Evaluate the characterization configuration:
We evaluate a characterization configuration using
the method described by Ganger in [1]. We first use
the current characterization configuration to charac-
terize the observed workload. We then synthetically
generate a workload based on that characterization.
Next, we collect the cumulative distribution functions
(CDF) of response time for each workload and com-



pare them using the root-mean-square (RMS) metric
described in [4]. We consider the root-mean-square
of these two CDFs a quantification of the “com-
pleteness” of the characterization configuration, with
smaller RMS values indicating a more complete con-
figuration.

Choosing an Attribute Group: If the evalu-
ation detects deficiencies in the current characteri-
zation configuration, we must improve it, either by
adding an attribute to the configuration or by refin-
ing an existing attribute.

Our biggest challenge is in choosing which attribute
to add or improve during each iteration. It is not pos-
sible to examine each possible attribute; therefore,
the main contribution of this research is our method
of limiting the attributes under consideration during
each iteration. We do this by estimating the maxi-
mum potential benefit of all attributes in a certain
attribute group. We currently have two methods for
doing this: We can remove the entire group of correla-
tions (relationships between the I/O request param-
eters described by the attributes) from the observed
workload, or we can add the “perfect” attribute to
the current characterization configuration. We call
the first approach the “subtractive approach” and we
call the second approach the “additive” approach.

For each attribute group, we define a “perfect”
attribute. The resulting attribute-value is simply a
list of all the values of the parameters measured by
this group. For example, the perfect arrival time at-
tribute calls for a list of the arrival times of each I/O
request. This list contains all possible relationships
between the arrival (and interarrival) times of a work-
load. Thus, the perfect attribute provides all possi-
ble information about a set of request parameters to
the workload generator. Of course, using the perfect
attribute defeats the purpose of workload characteri-
zation; but, we will see how this concept is useful for
evaluating an attribute group.

To see how the subtractive approach works, con-
sider a synthetic workload that contains no correla-
tions within arrival time (i.e., removes the “perfect”
arrival time attribute), but is otherwise identical to
the original, observed workload. If there is no differ-
ence in the response time distribution of these two
workloads, we infer that our characterization config-
uration need not contain any arrival time attributes.
In other words, we infer that our characterization
need not contain any information about correlations
between the workload’s arrival time values.

To see how the additive approach works, suppose
we take our current characterization configuration
and add the “perfect” attribute for location. If there
is a large change in performance, then we infer that
our current attributes describing location are inade-
quate. On the other hand, if the performance does
not change, then we infer that there will be no benefit

to improving any of the location attributes because
even the best possible attribute-value had little ef-
fect. Again, this indicates that our characterization
need not contain any additional detailed information
about the correlations between a workload’s location
values.

Implementing the Improvement: When we
have determined which attribute group contains the
missing information, we must add an appropriate at-
tribute to our characterization configuration. We can
automatically iterate through an attribute group’s
known attributes and choose the best one; however,
we are still investigating methods of developing new
attributes when necessary. In the interim, our in-
tuition about storage systems and workloads will
be necessary to direct the development of new at-
tributes.

Current Status

Currently, we are developing an application that
automates our method. This application has two ba-
sic tasks: To evaluate a set of attributes and to select
the attribute group from which the next attribute will
be chosen.

The application’s first task is to evaluate a charac-
terization configuration (i.e. a set of attributes). To
do this, the application takes as input an observed
workload and a characterization configuration. It
first analyzes the observed workload to obtain the set
of attribute-values corresponding to the attributes in
the characterization configuration. Next, the applica-
tion synthetically generates a workload with the same
attribute-values, and issues that synthetic workload
to the storage system. After obtaining performance
information from the executed synthetic workload,
the application measures the RMS difference between
the response times of the original and synthetic work-
loads.

The application’s second task is to choose an at-
tribute group for improvement. To do this, the ap-
plication must first generate several characterization
configurations by applying the additive and subtrac-
tive methods to different attribute groups. It then
evaluates these characterization configurations (as
described above) and chooses an attribute group for
improvement,.

We are still developing the algorithms used to gen-
erate and compare the characterization configura-
tions. Developing an algorithm for choosing an at-
tribute group to improve is very difficult because
this process is not as straightforward as the brief de-
scription above indicates. In practice, we have found
that we cannot always choose an attribute group for
improvement by simply applying the additive and
subtractive approaches and comparing the resulting
RMS values. In some cases, it was not possible to
apply one of the approaches. In other cases, the re-
sults were misleading. Thus far, we have always been



Naive Syn‘theﬂc Workload
Observed Workload -------
Improved Synthetic Workload --------

0.8 -

0.6

04

0.2 -

. . .
0.001 0.01 0.1 1
Response Time in Seconds

0
0.0001

Figure 1: CDFs of read response times

able to work easily around these limitations; however,
developing generally applicable techniques for identi-
fying and addressing them has been more challenging.

We designed our application to facilitate the devel-
opment of such algorithms. To implement a new algo-
rithm, we simply override the chooseAttributeGroup()
method. Presently, chooseAttributeGroup() simply
sends the user e-mail requesting a list of characteriza-
tion configurations. Our plan is to incrementally add
functionality to chooseAttributeGroup() as we learn
how to address the aforementioned limitations. This
approach allows us to gradually reduce the amount of
human effort needed to develop a performance char-
acterization, instead of having no improvement until
our algorithm is fully functional.

Currently, our biggest challenge is the development
of new attributes. We learned much from Ganger’s
work [1]; in addition, we plan to leverage research in
arrival and disk access patterns as we search for new
attributes [2, 3]. However, we still need to add many
more attributes to our collection before we can fully
automate the distillation of performance characteris-
tics.

Results

Thus far, we have applied three iterations of our
method to a trace of HP’s Open Mail e-mail server
using an HP FC-60 disk array. Because the FC-60
has a 265MB write-back cache, all write requests are
considered to be completed once the data has been
placed in the cache; therefore, all writes have approx-
imately the same response time. As a result, we focus
on the response times of read requests only.

Figure 1 shows the improvement in our character-
ization configurations. The line labeled “Observed
Workload” shows the cumulative distribution func-
tion (CDF) of response times of the read requests in
the observed Open Mail workload. The Naive Syn-
thetic Workload was specified by a characterization

configuration containing distributions for each of the
four request parameters. The workload was gener-
ated by simply choosing each request’s parameter in-
dependently at random from these distributions. The
RMS difference between the performance of the Orig-
inal Workload and the Naive Synthetic Workload is
.81.

We then applied three iterations of our method to
develop a characterization configuration for the Im-
proved Synthetic Workload. This characterization
configuration is similar to that of the Naive Synthetic
Workload; however, it contains separate distributions
for read and write locations, and an attribute that de-
scribes locality. The result is a workload whose RMS
difference from the observed workload is only .66.

Clearly, there is much room for improvement; how-
ever, the brief results here demonstrate the potential
of our method for directing the improvement of char-
acterization configurations.

Conclusion

In summary, we are learning how to identify and
extract information from a workload trace that can be
used to synthetically generate a workload with simi-
lar performance. This will both help direct the devel-
opment of performance models and also improve our
understanding of workload behavior.

Our most important result is not the characteri-
zation and synthesis of an individual workload, but
the development of a process that can, with limited
human intervention, learn how to characterize and
synthesize the performance of any workload. The in-
novation of this process is the way in which we it-
eratively improve our characterizations and the way
in which we direct the search for attributes in each
iteration.

References

[1] G. R. Ganger. Generating representative syn-
thetic workloads: An unsolved problem. In Pro-
ceedings of the Computer Measurement Group
Conference, pages 1263-1269, December 1995.

[2] M. E. Gomez and V. Santonja. A new approach in
the analysis and modeling of disk access patterns.
In Performance Analysis of Systems and Software
(ISPASS 2000), pages 172-177. IEEE, April 2000.

[3] S. D. Gribble, G. S. Manku, D. Roselli, E. A.
Brewer, T. J. Gibson, and E. L. Miller. Self-
similarity in file systems. In Proceedings SIG-
METRICS, pages 141-150, 1998.

[4] C. Ruemmler and J. Wilkes. A trace-driven anal-
ysis of disk working set sizes. Technical report,
Hewlett-Packard Laboratories, 1993.



