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TCP/IP End System Performance Challenge

TCP/IP stack is a major “consumer” of CPU cycles
“easy” benchmark workloads can consume 80% CPU  
“difficult” workloads cause throughput degradation at 100% CPU

TCP/IP stack wastes CPU cycles:
100s of "useful" instructions per packet
10,000s of CPU cycles
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Long History of TCP/IP Optimizations

Decrease per-byte overhead
Checksum calculation offload

Decrease the number of interrupts
interrupt mitigation (coalescing)

Decrease the number of packets (for bulk transfers)
Jumbo frames
Large Send Offload (TCP Segmentation Offload)
Large Receive Offload
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History of TCP Optimizations cont` – Full Offload

Instead of optimizations - offload to hardware
TOE (TCP Offload Engine)

Expensive
Not flexible
Not robust - dependency on device vendor
Not supported by some operating systems on principle

RDMA
Requires support on the remote side
not applicable to legacy upper layer protocols

TCP onload – offload to a dedicated main processor
Using a multiprocessor system asymmetrically
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TCP/IP Parallelization

Naïve initial transition to multiprocessor systems
Using one lock to protect it all

Incremental attempts to improve parallelism
Use more locks to decrease contention
Use kernel threads to perform processing in parallel
Hardware support to parallelize incoming packet 
processing – Receive-Side Scaling (RSS) 
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Parallelizing TCP/IP Stack Using RSS
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So, Where Do the Cycles Go?

No clear hot-spots
Except lock/unlock functions

CPU is “misused” by the network stack:
Interrupts, context switches, cache pollution

due to CPU sharing between applications and stack

IPIs, locking and cache line bouncing
due to stack control state shared by different CPUs
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Our Approach – Isolate the Stack
Dedicate CPUs for network stack

Use light-weight internal interconnect
Scaling for many applications and high request rates

Make it transparent to applications
Not just API-compatible – hide the latency of interaction
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IsoStack Architecture  IsoStack CPU 
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Split socket layer:
front-end in application

Maintains socket buffers
posts socket  commands 
onto command queue

back-end in IsoStack
On dedicated core[s]

With connection affinity
Polls for commands
Executes the socket 
operations asynchronously
“Zero-copy”

Shared-memory queues for 
socket delegation

Asynchronous messaging
Flow control and aggregation
Data copy by socket front-end
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IsoStack Shared Memory Command Queues 
Low overhead multiple-
producers-single-consumer 
mechanism 

Non-trusted producers

Design Principles:
Lock-free, cache-aware
Bypass kernel whenever 
possible

problematic with the existing 
hardware support

Interrupt mitigation

Design Choices Extremes:
A single command queue

Con - high contention on access

Per-thread command queue
Con - high number of queues to 
be polled by the server

Our choice:
Per-socket command queues

Aggregation of tx and rx data
Per-CPU notification queues

Requires kernel involvement to 
protect access to these queues
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IsoStack Prototype Implementation

Power6 (4x2 cores), AIX 6.1

10Gb/s HEA

Same codebase for 
IsoStack and legacy stack

IsoStack runs as single 
kernel thread “dispatcher”

Polls adapter rx queue
Polls socket back-end queues
Invokes regular TCP/IP 
processing

Network stack is 
[partially] optimized for 
serialized execution

Some locks eliminated
Some control data 
structures replicated to 
avoid sharing

Other OS services are 
avoided when possible

E.g., avoid wakeup calls
Just to workaround HW 
and OS support limitations
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TX Performance
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Rx Performance
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Impact of Un-contended Locks 

Impact of unnecessary lock 
re-enabled in IsoStack:

For low number of connections:
Throughput decreased
Same or higher CPU utilization

For higher number of 
connections:

Same throughput
Higher CPU utilization 

Even when un-contended, 
locks have tangible cost!
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IsoStack – Summary

Isolation of network stack dramatically reduces overhead
No CPU sharing costs
Decreased memory sharing costs

Explicit asynchronous messaging instead of blind sharing
Optimized for large number of applications
Optimized for high request rate (short messages)

Opportunity for further improvement with hardware and 
OS extensions

Generic support for subsystem isolation
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Questions?
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Backup
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Using Multiple IsoStack Instances
Utilize adapter packet classification 
capabilities

Connections are “assigned” to 
IsoStack instances according to the 
adapter classification function

Applications can request connection 
establishment from any stack 
instance, but once the connection is 
established, socket back-end notifies 
socket front-end which instance will 
handle this connection.
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Potential for Platform Improvements
The hardware and the operating systems should provide a better infrastructure 
for subsystem isolation:

efficient interaction between large number of applications and an isolated 
subsystem

in particular, better notification mechanisms, both to and from the isolated subsystem

Non-shared memory pools

Energy-efficient wait on multiple memory locations


