IsoStack — Highly Efficient Network
Processing on Dedicated Cores

Leah Shalev
Eran Borovik, Julian Satran, Muli Ben-Yehuda

IBM Haifa Research Lab © 2007-2010 IBM Corporation

Outline

€ Motivation

© IsoStack architecture

© Prototype — TCP/IP over 10GE on a single core
© Performance results

€ Summary

IBM Haifa Research Lab © 2007-2010 IBM Corporation

TCP/IP End System Performance Challenge

& TCP/IP stack is a major “consumer” of CPU cycles

@®“easy” benchmark workloads can consume 80% CPU
@®“difficult” workloads cause throughput degradation at 100% CPU

& TCP/IP stack wastes CPU cycles:

©100s of "useful" instructions per packet
©10,000s of CPU cycles

IBM Haifa Research Lab © 2007-2010 IBM Corporation

Long History of TCP/IP Optimizations

© Decrease per-byte overhead
@ Checksum calculation offload

@ Decrease the number of interrupts
© interrupt mitigation (coalescing)

@ Decrease the number of packets (for bulk transfers)

@ Jumbo frames
@®Large Send Offload (TCP Segmentation Offload)
@ Large Receive Offload

IBM Haifa Research Lab © 2007-2010 IBM Corporation

History of TCP Optimizations cont” — Full Offload

@ Instead of optimizations - offload to hardware

@ TOE (TCP Offload Engine)

& Expensive

% Not flexible

< Not robust - dependency on device vendor

< Not supported by some operating systems on principle

© RDMA

% Requires support on the remote side
< not applicable to legacy upper layer protocols

©TCP onload — offload to a dedicated main processor
% Using a multiprocessor system asymmetrically

IBM Haifa Research Lab © 2007-2010 IBM Corporation

TCP/IP Parallelization

€ Naive initial transition to multiprocessor systems
% Using one lock to protect it all

€ Incremental attempts to improve parallelism
% Use more locks to decrease contention
@ Use kernel threads to perform processing in parallel

% Hardware support to parallelize incoming packet
processing — Receive-Side Scaling (RSS)

IBM Haifa Research Lab © 2007-2010 IBM Corporation

Parallelizing TCP/IP Stack Using RSS
Theory (customized system) Practice

CPU1 CPU 2 CPU 2

Rx 2
TCP/IP TCP/IP
Conn D Rx 1
NIC

IBM Haifa Research Lab © 2007-2010 IBM Corporation

So, Where Do the Cycles Go?

€ No clear hot-spots
@ Except lock/unlock functions

© CPU is “misused” by the network stack:
@ Interrupts, context switches, cache pollution
<due to CPU sharing between applications and stack

@ 1Pls, locking and cache line bouncing
©due to stack control state shared by different CPUs

IBM Haifa Research Lab © 2007-2010 IBM Corporation

Our Approach — Isolate the Stack
% Dedicate CPUs for network stack

@ Use light-weight internal interconnect
@ Scaling for many applications and high request rates

©Make it transparent to applications
@ Not just API-compatible — hide the latency of interaction

Legacy Stack Isolated Stack
CPU CPU CPU CPU CPU Stack CPU
CPU
A A A A
PP PP PP PP CPU App N TCP
TCP Stack App T Stack
S ol
MAC
MAC

IBM Haifa Research Lab © 2007-2010 IBM Corporation

IsoStack Architecture ———— |s0Stack CPU
. App CPU #1 TCP/IP
& Split socket layer: —
@®front-end in application P —— ’\\ back-end
ntern
& Maintains socket buffers fﬁ?ﬁd nterconnect Shared mem
& posts socket commands | quedie sarver
onto command queue Shared mem Internal
_ queue client interconnect ’
®back-end in IsoStack \/(
% On dedicated core[s]

&With connection affinity <> Shared-memory queues for

% Polls for commands socket delegation
& Executes the socket

operations asynchronously @ Asynchronous messaging
© “Zero-copy” % Flow control and aggregation
% Data copy by socket front-end

IBM Haifa Research Lab © 2007-2010 IBM Corporation

IsoStack Shared Memory Command Queues

< Low overhead multiple- © Design Choices Extremes:
producers-single-consumer 4 a single command gueue
mechanism % Con - high contention on access
©Non-trusted producers @ Per-thread command queue
€ Design Principles: & Con - high number of queues to

% Lock-free, cache-aware be polled by the server

% Bypass kernel whenever ©Our choice:

possible @ Per-socket command queues
& problematic with the existing © Aggregation of tx and rx data
hardware support @ Per-CPU naotification queues
@ Interrupt mitigation & Requires kernel involvement to

protect access to these queues

IBM Haifa Research Lab © 2007-2010 IBM Corporation

IsoStack Prototype Implementation

& Power6 (4x2 cores), AlX 6.1

©10Gb/s HEA & Network stack is
[partially] optimized for
© Same codebase for serialized execution
soStack and legacy stack @ Some locks eliminated
_ % Some control data
&lsoStack runs as single structures replicated to
cernel thread “dispatcher” avoid sharing

avoided when possible

@ E.g., avoid wakeup calls

@ Invokes regular TCP/IP & Just to workaround HW
processing and OS support limitations

@ Polls socket back-end queues

IBM Haifa Research Lab © 2007-2010 IBM Corporation

1200

Cpu Utilization |

1024
2048

Message size

4096

8192

- 1000
©

800 D
=

600 2
e
(@))
-]

400 O
e
I_

- 200

0

16384
32768
65536

Il Native CPU [IsoStack CPU —— Native Througput

—— |soStack Throughput

IBM Haifa Research Lab

© 2007-2010 IBM Corporation

Rx Performance

100 -
87.5 -
75 -
62.5 -
50 -
37.5 -
25 -
12.5 -
O _

CPU utilization

64
128

© NN <
H «—+H «
N O O

—

Message size

2048
4096

Throughput (MB/s)

8192
16384
32768
65536

mmm Native CPU
—a— Native Throughput

—= IsoStack CPU
—x— IsoStack Throughput

IBM Haifa Research Lab

© 2007-2010 IBM Corporation

Impact of Un-contended Locks

Transmit performance for 64 byte messages

100

©Impact of unnecessary lock 90 |
re-enabled in IsoStack: sool
@ For low number of connections: _§ 60 +
®Throughput decreased E ?18 |
& Same or higher CPU utilization g 30 |
® For higher number of ©20 |
connections: 18 :

& Same throughput

& Higher CPU utilization

NG

i

l'l'. ‘]

1 2 4 8 16 32 64 128

Number of connections

1200

- 1100
- 1000
- 900
- 800
- 700

€ Even when un-contended,
locks have tangible cost!

mEmm Native CPU
IsoStack CPU
Em IsoStack+Lock CPU
—>¢— Native Throughput
—a— IsoStack Throughput
—e— IsoStack+Lock Throughput

IBM Haifa Research Lab

© 2007-2010 IBM Corporation

IsoStack — Summary

© |solation of network stack dramatically reduces overhead

% No CPU sharing costs
% Decreased memory sharing costs

© Explicit asynchronous messaging instead of blind sharing
% Optimized for large number of applications
% Optimized for high request rate (short messages)

© Opportunity for further improvement with hardware and
OS extensions

@ Generic support for subsystem isolation

IBM Haifa Research Lab © 2007-2010 IBM Corporation

Questions?

IBM Haifa Research Lab © 2007-2010 IBM Corporation

Backup

IBM Haifa Research Lab © 2007-2010 IBM Corporation

Using Multiple IsoStack Instances

@ Utilize adapter packet classification
capabilities

€ Connections are “assigned” to
IsoStack instances according to the
adapter classification function

© Applications can request connection
establishment from any stack
instance, but once the connection is
established, socket back-end notifies
socket front-end which instance will
handle this connection.

IBM Haifa Research Lab

App CPU 1

-0

e

IsoStack IsoStack
CPU 1 CPU 2
TCP/IP/Eth — TCP/IP/Eth
. Conn D

NIC

© 2007-2010 IBM Corporation

Potential for Platform Improvements

© The hardware and the operating systems should provide a better infrastructure
for subsystem isolation:

@ efficient interaction between large number of applications and an isolated
subsystem

©in particular, better notification mechanisms, both to and from the isolated subsystem
% Non-shared memory pools
® Energy-efficient wait on multiple memory locations

IBM Haifa Research Lab © 2007-2010 IBM Corporation

