
IBM Haifa Research Lab © 2007-2010 IBM Corporation

USENIX ATC 2010

IsoStack – Highly Efficient Network
Processing on Dedicated Cores

Leah Shalev
Eran Borovik, Julian Satran, Muli Ben-Yehuda

IBM Haifa Research Lab © 2007-2010 IBM Corporation2

USENIX ATC 2010

Outline

Motivation

IsoStack architecture

Prototype – TCP/IP over 10GE on a single core

Performance results

Summary

IBM Haifa Research Lab © 2007-2010 IBM Corporation3

USENIX ATC 2010

TCP/IP End System Performance Challenge

TCP/IP stack is a major “consumer” of CPU cycles
“easy” benchmark workloads can consume 80% CPU
“difficult” workloads cause throughput degradation at 100% CPU

TCP/IP stack wastes CPU cycles:
100s of "useful" instructions per packet
10,000s of CPU cycles

IBM Haifa Research Lab © 2007-2010 IBM Corporation4

USENIX ATC 2010

Long History of TCP/IP Optimizations

Decrease per-byte overhead
Checksum calculation offload

Decrease the number of interrupts
interrupt mitigation (coalescing)

Decrease the number of packets (for bulk transfers)
Jumbo frames
Large Send Offload (TCP Segmentation Offload)
Large Receive Offload

IBM Haifa Research Lab © 2007-2010 IBM Corporation5

USENIX ATC 2010

History of TCP Optimizations cont` – Full Offload

Instead of optimizations - offload to hardware
TOE (TCP Offload Engine)

Expensive
Not flexible
Not robust - dependency on device vendor
Not supported by some operating systems on principle

RDMA
Requires support on the remote side
not applicable to legacy upper layer protocols

TCP onload – offload to a dedicated main processor
Using a multiprocessor system asymmetrically

IBM Haifa Research Lab © 2007-2010 IBM Corporation6

USENIX ATC 2010

TCP/IP Parallelization

Naïve initial transition to multiprocessor systems
Using one lock to protect it all

Incremental attempts to improve parallelism
Use more locks to decrease contention
Use kernel threads to perform processing in parallel
Hardware support to parallelize incoming packet
processing – Receive-Side Scaling (RSS)

IBM Haifa Research Lab © 2007-2010 IBM Corporation7

USENIX ATC 2010

Parallelizing TCP/IP Stack Using RSS

CPU 1

t1

Tx
Rx1

Conn A

CPU 2

NIC

Conn B

Conn C

Conn D

Tx Rx 1

t2 t3

Rx 2Rx 2

CPU 1

t1

Conn A

CPU 2

NIC

Conn B

Conn C

Conn D

t3

TCP/IP

Theory (customized system) Practice

t3

TCP/IP

t1

IBM Haifa Research Lab © 2007-2010 IBM Corporation8

USENIX ATC 2010

So, Where Do the Cycles Go?

No clear hot-spots
Except lock/unlock functions

CPU is “misused” by the network stack:
Interrupts, context switches, cache pollution

due to CPU sharing between applications and stack

IPIs, locking and cache line bouncing
due to stack control state shared by different CPUs

IBM Haifa Research Lab © 2007-2010 IBM Corporation9

USENIX ATC 2010

Our Approach – Isolate the Stack
Dedicate CPUs for network stack

Use light-weight internal interconnect
Scaling for many applications and high request rates

Make it transparent to applications
Not just API-compatible – hide the latency of interaction

IBM Haifa Research Lab © 2007-2010 IBM Corporation10

USENIX ATC 2010

IsoStack Architecture IsoStack CPU

Socket
back-end

TCP/IP

Shared mem
queue server

Internal
interconnect

App CPU #2

app

Socket
front-end

front-end Shared mem
queue client

app

Socket
front-end

Shared mem
queue client

App CPU #1

app

Socket
front-end

Shared mem
queue client

Internal
interconnect

Split socket layer:
front-end in application

Maintains socket buffers
posts socket commands
onto command queue

back-end in IsoStack
On dedicated core[s]

With connection affinity
Polls for commands
Executes the socket
operations asynchronously
“Zero-copy”

Shared-memory queues for
socket delegation

Asynchronous messaging
Flow control and aggregation
Data copy by socket front-end

IBM Haifa Research Lab © 2007-2010 IBM Corporation11

USENIX ATC 2010

IsoStack Shared Memory Command Queues
Low overhead multiple-
producers-single-consumer
mechanism

Non-trusted producers

Design Principles:
Lock-free, cache-aware
Bypass kernel whenever
possible

problematic with the existing
hardware support

Interrupt mitigation

Design Choices Extremes:
A single command queue

Con - high contention on access

Per-thread command queue
Con - high number of queues to
be polled by the server

Our choice:
Per-socket command queues

Aggregation of tx and rx data
Per-CPU notification queues

Requires kernel involvement to
protect access to these queues

IBM Haifa Research Lab © 2007-2010 IBM Corporation12

USENIX ATC 2010

IsoStack Prototype Implementation

Power6 (4x2 cores), AIX 6.1

10Gb/s HEA

Same codebase for
IsoStack and legacy stack

IsoStack runs as single
kernel thread “dispatcher”

Polls adapter rx queue
Polls socket back-end queues
Invokes regular TCP/IP
processing

Network stack is
[partially] optimized for
serialized execution

Some locks eliminated
Some control data
structures replicated to
avoid sharing

Other OS services are
avoided when possible

E.g., avoid wakeup calls
Just to workaround HW
and OS support limitations

IBM Haifa Research Lab © 2007-2010 IBM Corporation13

USENIX ATC 2010

TX Performance

0

12.5

25

37.5

50

62.5

75

87.5

100
64 12

8

25
6

51
2

1
02

4

2
04

8

4
09

6

8
19

2

16
38

4

32
76

8

65
53

6

Message size

C
pu

 U
til

iz
at

io
n

.

0

200

400

600

800

1000

1200

T
hr

ou
gh

p
ut

 (
M

B
/s

)
.

Native CPU IsoStack CPU Native Througput IsoStack Throughput

IBM Haifa Research Lab © 2007-2010 IBM Corporation14

USENIX ATC 2010

Rx Performance

0

12.5

25

37.5

50

62.5

75

87.5

100

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Message size

C
P

U
 u

til
iz

at
io

n

0

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t

(M
B

/s
)

Native CPU IsoStack CPU
Native Throughput IsoStack Throughput

IBM Haifa Research Lab © 2007-2010 IBM Corporation15

USENIX ATC 2010

Impact of Un-contended Locks

Impact of unnecessary lock
re-enabled in IsoStack:

For low number of connections:
Throughput decreased
Same or higher CPU utilization

For higher number of
connections:

Same throughput
Higher CPU utilization

Even when un-contended,
locks have tangible cost!

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16 32 64 128
Number of connections

C
P

U
 u

ti
liz

at
io

n
0
100
200
300
400
500
600
700
800
900
1000
1100
1200

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Native CPU
IsoStack CPU
IsoStack+Lock CPU
Native Throughput
IsoStack Throughput
IsoStack+Lock Throughput

Transmit performance for 64 byte messages

IBM Haifa Research Lab © 2007-2010 IBM Corporation16

USENIX ATC 2010

IsoStack – Summary

Isolation of network stack dramatically reduces overhead
No CPU sharing costs
Decreased memory sharing costs

Explicit asynchronous messaging instead of blind sharing
Optimized for large number of applications
Optimized for high request rate (short messages)

Opportunity for further improvement with hardware and
OS extensions

Generic support for subsystem isolation

IBM Haifa Research Lab © 2007-2010 IBM Corporation17

USENIX ATC 2010

Questions?

IBM Haifa Research Lab © 2007-2010 IBM Corporation18

USENIX ATC 2010

Backup

IBM Haifa Research Lab © 2007-2010 IBM Corporation19

USENIX ATC 2010

Using Multiple IsoStack Instances
Utilize adapter packet classification
capabilities

Connections are “assigned” to
IsoStack instances according to the
adapter classification function

Applications can request connection
establishment from any stack
instance, but once the connection is
established, socket back-end notifies
socket front-end which instance will
handle this connection.

IsoStack
CPU 1

t1

Conn A
IsoStack

CPU 2

NIC

Conn B

Conn C

Conn D

t2 t3

TCP/IP/Eth

App CPU 1 App CPU 2

TCP/IP/Eth

IBM Haifa Research Lab © 2007-2010 IBM Corporation20

USENIX ATC 2010

Potential for Platform Improvements
The hardware and the operating systems should provide a better infrastructure
for subsystem isolation:

efficient interaction between large number of applications and an isolated
subsystem

in particular, better notification mechanisms, both to and from the isolated subsystem

Non-shared memory pools

Energy-efficient wait on multiple memory locations

