
Apiary: Easy-to-Use Desktop
Application Fault Containment on
Commodity Operating Systems

Shaya Potter and Jason Nieh
June 23, 2010
USENIX ATC

IBM Research
Research performed at Columbia University

Desktop Applications are Buggy!

 Desktop applications are prone to being
exploited
 Adobe Acrobat – multiples times in 2009-2010

 PDF has dethroned MS Word documents as most
common malware vector [F-Secure]

 But why should this even be possible?
 I want to view the PDF as a “read-only” item

Approaches to Application Security

 Access Control Systems
 Ex: Janus, Systrace, SELinux…

 Rewrite/Recompile Applications
 Ex: Java, Google’s Native Client

 Isolating Applications in Virtual Machines
 Ex: VMware Unity

Isolated VMs for each Application?

Pros
 No need to make complex rules
 Exploited applications are isolated
 Works with existing applications

Cons
 Exploited applications remain exploited
 Significant runtime overhead
 Lose integrated desktop feel
 Increase management burden

Apiary

Desktop Applications are Isolated

Web E-MailOffice Documents

Banking /
Finance IM Media

Persistent Application Containers

 Changes persist between application
execution

 Needed for persistent data
 Quicken
 Research Papers

 But persistent data still needs to be isolated
 Office documents have no need to access

financial data in Quicken

Apiary Retains Desktop Look and Feel

Introduces Ephemeral Containers

PDF

Media

PDF

Ephemeral Application Containers

 Compromises cannot persist
 Protects from concurrent compromises
 Protects privacy

 Enables untrusted data to be viewed safely

Problems to Solve

 Exploited applications remain exploited

 Significant overhead

 Lose integrated desktop feel

 Increase management burden

Apiary’s Architecture

 3 Components

1. OS Containers

2. Display Virtualization

3. Virtual Layered File System (VLFS)

OS Containers

 OS Containers are prevalent on commodity
OSs
 Solaris Zones, Linux Containers/VServer

 Low overhead
 Quick to instantiate

 Lower isolation than hardware VMs
 Apiary can be used with hardware VMs if threat

model requires it

Problems to Solve

 Exploited applications remain exploited

 Significant overhead

 Lose integrated desktop feel

 Increase management burden

Containers Integrated at Multiple Points

1. Display

2. Inter-Application Execution

3. File System

Integrated Display

Problem
 Each container must have isolated displays

 XSendEvent() / W32SendMessage() are vectors to
exploit other running applications

 But, need a single desktop environment

Solution
 Provide each container with its own virtual display

server
 Viewer composes together containers’ displays

 Single display, menu, task bar

Display Integration

Integrated Applications

Problem
 Applications in different containers depend on

each other
 Firefox wants to run a PDF viewer or OpenOffice

to view documents

Solution
 Applications can execute each other in an

ephemeral helper mode

Integrated Applications

PDF Media PDF

Web

Integrated File System

Problem:
 Ephemeral helper applications are useless if

data can’t be shared
 How does Firefox pass the PDF file to the PDF

viewer?

Solution
 Limited File System Integration
 Protected/Shared “/tmp” for inter-application

execution

Integrated File System – /tmp

 Each container has its own directory under /tmp

/tmp

firefox ooffice t-bird

Integrated File System – /tmp

 Each container uses that directory as its own temp
directory
 Firefox will save all temporary files to /tmp/firefox

/tmp

firefox ooffice t-bird

file.pdf

Integrated File System – /tmp

 But files are invisible to other containers

/tmp

firefox ooffice t-bird

Integrated File System – /tmp

 Firefox will launch xpdf /tmp/firefox/file.pdf

/tmp

firefox ooffice t-bird

file.pdf

Integrated File System – /tmp

 Creates a new ephemeral container for Xpdf
 Allows /tmp/firefox/file.pdf to be visible in

the new ephemeral Xpdf container
 Ephemeral Xpdf container executes program as

called

/tmp

firefox ooffice eph-xpdft-bird

file.pdf

Integrated File System – Global View

Problem
 Files might need to be shared between

isolated containers.

Solution
 File System Manager Container
 Provides a global namespace view to move

files between containers

Problems to Solve

 Exploited applications remain exploited

 Significant overhead

 Lose integrated desktop feel

 Increase management burden

Container Management Problems

 How do we efficiently provision them?

 How do we efficiently store them?

 How do we efficiently get updates applied?

Possible Approaches?

 Package Management

 COW Disks/File Systems

Package Management

Web PDF Office

COW Disks/File Systems

Web PDF Office

Web PDF Office

Web PDF Office

Template Image

Clone #1

Clone #2

COW Disks/File Systems

Web-v2 PDF Office

Web PDF Office

Web PDF Office

Template Image

Clone #1

Clone #2

The Virtual Layered File System

 Makes the FS a full partner with the package
manager
 Packages are transformed into a set of shared

layers

 Combine Unioning File System concepts with
package management

VLFS Example

WebLayers Office LibC X11

Provisioned VLFSs

Web Office Suite

The VLFS/Software Appliance

 VLFS defines Software Appliance

How Apiary Uses the VLFS

 Users install application appliances instead of
individual applications
 Predefined sets of layers
 Able to be created by various organizations

 Banks
 ISVs

 Appliances leverage global set of layers
 Don’t need to manage systems from scratch

How Does it Solve the Problems?

 How do we efficiently provision them?
 Shared Layers means no copying
 Instantly able to create file systems for ephemeral

execution

 How do we efficiently store them?
 Each common layer is only stored once, like a regular

system

 How do we efficiently get updates applied?
 Update layer once in repository, able to be used by all

application containers that depend on that layer

Other VLFS Advantages

 How do we make sure they are secure?
 Dividing into layers isolates changes, makes

malicious changes visible

 Avoids “DLL Hell”
 Each application container has its own

independent set of shared libraries
 Allows incompatible applications to be installed in

same machine

Problems to Solve

 Exploited applications remain exploited

 Significant overhead

 Lose integrated desktop feel

 Increase management burden

Experimental Results

Case Study #1 – Malicious PDF File

 Traditional Desktop
 Can destroy entire computer

 Always viewed in ephemeral container
 Attack succeeds
 Doesn’t affect user

Case Study #2 – Malicious Plugins

 Traditional Computer – Persistent, invisible

 Ephemeral Container
 Doesn’t impact user beyond current ephemeral instance

 Persistent Container – Worse
 Does damage

 Can have multiple Persistent Containers for similar
programs
 Similar to Red/Green Isolation

 Can see if system programs were modified by looking
at private layer

Usage Study

 24 Users performed tasks including:
 E-mail
 IMing
 Web Browsing
 Document editing

 Three environments – Plain Linux, No
Ephemeral Containers, Ephemeral
Containers

Usage Study

 Task completion time was about the same in
all containers

 Users didn’t notice overhead of instantiating
ephemeral containers

 Users found environment easy to use

Overhead as Containers Scale

 25 parallel instances/containers running each test
 Overhead generally minimal, even kernel build is

only about 10%

Quick Instantiation

Firefox T-Bird OOffice Xpdf Mplayer
Apiary .005s .005s .005s .005s .005s
Create 276s 294s 365s 291s 294s
Tar Extract 86s 87s 150s 81s 81s
FS-Snap .016s .016s .016s .016s .016s

 Why not use an FS with a snapshot/branching
semantic (ZFS/Btrfs?)
 Provisions basically as quick!
 But, each FS once branched is independent

 Has to be managed independently!

Efficient Disk Usage

Firefox T-Bird OOffice Xpdf Mplayer
Size 353MB 367MB 645MB 339MB 355MB
Layer 129 125 186 130 162
Shared 330MB 335MB 329MB 330MB 326MB
Unique 23MB 32MB 316MB 9MB 29MB

Single FS Multiple FS VLFSs

Size 743MB 2.1GB 743MB

Fast File System Updates

 Time is just for actual file system update
 For machine maintenance in Apiary, machines can be

offline which can add significant time to the traditional
updates

Traditional VLFS
Time 18s 0.12s

Conclusions

 Apiary introduces a new compartmentalized
application paradigm
 Works with existing applications, without changes

or recompilation
 Introduces Ephemeral Containers to prevent

compromises from persisting

 VLFS enables simple container management

 Low Overhead and Easy to Use

Questions?

 For more information

http://www.ncl.cs.columbia.edu/

spotter@cs.columbia.edu
spotter@us.ibm.com

http://www.ncl.cs.columbia.edu/�
http://www.ncl.cs.columbia.edu/�
mailto:spotter@cs.columbia.edu�
mailto:spotter@us.ibm.com�

	Apiary: Easy-to-Use Desktop Application Fault Containment on Commodity Operating Systems
	Desktop Applications are Buggy!
	Approaches to Application Security
	Isolated VMs for each Application?
	Apiary
	Desktop Applications are Isolated
	Persistent Application Containers
	Apiary Retains Desktop Look and Feel
	Introduces Ephemeral Containers
	Ephemeral Application Containers
	Problems to Solve
	Apiary’s Architecture
	OS Containers
	Problems to Solve
	Containers Integrated at Multiple Points
	Integrated Display
	Display Integration
	Integrated Applications
	Integrated Applications
	Integrated File System
	Integrated File System – /tmp
	Integrated File System – /tmp
	Integrated File System – /tmp
	Integrated File System – /tmp
	Integrated File System – /tmp
	Integrated File System – Global View
	Problems to Solve
	Container Management Problems
	Possible Approaches?
	Package Management
	COW Disks/File Systems
	COW Disks/File Systems
	The Virtual Layered File System
	VLFS Example
	The VLFS/Software Appliance
	How Apiary Uses the VLFS
	How Does it Solve the Problems?
	Other VLFS Advantages
	Problems to Solve
	Experimental Results
	Case Study #1 – Malicious PDF File
	Case Study #2 – Malicious Plugins
	Usage Study
	Usage Study
	Overhead as Containers Scale
	Quick Instantiation
	Efficient Disk Usage
	Fast File System Updates
	Conclusions
	Questions?
	Future Directions
	Integrated File System
	The Virtual Layered File System
	Possible Approaches?
	Container Management Problems
	What is Apiary?
	Integrated Applications
	Access Control Systems?	
	Rewrite/Recompile Applications?
	Possible Approaches?
	The VLFS
	Union Semantic to the Rescue
	Layer Composition
	FS Modification – User Change
	FS Modification – User Change
	FS Modification – Malicious Change
	FS Modification – Malicious Change
	FS Modification – Deleting Files
	The VLFS
	Recovering Deleted Files
	Recovering Deleted Files
	Recovering Deleted Files
	Recovering Deleted Files
	Recovering Deleted Files
	Recovering Deleted Files
	Dynamically add and remove layers
	Dynamically add and remove layers
	Layers
	Layer Repositories
	Putting It All Together

