Stout

An Adaptive Interface to
Scalable Cloud Storage

John C. McCullough John Dunagant
Alec Wolman® Alex C. Snoeren

UC San Diego

Microsoft Researchf

June 23, 2010

Microsoft

=< UCSD Research

Scalable Multi-tiered Services

Scalable Multi-tiered Services

www

app

www

app

www

app

Scalable Multi-tiered Services

Spreadsheet

www

app

www

app

www

app

Scalable Multi-tiered Services

Spreadsheet

Scalable Multi-tiered Services

client

Spreadsheet

Scalable Multi-tiered Services

client

Spreadsheet

Scalable Multi-tiered Services

client

Spreadsheet

Scalable Multi-tiered Services

client

Spreadsheet

Scalable Multi-tiered Services

client

Spreadsheet

Scalable Multi-tiered Services

Spreadsheet

Scalable Multi-tiered Services

Spreadsheet

Scalable Multi-tiered Services

Spreadsheet

Scalable Multi-tiered Services

R R L L L L L

IIIII

Scalable Multi-tiered Services

£ Windows Azure

amazon
web services™

29

Key-Value Storage

app - store

» Simple interface
» read(key) — value
» write(key, value)
» Natural to send requests right away

Key-Value Storage

app - store

» Simple interface

» read(key) — value

» write(key, value)
» Natural to send requests right away
» Block for response to survive failures

Key-Value Storage

app - store

Simple interface

» read(key) — value

» write(key, value)
Natural to send requests right away
Block for response to survive failures

Performance characteristics:

v

v vy

Latency
' Saturation

A}

Load (requests/s)

Key-Value Storage
app - store

» Simple interface

» read(key) — value

» write(key, value)
» Natural to send requests right away
» Block for response to survive failures

» Performance characteristics:

Latency
' Saturation

1
"
"
“

Load (requests/s)

Improving Performance Under Load

app -> store

Ooono

» Application server handles requests for many
clients

» Storage request overheads

Networking delay

» Protocol-processing

» Disk seeks

» etc.

v

Improving Performance Under Load

app -> store

0O 0

» Application server handles requests for many
clients

» Storage request overheads

Networking delay

» Protocol-processing

» Disk seeks

» etc.

v

Improving Performance Under Load

app -> store

0 0o

» Application server handles requests for many
clients

» Storage request overheads

Networking delay

» Protocol-processing

» Disk seeks

» etc.

v

Improving Performance Under Load

app -> store

Ooog

» Application server handles requests for many
clients

» Storage request overheads

Networking delay

» Protocol-processing

» Disk seeks

» etc.

v

Improving Performance Under Load

app -> store

» Application server handles requests for many
clients

» Storage request overheads

Networking delay

» Protocol-processing

» Disk seeks

» etc.

v

Improving Performance Under Load

app -> store

Ooono

» Application server handles requests for many
clients

» Storage request overheads

Networking delay

» Protocol-processing

» Disk seeks

» etc.

v

Improving Performance Under Load

app -> store

» Application server handles requests for many
clients

» Storage request overheads

Networking delay

» Protocol-processing

» Disk seeks

» etc.

v

» Batch to amortize overheads

Improving Performance Under Load

app -> store

» Application server handles requests for many
clients

» Storage request overheads

Networking delay

» Protocol-processing

» Disk seeks

» etc.

v

» Batch to amortize overheads

Selecting a Batching Interval

» Most apps use a fixed batching interval

Selecting a Batching Interval

» Most apps use a fixed batching interval

. | .

short interval long

Selecting a Batching Interval

» Most apps use a fixed batching interval
» Latency/throughput tradeoff

better throughput —
«——— better latency

short interval long

Selecting a Batching Interval

» Most apps use a fixed batching interval
» Latency/throughput tradeoff

better throughput —
«——— better latency

Latency

i Load (requests/s)

long

short interval

Selecting a Batching Interval

» Most apps use a fixed batching interval
» Latency/throughput tradeoff

better throughput —
«——— better latency

Latency

I l | Load (requests/s)

short interval long

Selecting a Batching Interval

» Most apps use a fixed batching interval

» Latency/throughput tradeoff

better throughput —
«——— better latency

i |

short interval long

Load (requests/s)

Selecting a Batching Interval

» Most apps use a fixed batching interval

» Latency/throughput tradeoff
» Want flexible batching interval

» Short when lightly loaded
» Long when heavily loaded

better throughput —
«——— better latency

l l l | Load (requests/s)

short interval long

Solution: Stout

15! |store
wWww app2| g,
—]
[IIIZ, |store
T "5’|
wWww appl| o,
¢ |store

» Stout is a storage interposition library

» Our contribution is a technique for
independently adjusting the batching interval

Outline

1. Introduction

2. Application Structure
3. Adaptive Batching

4. Evaluation

Overlapped Request Processing

> WWW

app

Overlapped Request Processing

\ 4

wWww

| G

Overlapped Request Processing

WWW > app store

ProcessRequest(req):

Overlapped Request Processing

WWW > app store

ProcessRequest(req):
key = Parse(req)

Overlapped Request Processing

WWW > app store

ProcessRequest(req):
key = Parse(req)
Process(key,req)

Overlapped Request Processing

WWW app 7| store

ProcessRequest(req):
key = Parse(req)
Process(key,req)
PersistState(key)

Overlapped Request Processing

WWW app |¢ store

ProcessRequest(req):
key = Parse(req)
Process(key,req)
PersistState(key)

Overlapped Request Processing

WWW app store

ProcessRequest(req):
key = Parse(req)
Process(key,req)
PersistState(key)
reply = MakeReply(req)

Overlapped Request Processing

WWW app store

A

ProcessRequest(req):
key = Parse(req)
Process(key,req)
PersistState(key)
reply = MakeReply(req)
SendReply(reply)

Overlapped Request Processing

< WWW app store

ProcessRequest(req):
key = Parse(req)
Process(key,req)
PersistState(key)
reply = MakeReply(req)
SendReply(reply)

Overlapped Request Processing

WWW app store

ProcessRequest(req):
key = Parse(req)
Process(key,req)
PersistState(key)
reply = MakeReply(req)
SendReply(reply)

Overlapped Request Processing

WWW app| o, |[store

ProcessRequest(req):
key = Parse(req)
Process(key,req)
PersistState(key)
reply = MakeReply(req)
SendReply(reply)

Overlapped Request Processing

WWW app| o, |store

ProcessRequest(req):
key = Parse(req)
Process(key,req)
MarkDirty(key)
reply = MakeReply(req)
SendReply(reply)

Overlapped Request Processing

WWWwW app| o, |store

ProcessRequest(req):
key = Parse(req)
Process(key,req)
MarkDirty(key)
reply = MakeReply(req)
SafeReply(key,reply)

Overlapped Request Processing

WwWw app §I store
— U,
ProcessRequest(req):
key = Parse(req) BatchingLoop:
Process(key,req) keys = DirtyKeys()
MarkDirty(key) replies = Depends(keys)
reply = MakeReply(req) AsyncWrite(keys, replies)

SafeReply(key,reply) Sleep(interval)

Overlapped Request Processing

WwWw app §I store
— U,
ProcessRequest(req):
key = Parse(req) BatchingLoop:
Process(key,req) keys = DirtyKeys()
MarkDirty(key) replies = Depends(keys)
reply = MakeReply(req) AsyncWrite(keys, replies)

SafeReply(key,reply) Sleep(interval) ¢—

Staying Safe: Consistency

» Don’'t reveal uncomitted state

Synchronous

app

store

Potential Async

app

store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

Synchronous Potential Async

app store app store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

Synchronous Potential Async

app store app store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

Synchronous Potential Async

app store app store

Staying Safe: Consistency

» Don’'t reveal uncomitted state

» Potential async: Inconsistency on failure

Synchronous

app

store

Potential Async

app

store

Staying Safe: Consistency

» Don’'t reveal uncomitted state

» Potential async: Inconsistency on failure

Synchronous

app

store

Potential Async

app

store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

Synchronous Potential Async

app store app store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

Synchronous Potential Async

app store app store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

Synchronous

app

store

Potential Async

app

Failure

store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure
» Stout provides serialized update semantics

Synchronous Stout Async

app store app store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

» Stout provides serialized update semantics

Synchronous

Stout Async

app

store

app

store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

» Stout provides serialized update semantics

Synchronous

Stout Async

app

store

app

store

Staying Safe: Consistency

» Don’t reveal uncomitted state
» Potential async: Inconsistency on failure

» Stout provides serialized update semantics

Synchronous

Stout Async

app

store

app

store

Benefit: Write Collapsing

» Batched commits enable further optimization
» Can write most recent version only
» Reduces load at the store

10

Benefit: Write Collapsing

» Batched commits enable further optimization
» Can write most recent version only
» Reduces load at the store

x=5

10

Benefit: Write Collapsing

» Batched commits enable further optimization
» Can write most recent version only
» Reduces load at the store

10

Benefit: Write Collapsing

» Batched commits enable further optimization
» Can write most recent version only
» Reduces load at the store

10

Benefit: Write Collapsing

» Batched commits enable further optimization
» Can write most recent version only
» Reduces load at the store

10

Benefit: Write Collapsing

» Batched commits enable further optimization
» Can write most recent version only
» Reduces load at the store

Outline

1. Introduction

2. Application Structure
3. Adaptive Batching

4. Evaluation

11

Adapting to Shared Storage

» Storage system is a shared medium

» Independently reach efficient fair share
» Delay as congestion indicator
» Rather than modifying storage for explicit

notification
. >, :' --------------- ~:
app | o, : store |,
TV : :
fg:\; Queue :
app | o OO —{ store |,
— N,] .
on | 31 ' :
app | o, ' store s
A PO I -

Delay-based Congestion Control

» Unknown bottleneck capacity
» Traditional TCP signaled via packet loss

» Delay-based congestion control triggered by
latency changes

Queue

Router | OJOOICJ

13

Applications to Storage

Networking Storage
Mechanism Change Rate Change Size
ACCELERATE | Send Faster Batch Less
BACK-OFF Send Slower Batch More

14

Algorithm

if perf < recent perf

BACK-OFF
else

ACCELERATE

15

Algorithm: Estimating Storage Performance

if perf ®

BACK-OFF batch size
else latency + interval

ACCELERATE

16

Algorithm: Estimating Storage Capacity

if perf < recent perf/\v

BACK-OFF if backed-off
else EWMA (batch size))
ACCELERATE EWMA(lat;) + EWMA(interval;)
else // accelerated
batch size;

' lat; + interval;

17

Algorithm: Achieving Fair Share

if perf < recent perf

BACK-OFF
else

ACCELERATE

18

Algorithm: Achieving Fair Share

if perf < recent perf
BACK-OFF —— (1 +a) x interval;

else
ACCELERATE

18

Algorithm: Achieving Fair Share

if perf < recent perf
BACK-OFF —— (1 +a) x interval;

else
ACCELERATE — (1 =) * interval; + B * v interval;

18

Algorithm: Achieving Fair Share

if perf < recent perf

BACK-OFF —— (1 +a) x interval;
else

ACCELERATE — (1 =) * interval; + B * v interval;

N
O,

interval

Time (s)

18

Outline

1. Introduction

2. Application Structure
3. Adaptive Batching

4. Evaluation

19

Evaluation

» Baseline Storage System Performance
» Benefits of batching
» Benefits of write-collapsing

» Stout

» Versus fixed batching intervals
» Workload variation

20

Evaluation

Mesh Operating Environment

@ File and Folder Sync

® Desktop (XP, Vista, Mac)
® Devices (Windows Mobile)
@ Cloud (Live Desktop)

2
°
2
a
o
=
7}
o
=

Mesh Services

ity
ships

MeshFX API

® Any Mesh Object

® NET Framework, Silverlight
® Win32, C/C++

@ REST, JavaScript

spalqQ ysap

Live Mesh

21

Evaluation

Mesh Operating Environment

@ File and Folder Sync

® Desktop (XP, Vista, Mac)
® Devices (Windows Mobile)
@ Cloud (Live Desktop)

Mesh Objects

Mesh Services

ity
ships

MeshFX API

® Any Mesh Object

® NET Framework, Silverlight
® Win32, C/C++

@ REST, JavaScript

spalqQ ysap

Live Mesh

21

Evaluation

Mesh Operating Environment MeshFX API

@ File and Folder Sync ® Any Mesh Object 4 \ .
@ Desktop (XP, Vista, Mac) @ NET Framework, Silverlight \ I Live Mes h
® Devices (Windows Mobile) in32, C/C++ b A

@ Cloud (Live Desktop) @ REST, JavaScript

Mesh Objects
spalqQ ysap

Mesh Services

Device Stoi and
Connectivity 88 Svnchronization

Our Workload
» 256-byte documents: IOPS dominated

» 50% read, 50% write

21

Evaluation: Configuration

Evaluation Platform
» 50 machines
» 1 Experiment Controller
» 1 Lease Manager
» 12 Frontends
» 32 Middle Tiers
» 4 Storage (Partitioned Key-Value w/MSSQL as
storage)

12x |www | 32x |app 4 x |store

22

Baseline: Importance of Batching

,

end L
e
o ul
o o

T T
l

Il Il Il Il

0 1 1 1
2k 4k 6k 8k 10k 12k 14k 16k 18k
Load (requests/s)

Baseline: Importance of Batching

e Laten

= = N

o ul o

o o o
T T T

Il Il Il Il

0 y)
2k 4k 6k 8k 10k 12k 14k 16k 18k
Load (requests/s)

23

Baseline: Importance of Batching

Laten

= N

ul o

o o
T T

e
=
o
o

T

Il Il Il Il

0 |
2k 4k 6k 8k 10k 12k 14k 16k 18k

Load (requests/s)

» Batching improves performance

23

Baseline: Importance of Write-Collapsing
A3OO T T T T T T T T

n
N
o
o
T
I

i lloms low collapsing l

(O]
o
T

1 1 1 1 1 1 1 1

0
4k 6k 8k 10k 12k 14k 16k 18k 20k
Load (requests/s)

Low collapsing 10k Documents
High collapsing 100 Documents

Baseline: Importance of Write-Collapsing
300 —————————————

O | [20ms low collapsing I

i lloms low collapsing l

(O]
o
T

P ,

0
4k 6k 8k 10k 12k 14k 16k 18k 20k
Load (requests/s)

Low collapsing 10k Documents
High collapsing 100 Documents

Baseline: Importance of Write-Collapsing
300 ————————————

O | [20ms low collapsing I

i lloms low collapsing l

(O]
o
T

— % llOms high collapsing |

0
4k 6k 8k 10k 12k 14k 16k 18k 20k
Load (requests/s)

Low collapsing 10k Documents
High collapsing 100 Documents

Baseline: Importance of Write-Collapsing

—_ 300 T T T T T T T T

(7]

E 250t |
%‘200 | {20ms low c?IIapsing } |
= 10ms low collapsin

8150t 2 Loepsng |
° 1001 [20ms high collapsing I
g _/‘\- llOms high collapsing]
5 50
C

1N} I I I I I I I I

0
4k 6k 8k 10k 12k 14k 16k 18k 20k
Load (requests/s)

Low collapsing 10k Documents
High collapsing 100 Documents

» Improvement dependent on workload

Evaluation: Stout vs. Fixed Intervals

Py 800 T T T T T T T

[%)]

£ 700} -
>600 .
@ 500} .
)

S 4001 i
g 300} 20ms i
& 200} .
S 100} i
C

(1N] L L L

%k 10k 15k 20k 25k 30k 35k 40k 45k
Load (requests/s)

Evaluation: Stout vs. Fixed Intervals

_.800
[%)]
£700
>600
§ 500
8 400
2300}
()]

10k 15k 20k 25k 30k 35k 40k 45k
Load (requests/s)

25

Evaluation: Stout vs. Fixed Intervals

_.800
[%)]

£700
>600
G 500
8 400
2300
()]

%k 10k 15k 20k 25k 30k 35k 40k 45k
Load (requests/s)

Evaluation: Stout vs. Fixed Intervals

_.800
[%)]

£700
>600
G 500
8 400
2300
()]

%k 10k 15k 20k 25k 30k 35k 40k 45k
Load (requests/s)

Evaluation: Stout vs. Fixed Intervals

_.800
[%)]

£700
>600
§ 500
8 400
2300
()]

L 0 — | | | | | | |
5k 10k 15k 20k 25k 30k 35k 40k 45k
Load (requests/s)

» Stout better than any fixed interval across
wide range of workloads

25

Evaluation: Workload Variation

—_ 250 T T T T T
2] :
é .
> 200 §
(O]
C
31501 1
©
-
T 100r § 1
¢ E
2 50¢ A
e
S [20ms decrease] . .
60 70 80 90 100 110 120

Time (s)

Decrease 12k requests/s — 8k requests/s
Increase 12k requests/s — 18k requests/s

Evaluation: Workload Variation

—_ 250 T T T T T

(%} :

é .

> 200 §
(O]

C

31501 1
©

-

T 100 : .
¢ E

2 50 : [Stout decrease J
E [20ms decrease] . .

060 70 80 90 100 110 120
Time (s)

Decrease 12k requests/s — 8k requests/s
Increase 12k requests/s — 18k requests/s

26

Evaluation: Workload Variation

— 250 T T T T T
2 5 []
<200} |20ms increase |
(O]
[
31501 1
©
-
T 100r 1
¢
$ 50 : IStout decrease
E 0 [20ms decrease] . .

60 70 80 90 100 110 120

Time (s)

Decrease 12k requests/s — 8k requests/s
Increase 12k requests/s — 18k requests/s

26

Evaluation: Workload Variation

— 250 T T T T T
2 5 []
<200} |20ms increase |
[}
5 150 =
© |Stout increase |
T 100}]
@
$ 50 : IStout decrease l
E 0 [20ms decrease] . .

60 70 80 90 100 110 120

Time (s)

Decrease 12k requests/s — 8k requests/s
Increase 12k requests/s — 18k requests/s

26

Additional Evaluation

» Fairness (Jain’s Fairness index of 0.96)

» Stout achieves similar performance with:
» PacificA
» SQL Data Services

27

Conclusion

v

Batching improves storage performance
Current practice is fixed latency/throughput
tradeoff

Stout introduces distributed adaptation
technique

Achieve 3x higher throughput over
low-latency fixed interval for modified Live
Mesh service

v

v

v

28

Questions?

29

