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Scalable Multi-tiered Services

£ Windows Azure

amazon
web services™
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Selecting a Batching Interval

» Most apps use a fixed batching interval

» Latency/throughput tradeoff
» Want flexible batching interval

» Short when lightly loaded
» Long when heavily loaded

better throughput —
«——— better latency

l l l | Load (requests/s)

short interval long



Solution: Stout

15! |store
wWww app2| g,
— ]
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» Stout is a storage interposition library

» Our contribution is a technique for
independently adjusting the batching interval
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Adapting to Shared Storage

» Storage system is a shared medium

» Independently reach efficient fair share
» Delay as congestion indicator
» Rather than modifying storage for explicit

notification
. >, :' --------------- ~:
app | o, : store |,
TV : :
fg:\; Queue :
app | o OO —{ store |,
— N, ] .
on | 31 ' :
app | o, ' store s
A PO I -




Delay-based Congestion Control

» Unknown bottleneck capacity
» Traditional TCP signaled via packet loss

» Delay-based congestion control triggered by
latency changes

Queue

Router | OJOOICJ
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Applications to Storage

Networking Storage
Mechanism Change Rate Change Size
ACCELERATE | Send Faster  Batch Less
BACK-OFF Send Slower Batch More

14



Algorithm

if perf < recent perf

BACK-OFF
else

ACCELERATE
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Algorithm: Estimating Storage Performance

if perf ®

BACK-OFF batch size
else latency + interval

ACCELERATE
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Algorithm: Estimating Storage Capacity

if perf < recent perf/\v

BACK-OFF if backed-off
else EWMA (batch size))
ACCELERATE EWMA(lat;) + EWMA(interval;)
else // accelerated
batch size;

' lat; + interval;
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Algorithm: Achieving Fair Share
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BACK-OFF
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ACCELERATE
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Algorithm: Achieving Fair Share

if perf < recent perf

BACK-OFF —— (1 +a) x interval;
else

ACCELERATE — (1 =) * interval; + B * v interval;

N
O,

interval

Time (s)
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Evaluation

» Baseline Storage System Performance
» Benefits of batching
» Benefits of write-collapsing

» Stout

» Versus fixed batching intervals
» Workload variation

20



Evaluation

Mesh Operating Environment

@ File and Folder Sync
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Evaluation

Mesh Operating Environment MeshFX API

@ File and Folder Sync ® Any Mesh Object 4 \ .
@ Desktop (XP, Vista, Mac) @ NET Framework, Silverlight \ I Live Mes h
® Devices (Windows Mobile) in32, C/C++ b A

@ Cloud (Live Desktop) @ REST, JavaScript

Mesh Objects
spalqQ ysap

Mesh Services

Device Stoi and
Connectivity 88 Svnchronization

Our Workload
» 256-byte documents: IOPS dominated

» 50% read, 50% write

21



Evaluation: Configuration

Evaluation Platform
» 50 machines
» 1 Experiment Controller
» 1 Lease Manager
» 12 Frontends
» 32 Middle Tiers
» 4 Storage (Partitioned Key-Value w/MSSQL as
storage)

12x |www | 32x |app 4 x |store
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» Batching improves performance
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Baseline: Importance of Write-Collapsing
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» Improvement dependent on workload



Evaluation: Stout vs. Fixed Intervals
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Evaluation: Stout vs. Fixed Intervals
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» Stout better than any fixed interval across
wide range of workloads
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Evaluation: Workload Variation
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Additional Evaluation

» Fairness (Jain’s Fairness index of 0.96)

» Stout achieves similar performance with:
» PacificA
» SQL Data Services

27



Conclusion

v

Batching improves storage performance
Current practice is fixed latency/throughput
tradeoff

Stout introduces distributed adaptation
technique

Achieve 3x higher throughput over
low-latency fixed interval for modified Live
Mesh service

v

v

v
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Questions?
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