Microsoft’

Research

AT > My L —

= . N ap

ChunkStash: Speeding Up Storage
Deduplication using Flash Memory

Biplob Debnath*, Sudipta Sengupta’, Jin Li’

"Microsoft Research, Redmond (USA)
*Univ. of Minnesota, Twin Cities (USA)

Deduplication of Storage

o

J
0’0

Detect and remove duplicate data in storage systems

= e.g., Across multiple full backups
= Storage space savings

m Faster backup completion: Disk 1/0O and Network bandwidth
savings

Feature offering in many storage systems products
= Data Domain, EMC, NetApp

Backups need to complete over windows of few hours
= Throughput (MB/sec) important performance metric

High-level techniques
s Content based chunking, detect/store unique chunks only
= Object/File level, Differential encoding

Impact of Dedup Savings Across Full

_FIGURE 3. DEDUPLICATION IMPACT

A 5 1
L « Weekly full backup over 8 weeks ProtectedDat -'!
* 6 week retention 1
140 « 20:1deduplication ratio :
|
120 :
'
£ 100 |
o
gg — 140+TB
S 80 Capacity Savings

60

40
Stored Data

20

Y

Source: Data Domain white paper

Deduplication of Storage

o

J
0’0

Detect and remove duplicate data in storage systems

= e.g., Across full backups
= Storage space savings

m Faster backup completion: Disk 1/0O and Network bandwidth
savings

Feature offering in many storage systems products
= Data Domain, EMC, NetApp

Backups need to complete over windows of few hours
= Throughput (MB/sec) important performance metric

High-level techniques
s Content based chunking, detect/store unique chunks only
= Object/File level, Differential encoding

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Hash

)
]

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

ash

)
]

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Declare a chunk boundary

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

Declare a chunk boundary

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

If Hash matches a particular pattern, Hash

Declare a chunk boundary

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

If Hash matches a particular pattern, Hash

Declare a chunk boundary

Content based Chunking

« Calculate Rabin fingerprint hash for each sliding window
(16 byte)

______&4_______.
e
\.

3 Chunks

If Hash matches a particular pattern, Hash

Declare a chunk boundary

AN ON D
e~ |

How to Obtain Chunk Boundaries?

« Content dependent chunking
= When last n bits of Rabin hash = 0, declare chunk boundary
= Average chunk size = 2" bytes

= When data changes over time, new chunks correspond to new
data regions only

<« Compare with fixed size chunks (e.g., disk blocks)
= Even unchanged data could be detected as new because of
shifting
<+ How are chunks compared for equality?
m 20-byte SHA-1 hash (or, 32-byte SHA-256)

= Probability of collisions is less than that of hardware error by
many orders of magnitude

Container Store and Chunk Parameters

<« Chunks are written to disk in groups of containers

s Each container contains 1023 chunks

= New chunks added into currently open container, which is sealed
when full

m Average chunk size = 8KB, Typical chunk compression ratio of 2:1

= Average container size = 4MB

Data Container

Chunk A Chunk X Chunk A

Container Chunk B ChunkY Chunk B’ 1003

Store T chunks

- Slide 19

Index for Detecting Duplicate Chunks

<« Chunk hash index for identifying duplicate chunks
s Key = 20-byte SHA-1 hash (or, 32-byte SHA-256)
= Value = chunk metadata, e.g., length, location on disk
= Key + Value =» 64 bytes
+ Essential Operations
= Lookup (Get)
= Insert (Set)

<+ Need a high performance indexing scheme
= Chunk metadata too big to fit in RAM
= Disk IOPS is a bottleneck for disk-based index

= Duplicate chunk detection bottlenecked by hard disk seek
times (~10 msec)

Disk Bottleneck for Identifying Duplicate Chunks

« 20 TB of unique data, average 8 KB chunk size
= 160 GB of storage for full index (2.5 x 10° unique chunks @64
bytes per chunk metadata)

<+ Not cost effective to keep all of this huge index in RAM

< Backup throughput limited by disk seek times for index

lookups
= 10ms seek time => 100 chunk lookups per second Container
=> 800 KB/sec backup throughput
= No locality in the key space for chunk hash lookups W

= Prefetching into RAM index mappings for entire container
to exploit sequential predictability of lookups during 2nd
and subsequent full backups (Zhu et al., FAST 2008)

Storage Deduplication Process Schematic

chunks *

hit

Chunk
Metadata Cache

(Chunks in currentl . hit
open containe Write Buffer

(RAM)

Prefetch all chunks in that Container
from HDD to Metadata Cache >

miss *

1. This is a new chunk
2. Add to the Container
3. Add chunk metadata to Write Buffer|

Y

Container is Full?

yes v
1. Flush Write Buffer to HDD This is a duplicate chunk
2. Update HT Index

3. Flush Container to Container Store

Speedup Potential of a Flash based Index

<+ RAM hit ratio of 99% (using chunk metadata prefetching
technigues)

+ Average lookup time with on-disk index
tr + (1 — h,)xty = lusec 4+ 0.01 x 10msec = 101 usec

+ Average lookup time with on-flash index
tr + (1 — hy) xty = lusec + 0.01 * 100usec = 2usec

+ Potential of up to 50x speedup with index lookups served
from flash

ChunkStash: Chunk Metadata Store on Flash

« Flash aware data structures and algorithms

= Random writes, in-place updates are expensive on flash memory
= Sequential writes, Random/Sequential reads great!

= Use flash in a log-structured manner

<+ Low RAM footprint

= Order of few bytes in RAM for each key-value pair stored on flash

‘: 99019
¥ 100000 + 94500

80000

¥ 60000 |-
o

40000 |

20000 F 16064

. I3X 5948
] 0)

FusionlO 160GB ioDrive

seqg-reads rand-reads seq-writes rand-writes

ChunkStash Architecture

RAM write buffer for
chunk mappings in
currently open container

Chunk metadata organized on flash in log-
structured manner in groups of 1023 chunks =>
64 KB logical page (@64-byte metadata/ chunk)

Full Page

AN
N~

Container
Store

N\
—
Key-Value Pap / \
| |
Chunk Metadata
Write Buffer
/E Yalue Pa.ir
Metadata HasH Table
Cache Index

Prefetch cache for chunk

predictability of chunk lookups

N

Empty Page DISK

RAM

FLASH

Chunk metadata indexed in
metadata in RAM for sequential RAM using a specialized space

efficient hash table

Slide 25

Low RAM Usage: Cuckoo Hashing

+ High hash table load factors while keeping

lookup times fast

Collisions resolved using cuckoo hashing
Key can be in one of K candidate positions

Later inserted keys can relocate earlier keys to
their other candidate positions

K candidate positions for key x obtained using
K hash functions h,(x), ..., h(X)

In practice, two hash functions can simulate K
hash functions using hi(x) = g,(x) + i*g,(X)

+ System uses value of K=16 and targets
90% hash table load factor

Insert X
i

Low RAM Usage: Compact Key

« Compact key signatures stored in hash table
m 2-byte key signature (vs. 20-byte SHA-1 hash)

m Key x stored at its candidate position i derives its signature from
hi(x)

» False flash read probability < 0.01%

< Total 6-10 bytes per entry (4-8 byte flash pointer)
0 0 U

compact key signaturgl pointer to key-value pair on flash

< 2-byte /¢ 4-byte g

U U U

<+ Related work on key-value stores on flash media
m MicroHash, FlashDB, FAWN, BufferHash

Slide 27

RAM and Flash Capacity Considerations

< Whether RAM of flash size becomes bottleneck for store

capacity depends on key-value size
= At 64 bytes per key-value pair, RAM is the bottleneck

<+ Example 4GB of RAM
= 716 million key-value pairs (chunks) @6 bytes of RAM per entry
m At 8KB average chunk size, this corresponds to 6TB of
deduplicated data
= At 64 bytes of metadata per chunk on flash, this uses 45GB of flash
m Larger chunk sizes => larger datasets for same amount of RAM and
flash (but may tradeoff with dedup quality)

Slide 28

Further Reducing RAM Usage In

<+ Approach 1. Reduce the RAM requirements of the key-
value store (work in progress)

< Approach 2: Deduplication application specific
= Index in RAM only a small fraction of the chunks in each container
(sample and index every i-th chunk)
m Flash still holds the metadata for all chunks in the system
m Prefetch chunk metadata into RAM as before
= Incur some loss in deduplication quality
m Fraction of chunks indexed is a powerful knob for tradeoff between
RAM usage and dedup quality

m Index 10% chunks => 90% reduction in RAM usage => less than
1-byte of RAM usage per chunk metadata stored on flash

m And negligible loss in dedup quality!

Compare with Sparse Indexing Scheme

<+ Sparse indexing scheme (FAST 2009)

= Chop incoming stream into multi-MB segments, select chunk hooks
In each segment using random sampling

m Use these hooks to find few segments seen in the recent past that
share many chunks

<+ How does ChunkStash differ?

= Uniform interval sampling
= NoO concept of segment; all incoming chunks looked up in index

= Match incoming chunks with sampled chunks in all containers
stored in the system, not just those see in recent past

Slide 30

Performance Evaluation

« Comparison with disk index based system
= Disk based index (Zhu08-BDB-HDD)
s SSD replacement (Zhu08-BDB-SSD)
s SSD replacement + ChunkStash (ChunkStash-SSD)
s ChunkStash on hard disk (ChunkStash-HDD)

BerkeleyDB used as the
index on HDD/SSD

+ Prefetching of chunk metadata in all systems

< Three datasets, 2 full backups for each

Trace Size (GB) | Total Chunks | #Full Backups
Dataset 1 8GB 1.1 million 2
Dataset 3 126 4 million 2

Performance Evaluation — Dataset 2

400

300

200

100

Backup Throughput(MB/sec)

_ Dataset 2

195

1.8x
109

O ZhuOS-B[K)B-H DD 432

B Zhu08-BI
W ChunkStz
ChunkStg

DB-SS
sh-SSD
sh-HIPD

25x [3X
36

1st Full Backup

2nd Full Backup

Slide 32

Performance Evaluation — Dataset 3

Backup Throughput(MB/sec)

300

200

100

B Zhu08-BDB-HDD 311
MW Zhu08-BDB-SSD

W ChunkStash-SSD
. 192 ChunkStash-HDD

" Dataset 3 265

105

3

1st Full Backup 2nd Full Backup

Slide 33

Performance Evaluation — Disk IOPS

895y M Disk Reads 974x
L2 W Disk Writes

1000 F

s
g =
.;A u
K o
7]
;§ —

-}
O w (el
> O
2_:100 =
2a -
@ 3
C c
._=
8_:10
< v
il -
- =
A
()]

1

Dataset 1 Dataset 2 Dataset 3

Slide 34

Indexmg Chunk Samples In ChunkStash:

20% Dataset 2, 2nd Full Backup B Uniform sampling
18.0%

B Random sampling

15% | 13.5%

12.1% i/ ® | 12.0%

10%

5%

0%

%Chunks detected as new

1.563% 6.250% 12.500% 100%

(1/64) (1/16) (U8)
%Chunks in ChunkStash RAM HT Index

Slide 35

Indexing Chunk Samples in ChunkStash:

705 Dataset 2 m 1st full backup
607 579

700 |
600
500
400
300
200
100

M 2nd full backup

Backup Throughput(MB/sec)

1.563% 6.250% 12.500%
%Chunks in ChunkStash RAM HT Index

Slide 36

Flash Memory Cost Considerations

» Chunks occupy an average of 4KB on hard disk

m Store compressed chunks on hard disk
= Typical compression ratio of 2:1

» Flash storage is 1/64-th of hard disk storage

= 64-byte metadata on flash per 4KB occupies space on hard disk

» Flash investment is about 16% of hard disk cost
= 1/64-th additional storage @10x/GB cost = 16% additional cost

» Performance/dollar improvement of 22x

m 25x performance at 1.16x cost

» Further cost reduction by amortizing flash across datasets

= Store chunk metadata on HDD and preload to flash
Slide 37

Summary

>

>

Backup throughput in inline deduplication systems limited by
chunk hash index lookups

Flash-assisted storage deduplication system
s Chunk metadata store on flash
m Flash aware data structures and algorithms
= Low RAM footprint

Significant backup throughput improvements
m 7X-60x over over HDD index based system (BerkeleyDB)
m 2Xx-4x over flash index based (but flash unaware) system (BerkeleyDB)
m Performance/dollar improvement of 22x (over HDD index)

Reduce RAM usage further by 90-99%

m Index small fraction of chunks in each container
= Negligible to marginal loss in deduplication quality

