XXX

Tolerating Malicious Drivers
In Linux

Silas Boyd-Wickizer and Nickolai Zeldovich

How could a device driver be
malicious?
Today's device drivers are highly privileged

Write kernel memory, allocate memory, ...

Drivers are complex; developers write buggy
code

Result: Attackers exploit vulnerabillities

How could a device driver be
malicious?

Today's device drivers are highly privileged
Write kernel memory, allocate memory, ...

Drivers are complex; developers write buggy
code

s rabilities

L‘J 82 comments & - |i= Share ey Frint

(K]
‘upl
i
u
g
g

m
o

o

i

Home / News & Blogs / R T

Surge of killer device drivers
leave no OS safe

How could a device driver be
malicious?

Today's device drivers are highly privileged
Write kernelmamao

CVE-ID
CVE-2009-4537 lLearn more at MNational Vulnerablhtv Database fNVD]

Drivers are ¢«

CVE-2010-1085 Learn more at National Vulnerability Database (NWVD)

code s r——

DESCI FaV/ == 2010 0410 Learn more at Mational Vulnerability Database (NVD)
* Sewverity Rating * Fix Information = Yulnerable Software Versions = SCAP Mappings
ZDNet il
i chip se DESCF\ S LElE

that tri ‘ CVE-2010-1086 |learn more at MNational Yulnerability Database (WNWVD
{memo

= Severity Rating = Fix Information » Vulnerable Software Versions = SCAP Mappings

a D_MNomanr\/

\ {under review)

Refert pegcription
Note: Ff| Note: el
intendet intended

Refer

The ULE decapsulation functionality in drivers/mediaf/dvb/dvb-corefdvb_net.c in dvb-core in Linux kernel 2.6.33
and earlier allows attackers to cause a denial of service (infinite loop) via a crafted MPEG2-TS frame, related to

an invalid Payload Pointer ULE.
=« MLIS
'References
E’CI & MLI§ e URL ‘
o ML9| Mote: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not
George Ou & LRL ‘ intended to be complete.
* LIRL]
| DOUTE]
L] 82 comments 4 - ;5| Share %Prmt « URL 2.6 ® MLUST:[oss-security] 20100301 CVE request: kernel: dvb-core: ULE decapsulation DoS
| co » URL: http:/iwww.openwall. com/flistsfoss-securiby/2010/03/01/1
¢ MIS co & COMFIRM: http:/rait. kernel org/fp=linux/kernel/gittorvalds/linux-
o _6.qita= itdiff: h= 3 6
Home / News & Blogs / Real World IT & CO DEB 2.6.qit a=commitdiff;h=29e1fa3565a7951cc415c634eb2b78dbdbeel51d

COMNFIRM: hitps: ffbugzilla.redhat. com/show bug.cqi?id=569237
DEBIAN:DSA-2053

WRL: http:/www.debian. org/securitw/2010/dsa-2053
REDHAT:RHSA-2010:0398

WRL: http: //www.redhat. com/support/errata/RHSA-2010-0395. html
REDHAT:RHSA-2010:0394

URL: http: fiwww. redhat. comf/support/errata/RHSA-2010-0394 htrnl
SUSE:SUSE-5A:2010:019

Surge of killer devic
leave no OS safe

- & & & 8 8 B
c
=]
—

® & 8 8 @ & 8 @

Current approach

User-space drivers in ukernels (Minix, L4, ...)

Write device driver in new language (Termite)
Handle common faults (Nooks, microdrivers, ...)

Goal

Secure, efficient, & unmodified
drivers on Linux

Previous user-space drivers

Hardware

User

User

ukernel
User
Ethernet
driver ﬁ

Network
stack

<@l Application

Kernel ‘

Kernel core

Previous user-space drivers

Confine driver
In a process

Ser

Hardware

ukernel

User

i Ethernet

driver

User

-

Network
stack

<@l Application

Kernel

Kernel core

Previous user-space drivers

Confine driver
In a process

Ser

Hardware

ukernel

User

i Ethernet

driver

User

-

Network
stack

<@l Application

Kernel

General purpose

Kernel core

syscall API to
configure device

Previous user-space drivers

Confine driver
In a process

Hardware

ukernel
Ser User User
" Ethernet Network o
drivey =g T " < Application
Kernel
General purpose
syscall API to
configure device
Kernel core

Confine device Witﬂ
O virtualization HW.

Previous user-space drivers

Confine driver
In a process

Ser

Hardware

ukern

U

IPC network driver API
E.g. tx_packet

User

Confine device witq
IO virtualization HW.

" Ethernet Network o
driver stack ~lsmmmm Application
Kernel
General purpose
syscall API to
configure device
Kernel core

Current Linux driver architecture

User

Application

e 3,0
gt L) ernel ‘
Ethernet Network
driver stack

9 Kernel RT ;

Current Linux driver architecture

User
Kernel runtime Application
Hardwe (e.0. kmalloc)
ekt
4l i EE .

t

Network
stack

Current Linux driver architecture

Network driver API
(e.g. tx_packet)
~pplication

Kernel runtime \

Hardwe (e.0. kmalloc)

Network
stack

netdevice

Kernel RT

Linux user-space driver problem

Kernel RT and driver APIs won't work for
untrusted drivers Iin a different AS

Application

|

Network
stack

Hardware
O e e 3

Kernel RT

SUD's approach

driver

Application

Hardware

=gy

Network
stack

Kernel RT

netdevice

SUD's approach

SUD UML handles calls to kernel RT

driver

Application

t

Network
stack

.~ Kernel RT |

SUD's approach

SUD UML handles calls to kernel RT

Proxy driver and SUD UML allow reuse of
existing driver APIs

Us Ethgrnet
driver

User

Application

t

Network
stack

.~ Kernel RT |

SUD's approach

SUD UML handles calls to kernel RT

Proxy driver and SUD UML allow reuse of
existing driver APIs

Us Ethgrnet
driver

User

Application

Hardware

=gy ——y—

v

Network
stack

.~ Kernel RT |

SUD's approach

SUD UML handles calls to kernel RT

Proxy driver and SUD UML allow reuse of
existing driver APIs

Use Eth_ernet User
driver

Application

Hardwse

rdwe - sup RPC
e

i ...-.ﬁr ¥ Kernel

| (Network driver API

v

Network
stack

.~ Kernel RT |

SUD's approach

SUD UML handles calls to kernel RT

Proxy driver and SUD UMLfﬂMUﬁof
existing driver APIs Network driver AP

Use Eth_erne er
driver |

Application

Hardwe Ly

rdws" syp RPC
il AP ‘

. Ll Kernel

Network driver API

v

Network
stack

.~ Kernel RT |

SUD's results

Tolerate malicious device drivers
Proxy drivers small (~500 LOC)
One proxy driver per device class
~ew kernel modifications (~50 LOC)
Jnmodified drivers (6 test drivers)

High performance, low overhead

No need for new OS or language

Security challenge: prevent attacks

Problem: driver must perform privileged
operations

Memory access, driver APl, DMA, interrupts, ...
Attacks from driver code:

Direct system attacks: memory corruption, ...
Driver API attacks: invalid return value, deadlock, ...

Attacks from device:
DMA to DRAM, peer-to-peer attacks, interrupt storms

Practical challenges

High performance, low overhead

Challenge: interact with hardware and kernel at high
rate, kernel-user switch expensive

E.g. Ethernet driver ~100k times a second
Reuse existing drivers and kernel

Challenge: drivers assume fully-privileged kernel env.
Challenge: kernel driver APl complex, non-uniform

SUD overview

Hardware User User

o @ M Application

Kernel

Kernel core

SUD overview

Hardware User User

Application

Kernel core

Linux driver APIs

Linux defines a driver API for each device class

Driver and kernel functions and variables

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

struct wireless_ops {

int (*tx) (struct sk_buff*);

int (*configure_filter) (int);

i
struct wireless_ _hw {

int conf;

int flags

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

struct wireless_ops {

int (*tx) (struct sk_buff*);

int (*configure_filter) (int);

i
struct wireless_ _hw {

int conf;

int flags

Y

Proxy drivers and SUD-UML convert APl to RPCs

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

struct wireless_ops {

int (*tx) (struct sk_buff¥);

int (*configure_filter) (1nt);

} i
struct wireless hw {

int conf;

int flags

Y

Proxy drivers and SUD-UML convert APl to RPCs

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

| .
struct wireless_ops { Called in a non-

preemptable context

int (*tx) (struct sk_buff¥);

int (*configure_filter) (int);

i
struct wireless_ _hw {

int conf;

int flags

Y

Proxy drivers and SUD-UML convert APl to RPCs

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

| .
struct wireless_ops { Called in a non-

preemptable context

int (*tx) (struct sk_buff¥);

int (*configure_filter) (int);

s Driver API variable

struct wireless hw {

int conf;

int flags

};

Proxy drivers and SUD-UML convert APl to RPCs

Wireless driver in SUD

Basic driver APl -~ SUD RPC API - driver API
Non-preemptable function: implement in proxy

Driver APl variable: shadow variables

Example 1: transmit a packet

User User
Wireless Web
driver browser
Hardware SUD UML
@;_F'-:.'-"TF.-I‘ _ =
Kernel
Wireless Wireless
proxy driver core

Example 1: transmit a packet

User User Socket write
Wireless Web
driver browser
Hardware SUD UML

Kernel

Wireless Wireless
proxy driver core

Example 1: transmit a packet

User User
Wireless Web
driver browser
Hardware SUD UML @
o N wireless_ops.tx
Kernel '
Wireless Wireless
proxy driver core

Example 1: transmit a packet

User TX packet RPC

Wireless Web
driver browser
Hardware SUD UML/
Kernel

Wireless G Wireless
proxy driver core

Example 1: transmit a packet

wireless_ops.tx

User ser
Wireless Web
driver browser
Hardware SUD UML
Kernel

Wireless G Wireless
proxy driver core

Example 1: transmit a packet

DMA TX

User User

Wireless Web
driver browser

SUD UML

Kernel

Hardware

- - -

Wireless G Wireless
proxy driver core

Example 2: non-preemptable callback

Problem: unable to switch to user-space

User User
Wireless Web
driver browser
Hardware SUD UML
Kernel
Wireless Wireless
proxy driver core

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Hardware

User User
Wireless Web
driver bro Acdui
quires a
SUD UML Jﬂ\spin lock
Kernel \
Wireless Wireless
proxy driver core A

t

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Hardware

User

Wireless
driver

User

Web
browser

-

Kernel

wireless_ops.configure_filter

Wireless
proxy driver

Wireless

core A
2

Example 2: non-preemptable callback

Problem: unable to switch to user-space

User Filter RPC

|

Wireless >7 Web
driver browser

SUD UMV

Kernel

Wireless — Wireless
proxy driver

core A
2

Example 2: non-preemptable callback

Problem: unable to switch to user-space

User

Web
browser

Hardware

Kernel

Wireless — Wireless
proxy driver

core A
2

Example 2: non-preemptable callback

Problem: unable to switch to user-space
Solution: implement directly in proxy driver

User User

Wireless Web
driver browser

Hardware SUD UML
. '_flu'...‘lt..-.-;,_- 3
Kernel

Wireless Wireless

proxy driver core

Example 2: non-preemptable callback

Problem: unable to switch to user-space
Solution: implement directly in proxy driver

User User
Wireless Regl;(is':(?[r RX }b
driver e ser

Hardware SUD UML

Kernel

Wireless Wireless
proxy driver core

Example 2: non-preemptable callback

Problem: unable to switch to user-space
Solution: implement directly in proxy driver

User User
Wireless Web
driver bro Acduires a
i!."r'—ﬂ:'-_‘.nt};:_ ! =
, | Kernel ' \
Wireless Wireless
proxy driver core A

Example 2: non-preemptable callback

Problem: unable to switch to user-space
Solution: implement directly in proxy driver

User User
Wireless Web
driver browser
Hardware S
ISt T
Al wireless_ops.configure_filteﬁ
Kernel
Wireless Wireless
proxy driver core QR
i

Example 2: non-preemptable callback

Problem: unable to switch to user-space
Solution: implement directly in proxy driver

User User
Wireless Web
driver Return RX ser
Hardware SUBUML — packet types P
Kernel
Wireless Wireless
proxy driver core A
)

Example 3: driver API variables

Problem: user-space can't access APl variables

User User
Wireless Web
driver browser
SUD UML
Kernel
Wireless Wireless
proxy driver core

Example 3: driver API variables

Problem: user-space can't access APl variables

User User
Wireless Web
driver browser
SUD UML
Kernel Driver AP
variable
Wireless Wireless
proxy driver core

Example 3: driver API variables

Problem: user-space can't access APl variables

User User
Wireless Web
driver browser
SUD UML
Writes to
wireless hw
Kernel

Wireless
core

Wireless
proxy driver

Example 3: driver API variables

Problem: user-space can't access APl variables

User User
Wireless Web
driver browser
Hardware SUD UML
Kernel
Wireless Wireless
proxy driver core

Example 3: driver API variables

Problem: user-space can't access APl variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

User User

Wireless Web
driver browser

Hardware SUD UML
. '_flu'...‘lt..-.-;,_- 3
Kernel

Wireless Wireless

proxy driver core

Example 3: driver API variables

Problem: user-space can't access APl variables
Solution: allocate a shadow copy and

synchronize before and
User Shadow variable

Wireless% Web
driver browser
SUD UML
Kernel
Wireless Wireless
proxy driver core

Example 3: driver API variables

Problem: user-space can't access APl variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

User

Wireless
driver

SUD UML

User

Web
browser

Kernel

Wireless
proxy driver

Writes to
wireless_ hw

Wireless
core

Example 3: driver API variables

Problem: user-space can't access APl variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

User User
W@ess Web
Synchronize before SlrvIL browser
Hardwe = sending RPC

Ker /

Wireless
core

ireless
proxy driver

Example 3: driver API variables

Problem: user-space can't access APl variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

\ User User

Send RPC Wireless Web
driver browser
A i : eless

SUD UML

Kernel

Wireless
core

Wireless
proxy driver

Example 3: driver API variables

Problem: user-space can't access APl variables
d

eads updates from

Solution: allocate a sh RS updates fr
synchronize before and aite

User
Wireless Web
driver browser
SUD UML
Kernel
Wireless Wireless
proxy driver core

SUD overview

Hardware User User

s D0 YD) Driver

Application

Kernel

Kernel core

SUD overview

Hardware User User

Application

s D0 YD) Driver

Kernel core

Attacks from hardware

CPU

Memory interconnect

DRAM

Attacks from hardware

Driver configures the device to execute attacks

CPU

PCI bus

Memory interconnect

DRAM

Attacks from hardware

Driver configures the device to execute attacks
DMA to DRAM

CPU

Memory interconnect ;
i..l"- e , .
.lr | '. . :..: :
ek
|
I .] |I

DRAM

Attacks from hardware

Driver configures the device to execute attacks

DMA to DRAM
Peer-to-peer messages

CPU

Memory interconnect

DRAM

Attacks from hardware

Driver configures the device to execute attacks

DMA to DRAM
Peer-to-peer messages

nterrupt storms

CPU

Memory interconnect

DRAM

Attacks from hardware

Driver configures the device to execute attacks

DMA to DRAM
Peer-to-peer messages

nterrupt storms

HW access module prevents attacks

Interposes on driver-device communication
Uses 10 virtualization to provide direct device access

|0 virtualization hardware

APIC interconnect

CPU

MSI

Memory interconnect

DRAM

|IOMMU

switch

|0 virtualization hardware

Use IOMMU to map DMA buffer pools
Prevents DMA to DRAM attacks

APIC interconnect

CPU

MSI

Memory interconnect

DRAM

|IOMMU

PCI express
switch

|0 virtualization hardware

Use PCI ACS to prevent peer-to-peer messaging
Prevents peer-to-peer attacks

APIC interconnect

CPU MSI

|IOMMU

Memory interconnect

DRAM

|0 virtualization hardware

Use MSI to mask interrupts

Prevents interrupt storms

APIC interconnect

CPU

MSI

|IOMMU

Memory interconnect

DRAM

PCI express
switch

Interrupt handlers in Linux

User
MSI

Kernel

Driver IRQ core

Interrupt handlers in Linux

User

Kernel ‘

Driver IRQ core

Interrupt handlers in Linux

Driver called with IRQs disabled (non-preemptable)

User

Kernel ‘

Driver IRQ core

Interrupt handlers in Linux

Kernel calls driver interrupt handler
Driver clears interrupt flag

Mg

User
MSI

b Lem) s Kernel

_ Driver IRQ core

Interrupt handlers with SUD

Driver

User
MSI

Kernel

Interrupt handlers with SUD

Kernel calls HW access module interrupt handler
HW access module masks interrupt with MSI

Driver
et T
s’ . 3
A @
| : /
1 } |

User

Kernel

IRQ core

Interrupt handlers with SUD

Kernel calls HW access module interrupt handler
HW access module masks interrupt with MSI

Driver
et T
o1 | LT
YRR
| ' /
|
1 } |

User

Kernel

IRQ core

Interrupt handlers with SUD

Kernel calls HW access module interrupt handler
HW access module masks interrupt with MSI
Asynchronous RPC to driver

Driver

Y iy o

User

Kernel

IRQ core

Interrupt handlers with SUD

Kernel calls HW access module interrupt handler
HW access module masks interrupt with MSI
Asynchronous RPC to driver

Driver clears interrupt

Driver

T i

User

Kernel

IRQ core

Interrupt handlers with SUD

HW access module masks interrupt with MSI
Asynchronous RPC to driver

Driver clears interrupt

HW access module unmasks MSI

Driver

T i

User

Kernel

IRQ core

SUD overview

Hardware User User

s D0 YD) Driver

Application

Kernel

Kernel core

Prototype of SUD

PCl access module 2800
Ethernet proxy driver 300
Wireless proxy driver 600
Audio proxy driver 550

User-mode runtime 5000
Drivers 5000 — 50,000 (each)

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pcl, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...

Prototype of SUD

PCI access module
Ethernet proxy driver 300
Wireless proxy drivery 600
Audio proxy driver

User-mode runtime 5000
Drivers 5000 — 50,000 (each)

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pcl, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...

Prototype of SUD

PCI access module
Ethernet proxy driver 300
Wireless proxy drivery 600
Audio proxy driver

User-mode runtime
Drivers

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pcl, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...

Performance

For most devices, does not matter

Printers, cameras, ...

Stress-test: e1000e gigabit network card

Requires high throughput
Requires low latency
Many device driver interactions

Test machine: 1.4GHz dual core Thinkpad

Performance questions?

What performance does SUD get?
Network throughput, latency

How much does it cost?
CPU cycles

SUD achieves same device
performance

UDP TX UDP RX UDP latency

Normallzed throughput relative to Linux
TCP: streaming (950 Mbps In both cases)
UDP: one-byte-data packets

B Linux
M Sud

Throughput relative to Linux

CPU cost is low

1
0.9
0.8
0.7
0.6

0.5 B Linux
B Sud

CPU utilization

0.4

0.3

0.2

- - -
0

UDP TX UDP RX UDP latency

SUD overhead: user-kernel switch, TLB misses

Overheads not significant for many workloads
(packets larger than min. packet size)

Future directions

Explore hierarchical untrusted device drivers
PCIl bus - SATA controller - SATA disk - ...

Explore giving apps direct hardware access

Safe HW access for network analyzer, X server, ...

Performance analysis and optimizations
SUD specific device drivers, super pages, ...

Related work

Mircokernels (Minix, L4, ...)

Simple drivers, driver APl designed for user-space
Nooks, microdrivers

Handles common bugs, many changes to kernel
Languages (e.g. Termite), source code analysis

Complimentary to user-space drivers

No need for new OS or language

Summary

Driver bugs lead to system crashes or exploits

SUD protects Linux from malicious drivers using
proxy drivers and IO virtualization HW

Runs unmodified Linux device drivers
High performance, low overheads

—ew modifications to Linux kernel

Security evaluation

Manually constructed potential attacks

Memory corruption, arbitrary upcall responses,
not responding at all, arbitrary DMA, ...

Relied on security heavily during development

SUD caught all bugs in user-mode driver framework
No crashes / reboots required to develop drivers

|deal, but not done: red-team evaluation?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

