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Tolerating Malicious Drivers
In Linux

Silas Boyd-Wickizer and Nickolai Zeldovich



How could a device driver be
malicious?
Today's device drivers are highly privileged

Write kernel memory, allocate memory, ...

Drivers are complex; developers write buggy
code

Result: Attackers exploit vulnerabillities



How could a device driver be
malicious?

Today's device drivers are highly privileged
Write kernel memory, allocate memory, ...

Drivers are complex; developers write buggy
code

s rabilities

L‘J 82 comments & - |i= Share ey Frint

(K]
‘upl
i
u
g
g

m
o

o

i

Home / News & Blogs / R T

Surge of killer device drivers
leave no OS safe




How could a device driver be
malicious?

Today's device drivers are highly privileged
Write kernelmamao
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The ULE decapsulation functionality in drivers/mediaf/dvb/dvb-corefdvb_net.c in dvb-core in Linux kernel 2.6.33
and earlier allows attackers to cause a denial of service (infinite loop) via a crafted MPEG2-TS frame, related to

an invalid Payload Pointer ULE.
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Current approach

User-space drivers in ukernels (Minix, L4, ...)

Write device driver in new language (Termite)
Handle common faults (Nooks, microdrivers, ...)



Goal

Secure, efficient, & unmodified
drivers on Linux
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Current Linux driver architecture
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Current Linux driver architecture
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Linux user-space driver problem

Kernel RT and driver APIs won't work for
untrusted drivers Iin a different AS
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SUD's approach
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SUD's approach
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SUD's results

Tolerate malicious device drivers
Proxy drivers small (~500 LOC)
One proxy driver per device class
~ew kernel modifications (~50 LOC)
Jnmodified drivers (6 test drivers)

High performance, low overhead

No need for new OS or language



Security challenge: prevent attacks

Problem: driver must perform privileged
operations

Memory access, driver APl, DMA, interrupts, ...
Attacks from driver code:

Direct system attacks: memory corruption, ...
Driver API attacks: invalid return value, deadlock, ...

Attacks from device:
DMA to DRAM, peer-to-peer attacks, interrupt storms



Practical challenges

High performance, low overhead

Challenge: interact with hardware and kernel at high
rate, kernel-user switch expensive

E.g. Ethernet driver ~100k times a second
Reuse existing drivers and kernel

Challenge: drivers assume fully-privileged kernel env.
Challenge: kernel driver APl complex, non-uniform
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Linux driver APIs

Linux defines a driver API for each device class

Driver and kernel functions and variables
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Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

| .
struct wireless_ops { Called in a non-

preemptable context

int (*tx) (struct sk_buff¥);

int (*configure_filter) (int);

s Driver API variable

struct wireless hw {

int conf;

int flags

};

Proxy drivers and SUD-UML convert APl to RPCs




Wireless driver in SUD

Basic driver APl -~ SUD RPC API - driver API
Non-preemptable function: implement in proxy

Driver APl variable: shadow variables
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Example 2: non-preemptable callback

Problem: unable to switch to user-space
Solution: implement directly in proxy driver
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Example 3: driver API variables

Problem: user-space can't access APl variables

User User
Wireless Web
driver browser
SUD UML
Kernel
Wireless Wireless
proxy driver core




Example 3: driver API variables

Problem: user-space can't access APl variables

User User
Wireless Web
driver browser
SUD UML
Kernel Driver AP
variable
Wireless Wireless
proxy driver core




Example 3: driver API variables

Problem: user-space can't access APl variables

User User
Wireless Web
driver browser
SUD UML
Writes to
wireless hw
Kernel

Wireless
core

Wireless
proxy driver




Example 3: driver API variables

Problem: user-space can't access APl variables

User User
Wireless Web
driver browser
Hardware SUD UML
Kernel
Wireless Wireless
proxy driver core




Example 3: driver API variables

Problem: user-space can't access APl variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

User User

Wireless Web
driver browser

Hardware SUD UML
. '_flu'...‘lt..-.-;,_- 3
Kernel

Wireless Wireless

proxy driver core




Example 3: driver API variables

Problem: user-space can't access APl variables
Solution: allocate a shadow copy and

synchronize before and
User Shadow variable

Wireless% Web
driver browser
SUD UML
Kernel
Wireless Wireless
proxy driver core




Example 3: driver API variables

Problem: user-space can't access APl variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

User

Wireless
driver

SUD UML

User

Web
browser

Kernel

Wireless
proxy driver

Writes to
wireless_ hw

Wireless
core




Example 3: driver API variables

Problem: user-space can't access APl variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

User User
W@ess Web
Synchronize before SlrvIL browser
Hardwe = sending RPC

Ker /

Wireless
core

ireless
proxy driver




Example 3: driver API variables

Problem: user-space can't access APl variables

Solution: allocate a shadow copy and
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Attacks from hardware

Driver configures the device to execute attacks

DMA to DRAM
Peer-to-peer messages

nterrupt storms

HW access module prevents attacks

Interposes on driver-device communication
Uses 10 virtualization to provide direct device access
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|0 virtualization hardware

Use IOMMU to map DMA buffer pools
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|0 virtualization hardware

Use PCI ACS to prevent peer-to-peer messaging
Prevents peer-to-peer attacks
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|0 virtualization hardware

Use MSI to mask interrupts

Prevents interrupt storms
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Interrupt handlers in Linux
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Interrupt handlers in Linux

Kernel calls driver interrupt handler
Driver clears interrupt flag
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Interrupt handlers with SUD
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Interrupt handlers with SUD

HW access module masks interrupt with MSI
Asynchronous RPC to driver

Driver clears interrupt

HW access module unmasks MSI
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Prototype of SUD

PCl access module 2800
Ethernet proxy driver 300
Wireless proxy driver 600
Audio proxy driver 550

User-mode runtime 5000
Drivers 5000 — 50,000 (each)

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pcl, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...



Prototype of SUD

PCI access module
Ethernet proxy driver 300
Wireless proxy drivery 600
Audio proxy driver

User-mode runtime 5000
Drivers 5000 — 50,000 (each)

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pcl, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...



Prototype of SUD

PCI access module
Ethernet proxy driver 300
Wireless proxy drivery 600
Audio proxy driver

User-mode runtime
Drivers

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pcl, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...



Performance

For most devices, does not matter

Printers, cameras, ...

Stress-test: e1000e gigabit network card

Requires high throughput
Requires low latency
Many device driver interactions

Test machine: 1.4GHz dual core Thinkpad



Performance questions?

What performance does SUD get?
Network throughput, latency

How much does it cost?
CPU cycles



SUD achieves same device
performance

UDP TX UDP RX UDP latency

Normallzed throughput relative to Linux
TCP: streaming (950 Mbps In both cases)
UDP: one-byte-data packets

B Linux
M Sud

Throughput relative to Linux




CPU cost is low

1
0.9
0.8
0.7
0.6

0.5 B Linux
B Sud

CPU utilization

0.4

0.3

0.2

- - -
0

UDP TX UDP RX UDP latency

SUD overhead: user-kernel switch, TLB misses

Overheads not significant for many workloads
(packets larger than min. packet size)



Future directions

Explore hierarchical untrusted device drivers
PCIl bus - SATA controller - SATA disk - ...

Explore giving apps direct hardware access

Safe HW access for network analyzer, X server, ...

Performance analysis and optimizations
SUD specific device drivers, super pages, ...



Related work

Mircokernels (Minix, L4, ...)

Simple drivers, driver APl designed for user-space
Nooks, microdrivers

Handles common bugs, many changes to kernel
Languages (e.g. Termite), source code analysis

Complimentary to user-space drivers

No need for new OS or language



Summary

Driver bugs lead to system crashes or exploits

SUD protects Linux from malicious drivers using
proxy drivers and IO virtualization HW

Runs unmodified Linux device drivers
High performance, low overheads

—ew modifications to Linux kernel






Security evaluation

Manually constructed potential attacks

Memory corruption, arbitrary upcall responses,
not responding at all, arbitrary DMA, ...

Relied on security heavily during development

SUD caught all bugs in user-mode driver framework
No crashes / reboots required to develop drivers

|deal, but not done: red-team evaluation?
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