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Current approach

User-space drivers in μkernels (Minix, L4, ...)

Write device driver in new language (Termite)

Handle common faults (Nooks, microdrivers, ...)



Secure, efficient, & unmodified 
drivers on Linux

Goal
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SUD's results

Tolerate malicious device drivers

Proxy drivers small (~500 LOC)

One proxy driver per device class

Few kernel modifications (~50 LOC)

Unmodified drivers (6 test drivers)

High performance, low overhead

No need for new OS or language



Security challenge: prevent attacks

Problem: driver must perform privileged 
operations

Memory access, driver API, DMA, interrupts, …

Attacks from driver code:

Direct system attacks: memory corruption, ...

Driver API attacks: invalid return value, deadlock, ...

Attacks from device:

DMA to DRAM, peer-to-peer attacks, interrupt storms



Practical challenges

High performance, low overhead

Challenge: interact with hardware and kernel at high 
rate, kernel-user switch expensive

E.g. Ethernet driver ~100k times a second

Reuse existing drivers and kernel

Challenge: drivers assume fully-privileged kernel env.

Challenge: kernel driver API complex, non-uniform
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Driver and kernel functions and variables
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Wireless driver in SUD

Basic driver API → SUD RPC API→ driver API

Non-preemptable function: implement in proxy

Driver API variable: shadow variables
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Attacks from hardware

Driver configures the device to execute attacks

DMA to DRAM

Peer-to-peer messages

Interrupt storms

HW access module prevents attacks

Interposes on driver-device communication

Uses IO virtualization to provide direct device access 
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Prototype of SUD

Supports all Ethernet, wireless, USB, audio drivers
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Audio proxy driver 550

Untrusted code Lines of code
User-mode runtime 5000
Drivers 5000 – 50,000 (each)
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Performance

For most devices, does not matter

Printers, cameras, …

Stress-test: e1000e gigabit network card

Requires high throughput

Requires low latency

Many device driver interactions

Test machine: 1.4GHz dual core Thinkpad



Performance questions?

What performance does SUD get?

Network throughput, latency

How much does it cost?

CPU cycles



SUD achieves same device 
performance
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CPU cost is low

TCP UDP TX UDP RX UDP latency
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Future directions

Explore hierarchical untrusted device drivers

PCI bus → SATA controller → SATA disk → …

Explore giving apps direct hardware access

Safe HW access for network analyzer, X server, …

Performance analysis and optimizations

SUD specific device drivers, super pages, ...



Related work

Mircokernels (Minix, L4, ...)

Simple drivers, driver API designed for user-space

Nooks, microdrivers

Handles common bugs, many changes to kernel

Languages (e.g. Termite), source code analysis

Complimentary to user-space drivers

No need for new OS or language



Summary

Driver bugs lead to system crashes or exploits

SUD protects Linux from malicious drivers using 
proxy drivers and IO virtualization HW

Runs unmodified Linux device drivers

High performance, low overheads

Few modifications to Linux kernel





Security evaluation

Manually constructed potential attacks

Memory corruption, arbitrary upcall responses,
not responding at all, arbitrary DMA, ...

Relied on security heavily during development

SUD caught all bugs in user-mode driver framework

No crashes / reboots required to develop drivers

Ideal, but not done: red-team evaluation?
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