The Utility Coprocessor:
Massively Parallel Computation from the Coffee Shop

John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch
Microsoft Research

Abstract slow jobs that take several minutes without UCop be-
UCop, the “utility coprocessor,” is middleware that come interactive (15-20 seconds) with it. Thanks to
makes it cheap and easy to achieve dramatic speedupise recent emergence of utility-computing services like
of parallelizable, CPU-bound desktop applications usingAmazon EC2 [8] and FlexiScale [45], which rent com-
utility computing clusters in the cloud. To make UCop puters by the hour on a moment’s notice, anyone with a
performant, we introduced techniques to overcome theredit card and $10 can use UCop to speed up his own
low available bandwidth and high latency typical of the parallel applications.
networks that separate users’ desktops from a utility One way to describe UCop is that it effectively con-
computing service. To make UCop economical and easyerts applicatiorsoftwareinto a scalable clougervice
to use, we devised a scheme that hides the heterogentargeted at exactly one user. This goal entails five re-
ity of client configurations, allowing a single cluster to quirements.Configuration transparencyneans the ser-
serve virtually everyone: in our Linux-based prototype,vice matches the user’s application, library, and con-
the only requirement is that users and the cluster are usiguration state.Non-invasive installatiomeans UCop
ing the same major kernel version. works with a user’s existing file system and application
This paper presents the design, implementation, andonfiguration.Application generalitymeans a developer
evaluation of UCop, employing 32—-64 nodes in Amazoncan easily apply the system to any of a variety of applica-
EC2, a popular utility computing service. It achievestions, andease of integratiomeans it can be done with
6-11x speedups on CPU-bound desktop applicationsninimal changes to the application. Finally, the system
ranging from video editing and photorealistic renderingmust beperformant
to strategy games, with only minor modifications to the UCop achieves these goals. To guarantee that the clus-
original applications. These speedups improve perforter uses exactly the same inputs as a process running on
mance from the coffee-break timescale of minutes to thehe client, it exclusively uses clients’ data files, applica
15-20 second timescale of interactive performance. tion images, and library binaries; the cluster's own file
system is not visible to clients. The application exten-
1 Introduction sion is a simple user-mode library that can be installed
easily and non-invasively. We demonstrate UCop’s gen-
The hallmark that separates desktop computing fronerality by applying it to the diverse application areas
batch computing is the notion of interactivity: users canof 3D modeling, strategy games, and video editing; we
see their work in finished form as they go. However,also describe six other suitable application classes. Fi-
many CPU-intensive applications that are best used intemally, UCop is easy to integrate: with our 295-line patch
actively, such as video editing, 3D modeling, and stratto a video editor, users can exploit a 32-node cluster
egy games, can be slow enough even on modern desktdpt $7/hour), transforming three-minute batch workflow
hardware that the user experience is disrupted by londor video compositing into 15-second interactive WY SI-
wait times. This paper presents the Utility Coproces-WYG display.
sor (UCop), a system that dramatically speeds up desk- The biggest challenge in splitting computation be-
top applications that are CPU-bound and parallelizabléween the desktop and the cloud is achieving good per-
by supplementing them with the power of a large dataformance despite the high-latency, low-bandwidth net-
center compute cluster. We demonstrate several applicavork that separates them. It is dealing with this chal-
tions and workloads that are changed in kind by UCopilenge that most distinguishes our work from past “depart-

ment clusters,” such as NOW [9], MOSIX [12], and Con- bandwidth §5.4), and an analysis of the optimized sys-
dor [40], which assume users and compute resources atem’s time budget§5.5). Finally,§6 concludes.

colocated and connected by a fast network. UCop com-

blnes_ a _/arlety of old and new technlque_s to address net2 Prior Work

working issues. To reduce latency penalties, we carefully

relax the file consistency contract and use automatic pro- UCop bears similarity to prior research on computa-

f|||rf1g to send cache validation information tohthe Selr\,’ertional clusters, grids, process migration, network file sys
before it is needqlfefd. Tol reduce bz:_lndWldtI_b penTt'eTtems, and parallel programming models.
we use remote differential compression. A library-level -5 tational clustersare collections of computers

multiplexer on the qluster end of the link scales the ef'that are typically homogeneously configured, geograph-
fects of these techniques across many servers. This COMkally close, and either moderately or very tightly cou-

bination reduces UCop’s overhead for remotely runningy, o - sprite [32] is a distributed operating system that
a process (assuming most of its dependencies are Cachgfl,iqes a network file system, process-migration facil-
in the cloud) down to just a few seconds, even on linkSjtjes and 4 single system image to a cluster of worksta-
with latencies qf several h-undred milliseconds. tions. MOSIX [12] is a management system that runs on
Of course, it makes little sense to pay a remo'[,e'clusters of x86-based Linux computers; it supports high-
execution overhead of a few seconds for a computatione formance computing for both batch and interactive
that could be done locally in less time. UCop is alsopqcegses via automatic resource discovery and dynamic
not practical for tasks that are 1/O bound, or for multi- 4 joad distribution. Condor [40] is a software frame-
threaded applications with fine-grained parallelism. '”workthat runs on Linux, Unix, Mac OS X, FreeBSD, and
other words, U_Cop _N'" not spegd upan Emacg S€sSIoN Ofyiindows, and supports the parallel execution of tasks on
reduce the Walt'WhI|e. Outlook indexes incoming em‘f""'tightly coupled clusters or idle desktop machines. The
However, there is an important class of desktop applicageyg|ey NOW [9] system is a distributed supercomputer
tions that are both CPU-bound and parallelizable; UCoR, nning"on a set of extremely tightly coupled worksta-
enhances such applications less invasively and at Morg, g interconnected via Myrinet. Cluster systems have
interactive imescales than existing systems. been applied to interactive applications, including some
The contributions of this paper are: of those we consider if4, such as compilation [28] and

« We identify a new cluster computing configuration: graphics rendering [25]. However, for transparent paral-
remote parallelization for interactive performance lelization, clusters require the client to be one of the ma-

which provides practical benefit to independent, in_chines in the cluster, requiring invasive installation. By
dividual users contrast, in the UCop system architecture, the clientis ar-

bitrarily configured, geographically remote, and largely
¢ We identify the primary challenges of this new con- decoupled from the cluster.
figuration: the latency and bandwidth constraints of Computational grids [19] are collections of comput-
the user’s access link. ers that are loosely coupled, heterogeneously configured,
and geographically dispersed. Grid systems comprise a
e We introduce prethrowing and task-end-to-start |arge body of work, encompassing various projects (e.g.,
consistencys techniques for dealing with that link. the Open Science Grid [20] and EGEE [3]), standards

e We add remote differential compression, a cluster—(e'g" WSRF [11]), recommendations (e.g., OGSA [20]),

side multiplexer, and a shared cache, resulting i and toolkits (€.g., Globus [18] and gLite [S). Although

. i "the majority of work on grid systems is focused on batch
tem that can invoke a wid rallel comput
a system that ca OKe a wide parafiel compu a'processing, there has been some limited research into
tion using just four round-trip latencies and minimal

bandwidth adding interactivity to grid systems. 1C2D [14] is a
anawidin. graphical environment for monitoring and steering ap-

e We show our system is performant, easy to dep|oy’plications that employ the ProAc_tive Ja_va. Iibrary._ _I—
and can readily adapt existing programs into paraI-GASP [13] is a system that provides grid interactivity
lel services running in the cloud. via a remote shell and desktop. It also includes mid-

dleware for matching applications to their required re-
We begin with a review of related work if2. §3 sources, which is considered by some [38] to be a criti-
describes UCop’s architecture and implementation, andal problem for satisfying the quality-of-service reqdire
54 describes UCop application$5 has several evalu- ments of interactive applications. The DISCOVER [27]
ations: microbenchmark$g.1), end-to-end application system provides system-integration middleware and an
benchmarks §5.2), a decomposition of each optimiza- application-control network to support runtime moni-
tion’s effect §5.3), a sensitivity analysis to latency and toring and steering of batch applications. The Interac-

tive European Grid project [6] provides many servicesmance §5.3). In addition, LBFS uses leases instead of
intended to support interactivity, including a migrating prethrowing, so the machine that holds the authoritative
desktop, complex visualization services, job schedulingfiles (the server in LBFS terms, but the client in UCop
and security services [34]. However, none of this workterms) must store its files using the Arla [44] AFS client.
supports interactive applications per se, but rather proThis would require invasive installation in our scenario.
vides mechanisms for interactively monitoring and ma- Involved parallel programming models, such as the
nipulating a long-running distributed computation. Parallel Virtual Machine (PVM) [39] and the Message
For a few specific types of applications, there ex-Passing Interface (MPI) [17], serve more tightly-coupled
ist massively parallel dedicated services that achieve inparallel applications. However, these are mechanisms for
teractive responsiveness to geographically remote, deariting new applications. UCop’s simple model, while
coupled client machines. Amazon’s Dynamo sys-less general, offers much easier integration for existing
tem employs hundreds of machines to provide real-applications, even those not designed to exploit a cluster.
time response to e-commerce transactions initiated by
clients [16]. Google and other search engines perform .
brief bursts of highly parallel computation to answer 3 1he Utility Coprocessor
clients’ search queries [15]. SABRE and other on-
line reservation systems provide clients with near-irtstan N this section, we describe the design and implemen-
searching and booking for travel options [10]. However, tation of the Utility Coprocessor. Sections 3.1 and 3.2
these specialized services do not support arbitrary paradescribe the programming model, and outline our im-
lel applications, nor do they support applications whosdPlementation of its execution environment. We then de-
authoritative state resides on the client machine. scribe the optimizations required to achieve good perfor-
Research omprocess migrationis extensive: several Mance overa high-latency, low-bandwidth network link.

surveys of this extensive body of work have been pub-
Iished_ [29, 31, 37]._ To our knowlgdge, no prior work 3.1 Programming model
combines mechanisms and techniques as UCop does,
and none of it achieves the same set of benefits. More- We had several goals in designing UCop’s program-
over, the prior systems that are architecturally closest taning model: simplicity for developers, generality across
UCop are not process-migration systems but network fileapplications and operating system configurations, and
systems. In a sense, UCop is a network file system imjood performance over slow links.
which the user's machine is the file server, tuned for a One of the mechanisms UCop uses to achieve these
specific usage scenario. goals islocation independencepplications can launch
Sun’s NFS [36] is a basioetwork file systent inthe remote processes, each of which has the same effect
UCop context, NFS’s chatty protocol would make highly as if it were a local process. Suppose an application’s
inefficient use of the high-latency connection betweenwork can be divided among a set of child processes, each
the client and the datacenter. The Andrew File Systenof which communicates with the parent through the file
(AFS) [23] and Coda [26] avoid chattiness by employ- system or standard 1/0. UCop provides a command-line
ing leases [22]. However, leases require the ability toutility, r enr un, that looks like a local worker process,
inspect the effect of every file system operation, whichbut is actually a proxy for a remotely running process.
would greatly impinge on our goal of non-invasive instal- A simple change fromexec(" program -arg")
lation; rather than simply installing a new applications, to exec("renrun program -arg") provides the
users would have to start using a new file system. UCop’same semantics to the application while offloading the
prethrowing §3.3) achieves the same performance bencompute burden from the client CPU.
efits as leases without modifying the underlying file sys- The consistency contract is simple: each child pro-
tem. cess is guaranteed to see any changes committed to the
The Low Bandwidth File System (LBFS) [30] is client file system before the child was launched, and any
specifically aimed at improving performance over low- changes it makes will be committed back to the file sys-
bandwidth WAN links. It employs caching, differen- tem before the child terminates. Thus, dependencies
tial compression, and stream compression, in much thamong sequential children, or dependencies from child
same manner as UCop does to minimize bandwidth usto parent, are correctly preserved. We refer to this con-
age §3.4). As a general remote file system, LBFS lackstract agask-end-to-start consistensgmantics. Because
crucial optimizations for the UCop context, including our this contract applies to the entire file system, remote pro-
task-based consistency model, coalescing of tasks intoesses seall the same files as local client processes,
jobs, cache sharing, and a library interface, all of whichincluding the application image, shared library binaries,
we show to be critical to achieving interactive perfor- system-wide configuration files, and user data.

Whenr enr un is used to launch a proxy child pro- these conflicts. Each UCop worker process mimics the
cess, it transmits aexec message to the cluster that in- client computer, and a single cluster may do so simul-
cludes remrun’s command line arguments and environtaneously across users and applications. As we show
ment variables. The cluster picks a worker node andn §5.1.2, different Linux distributions can transparently
launches a worker process with the specified argumentsse the same UCop cluster without any explicit pre-
and areplicated set of environment variabtds; oot ed configuration. Our UCop cluster, which happens to use
into a private namespace managed by the UCop daemdBNU libc 2.3.6, never exposes its own libraries to client
(via the FUSE user-space file system framework [4]). Onapplications. We have demonstrated applications that ex-
each read access to an existing file, UCop faults the filgect glibc versions as old as 2.3 and as new as 2.9.
contents from the client; on each write to a non-existing
file name, UCop creates the file in a buffer local to the
node’s file system. To prevent violations of task-end-
to-start semantics from failing silently, UCop disallows UCop’s location-independent compute model does
writes to existing files. Standard input and output arehave limits: it extends only to the file system, envi-
shuttled between the client proxy process and the clustetonment variables, process arguments, and standard 1/0
worker process. When the worker process exits, UCoppipes. Programmers UCopifying an application need to
sends any surviving created files to the client. It alsope aware of these limits. As we will show, these limits
sends the process exit status; the client proxy procesgre not stumbling blocks in practice; a variety of appli-
exi t s with the same status. cations can be UCopified easily.

An example best illustrates how UCop provides loca- Because UCop supports no interprocess communica-
tion independence. When compiling a single source filetion other than standard 1/O pipes, it precludes tightly-
UCop'srenrun gcc hel | o. c produces an output coupled computations in which concurrent child pro-
file identical to a locally rurgcc hel | 0. ¢, because cesses synchronize with each other using shared mem-
the remote version ory, signals, or named pipes. Some of the applications
we adapted to UCop used an unsupported mechanism;
our modifications primarily involved rerouting this com-
munication through the file system (sg8.

3.2 Limitations on location independence

e hasthe sam8PATHas the client, and sees the same
directories, so uses the sagec;

e sees the same environment, including Another limitation is that the kernel seen by a remote
$LD.LI BRARY_PATH (shared library search process is that of the cluster's worker machine, not the
path) andsLANG (localization); user’s client. This is significant for two reasons. Firsg th

semantics of system calls change slightly between kernel

versions. Our application tests have not yet revealed any

failures due to such a kernel incompatibility, but they are

e finds the same compiler configuration and systemlikely in code that is tightly coupled with the kernel. Sec-
include files; and ond, there will be detectable differences in the machine-

local state exposed by the kernel, such as process lists

- and socket state. UCop hides most diev and/ pr oc

the same place as if it had run locally. from workers, exposing only commonly-used pseudo-

Contrast this approach to other remote execution sysdevices such asdev/ nul | and/ proc/ sel f; the
tems. Application-specific clusters such as compile andatter supports commonly-used idioms for finding load-
render clusters [33, 35] must be configured with a ver-able modules using a path relative to the currently exe-
sion of the compiler or renderer that matches that orfuting image’s path.
the client. Grid and utility computing clusters standard- Finally, regular files on the client machine appear on
ize on a configuration, requiring the client configuration the remote machine as symbolic links to files named by
to conform. Process migration systems such as NOW& hash of their contents. This is a workaround for a per-
Condor, and MOSIX assume that user and worker maformance problem discussed§8.1.3. It has little effect
chines have a network-sharetione and identical soft- 0N most programs in practice.
ware configurations—for example, so that a dynamically
linked execu_table buiI'F on a user’s machine can find itS3_3 Minimizing round trips
shared libraries when it executes on the cluster.

The Utility Coprocessor is meant to be used by dis- At this point, we have a basic system model with se-
parate independent users. No single configuration isnantics suitable for the class of applications we aim
ideal; various users sharing a cluster may have conflictto support. However, a straightforward implementation
ing configurations. The semantics presented here hideould perform poorly on a high-latency, low-bandwidth

e runsgcc in the same working directory, and thus
finds the correchel | o. c;

e writes all its output to the the client file system in

link. We turn now to the problem of using that link ef- b0 File foo.c Recipe 29D

ficiently by minimizing round-trip and bandwidth costs, E1A
starting with the former. Block E1A F93
An obvious requirement for reasonable performanceis ... 68C .
. . Read/Write
to cache file contents near the cluster. The classic ques- Block F93
tion is how to ensure that cached content is fresh. Neither ===y
frequent validationd la NFS [36]) nor leases(a AFS Block 68C
[23] or Coda [26]) are compatible with UCop’s require-)
yte n

ments, as detailed i§R.
Prethrow. ~Consistency Semgntlps require that, for.Figure 1:Objects in UCop’s file synchronization protocol. To
each path a worker touches during its run, we communi- . .
. . . make the illustration compact, 20-byte SHA-1 hashes are rep-
cate the mu'gablcle binding from pat.h to file attrlbgtes and,osented by three hexadecimal digits.
content. A nave implementation might ask the client for
each binding on-demand, requiring one round-trip per
file. We observe almost all paths touched by an applica- Client
tion are libraries and configuration data toucheceery Machine
run, making them easy to predict. Rather than wait for
workers to request path information serially, the client
sends a batch of path information likely to be useful be- Timel
fore execution starts. We call thispgethrow—like a
prefetch, but initiated by the sender. A prethrow is a hint:
it can improve performance but does not change seman-
tics if the prediction is wrong.
The client maintains sets of accessed paths, indexed
by the first argument texec. This way, the set for the
3D modeling program is maintained separately from thatrigure 2:File transfer protocol with cold caches. To make the
for the video editor. UCop prethrows only those pathsillustration compact, 20-byte SHA-1 hashes are represented by
that have been accessed more than once, to prevent polltiwee hexadecimal digits.
tion of the prethrow list by temporary files from previous
runs. Currently, paths do not expire out of the prethrow
list; in future versions, the server will provide a list of slowly, at keyboard and mouse bit rateRemote dif-
useless prethrows to the client after execution, to helgerential compressiofRDC), used by LBFS [30] and
the client decide which paths should expire. rsync [42], is useful in this scenario. RDC detects which
One potential limitation of indexing by executable parts of a file are already cached and transmits only a
name is that UCop does not distinguish between two dif-small region around each changed part.
ferent programs invoked via the same interpreter (e.g., To understand our use of RDC, we firstintroduce some
Python). UCop may therefore send information aboutterminology (Figure 1). UCop uses the rsync fingerprint
paths that are not relevant. Because prethrows are hintaJgorithm to divide all files’ contents into blocks with
compact, and cachablg3.5), this has not been a prob- offset-insensitive boundaries. (We plan future support
lem in practice. for LBFS, which is more robust to modifications.) It then
constructs aecipefor each file: a list of its constituent
CL L . blocks’ hashes, plus the file’s permissions and ownership
3.4 Minimizing bandwidth fields. This recipe can itself be large, so we often com-

In a bandwidth-constrained environment, caching isPactly refer to it by its hash, calledRecipeName
critical. We adopt the well-known approach of caching UCop rolls whole-file caching and RDC into a sin-
by immutable hash, so that if a block of data is referredgle mechanism (Figure 2). Worker nodes resolve each
to by multiple names we only have to transmit it once. application-requested path to a RecipeName, first by
Remote differential compression. Whole-file checking prethrows, then making a request to the client.
caching works well for files that change rarely, suchlfthe workerrecognizes the RecipeName, it knows that it
as application binaries. However the user’s input oftenalready has the whole file cached. Otherwise, it requests
changes slightly between UCop invocations. For examthe recipe, then any blocks from that recipe it lacks.
ple, a video editor’s edit decision list (EDL) is a compact Stream compression. After RDC, the number of
representation of the user’s proposed manipulations to hytes that still must be transmitted can often be reduced
set of (unchanging) video input files. The EDL changesusing conventional compression. UCop compresses its

Compute
Server

channels witlel i b. with the last-modified time (mtime) of the underlying
Cache sharing. Multiple worker processes virtually file. When a recipe is needed, the client uses the cached
always share files, such as the C library. It is wastefulversion if the file’s mtime has not changed. For one ap-
for the client to send this data to each worker over theplication, this optimization saves the client from hash-
bottleneck link. Cluster nodes are interconnected with ang 93 MiB of content, saving seconds of computation
high bandwidth network, so it is better for the client to (see§5.3).
send each file once to a cache shared by all workers. Thread interface. Ther ent un command-line utility
We implemented this scheme by introducing a distrib-lets applications divide their work in a natural way, creat-
utor node, calledemdis Remdis has a pass-through in- ing what seem to be local worker processes but are actu-
terface: it accepts jobs from the client as if it were a (fast)ally proxies for remote processes. This elegance makes
cluster node, and submits jobs to workers as if it were 4t trivial to expose remote execution opportunities in sys-
client. Remdis forwards most messages in both directems likemake. However, simply launching 32 or 64
tions without modification. However, it intercepts file local processes can take several seconds, particularly on
system requests, interposing its own cache. Duplicatéow-end desktop machines. This can consume a signifi-
requests for the same content are suppressed, ensuringnt fraction of our budget for interactive responsiveness
that no unique block is sent over the bottleneck link more Thus, we added aenrun() library interface. A
than once. The Remdis cache does not change consislient that wants: remote processes can spawthreads
tency semantics because RecipeNames and content bloakd callr ent un() from each; the semantics are identi-
hashes describe immutable content. cal to spawning instances of the command-line version.
In our experiments, remdis began to become a bottleThe library obviates the need for extra local processes in
neck at around 64—128 nodes. Because of its simple inexchange for a slightly more invasive change to the ap-
terface, however, it would be straightforward to build a plication.
32-wide tree of remdis nodes to extend the distribution
function to higher scales. 3.6 Summary
Job consistency.Computing and sending a prethrow
message requires the client to look up the modification In the common case, UCop incurs four round trips:
times of hundreds of files and transmit a few tens ofthe necessary one, plus three more to fault in changed
KiB across the bottleneck link. Invoking tasks in- user input. (We believe it is possible to eliminate all but
curs these costs times. On the other hand, using the @ single RTT; se¢5.5.2.) UCop also uses bandwidth
same prethrow message for all tasks, sent once and réparingly. It uploads only one copy of the path attributes
broadcast by remdis, reduces the prethrow cost by a fadgequired by our consistency model, the per-task parame-
tor of n. ters with duplication compressed away, and the changed
Of course, reusing a single prethrow message violategart of the job input. It downloads only the output data
our consistency model. If a file changes between wher@nd the exit codes of the tasks.
Task A and Task B are launched, but B uses A's prethrow Together, these optimizations compose an algorithm
message, B will see the file used by A, which is nowthat attaches to application code with a simple inter-
stale. This is not a problem for groups of tasks that havdace, yet minimizes both round trips and bandwidth
no interdependencies; we call such a collection of task®n the high-latency, low-bandwidth link. UCop effec-
ajob. UCop has support fgob-end-to-start consistency tively transformssoftware not originally designed for
semantics: each task sees any changes committed to tHétributed computation into an efficient, highly parallel
client file system before its enclosifgp was launched. ~applicationservicetargeted at a single user.
Applications that can operate with these semantics group
tasks into jobs and generate one prethrow for each joby Applications
Other thanmake, all of the applications we deployed

bundle their tasks into a job. In this section, we describe various classes of applica-
tions that work well with UCop. We first describe four
3.5 Client-side optimizations applications we have already ported (with performance

evaluations to come i§b.2). We then describe other suit-
The following two optimizations are performed on the able application categories.
client and thus involve no changes to the protocol.
Recipe caching. Constructing a recipe on the client 4.1 Make
is fast. However, some applications require hundreds of
recipes, and the client can not generate a prethrow until The process of adapting software to UCop is best ex-
it has them all. Thus, the client caches recipes, alonglained by starting with a simple exampleake, the

automatic software build tool. The user’s rules in themodel file format: The temporary model file differs sub-
Makef i | e file tell make how to transform input files stantially from one render to the next, even when the
into output files, e.g., by invokingcc. make assumes model is unchanged. Therefore, even minor changes
that when a command completes, the output file haso the viewpoint or model require relatively large up-
been generated, and it is safe to launch a new commardites. UCop’s remote differential compressig8.4) is

that depends on that output. That isgke assumes able to eliminate all but 11% of the differences. With
task-end-to-start consistency. Therefore, one can replacvarm caches, render requests typically transmit 779 KiB
gcc with renr un gcc—literally, in the Makefil e of blocks to express the input delta. With further effort,
definitions—to push each compilation out to UCop. Ad- Blender might be updated to use a stable file format.
ditionally, make has a built-in facility for exploiting par-

a!lehsm intended to exploit a local multiprocessoak e 43 Chinese Checkers

-] 20 launches up to 20 concurrent processes that have

no mutual ordering constraints. Withenr un, those Another suitable application class is turn-based strat-
concurrent compiles are delegated to the UCop cluster. egy games played against a computer opponent. The

Adapting make to UCop is trivial since it was de- effective skill of the computer is tightly linked to the
signed to expose parallel work as separate processesnount of processing time available, making players
communicating through the file system. For the mono-choose between a good artificial opponent or a fast one.
lithic applications we describe next, minor modification Interactivity is key here: it is not fun to play against an
is required to expose concurrency as separate processaspponent that takes a dozen minutes to make each move.

Traversal of Al search trees is highly parallelizable, so
4.2 Blender these games are good candidates for adaptati(_)n to UC(_)p.
The application we use to demonstrate this class is

Blender [1] is a 3D modeling, animation, and ren- blcc, a Java program that plays Chinese Checkers [21].
dering program written in C and C++. A common us- Its “expert player” mode is based on a 4-deep alpha-beta-
age mode is to interactively build a model using a real-pruned minimax move-tree search.
time wire-frame or shaded model; then, to refine details We modified the tree search to emit a snapshot of the
and lighting, the user requests a ray-traced photorealistigame configuration using the save-game function, then
rendering. Since ray tracing is embarrassingly paralleldispatch each branch of the first level of the search tree
Blender has a built-in facility for exploiting local mul- to a separate process. Each process comput@s-aih)-
tiprocessing. Specifically, it can be easily configured tolevel alpha-beta minimax. This sacrifices our ability to
render different tiles of a scene in different threads, eachprune across trees, but we expect to make up for this with
accessing the current world model via shared memory. the high parallelism UCop can bring to bear.

Blender also includes a notion of a render cluster that This approach was easy, but it exposes varying degrees
can batch-process an animation. To use it, the user musff parallelism, and its tasks exhibit high variance. A bet-
configure a cluster with software matching her currentter approach might be to locally evaluate the tree to a
version of Blender, with a network-mounted shared filegreater depth to find low-variance task subsets.
system such as NFS, accessible over a high-bandwidth
and low-latency network. _ 4.4 Cinelerra

UCop can transform Blender's minutes-long batch-
style frame render into an interactive-speed preview. We Cinelerra [2] is an open-source video editing tool.
modified Blender’s preview code to write the current 3D With it, the user creates asdit decision list (EDL)a
model to a temporary file, split the frame into very small metadata document that describes how source video is to
(8-pixel-wide) tiles and dispatch a random subset of tilesoe clipped, transformed, and composited into the output
to each worker node. The randomization reduces the invideo. Cinelerra then performs these operations.
efficiency introduced by inter-task variance; without it, To test Cinelerra, we constructed a 45-second video
worker processes responsible for complex portions of thenontage composed of 29 MiB of low-resolution clips
scene don't finish rendering until long after other work- from a digicam. This montage uses only simple animated
ers have gone idle. As each worker completes, it writegransformations, but renders & Zlower than realtime.
its JPEG output tiles back to the file system. The parenCinelerra offers many compute-intensive effect plugins
Ul processwai t s for the children; as each returns, the that slow down previewing even more.
tiles are read and displayed, generating a preview that is Like Blender, Cinelerra includes a notion of a ren-
gradually completed. These changes comprise 167 stateler cluster that depends on explicit version configura-
ments. tion and a fast network. Its “background render” function

One unfortunate property of Blender is its unstablebreaks a clip into frames and pre-renders the sequence of

frames so the operator can preview the sequence at fuitack is essentially an edit decision list, which UCop
frame rate. We modified Cinelerra to emit a set of con-could send concisely. Image filters are both coarsely par-
trol files (in Cinelerra’s native job-control language)tha allelizable and slow, making them a good fit for UCop.
divide the preview region temporally into brief snippets. Finally, software analysis tools, such as model check-
It launches one child process to render each snippet ters, whole-program static analyzers, and theorem provers
MPEG, then collects the MPEGs into a render timelinegenerate substantial parallel workloads and are often
and plays them in order. used as part of a developer’s interactive workflow.

The biggest constraint on using Cinelerra with UCop Note that like Blender and Cinelerra, some of these
is getting enormous video inputs to the cluster. Our 29-gpplications already have support for a single-purpose,
MiB input videos represent amateur video editing; seri-locally-administered, tightly-coupled cluster. Somereve
ous editing will use multi-GiB input files. While they sell dedicated cluster hardware [7]. UCop, in contrast, is
are read-only and thus their size does not affect a warmgeneral: a single cluster running a single piece of soft-

cache scenario, big inputs produce substantial transmisyare that can service all these applications simultane-
sion delay in a cold-cache scenario. ously.

Three techniques may mitigate this constraint. First,
UCop might demand-fault individual blocks rather than
entire files; this can help if only small portions of the 5 Evaluation
input videos are used in the output. Second, Cinelerra
might transcode video at the client into lower-quality Our evaluation of UCop is divided into five parts. We
drafts to exploit UCop even when transmission delayshegin with microbenchmarks i§6.1. End-to-end appli-
are dominant. Third, a user might fault in media to cation benchmarks are describeds®2. In§5.3, we
a UCop cluster (e.g., by runningenr un nd5sum analyze the efficacy of UCop’s protocol optimizations,
novi e. avi on it) the day before sitting down to edit. showing how performance suffers as each is disabled.
We present a sensitivity analysis to latency and band-
width in §5.4. Finally, in§5.5, we decompose how a
typical UCop task spends its time budget.

Beyond the applications we have modified, many other All of our experimental clusters were constructed from
application classes can exploit UCop. The best applicaAmazon’s EC2 “Elastic Compute Cloud” service. Each
tions are those where small changes to input incur CPUVYM is one of Amazon’s “high-CPU medium” instances:
bound and coarsely parallelizable computation. This seca Xen virtual machine with 1.7 GB of memory and 2
tion has some examples. CPU cores, each of which is approximately equal to a

One potential class is mathematics software. For in2.5GHz Opteron or Xeon processor, circa 2007. Within
stance, numeric modeling packages such as Matlab anidC2, we measured a typical interconnect bandwidth of
Octave parallelize vector math, and symbolic math pack800 Mbit/sec and RTT 0600 usec. As we will see in
ages such as Macsyma and Mathematica parallelize m&5.2, most tests used artificial bandwidth and latency re-
nipulation of independent subexpressions. Also, spreadstrictions to emulate the typical case of a client separated
sheet applications have parallelizable data-flow models from the compute cluster by a bottleneck link.

Speech dictation software often performs a great deal
of processing to parse a small amount of user speech. .
researcher familiar with the area claims desktop acces -1 Microbenchmarks
to parallgl resources would improve quality and enables 1 1 correctness
new applications [43].

Interactive GIS applications often perform CPU- Our task-close-to-open consistency model and whole-
intensive tasks, such as rendering a large database fife-system replication scheme were designed to let re-
vector data into a bitmap or performing convolutions mote processes produce results identical to those pro-
on large bitmaps (e.g., reprojecting maps or aerial phoduced by local computation. To verify this property,
tographs). In these applications, small user inputs suckve used UCop to build GNU Coreutils v7.1, a collec-
as changes in view or layer registration can changeion of 102 system utilities. The build process has an
the global configuration and necessitate CPU-bound reintricate dependency structure and invokes hundreds of
rendering. sub-tasks, many of which redirest di n orst dout to

Photo manipulation software may also be readilyother programs or the file system. Errors in UCop’s con-
adaptable to UCop. Photoshop and GIMP are adoptingistency model or its implementation are likely to cause
a nondestructive editing model, i.e., recording a stack obuild failures (and did so in early versions of UCop).
operations rather than just their cumulative effects. ThisAdapting the build process to UCop only required typing

4.5 Other applications

OS Distribution| libc | gcc | kernel
Centos 5.2 25 | 41.2]| 2.6.18
Debian 3.1 23.2| 3.35| 2.6.16
Debian 4.0 236| 4.1.2]| 2.6.21.7
Debian 5.0 2.7 | 43.2]| 2.6.21.7

Debian 6.0 beta 2.7 | 4.3.3| 2.6.21.7

Fedora Core 8| 2.7 | 4.1.2| 2.6.21.7

Gentoo 2008.0| 2.6.1| 4.1.2| 2.6.18

Ubuntu 9.04 29 | 43.3]| 26.21.7

200
1

Pure FUSE

50
|

95th percentile of 500 trials
5 10

Time per syscall (usec)

2
|

Table 1:Linux distributions used as clients to compile GNU
Coreutils with a UCop cluster running Debian 4.0. In each case,
UCop generated binaries identical to those compiled locally.

Number of sequential 4K reads from a file

Figure 3:Log-log plot of the amortized time per syscall after

oneopen, n r eads, and onel ose on a file. All reads are
./ configure CC="renrun gcc". We also com- 4,096 bytes. The file was resident in the buffer cache.
piled Coreutils locally; all the locally-compiled outputs
were identical to their cluster-compiled counterparts.

Further supporting our claim of location indepen-

dence is our (accidental) discovery thaénr un is
“self-hosting.” An author was tinkering with remrun
commands when he noticed the system had slowe

When a worker process tries to open a path corre-
sponding to an extant file on the client, FUSE instantiates
that path not with a local file but with a symbolic link to
f file with the appropriate contents. This file is kept on

and was transferring files that seemed unrelated to hi kernel-managed native file system. Thus, access to ex-

task. He eventually discovered that he'd accidentally ant f"‘?s IS r_nedmted by FUSE only duringen; _ot_her
. : . operations like ead are handled much more efficiently.
edited his command-line to readenr un renrun

gcc hell o-worl d. c—that is, a recursive call to We quant'ified the gdvantage of our approach by mea-

remrun. The command still ran correctly; the remrun>4N9Y the time required FO open, read, and close a file.

client ran on the server automatically. E|gure 3 shows the am(_)rtlzed cost per syscall for sequen-
We also built this paper usingentun | at ex tial 4,096 byter eads with a warm buffer cache, plotted

paper.tex. The emitted .dvi file differed from a for arange of eads peropen.

locally-built copy in one byte: the minute field of a time- The top curve ShOWS_ the perf(_)rma_mce of a FUSE-
stamp. managed file system without redirection. The bottom

curve shows the performance of Linux’s native ext3 file
_ _ system. The slowdown is significant, and is worst for
5.1.2 Configuration Transparency small numbers of reads, ranging frafix to 60x. The

To test UCop's insensitivity to heterogeneous cIients,mIOIdIe curve shows _amornzed read pe_zrfc_)rm_ance with
our symlink scheme in place. The optimization never

we repeated the Coreutils build test on various distribu- .

tions of Linux, only one of which matched the version hurts performance, and after aboutr4@ads, IMproves

running on the UCop cluster itself (Debian 4.0). Eachamortlzed performar_lcg to _thhihx natlye.

distribution generated distinct outputs due to variations NOt€ that the optimization does slightly hurt trans-

in the versions of gcc and libc. Indeed, simply invoking parency: all files seen by the workers are symbolic links.

Debian 5.0’sgcc binary on a Debian 4.0 machine fails

due to shared library incompatibility. Using UCop, how- 5 2 Application Benchmarks

ever, every locally-built binary matched the binary the

cluster built on that client’s behalf. The distributions we In this section, we describe end-to-end benchmarks for

tested are shown in Table 1. three applications run on UCop, tested under realistic

network conditions. In most tests, the client and clus-

ter were both within Amazon EC2, with latency artifi-

cially injected and bandwidth constrained by Linux Traf-
We implemented UCop’s on-demand file system usingfic Control [24]. The exception is Section 5.2.5, in which

FUSE [4], a user-space file system framework. This sim-we ran experiments from a real coffee shop.

plified development, but proxying every file system op- To determine what network conditions should be em-

eration through user-space has a significant performanaglated for our EC2-based experiments, we tested the

cost for I/O intensive processes. In this section, we evalnetworks at various locations in Seattle that offer pub-

uate a technique to mitigate this cost. lic wireless Internet access. These included two coffee

5.1.3 FUSE Performance

interval for the mean using Studentslistribution.

Cold-cache performance is slow; UCop performs
poorly for applications run only once. Of course, the
same can be said of client software, whose installation
also typically takes several minutes. Though currently
unimplemented, caches could be made persistent across
cluster instances and even users; clusters would then boot
ready-to-use in the common case.

700 = Coffee shop

600 '”— Cable modem $

1403

Interactive latency (sec)
D
o
o
T

Blender Chinese Checkers Cinelerra
Workload

Figure 4:Run times with cold caches and 32 workers. Error 5.2.2 Blender

bars show 95% confidence interval around displayed mean. . L . .
’ pay The first application we test is Blendé#(2). This test

renders a 14.2-MiB model of the Starship Enterprise [41]

shops, a cell phone company hot-spot, and a restaurartt HD quality (920 x 1080). Figure 5 compares the time
At each, we characterized the access-link bandwidth antP run locally with the time to run at various levels of
latency to EC2 (which is across the country, in Virginia). parallelism in UCop.
Average latency ranged from 121 ms for the cell phone First, observe that in the local case, rendering takes
company to 199 ms for one of the coffee shops. Up-137 sec, a duration most users would consider non-
stream bandwidth occupied a fairly narrow range: frominteractive and that would cause them to task-switch.
1300 Kib/s for one of the coffee shops to 1500 Kib/s for Next, observe that in either of our network configura-
the restaurant. Downstream bandwidth also occupied Hons, a cluster size of two breaks even with the local
narrow range: from 1400 Kib/s for the same coffee shopcase; even a small degree of parallelism overcomes the
to 1600 Kib/s for the restaurant. overhead of remote operation. Finally, observe that from
In the experiments that follow, theoffee-shopcon- the coffee shop, 64 workers render the scene in 20 sec,
figuration models a round-trip time of 160 ms, an up-and, using a cable modem, 64 workers take 18 sec. These
stream available bandwidth of 1400 Kib/s, and a down-results show that even on long-delay, low-bandwidth net-
stream available bandwidth of 1500 Kib/s. A secondworks, UCop can perform complex rendering in seconds,
cable-modengonfiguration, based on the authors’ hometurning it from a batch to an interactive operation.
offices, models 70 ms RTT, 4 Mib/s upstream, and
16 Mib/s downstream. 5.2.3 Chinese Checkers
In most experiments, the local-computation measure-
ments are run on exactly the same kind of machine as the The next experiment measures the time it takes for
cluster worker nodes. The exceptior%2.5, where, out the Chinese Checkers expert algorithm to make a move.
of necessity, the client was a laptop. As described earlier, in the local case, Chinese Checkers
uses a sequential pruning tree search; for both local and
remote tests, we use only one core per machine. We au-
tomate the game by driving the expert mode (with and
When caches are cold, UCop is slow. Files are faultedvithout UCop) against a locally-executed novice oppo-
in serially over the bottleneck link, necessitating atfeas nent. We measure only the time taken to compute the
as many RTTs and transfer delays are there are files. Figgxpert's most complex move.
ure 4 shows that warm-up times are from 2 to over 10 Figure 5 shows the results. Computed locally, the
minutes. Cinelerra is slowest, with round trips propor-computer’s move takes 317 sec, a long enough wait that
tional to its 484 paths, and bandwidth costs proportionathe game might not be fun. UCop overcomes the remote-
to its 93 MiB of files. processing overhead by degree 3. With a 64-node clus-
The evaluations that follow all measure performanceter, the worst-case move time is reduced to 26 sec in the
once the caches are warm. In each experiment, we firgtoffee shop, and to 23 sec with a cable modem. This il-
destroy all cached data, then warm the caches by inlustrates how UCop can make strategy games enjoyably
voking the test application twice. Finally, we collect a interactive even at expert levels.
data point by timing the application’s performance when
giyen anew (unca.ched).input fort_h.e firsttime: atweaked52.4 Cinelerra
Cinelerra edit decision list, a modified Blender model, or
a new move in a game of Chinese Checkers. We repeat The third application is the Cinelerra video editor. Be-
each experiment 10 times and plot the mean. Arounctause video playback results play out over time, total
each mean we show, using error bars, the 95% confidena@mpletion time is not an interesting metric; therefore,

5.2.1 Cold cache performance

10

£ B

2 800 2 600
> 700 >

2 600 g' 500
£ 500 & 400
°© 400 ° 300
2 388 = 200
& 100 § 100
2 0 2 0
= =

Blender Chinese Checkers Cinelerra
Workload Workload

Blender Chinese Checkers Cinelerra

Figure 5:Run times with local computation and varying degrees of UCop parallelisralier times are better. Network configu-
rations arecoffee-shoygleft) andcable-moden(right). The parallel cluster uses the same class of machine as the tooplitation
baseline. Error bars show 95% confidence interval around displtaged.

5.2.6 Discussion

350

UCop’s goal is to improve interactive performance by
achieving low latency; computationafficiencyis less
important. Indeed, speedup per node in these tests peaks
at 1-2 nodes (56-85%) and decreases monotonically

Interactive latency (sec)
PR DNNW
o uU1o U1 o
[oNeoloNoNe)

58 thereafter, sinking to 12—-35% for 32—64 nodes. For this
C.Checkers Cinelerra reason, in the following experiments we consider only
Workload 32-node clusters, as they provide reasonably low laten-

cies at reasonable cost.

Figure 6:The effect of parallelism when the client is a laptop ~ “Reasonable” latency is difficult to define objectively.

in a real coffee shop. Note that, unlike in Figure 5, the locally- Results are highly sensitive to workload characteristics;
computed runs execute on a different class of machine than iany selection is, to some degree, arbitrary. Had we cho-
used in the compute cluster. Error bars show 95% confidencgen simpler workloads, the desktop might have rendered
interval around displayed mean. them quickly, obviating the need for the remote cluster.
More complex workloads favor UCop: Overheads limit
UCop's ability to use a larger cluster to reduce wait time,
but UCopcanoften use a larger cluster to hold wait time
constant as the workload complexity increases dramati-

. . .. cally. Similarly, due to the preroll metric, a short Cinel-
playback. The workload is a 20-second clip of the digi- erra clip duration favors local computation, and longer

cam montage described §4.4. durations favor UCop,
Figure 5 shows the results. In the local case, the delay
is 166 sec, a long time to preview a clip. UCop begins .
showing benefit at degree 2, readily overcoming the re2-3 Decomposition
mote overhgaq. Finally, by degree 32, Cinelerra delivers 1 preceding section shows that UCop is performant.
the same clip in only 23 sec from a coffee shop, or 15 se§ye now break down the contribution of each optimiza-

our measure of interactive latency for Cinelerrgis-
roll time. This is the delay until video playback could
theoretically begin and still allow uninterrupted complet

using a cable modem. tion described ir§3. As Figure 7 shows, each optimiza-
tion is necessary for good performance, although some
5.2.5 Tests from a real coffee shop are more important for certain applications.

Prethrow. The first group in both graphs of Figure 7

The previous sections reported experiments done in ahows that prethrowing is the most important optimiza-
controlled environment meant to emulate a coffee shoption. Cinelerra, which accesses 484 paths, is most af-
We now discuss experiments usingantualcoffee shop. fected by the loss of prethrown attributes. Because files
In these tests, the client is a laptop, a Lenovo z61p withare validated sequentially, the worst slowdown is seen in
a 2GHz Core Duo running Debian Lenny. The workersthe highest-latency configuratiotnffee-shop
are still EC2 cluster machines. Blender is linked against Remote differential compression. The next group
Debian Etch, and thus runs from insidkamhardware shows performance when RDC is disabled. That is, ev-
virtual machine, which is limited to one core. Figure 6 ery byte of changed files must be uploaded, rather than
shows the results; they are essentially similar to, and thupist the changed bytes. Blender fares worst without this
validate, our earlier emulated-environment results. optimization, since its input file is the largest.

11

c c

8 S o o

“('U' i ol a 24]

£ 25 = Blender L H £ 22 T Blender L '
= = Chinese Checkers = 2 i = Chinese Checkers &
8_ 2 - m Cinelerra 8‘ 1.8 I m Cinelerra - N F
g s 5 S i -

2 15 e R A S o s l4n

c z8 sS g = c 12 1

S 1] e = | __ . = 1 I

o o 0.8

=] °©

s = 0.6

2 Prethrow RDC Compress Job Recipe Thread =2 Prethrow RDC Compress Job Recipe Thread

Disabled optimization Disabled optimization

Figure 7:Run times with optimizations disabled. Values are normalized to means in Fgaeel.0 means the optimization has
no effect. Network configuration soffee-shofleft) andcable-moden(right). Parallelism is 32. Error bars show 95% confidence
interval around displayed mean.

Stream compressionln the next group, we show the § 300 F—

effect of disabling stream compression. Again, this af- >, 250 L = Blender
. . ,) ®E Chinese Checkers

fects Blender the most, since even with RDC, Blender's § 200 |- m Cinelerra =~
unstable output requires UCop to transmit 779 KiB of f 150 -
changed blocks; performance suffers in this test because % 100 [
the blocks are compressible. 8 58 s 220 fZe Gl g

Cache sharing. Without cache sharing within the = 20 80 140200260 20 80 140 200 260

cluster, all worker nodes must get everything directly with prethrow without prethrow

from the client via the bottleneck link. This inflates Client/cluster round-trip time (ms)

all overheads by a factor equal to the cluster size._.)) i i)

Clearly, this is unscalable. Indeed, this experimentF'gure 8: Interactlvg latencies Wlth varying client/cluster

ran so slowly that we abandoned collecting statistically-RTT’ cable-modenavailable bandwidth, and 32 worker nodes.
Smaller times are better. Prethrows make UCop’s performance

significant qata; none appear in the figures. nearly latency-insensitive. Error bars show 95% confidence in-
Job consistency. The next group of bars shows the terval around displayed mean.

benefit of job-end-to-start consistency. Here, no two

tasks share the same job, and hence consistency seman-

tics demand that each task prethrow its own path listformance is highly sensitive to bandwidth, at least for
This has no effect on round-trips, but congests the linkBlender, which is bandwidth-intensive.

with duplicate data.

Recipe caching.In the next group of bars, the client
does not cache recipes as describeddrb; therefore,
the client must compute megabytes of hashes before it The previous section explained the techniques that
can begin the transaction with a prethrow. achieve interactive-scale performance. This section ex-

Thread interface. The last group shows the value plores the present limits to performance and how it might
of launching UCop tasks from threads rather than prote further improved.
cesses. Here, the cost is the serialized overhead on the
client machine. Chinese Checkers suffers the most be-
cause it launches 86 tasks; the other applications Iaunc?rS'1 Latency breakdown

32. This optimization will be more important on slow g guide this discussion, Figure 10 provides a rough
clients (our experimental client is fast), and at higher de-analysis of how the 20 sec of interactive latency for our
grees of parallelism. Blender workload arose. We estimated the latency com-
ponents as follows:
Launch overhead. We measured enr un on EC2
with no artificial latency or bandwidth throttling. It spent
Figures 8 and 9 show the sensitivity of our results toabout 1 sec launching 32 job requests, including time to
network characteristics. UCop is effective at dramati-st at the file system for each prethrow path and fault in
cally reducing sensitivity to poor latency and bandwidth missing blocks.
conditions. These experiments also show how UCop Process start. We asked Blender to load the Enter-
achieves this. Without prethrow, performance is highlyprise model, then exit without rendering anything; this
sensitive to latency. Without compression and RDC, pertook about 1.5 sec.

5.5 Remaining costs

5.4 Sensitivity analysis

12

§ 180 e The four round trips we spend are three more than
> 160 - E'ﬁ.ﬂ‘éire Checkers| | =] strictly necessary. Eliminating them as follows could
5 %‘2‘8 m Cinelerra s B save as much as 0.5 sec in the goffe_ze shop. The_ prethrow
o technique already profiles applications to predict paths
2 28 """"""""" with stable contents. The same technique could detect
g 28 repeatedly-used paths with consistently fresh contents,
£ 05 1 2 4 8 051 2 4 8 and use that cue to eliminate the RecipeNameRequest
with compress/RDC without compress/RDC round-trip. Reasonably assuming that the RecipeName

Upload bandwidth cap (Mibs) (download = 4x upload) jiself is fresh, the client could pipeline the recipe as well

Finally, by maintaining a shadow index of blocks the

Fl_gtl:]re 9b:||nterzctiv? Iatt/erllciets \AgtTthary(ijngzavaiIEble bgnd- cluster already knows, the client could further pipeline
widih, cable-modentiienticiuster - an WOTKEr OGS 1he set of new blocks, eliminating a third RTT.

Smaller times are better. RDC and compression make UCop’s P tart iaht b itigated by checkpointi
performance nearly bandwidth-insensitive. Error bars show, ropess §ar up mig emi 'Qa ?_ . y c _ec pointing
95% confidence interval around displayed mean. the client-side process after basic initialization or @fte

parsing stable inputs. In addition, each process’s com-

| | pute time might be predictable in some cases; shorter
subtasks might automatically be run locally, or run lo-
sl S o c £ cally in the case of network failure.
= o =
5| s 2 = 2 335
S3 g s |s| 23
8| < £ S 2] 55§ 6 Conclusions
=l 2 o o= o o=
2| 5 g |&| 8= . . .
-l o b The Utility Coprocessor is a new use for utility com-
| | pute clusters: dramatically enhancing the performance
* * * of CPU-intensive, parallelizable desktop applications.
0 S 10 15 20 UCop’s non-invasive installation and automatic support
Figure 10: Approximate components of overall latency: for arblt_rary client software configurations lets users
Blender on a 32-node cluster. farm their desktop compute tasks out to the cloud with-

out changing their model of where files are stored or how
new software is installed.

Computation. Rendering one of the 32 tiles takes The primary challenge in making a system like UCop
6.7 sec on average, with a maximum of 10.5 sec. Thigperformant is overcoming the relatively high latency and
variance arises because nodes rendering the blacknessigfv bandwidth of the link separating the user’s desktop
space surrounding the Enterprise become idle long befrom the compute cloud. We introduce the techniques
fore the most-loaded node puts finishing touches on thef task-end-to-start consistency and prethrowing to avoid
glow of the warp nacelles. Thus, we account for the timelatency penalties. We avoid bandwidth penalties using a
as 6.7 sec of computation plus 3.8 sec of inter-task varicombination of cluster-wide cache sharing, remote dif-
ance. Contrary to prior reports [46], we observed no sigferential compression, and the notion of job-end-to-start
nificant effect from intemachinevariance; the time re- consistency. We also use a variety of techniques to mini-
quired to complete a task correlated with the task’s work-mize the client’s CPU and 1/0 load when sending work to
load, not the machine that ran it. a cluster. Taken together, these techniques allow UCop

Results download. Our test with an unthrottled EC2 to efficiently execute wide parallel computations in the
network showed that UCop spends 1.8 sec organizingloud with low overhead, even though all the canonical
and returning the result tiles. state is on the client.

Real network costs. The costs above account for all Our evaluation demonstrates speedup with only 2-3
but 5 sec of the cable-modem time. We attribute theseodes even in a challenging coffee-shop network envi-
remaining 5 sec to the network delays due to increasegonment, and 15-20 second interactive performance with
RTT and reduced available bandwidth. 32-64 nodes. We show the necessity of each of UCop’s
optimizations, and that the optimized system is insensi-
tive to latency and bandwidth variations. We also iden-
tify further opportunities for improving performance.

The firmest contributor to latency is the compute time The Utility Coprocessor is a novel and practical sys-
itself. Of course, wider parallelization can help, but thetem for easily and inexpensively improving the perfor-
benefit is constrained by inter-task variance and offset bynance of CPU-bound desktop applications. It is gen-
an increase in network launch and return costs. eral to many applications, and UCop support is easy

5.5.2 Opportunities for improvement

13

for developers to integrate. Thanks to the availability
and low cost of utility computing clusters like Amazon
EC2, the power of UCopified applications is available to

individuals—today.
References
[1] Blender 3D Modeling Suite. http://blender.org/.
[2] Cinelerra Video Editor. http://cinelerra.org/.
[3] Enabling Grids for E-sciencE (EGEE). http://www.eueegrg/.
[4] FUSE: Filesystem in Userspace. http://fuse.sourcgforet/.
[5] gLite Lightweight Middleware for Grid Computing.
http://glite.web.cern.ch/glite/.
[6] Interactive European Grid Project. http://www.i2g.eu
[7] ADVANCED CLUSTER SYSTEMS. Math supercomputer-

in-a-box.
Products.html.

http://www.advancedclustersystems.com/ACS/

AMAZON WEB SERVICES
http://aws.amazon.com/ec2.

(8]

EC2 elastic compute cloud.

[9] ANDERSON T. E., QULLER, D. E., RTTERSON, D. A., AND
THE NOW TEAM. A case for NOW (networks of workstations).

IEEE Micro 15 1 (1995), 54-64.

[10] ANTHES, G. Sabre flies to open systenSomputerworld May
2004).
[11] BANKS, T. Web services resource framework (WSRF) primer

v1.2. Tech. Rep. wsrf-primer-1.2-primer-cd-02, 2006.

BARAK, A., GUDAY, S.,AND WHEELER, R. G. The MOSIX
Distributed Operating System - Load Balancing for UNIX
vol. 672 ofLecture Notes in Computer Scienc&pringer, 1993.

[12]

BAsu, S., TALWAR, V., AGARWALLA, B., AND KUMAR, R.
Interactive grid architecture for application service\pders. In
ICWS(2003), pp. 365-374.

Baupe, F., CaroMEL, D., HUET, F., MESTRE L., AND
VAYSSIERE, J. Interactive and descriptor-based deployment of
object-oriented grid applications. HPDC (2002), pp. 93—-102.

DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data
processing on large clusters. @8DI (2004), pp. 137-150.

(23]

[14]

[15]

[16] DECANDIA, G., HASTORUN, D., AMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P.,AND VOGELS, W. Dynamo: Amazon’s highly

available key-value store. BOSR2007), ACM, pp. 205-220.

FORuM, M. P. 1.
version 2.1.

FosTER |. Globus Toolkit version 4: Software for service-
oriented systems. IiFIP International Conference on Network
and Parallel Computing2006), pp. 2-13.

FOSTER |., AND KESSELMAN, C. The Grid - Blueprint for
a new computing infrastructureMorgan Kaufmann Publishers,
1999.

FOSTER I. et al. The Open Grid Services Architecture, version
1.5. Tech. Rep. GFD-1.080, 2006.

FoucauD, F., DHARY, R., AND TERRAL, J. Bordeauxl Chi-
nese Checkers. http://sourceforge.net/projects/blcc.

GRAY, C. G., AND CHERITON, D. R. Leases: An efficient
fault-tolerant mechanism for distributed file cache coesisy.
In SOSR(1989), pp. 202-210.

HOWARD, J. H., KazZAR, M. L., MENEES S. G., NCHOLS,

D. A., SATYANARAYANAN , M., SIDEBOTHAM, R. N., AND
WEST, M. J. Scale and performance in a distributed file system.
ACM Trans. Comput. Syst, 6 (1988), 51-81.

HUBERT, B.
http://lartc.org/.

[17] MPI: a message-passing interface standard

[18]

[29]

[20]
[21]

[22]

(23]
[24]

Linux advanced routing & traffic control.

14

(25]

(26]

[27]

(28]

[29]

(30]
(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]
(42]
(43]

(44]

[45]
[46]

HUMPHREYS, G., HousTON, M., NG, R., FRANK, R., AH-
ERN, S., KIRCHNER, P. D.,AND KLOSOWSK], J. T. Chromium:
a stream-processing framework for interactive renderingws c
ters. INSIGGRAPH(2002), pp. 693—702.

KISTLER, J. J., AND SATYANARAYANAN , M. Discon-
nected operation in the Coda file system.ACM Trans-
actions On Computer Systems,1Q (Feb. 1992), 3-25.
http://www.cs.cmu.edu/afs/cs/project/coda/Web/ddsil8.pdf.

MANN, V., AND PARASHAR, M. DISCOVER: A computational
collaboratory for interactive grid applications. Grid Comput-
ing: Making the Global Infrastructure Realit{danuary 2003),
John Wiley and Sons, pp. 727-744.

MCcCLURE, S.,AND WHEELER, R. Mosix: How Linux clusters
solve real-world problems. IISENIX Annual Technical Confer-
ence, FREENIX Traci000), pp. 49-56.

MirLoJgicic, D. S., DoucLls, F., FAINDAVEINE, Y.,
WHEELER, R., AND ZHOU, S. Process migratiorACM Com-
puting Surveys 32 (September 2000), 241-299.

MUTHITACHAROEN, A., CHEN, B., AND MAZIERES D. A
low-bandwidth network file system. BROSR2001).

NUTTALL, M. Survey of systems providing process or object
migration. Operating Systems Review @®94), 64—80.

OUSTERHOUT J. K., CHERENSON A. R., DOUGLIS, F., NEL-
SON, M. N., AND WELCH, B. B. The Sprite network operating
system.Computer 212 (1988), 23-36.

PETERSEN D. Loki Blender
http://sourceforge.net/projects/loki-render/.

PLOCIENNIK, M., OWSIAK, M., FERNANDEZ, E., HEYMANN,

E., SENAR, M. A., KENNY, S., COGHLAN, B., STORK, S.,
HEINZLREITER, P., ROSMANITH, H., PLASENCIA, I. C., AND
VALLES, R. Int.eu.grid project approach on supporting interac-
tive applications in grid environment. Workshop on Distributed
Cooperative Laboratories: Instrumenting the GRID (INGRID
(April 2007).

PooL, M. distcc, a fast free distributed compiler. In
Linux.conf.au (2003). http://distcc.samba.org/doc/Ica2004/
distcc-Ica-2004.html.

SANDBERG, S., GOLDBERG, D., KLEIMAN, S., WALSH, D.,
AND LYON, B. Design and implementation of the Sun net-
work file system. INUSENIX Summer Conferen¢dune 1985),
pp. 119-130.

SMITH, J. M. A survey of process migration mechanisms.
SIGOPS Oper. Syst. Rev.,2(1988), 28-40.

STEFANO, A. D., PAPPALARDO, G., SANTORO, C.,AND TRA-
MONTANA, E. Supporting interactive application requirements
in a grid environment. IWorkshop on Distributed Cooperative
Laboratories: Instrumenting the GRID (INGRIDApril 2007).

SUNDERAM, V. S. PVM: A framework for parallel distributed
computing. InConcurrency: Practice and Experien&990),
vol. 2, pp. 315-339. http://www.csm.ornl.gov/pvm/.

THAIN, D., TANNENBAUM, T., AND LIVNY, M. Distributed
computing in practice: the Condor experiendgoncurrency -
Practice and Experience 12-4 (2005), 323—-356.

THOMAS, W. U.S.S. Enterprise Blender mesh, 2005.
http://stblender.iindigo3d.com/meshstsirtrek.html.

TRIDGELL, A. Efficient Algorithms for Sorting and Synchroniza-
tion. PhD thesis, 1999.

WANG, K. Microsoft Research. Personal communication.

WESTERLUND, A., AND DANIELSSON, J. Arla—a free AFS
client. InProceedings of the 1998 USENIX, Freenix tr§tR98),
USENIX.

XCALIBRE. Flexiscale. http://www.flexiscale.com.

ZAHARIA, M., KONWINSKI, A., JOSEPH A. D., KATZ, R. H.,
AND STOICA, |. Improving MapReduce performance in hetero-
geneous environments. @SDI (2008), pp. 29-42.

queue manager.

