
Gulfstream	

Salvatore	
 Guarnieri	

University	
 of	
 Washington	

Ben	
 Livshits	

Microso3	
 Research	

Staged	
 Sta4c	
 Analysis	
 for	
 Streaming	
 JavaScript	
 Applica4ons	

2	

Third	
 Party	
 Server	

Web	
 applica4on	

widget.js	

Web	
 page	

Safe	
 Code	
 Inclusion	
 In	
 JavaScript	

Run8me	
 Enforcement	

•  Conscript	
 [Oakland	
 10]	

•  BrowserShield	
 [OSDI	
 06]	

•  Caja	

Sta8c	
 Analysis	

•  Gatekeeper	
 [USENIX	
 Sec	
 09]	

•  Staged	
 Informa4on	
 flow	
 for	

JavaScript	
 [PLDI	
 09]	

3	

Whole	
 program	
 analysis	
 approaches	
 require	

the	
 en4re	
 program	

4	

5	

JavaScript	
 programs	
 are	
 streaming	

<HTML>!
 <HEAD>!
 <SCRIPT>!
 function foo(){...}!
 var f = foo;!
 </SCRIPT>!
 <SCRIPT>!
 function bar(){...}!
 if (...) f = bar;!
 </SCRIPT>!
 </HEAD>!
 <BODY onclick="f();"> ...</BODY>!
</HTML>!

Script	
 Crea8on	

6	

What	
 does	
 f	

refer	
 to?	

Incremental	
 Loading	
 in	
 Facebook	

7	

157	

29	

20	

13	

0	

50	

100	

150	

200	

250	

KB
	

Profile	

Inbox	

Friends	

Home	

71%	

✔	

Gulfstream	
 In	
 Ac8on	

8	

Offline	
 Online	

Gulfstream	
 In	
 Ac8on	

9	

Offline	
 Online	

✔	
 ✔	

Gulfstream	
 In	
 Ac8on	

10	

Offline	
 Online	

✔	

Outline	

•  Mo4va4on	

•  Implementa4on	

•  Evalua4on	

•  Conclusions	

11	

Queries	

•  We	
 want	
 to	
 determine	
 something	
 about	
 the	

program	

•  Example	

– What	
 does	
 f()	
 refer	
 to	

– Detect	
 alert	
 calls	

– Does	
 this	
 program	
 use	
 setTimeout	

12	

Points-­‐To	
 Analysis	

•  Provides	
 deep	
 program	
 understanding	

•  Can	
 be	
 used	
 to	
 construct	
 call	
 graphs	

•  Is	
 the	
 founda4on	
 of	
 further	
 analyses	

•  Answers	
 a	
 simple	
 ques4on:	
 What	
 heap	

loca4ons	
 does	
 	
 variable	
 x	
 point	
 to	

13	

Points-­‐To	
 Example	

14	

!"#"$%&'()*
+,-&%.+

/&"(0*
&.(&.+.1)")',1

2332332

4,&5"6'7.3*
&.(&.+.1)")',1 8.+,6#.*9-.&'.+

8.+,6#.*9-.&'.+

8.+-6)+

8.+-6)+

/:;<$=8>?@

A"13B%,3.3*
'5(6.5.1)")',1

/?=>C>>D>8

EFFB2"+.3*+,6#.&

Figure 3: GULFSTREAM architecture and a comparison with the Gatekeeper project.

that in turn update the Web site. If the updates to the
Web site’s JavaScript are small, it would make sense that
an staged analysis would perform better than a full pro-
gram analysis. We looked at range of update sizes to
identify when an staged analysis is faster than recom-
puting the full program analysis. Full program analysis
might be faster because there is book keeping and graph
transfer time in the staged analysis that is not present in
the full program analysis. Section 5 talks about advan-
tages of staged analysis in detail. In general, we find it
to be advantageous in most settings, especially on slower
mobile connections with slower mobile hardware.

Soundness. In this paper we do not explicitly focus on
the issue of analysis soundness. Soundness would be es-
pecially important for a tool designed to look for secu-
rity vulnerabilities, for instance, or applications of static
analysis to runtime optimizations. Generally, sound
static analysis of JavaScript only has been shown pos-
sible for subsets of the language. If the program under
analysis belongs to a particular language subset, such
as JavaScriptSAFE advocated by Guarnieri et al. [14], the
analysis results are sound. However, even if it does not,
analysis results can still be used for bug finding, without
necessarily guaranteeing that all the bugs will be found.
In the remainder of the paper, we ignore the issues of
soundness and subsetting, as we consider them to be or-
thogonal to staged analysis challenges.

Client analyses as queries. In addition to the pointer
analysis, we also show how GULFSTREAM can be used
to resolve two typical queries that take advantage of
points-to analysis results. The first query looks for calls
to alert, which might be an undesirable annoyance to
the user and, as such, need to be prevented in third-party
code. The second looks for calls to setInterval1 with
non-function parameters.

4 Techniques

The static analysis process in GULFSTREAM proceeds in
stages, as is typical for a declarative style of program

1Function setInterval is effectively a commonly overlooked
form of dynamic code loading similar to eval.

1. var A = new Object();

2. var B = new Object();

3. x = new Object();

4. x.foo = new Object();

5. y = new Object();

6. y.bar = x;

7. y.add = function(a, b) {}

8. y.add(A, B)

(a) Input JavaScript program.

!" !# !$!% !&

' () *
+,-.#

/00

+,-." +,-.%

12231
4

145# 145"

(b) Resulting graph.

Figure 4: Example of a program with a function call.

analysis. On a high level, the program is first represented
as a database of facts. Next, a solver is used to derive
new information about the program on the basis of initial
facts and inference rules.

In GULFSTREAM, the first analysis stage is normal-
izing the program representation. Based on this normal-
ized representation, we built two analyses. The first is the
declarative, bddbddb-based points-to analysis described
in Gatekeeper [14]. The second is a hand-coded imple-
mentation of points-to information using graphs as de-
scribed in the rest of this section.

The graph-based representation also produces graphs
that can efficiently compressed and transferred to the
browser from the server. To our surprise, we find that
at least for small programs, the graph-based representa-
tion performs at least as well as the bddbddb-based ap-
proach often advocated in the past; bddbddb-based anal-
ysis, however, performs faster on larger code bases, as
discussed in Section 5.4.

!"#"$%&'()*
+,-&%.+

/&"(0*
&.(&.+.1)")',1

2332332

4,&5"6'7.3*
&.(&.+.1)")',1 8.+,6#.*9-.&'.+

8.+,6#.*9-.&'.+

8.+-6)+

8.+-6)+

/:;<$=8>?@

A"13B%,3.3*
'5(6.5.1)")',1

/?=>C>>D>8

EFFB2"+.3*+,6#.&

Figure 3: GULFSTREAM architecture and a comparison with the Gatekeeper project.

that in turn update the Web site. If the updates to the
Web site’s JavaScript are small, it would make sense that
an staged analysis would perform better than a full pro-
gram analysis. We looked at range of update sizes to
identify when an staged analysis is faster than recom-
puting the full program analysis. Full program analysis
might be faster because there is book keeping and graph
transfer time in the staged analysis that is not present in
the full program analysis. Section 5 talks about advan-
tages of staged analysis in detail. In general, we find it
to be advantageous in most settings, especially on slower
mobile connections with slower mobile hardware.

Soundness. In this paper we do not explicitly focus on
the issue of analysis soundness. Soundness would be es-
pecially important for a tool designed to look for secu-
rity vulnerabilities, for instance, or applications of static
analysis to runtime optimizations. Generally, sound
static analysis of JavaScript only has been shown pos-
sible for subsets of the language. If the program under
analysis belongs to a particular language subset, such
as JavaScriptSAFE advocated by Guarnieri et al. [14], the
analysis results are sound. However, even if it does not,
analysis results can still be used for bug finding, without
necessarily guaranteeing that all the bugs will be found.
In the remainder of the paper, we ignore the issues of
soundness and subsetting, as we consider them to be or-
thogonal to staged analysis challenges.

Client analyses as queries. In addition to the pointer
analysis, we also show how GULFSTREAM can be used
to resolve two typical queries that take advantage of
points-to analysis results. The first query looks for calls
to alert, which might be an undesirable annoyance to
the user and, as such, need to be prevented in third-party
code. The second looks for calls to setInterval1 with
non-function parameters.

4 Techniques

The static analysis process in GULFSTREAM proceeds in
stages, as is typical for a declarative style of program

1Function setInterval is effectively a commonly overlooked
form of dynamic code loading similar to eval.

1. var A = new Object();

2. var B = new Object();

3. x = new Object();

4. x.foo = new Object();

5. y = new Object();

6. y.bar = x;

7. y.add = function(a, b) {}

8. y.add(A, B)

(a) Input JavaScript program.

!" !# !$!% !&

' () *
+,-.#

/00

+,-." +,-.%

12231
4

145# 145"

(b) Resulting graph.

Figure 4: Example of a program with a function call.

analysis. On a high level, the program is first represented
as a database of facts. Next, a solver is used to derive
new information about the program on the basis of initial
facts and inference rules.

In GULFSTREAM, the first analysis stage is normal-
izing the program representation. Based on this normal-
ized representation, we built two analyses. The first is the
declarative, bddbddb-based points-to analysis described
in Gatekeeper [14]. The second is a hand-coded imple-
mentation of points-to information using graphs as de-
scribed in the rest of this section.

The graph-based representation also produces graphs
that can efficiently compressed and transferred to the
browser from the server. To our surprise, we find that
at least for small programs, the graph-based representa-
tion performs at least as well as the bddbddb-based ap-
proach often advocated in the past; bddbddb-based anal-
ysis, however, performs faster on larger code bases, as
discussed in Section 5.4.

Implementa8on	
 Strategies	

Datalog	
 with	
 bddbddb	

+	
 Fast	
 for	
 large	
 programs	

+	
 Highly	
 tuned	

-­‐	
 Large	
 startup	
 cost	

-­‐	
 Difficult	
 to	
 implement	
 in	
 the	

browser	

•  Used	
 in	
 Gatekeeper	
 [USENIX	

Sec	
 09]	

Graph-­‐based	
 flow	
 analysis	

+	
 Very	
 small	
 startup	
 cost	

+	
 Customized	
 to	
 work	
 with	

Gulfstream	

-­‐	
 Does	
 not	
 scale	
 well	

15	

Implementa8on	

•  Normalize	
 JavaScript	

– Turn	
 program	
 into	
 a	
 series	
 of	
 simple	
 statements	

–  Introduce	
 temporaries	
 as	
 necessary	

•  Create	
 flow	
 graph	
 –	
 Use	
 normalized	
 program	

to	
 generate	
 flow	
 constraints	

•  Serialize	
 flow	
 graph	
 –	
 Encode	
 the	
 flow-­‐graph	

so	
 online	
 analysis	
 can	
 use	
 it	
 to	
 update	
 results	

16	

Implementa8on	
 Con8nued	

•  Perform	
 points-­‐to	
 analysis	

– Traverse	
 flow	
 graph	
 to	
 find	
 all	
 aliases	

– Follow	
 flow	
 through	
 method	
 boundaries	

– Generate	
 points-­‐to	
 map	
 for	
 queries	
 to	
 use	

•  Queries	
 –	
 Use	
 points-­‐to	
 data	
 and	
 flow	
 graph	
 to	

answer	
 queries	

17	

Evalua8on	

•  Ques4on	
 –	
 Is	
 Gulfstream	
 faster	
 than	
 non-­‐staged	

analysis	

•  Benchmarks	

–  Synthe4cally	
 generated	

–  Scraped	
 from	
 Google	
 code	

–  Scraped	
 from	
 Facebook	

•  Simulate	
 diverse	
 environments	

–  CPU	
 speed	
 and	
 network	
 proper4es	

–  Cell	
 phone,	
 laptop,	
 desktop,	
 etc.	

18	

0	

1	

2	

3	

4	

5	

6	

7	

8	

30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	

Se
co
nd

s	

Total	
 Page	
 Size	
 (KB)	

Gulfstream	
 Full	
 Analysis	
 bddbddb	

Laptop	
 Running	
 Time	
 Comparison	

19	

Aner	
 30KB	
 of	
 updates,	

Gulfstream	
 is	
 no	
 longer	

faster	

Simulated	
 Devices	

•  Low	
 power	
 mobile	

•  High	
 power	

20	

Simulated	
 Devices	

•  Low	
 power	
 mobile	

•  High	
 power	

21	

Lessons	
 Learned	

•  Slow	
 devices	
 benefit	
 from	
 Gulfstream	

•  A	
 slow	
 network	
 can	
 negate	
 the	
 benefits	
 of	
 the	

staged	
 analysis	

•  Large	
 page	
 updates	
 don’t	
 benefit	
 from	

Gulfstream	

22	

Facebook	
 Experiment	

•  Visit	
 4	
 pages	

– Home	

– Friends	

–  Inbox	

– Profile	

•  Each	
 page	
 loads	
 addi4onal	
 JavaScript	

23	

Gulfstream	
 Savings:	
 Slow	
 Devices	

24	

0	

50	

100	

150	

200	

250	

300	

350	

Se
co
nd

s	

profile	
 	

inbox	
 	

friends	
 	

home	
 	

Gulfstream	
 Savings:	
 Fast	
 Devices	

25	

0	

2	

4	

6	

8	

10	

12	

Se
co
nd

s	

profile	
 	

inbox	
 	

friends	
 	

home	
 	

10	
 seconds	

saved	

Conclusion	

•  Gulfstream,	
 staged	
 analysis	
 for	
 JavaScript	

•  Staged	
 analysis	

– Offline	
 on	
 the	
 server	

– Online	
 in	
 the	
 browser	

•  Wide	
 range	
 of	
 experiments	

–  For	
 small	
 updates,	
 Gulfstream	
 is	
 faster	

– Devices	
 with	
 slow	
 CPU	
 benefit	
 most	

26	

The	
 End	

•  Contact:	
 salvatore.guarnieri@gmail.com	

27	

