Gulfstream

Staged Static Analysis for Streaming JavaScript Applications

Salvatore Guarnieri
University of Washington

Ben Livshits Microsoft Research

Safe Code Inclusion In JavaScript

Runtime Enforcement

- Conscript [Oakland 10]
- Caja

Static Analysis

- Gatekeeper [USENIX Sec 09]
- BrowserShield [OSDI 06] Staged Information flow for JavaScript [PLDI 09]

Whole program analysis approaches require the entire program

Script Creation

```
<HTML>
  <HEAD>
    <SCRIPT>
      function foo(){...}
      var f = foo;
    </SCRIPT>
    <SCRIPT>
                                   What does f
      function bar(){...}
                                     refer to?
      if (...) f = bar;
    </SCRIPT>
   </HEAD>
  <BODY onclick="f();"> ...</pody>
</HTML>
```

Incremental Loading in Facebook

Gulfstream In Action

Offline

Online

Gulfstream In Action

Offline

Online

Gulfstream In Action

Offline Online

Outline

- Motivation
- Implementation
- Evaluation
- Conclusions

Queries

We want to determine something about the program

- Example
 - What does f() refer to
 - Detect alert calls
 - Does this program use setTimeout

Points-To Analysis

Provides deep program understanding

Can be used to construct call graphs

Is the foundation of further analyses

 Answers a simple question: What heap locations does variable x point to

Points-To Example

Implementation Strategies

Datalog with bddbddb

- + Fast for large programs
- + Highly tuned
- Large startup cost
- Difficult to implement in the browser
- Used in Gatekeeper [USENIX Sec 09]

Graph-based flow analysis

- + Very small startup cost
- + Customized to work with Gulfstream
- Does not scale well

Implementation

- Normalize JavaScript
 - Turn program into a series of simple statements
 - Introduce temporaries as necessary
- Create flow graph Use normalized program to generate flow constraints
- Serialize flow graph Encode the flow-graph so online analysis can use it to update results

Implementation Continued

- Perform points-to analysis
 - Traverse flow graph to find all aliases
 - Follow flow through method boundaries
 - Generate points-to map for queries to use

 Queries – Use points-to data and flow graph to answer queries

Evaluation

- Question Is Gulfstream faster than non-staged analysis
- Benchmarks
 - Synthetically generated
 - Scraped from Google code
 - Scraped from Facebook
- Simulate diverse environments
 - CPU speed and network properties
 - Cell phone, laptop, desktop, etc.

Laptop Running Time Comparison

Simulated Devices

Low power mobile

High power

	Configuration	CPU	Link	Latency	Bandwidth
ID	Name	coef. c	type	L in ms	B in kbps
1	G1	67.0	EDGE	500	2.5
2	Palm Pre	36.0	Slow 3G	500	3.75
3	iPhone 3G	36.0	Fast 3G	300	12.5
4	iPhone 3GS 3G	15.0	Slow 3G	500	3.75
5	iPhone 3GS WiFi	15.0	Fast WiFi	10	75.0
6	MacBook Pro 3G	1	Slow 3G	500	3.75
7	MacBook Pro WiFi	1	Slow WiFi	100	12.5
8	Netbook	2.0	Fast 3G	300	12.5
9	Desktop WiFi	0.8	Slow WiFi	100	12.5
10	Desktop T1	0.8	T1	5	1,250.0

Lessons Learned

• Slow devices benefit from Gulfstream

A slow network can negate the benefits of the staged analysis

 Large page updates don't benefit from Gulfstream

Facebook Experiment

- Visit 4 pages
 - Home
 - Friends
 - Inbox
 - Profile

Gulfstream Savings: Slow Devices

Gulfstream Savings: Fast Devices

Conclusion

- Gulfstream, staged analysis for JavaScript
- Staged analysis
 - Offline on the server
 - Online in the browser
- Wide range of experiments
 - For small updates, Gulfstream is faster
 - Devices with slow CPU benefit most

The End

• Contact: salvatore.guarnieri@gmail.com