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Abstract
Cloud-based Web applications powered by new tech-
nologies such as Asynchronous Javascript and XML
(Ajax) place a significant burden on network operators
and enterprises to effectively manage traffic. Despite in-
crease of their popularity, we have little understanding
of characteristics of these cloud applications. Part of the
problem is that there exists no systematic way to gener-
ate their workloads, observe their network behavior to-
day and keep track of the changing trends of these appli-
cations. This paper focuses on addressing these issues by
developing a tool, called AJAXTRACKER, that automat-
ically mimics a human interaction with a cloud applica-
tion and collects associated network traces. These traces
can further be post-processed to understand various char-
acteristics of these applications and those characteristics
can be fed into a classifier to identify new traffic for a par-
ticular application in a passive trace. The tool also can be
used by service providers to automatically generate rele-
vant workloads to monitor and test specific applications.

1 Introduction
The promise of cloud computing is fueling the migra-
tion of several traditional enterprise desktop applications
such as email and office applications (e.g., spreadsheets,
presentations, and word processors) to the cloud. The
key technology that is powering this transition of the
browser into a full-fledged cloud computing platform is
Asynchronous Javascript and XML (Ajax) [11]. Ajax al-
lows application developers to provide users with very
similar look-and-feel as their desktop counterparts, mak-
ing the transition to the cloud significantly easier.

The modern cloud applications based on Ajax behave
differently from the traditional Web applications that in-
volve users clicking on a particular URL to pull objects
from the Web server. Ajax-based cloud applications,
however, may involve each mouse movement leading
to a transaction between the client and the server. Fur-
ther, these transactions may potentially involve an ex-
change of one or many messagesasynchronously and
sometimes, evenautonomously without user involve-
ment (e.g., auto-save feature in email).

While there are a large number of studies that charac-
terize (e.g., [7]) and model (e.g., [6]) classical Web traf-
fic, we have very limited understanding of the network-
level behavior of these Ajax-based applications. A com-
prehensive study of these applications is critical due to
two reasons. First, enterprises are increasingly relying

on cloud applications with Ajax as a core technology. As
these services can potentially affect the employee pro-
ductivity, it becomes crucial for operators (both enter-
prise as well as ISP) to constantly monitor the perfor-
mance of these applications. Second, network operators
need to project how application popularity changes may
potentially affect network traffic growth, perform ‘what-
if’ analyses, monitor for new threats and security vulner-
abilities that may affect their network.

A standard approach (e.g., [21]) for characterizing
these applications is to collect a trace in the middle of the
network and observe the network characteristics of these
applications in the wild. Due to the reliance on passive
network traces, however, this approach has two main lim-
itations. The first limitation is that there is no easy way to
isolate the network-traffic produced by individual opera-
tions (such as Zoom-in operation in Maps application, or
drag-and-drop on Mail application), which may be im-
portant to understand which actions are most expensive
or how network traffic may change if relative usage of
different operations change in future. Second, there is no
easy way to understand how network conditions affect
the characteristics of these applications. This is since, at
the middle of the network, the router only observes ag-
gregate traffic comprising of clients from heterogeneous
network environments. For some uses, aggregate view
may actually be sufficient, but for certain management
tasks such as, say, conducting what-if analyses, this ag-
gregate view isnot sufficient.

To address these challenges, in this paper, we propose
an active measurement system for high-fidelity char-
acterization of modern cloud applications, particularly
those that are based on Ajax. Our approach comprises
of two key ideas: First, we observe that running an ap-
plication on an end-host with no other application can
allow capturingall the packets associated with that ap-
plication session with zero false positives or false neg-
atives. Second, by controlling the network conditions
and what operations we inject in isolation, we can get
a deeper understanding of these applications in addition
to predicting their impact on the network.

Our system called AJAXTRACKER, works by mod-
eling high-level interaction operations (e.g., drag-and-
drop) on a particular Ajax-based cloud application and
by injecting these operations through a browser to gener-
ate (and subsequently capture) relevant network activity
between the client and the server. In addition, it incorpo-
rates mechanisms to generate representative client appli-



cation sessions by specifying either an explicit or model-
driven sequence of atomic operations. The model that
governs the sequence of operations may, for instance,
control the distribution of time between two atomic oper-
ations. It also utilizes a traffic shaper to control network
latencies and bandwidth to study the effects of end-host
network conditions on the application performance. We
have designed and implemented a prototype of this tool
that is available for download1.

Thus, our paper makes the following contributions: 1)
Our first contribution in this paper is the design of AJAX-
TRACKER that provides a mechanism to automatically
interact with Ajax-powered cloud services. We discuss
the details of the tool in Section 3. 2) We present a char-
acterization study of popular Ajax-based applications un-
der different bandwidth conditions and different round-
trip times. Section 4.2 discusses these results in more
detail. 3) Our final contribution is a characterization of
network activity generated by popular applications on a
per-operation basis. To the best of our knowledge, our
study is the first to consider the network activity of indi-
vidual atomic operations in Ajax applications. We dis-
cuss these details in Section 4.3.

While the primary purpose of the tool is to charac-
terize Ajax-based cloud applications, we believe that
AJAXTRACKER will prove useful in many other scenar-
ios. For instance, it could provide interference-free ac-
cess to the ground-truth required to train classifiers in
several statistical traffic classification systems [18, 15,
20]. Its fine-grained analysis capabilities will allow net-
work operators to model, predict traffic characteristics
and growth, conduct ‘what-if’ analyses and so on.

2 Background and motivation
Today, many cloud application providers are increasingly
focusing on enriching the user interface to make these
services resemble desktop look-and-feel as much as pos-
sible. Perhaps, the most prominent ones among these
are Mail, Documents, and Maps2 applications, which are
now offered by companies such as Google, Microsoft
and Yahoo among others.

In the traditional Web, the navigation model of a Web
session is quite straightforward: A user first clicks on a
URL, then, after the page is rendered, he thinks for some
time and requests another object. This process continues
until the user is done. On the other hand, the navigation
model of modern Ajax web sessions is quite different:
A user can click on a URL, drag-and-drop on the screen,
zoom in or zoom out (if it is a maps application) using the
mouse scroll button among several other such features.
In addition, the Javascript engine on the client side can

1http://www.cs.purdue.edu/synlab/ajaxtracker
2While Maps application is not strictly an enterprise cloud applica-

tion, it exports a rich set of Ajax features making it an interesting Ajax
application to characterize.
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Figure 1: Structure of AJAXTRACKER.

request objects asynchronously and autonomously with-
out the user ever requesting one. For example, when us-
ing Ajax-based email services, the browser automatically
tries to save data when a user is composing email.

Given their importance in the years to come, as in-
creasingly more applications migrate to the cloud, it is
important to characterize these applications and under-
stand their impact on the network. Due to the fore-
mentioned shortcomings of passive approaches, we take
anactive measurement approach for characterizing these
applications in this paper. The basic idea of our approach
is to perform application measurement and characteriza-
tion at the end-host. By ensuring that there exists only
one application session at any given time, we can collect
packet traces that are unique for that particular session,
even if the session itself consists of connections to sev-
eral servers or multiple connections to the same server.
We, however, need a way to generate user application
sessions in anautomated fashion that can help repeatedly
and automatically generate these sessions under different
network conditions.

Unfortunately, there exist few tools that can interact
with applications in anautomated manner. Web crawlers
lack the sophistication required on the client-side to gen-
erate Ajax-behavior. Traditional crawlers have no built-
in mechanisms to interact with the interactive controls
(like drag-and-drop), which require mouse or keyboard
input, and are fairly common in these new applications.
In the next section, we describe the design of AJAX-
TRACKER to overcome these limitations.

3 Design ofAJAXTRACKER

The main components of AJAXTRACKER include an
event generator, a Web browser, a packet sniffer, and a
traffic shaper as shown in Figure 1. The event genera-
tor forms the bulk of the tool. It produces a sequence



of mouse and/or keyboard events that simulate a human
navigating a cloud-based Web site based on a configured
scenario file written in XML. These events are then input
to an off-the-shelf Web browser (e.g., Mozilla Firefox)
that then executes them in the order it receives individual
operations. Note that AJAXTRACKER itself is agnostic
to the choice of the Web browser and can work with any
browser. Given the goal is to collect representative traces
of a client session, AJAXTRACKER employs a packet
sniffer (e.g., tcpdump [2]) that captures the packets on
the client machine. These packets can then be examined
to obtain specific characteristics of the simulated client
session.

In addition to the basic components described above,
AJAXTRACKER also makes use of a traffic shaper that
can be configured to simulate specific bandwidth and de-
lay conditions under which the corresponding cloud ap-
plication sessions are simulated. This feature enables the
tool to obtain many client sessions, each possibly under
different network conditions to simulate the real-world
settings where each user is exposed to different set of
network conditions. Finally, the tool has the ability to
perform causality analysis between operations (obtained
from the browser’s event log) on a cloud Web site and the
corresponding network activity captured from the packet
sniffer’s trace.

AJAXTRACKER works by first configuring the traffic
shaper with delay and bandwidth parameters. Next, it
runstcpdump, then launches the Web browser with the
correspondingurl that is indicative of the cloud applica-
tion that we wish to simulate. The event generator is then
executed until all specified events have been processed.
We describe individual components in detail next.

3.1 Scenario file
A scenario file is intended to model a sequence of user
operations that need to be executed to emulate a user ses-
sion. For example, a user session could consist of enter-
ing a location, say New York, in the search tool bar in the
Maps application and clicking on the submit button. The
next action, once the page is rendered, could be to zoom
in at a particular location within the map page. After
a certain duration, the session could consist of dragging
the screen to move to a different location. The scenario
file is intended to allow specifying these sequence of op-
erations. In addition to static scenarios, the scenario file
will enable the tool to explore random navigation scenar-
ios that for example, execute events in a random order or
navigate to random locations within the browser. Ran-
dom scenarios help the tool users to explore a richer set
of navigational patterns that are too tedious to specify
using the static mechanisms one-by-one.

The scenario file is composed of mainly three
categories—events, objects and actions. There are
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static - PERIOD
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pareto αkαx−(α + 1) P A, P K

Table 1: Inter-operation time distribution models.

three broad categories of events: pre-processing
events (specified with the tagPRE EVENTS), main
events (MAIN EVENTS tag), and post-processing events
(POST EVENTS tag). Events in pre- and post-processing
category are sequentially executed exactly once—before
and after the main events are simulated. Main events
can be specified to be executed in either static or ran-
dom order using the values ‘static’ and ‘random’ within
theTYPE attribute inMAIN EVENTS tag.

Each event (within theEVENT tag) enumerates a list
of objects, with each object described by an identifier,
action and a pause period (PAUSE TYPE attribute) that
specifies the amount of time the event generator should
wait after executing the specified action on the object.
The time specification can be either a constant or could
be drawn from a distribution (such as Pareto or exponen-
tial). The pause period specification helps model human
think time in a sequence of operations. Table 1 shows the
five different distributions for pause between operations
that are currently supported by our tool. In theEVENT
element, ifLOG attribute is specified, AJAXTRACKER

records event logs into a file that can be later used for
correlating with packet logs for causality analysis.

Objects are specified within the broaderOBJECTS tag
and individually enclosed within theOBJECT tag. Ac-
tions are associated with individual objects. Each ob-
ject defines its position or area and possible actions. De-
pending on the type of the object, specific tags such as
TEXT or READ FILE are specified that are appropriate
for those objects. For example, to fill submission form
from a set of predefined texts, the input that needs to be
supplied is specified using theREAD FILE object to in-
dicate a file which contains a set of predefined texts. An
input text from the file is fetched on a line-by-line ba-
sis by the object. The value encapsulated byACTIONS
tag defines supported actions (a list of support actions is
depicted in Table 2) and the position where the action
needs to be performed. If position values (e.g., X, S X)
in ACTION tag are not defined, the values ofPOSITION
or AREA tags are used.

Example. A small snippet of a sample scenario file
for Google Maps is shown in Figure 2. Note that this ex-
ample is not meant to exhaustively capture all the capa-
bilities of the tool. The scenario forces AJAXTRACKER



Action Meaning

left click click with left mouse button
right click click with right mouse button

select pushing Ctrl+A
delete pushing Backspace
copy pushing Ctrl+C
cut pushing Ctrl+X

paste pushing Ctrl+V
drag move object holding mouse left button

wheelup scroll up an object
wheeldown scroll down an object

Table 2: Supported actions.

to work as follows: Events are executed in the order of
‘navigatemap’ and ‘closewindow’. If there exist events
in PRE EVENTS, these events are executed first. Then,
the tool statically executes ‘navigatemap’ event twice
(as specified in theEXEC COUNT attribute). If there
are more than one event listed, the tool will sequentially
execute each event twice. For each instance of ‘navi-
gatemap’ event, operations specified between lines 13
to 22 of the scenario file are executed. We only al-
low the tool to execute the operations serially because
we defined an event as a series of operations to accom-
plish a task. Thus, in this event, a query string retrieved
from list.site file in line 31 is put into ‘searchform’ ob-
ject, and the tool takes inter-operation time of 1 second.
Then, ‘searchbutton’ object is clicked and the tool lets
another 1 second elapsed. After that, the tool generates
‘drag mouse’ window event which is followed by inter-
operation time probabilistically selected by Pareto dis-
tribution. In addition, the tool records a log in the file
“drag map” specified as part of theOBJ REF descrip-
tion. For the tool to identify the coordinate of object or
actions to be taken, the tool searches objects which are
defined from lines 24 to 42 by using object ID whenever
it executes an object.

Note that the scenario file can describe events at both
semantic level or in the form of coordinates; our system
allows both types of input. The choice of one over the
other depends on the particular event that needs to be de-
scribed. Drag-and-drop actions on maps applications, for
instance, are better represented using coordinates, while
actions that involve submitting forms (e.g., save file) are
better represented at the semantic level.

A scenario is presented in a hierarchical fashion. One
can first list events to generate and flexibly compose
events with one or more objects and actions against the
objects. Multiple actions can be defined within an ob-
ject which can be reused in several events. While the
specification allows users to build various scenarios cov-

 1: <SCENARIO>
 2:  <NAME> Google Maps </NAME>
 3:
 4:  <PRE_EVENTS>
 5:  </PRE_EVENTS>
 6:  <MAIN_EVENTS TYPE="static" EXEC_COUNT="2">
 7:   <EVT_REF IDREF="navigate_map" />
 8:  </MAIN_EVENTS>
 9:  <POST_EVENTS>
10:   <EVT_REF IDREF="close_window" />
11:  </POST_EVENTS>
12:
13:  <EVENT ID="navigate_map">
14:   <OBJ_REF IDREF="search_form" ACTION="paste"
15:    PAUSE_TYPE="static" PERIOD="1" />
16:   <OBJ_REF IDREF="search_button" ACTION="click"
17:    PAUSE_TYPE="static" PERIOD="1" />
18:   <OBJ_REF IDREF="map_area" ACTION="drag"
19:    LOG="drag map"
20:    PAUSE_TYPE="pareto"
21:    PARETO_K="1" PARETO_A="1.5" />
22:  </EVENT>
23:
24:  <OBJECTS>
25:   <OBJECT ID="search_form">
26:    <POSITION X="359" Y="225" />
27:    <ACTIONS>
28:     <ACTION ID="paste">paste</ACTION>
29:     <ACTION ID="click">left_click</ACTION>
30:    </ACTIONS>
31:    <READ_FILE>/ajax/env/list.site</READ_FILE>
32:   </OBJECT>
33:
34:   <OBJECT ID="map_area">
35:    <AREA LEFT="500" TOP="333"
36:          RIGHT="1241" BOTTOM="941" />
37:    <ACTIONS>
38:     <ACTION ID="drag" S_X="600" S_Y="400"

40:    </ACTIONS>
41:   </OBJECT>
42:  </OBJECTS>
43: </SCENARIO>

39:      E_X="900" E_Y="900" COUNT="1">drag</ACTION>

Figure 2: Example scenario file for Google maps.

ering many user interactions, it is hard to cover all user
actions due to complexity of user actions and coordinate-
based specification of an object. Note that although the
specification appears complicated, we have found in our
experience that coding the scenario file does not take
too long. In our experience with 14 scenario files, the
longest was 454 lines that took us less than an hour to
specify. Once the scenario file is specified, the tool itself
performs completely automatically and can work repeat-
edly and continuously. Thus, the cost of specifying the
scenario file is amortized over the duration over which
the scenario is monitored. As part of our future work,
we are working on automating the generation of the sce-
nario file by recording and replaying user/client activities
passively using a browser plugin.

3.2 Event generator
Given a scenario file, the event generator first parses it
and builds data structures for elements listed in the sce-
nario file. Then, the event generator registers a callback
function called runscenario() for a timer. The callback
function plays a core role in generating mouse and key-
board events. Every time the function is called, it checks
if the whole events in the scenario file were executed. If
there is any event left, the function generates mouse or
keyboard events accordingly. As discussed before, the



event generator supports two basic navigation modes—
static and random. In the static navigation mode, AJAX-
TRACKER generates the sequence of events exactly in the
order specified in the scenario file. In the random mode,
it provides different levels of randomness. First, the
event generator can randomly select the order of events
in main event class by assigningTYPE attribute as ‘ran-
dom’ which implies uniform distribution. Second, in an
event, it can adjust inter-operation time with four differ-
ent probabilistic distributions ifPAUSE TYPE is defined
as one of values (except ‘static’) listed in Table 1. Other
distributions can optionally be added. Third, action can
be executed randomly. For instance, ifTYPE attribute in
ACTION element is set ‘random’, the tool ignores posi-
tion values (e.g.,X, S X), and executes the action by uni-
formly selecting position or direction (in case of drag)
within values ofAREA element and the number of click-
ing objects within the value ofCOUNT attribute.

In case of action name called ‘paste’, the tool can ran-
domly select one from text list which it manages and
pastes it in the input form of a Web site. Moreover, by
simply changing the number of main events and reorga-
nizing the execution procedure of an event, we can let
the event generator work completely differently. Thus,
through this way of providing randomness, the event
generator strives to generate random but guided naviga-
tion scenarios to simulate a larger set of client sessions.

We implemented the event generator as a command-
line program with 3500+ lines developed using C++,
GTK+, the X library and Xerces-C++ parser [4].

3.3 Traffic shaper
Often, it is important to study the characteristics of these
applications under different network conditions. Given
that the tool works on an isolated end-host, the range of
network conditions it can support is quite dependent on
the capacity of the bottleneck link at the end host. For
example, if the tool is being used by an application ser-
vice provider (ASP), typically, the ASP is going to use it
in a local area network (close to the Web server) where
the network conditions are not as constrained as clients
connected via DSL or Cable Modem or Dial-up or some
such ways to access the Web service. The traffic shaper,
in such cases, provides a way to study the application
performance by artificially constraining the bandwidth as
well as increasing the round-trip times of the network.

The traffic shaper mainly implements bandwidth throt-
tling and delay increases, and does not factor in packet
drop rates. Packet losses are not directly considered in
our tool at the moment since available bottleneck band-
width, to some extent, forces packets to be lost as soon
as the bottleneck capacity is reached. We can, however,
augment the tool with arbitrary loss fairly easily. We
used an open-source software router called Click [16] in
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Figure 3: Example event log snapshot generated.

our tool for implementing the traffic shaping function-
ality. We ran Click as a kernel module in our system.
Note that any software that provides the required traffic
shaping functionality would work equally well.

3.4 Packet capture
To characterize the network-level performance of an ap-
plication session, it is important to capture the packet-
level traces that correspond to the session. One can po-
tentially instrument the browser to obtain higher-level
characteristics, such as URLs accessed and so on. How-
ever, our goal is to characterize network activity; thus,
we employ off-the-shelf packet sniffer such astcpdump
to capture packet traces during the entire session. Since
AJAXTRACKER aims to characterize mainly cloud Web
applications, it filters out non-TCP non-Web traffic (i.e.,
packets that do have port 80 in either the source or des-
tination port fields). AJAXTRACKER considers all cap-
tured 5-tuple flows of<src, dst, src port, dst port, pro-
tocol> to form the entire network-activity corresponding
to a given session. We do not need to perform TCP flow-
reassembly as we are mainly interested in the packet-
level dynamics of these sessions.

Advertisement data, however, which are parts of a
Web site but are not Ajax-based cloud application re-
lated, can also be included in the trace file. If we do
not wish to analyze the non-Ajax content, depending on
the application, we apply a simple keyword filter which
is similar to ones used by Schneideret al. [21] to iso-
late Ajax-based flows alone. We find related flows whose
HTTP request message contains keywords of interest and
retrieve bidirectional flow data.

3.5 Causality analysis
Our tool generates traces as well as logs about which op-
erations were performed with their timing information
as shown in Figure 3. While information in the first two
columns is mainly used for causality correlation, other
five columns provide auxiliary information. The third
column denotes the number of mouse clicks. The fourth
and fifth columns denote the screen coordinates where an
event begins to occur and the last two columns represent
the screen coordinates where it ends. We do not at the
moment use this auxiliary information however, and fo-
cus mainly on the first two columns. Based on these two
pieces of information, i.e., timestamp and event name,



we can reconstruct the causality relationship between op-
erations in the Web browser and the corresponding net-
work activity by correlating the network activity using
the timestamp.

Using this causality, we can isolate the network ef-
fects of individual operations, such as finding what Web
servers are contacted for a given operation, the number of
connections that are open or the number of requests gen-
erated by each operation. Such causality analysis helps
when anomalies are found in different applications as
one can isolate the effects of individual operations that
are responsible for the anomalies. In addition, the causal-
ity analysis helps predict how the application traffic is
going to look like, when we change the popularity distri-
butions of different operations in a given sequence. For
example, if users use the zoom features much more than
drag-and-drops, we can study the underlying character-
istics of such situations.

Note that while this timing-based causality works well
for simple applications we considered in this paper such
as Gmail and maps, it may not work easily for all events
and applications. For instance, if we investigate ‘auto-
save’ event of Google Docs, we need to know when the
event is triggered while a user composes, which may not
be simple to know unless the browser is instrumented ap-
propriately. Modifying the browser, however, introduces
an additional degree of complexity that we tried to avoid
in our system design.

3.6 Limitations
As with perhaps any other tool, AJAXTRACKER also has
some limitations. First, since it works depending on the
layout of user interface, significant changes to the user
interface by the application provider may cause the tool
to not operate as intended. Though this limitation may
seem serious, observations made by the tool over a pe-
riod of weeks shows considerable consistency in the re-
sults of the static navigation mode, barring a few user in-
terface changes that were easy to modify in the scenario
file. Second, in our current setup, we specify the mouse
clicks in the form of coordinates, which assumes that we
have access to the screen resolution. If the setup needs to
run a separate platform, the scenario files need to be read-
justed. One way to address this issue is to specify them
relative to the screen size; we did not implement this fea-
ture yet and is part of our future work. Third, because
the operation of our tool depends on a specified scenario
file, the generated workloads cannot cover all possible
user space. Instead, we try to configure scenario files
with functions which are most likely to be used by users
in each explored application. Currently, while we pro-
gram these scenarios ourselves, we are also investigating
representative client session models and deploying them
into our tool. Note that these models are orthogonal to

our tool design itself. Third, given the nature of the traf-
fic shaper, we cannot emulate all types of network condi-
tions; we can either reduce the bandwidth or increase the
RTT in comparison with the actual network conditions at
the location where the tool is deployed.

4 Evaluation
In this section, we present our measurement results ob-
tained using the tool on real Ajax applications. We
categorize our results into three main parts. First, we
demonstrate that our tool produces representative traces
by comparing our results with a passive campus trace.
Second, we perform macroscopic characterization of full
application sessions generated using our tool. We also
show how Ajax application traffic characteristics change
with different network conditions. Third, we show the
characterization of individual operations such as ‘click’
and ‘drag-drop’ in two canonical Ajax applications—
Google Maps and Mail—with the help of the causality
analysis component of our tool.

4.1 Comparison with a real trace
The representativeness of our tool is completely depen-
dent on the expressiveness of our tool and the scenario
files specified. In order to demonstrate that the scenar-
ios we have specified in our tool are representative, we
show comparisons with a real passive trace. For the pur-
poses of this experiment, we have obtained a real trace
of Google Maps traffic from a campus switch of Purdue
university. There are approximately 300 machines con-
nected to the switch and users are mainly campus stu-
dents. The Google Maps trace we collected represents
24 hours worth of client activity over which we observed
about 182 unique clients totaling about 13,200 connec-
tions. While our campus trace is not representative of
all settings, our trace is representative of network infras-
tructure environment that corresponds to typical enter-
prise networks, and hence, the use of Google Maps in
this environment is arguably similar to that of any other
organization’s use of Google Maps.

Figure 4 shows the comparison results in terms of
inter-request time (IRT), response and request message
length (QML). IRT is an important metric because it can
show or measure how proactive the application is. If
IRTs are much smaller than RTT (if we measure RTT), it
implies that the application is more proactive and relies
on parallel connections for fast retrieval of traffic. For
IRT, we calculated intervals between request messages
sent to the same server through multiple flows, instead
of calculating intervals between every request messages
regardless of the destination. We believe that this is a
reasonable approach to calculate IRT because ignoring
the destination may lead to a much higher request fre-
quency for Ajax application’s traffic, but it is misleading
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Figure 4: Comparison between AJAXTRACKER’s trace and Campus trace of Google Maps.

as some of the traffic will be destined to multiple desti-
nations (typically within the same cluster).

First, we plot the comparison between AJAX-
TRACKER (the curve that says AJAXTRACKER without
bandwidth limit) and campus trace in terms of their IRT
distributions in Figure 4(a). When we compare the two,
we can observe clearly that they are not similar. This
is because, IRT distributions are easily affected by the
available network bandwidth. Since the clients in the
trace may potentially have a different throughput con-
straints from the machine we use AJAXTRACKER from,
we need some calibration to match the trace. We first
analyzed the average instantaneous throughput of Maps
with a bin of size 1 second for every host in the trace.
We excluded the case where there is no traffic in con-
sidering instantaneous throughput. The average instan-
taneous throughput was about 580Kbps. Specifically, in
cumulative distribution, 82% of instantaneous through-
put were less than 1Mbps, 16% were between 1-5Mbps,
and 2% were between 5-20Mbps.

Based on the above observation, we ran our tool with
different network bandwidth constraints to adjust avail-
able network bandwidth artificially. To simulate the
distribution of instantaneous throughput, we differenti-
ated the proportion of each trace generated by AJAX-
TRACKER under different network bandwidth conditions
based on the distribution we have observed in the campus
trace. Specifically, traces generated by our tool has fixed
data rate configured by Click: 500Kbps, 1Mbps, 5Mbps,
and 10 Mbps. On the other hand, campus trace has con-
tinuous distribution from around 500Kbps to 20Mbps.
We envision that there are only a few different quan-
tized access bandwidths for different clients within a net-
work. By empirically finding these numbers, one can run
the tool and mix different traces with different weights.
Thus, we empirically gave 10% weight to a trace by
500Kbps constraint, 72% weight to a trace by 1Mbps
constraint, 16% weight to a trace by 5 Mbps, and 2%
weight to a trace by 10Mbps constraint, and conducted
weighted IRT simulation.

We found that IRT distribution generated by AJAX-
TRACKER is quite close to the IRT distribution of the
campus trace as shown in Figure 4(a). There are still a
few minor discrepancies; at around 0.6-2 seconds, there
is 10% discrepancy between two curves. IRTs larger than
one second are typically because of human think time, as
has been described by Schneideret al. in [21]. Thus, we
believe this area of discrepancy that represents human
think time exists because of the discrepancies between
our scenario models that model the inter-operation dura-
tion and real user’s behavior. If needed, therefore, we can
carefully tune the scenarios to easily match the campus
trace. Such tuning may or may not be necessary depend-
ing on the particular use of the tool; the more important
aspect is that the tool allows such calibration.

The distribution of response messages (shown in Fig-
ure 4(b)) are quite similar between AJAXTRACKER and
the campus trace for the most part. The big differ-
ence ranging from about 300 to 1,000 bytes is related
to whether basic components (i.e., icons, thumbnail im-
ages, etc.) that constitute Maps application are already
cached or not. Because we ran AJAXTRACKER ensuring
that the browser has no cached data, the fraction of that
area in AJAXTRACKER’s distribution is larger than that
of campus.

While we have not conducted extensive experiments
to study the impact of cached data in this paper, we note
that storage size generally for cached data is limited and
stale data is typically removed from cache storage. Thus,
in general, the fact that Web browser caches data does not
mean that it cached data for a particular application of in-
terest. In addition, Ajax applications often consist of two
portions: Application source (e.g., javascript code) that
is static and needs to be downloaded only once when a
user accesses the application for the first time and, ap-
plication data that is typically more dynamic and diverse
than application source. Thus, caching typically impacts
only the application source download and not so much
the data portion of the session.

Finally, in Figure 4(c), we can observe that QML dis-
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Figure 5: CDF of number of requests per flow.k is the
scale parameter. The shape parameterα is fixed at 1.5.

tribution is significantly different from what is observed
using AJAXTRACKER and the campus trace. This dis-
crepancy is because QML can vary quite a bit because
of the variation of cookie length. We collected 10 days
of traces to find if there are changes in the length of re-
quest messages, and their QMLs showed diversity due
to different cookie length. When we joined together
those traces, we found that the distribution comes close
to the curve of campus in Figure 4(c). There are also
browser differences in campus trace can cause different
size of requests for the same objects. When we adjust
for these differences, the trends of the distribution by
AJAXTRACKER and campus will be similar. The big-
ger takeaway from these experiments is that the results
obtained using our tool can be made to be easily consis-
tent with those observed in real life. These experiments
also suggest an interesting side-application of our tool in
reverse engineering the traffic shaping policy at the mon-
itoring network. For the rest of the experiments, we do
not put any restriction on the bandwidth, since there is
nothing particularly fundamental about any given aggre-
gate bandwidth and can vary depending on the situation.

4.2 Characterization of full sessions
In this section, we characterize overall application ses-
sions. We first describe some flow-level characteristics
of Ajax applications. Next, we discuss our results by
simulating different network conditions at the end-host.
Number of requests per flow.Since persistent connec-
tions are supported by modern Web browsers, the num-
ber of requests per flow depends on the inter-operation
duration. If there is no network activity, the flows are
usually terminated. To understand this dependency, we
varied the inter-operation duration as a Pareto distribu-
tion, which has been used before to model human think
time for traditional Web traffic [6]. Given that we do not
yet have representative parameters for Ajax applications,
we chose to experiment with those reported in [6] for
regular Web traffic and some new ones. For both Google
Maps and Mail, we chose the Pareto scale parameterk to

be 1, 2 and 4 and fixed the shape parameterα as 1.5 (as
suggested in [6]).

Regardless of values ofk, we can observe clear differ-
ence between Maps and Mail in Figure 5. While Mail has
at most 31 requests per flow atk = 1, Maps generates
67 requests per flow atk = 4. In the head of distribu-
tion, while about 50% of all Mail’s flows have only one
request, only 10% of Maps’ flows have one request. In-
terestingly, the top 93% exhibit similar trends for Mail,
after which thek = 1 curve exhibits higher number of
requests per flow. This phenomenon is expected since,
smaller values ofk imply better re-use of connections,
which in turn leads to larger number of requests per flow.

In Maps, on the other hand, the number of requests
per flow exhibits big difference depending on values ofk.
The reason for the difference could be because of the lack
of a mechanism in Maps similar to asynchronous updates
in Mail. While Maps prefetches map tile images, the
connections are closed faster than Mail’s connections.

Our analysis on number of requests per flow uses flow-
level granularity while Schneideret al. report session-
level results in [21]. Despite this difference, our results
roughly match their observations, in that Maps generates
more requests than Mail.
Effects of different network conditions. To understand
how these applications behave under different network
conditions, we let AJAXTRACKER run on emulated net-
work environments using its traffic shaping functionality.
We conducted two experiments on Maps and Mail: The
first is a bandwidth test where the traffic shaper throttles
link capacity. The second is a delay test where it injects
additional delays in the link to artificially increase the
RTT. In our configuration, the set of bandwidths we have
chosen include{56Kbps, 128Kbps, 256Kbps, 512Kbps,
1Mbps, 5Mbps, 10Mbps, 50Mbps, 100Mbps}. For de-
lay, we chose values from 10ms to 320ms in multiples of
2 (i.e., 10ms, 20ms, 40ms, etc.).

While our framework allows adding delay to both out-
bound as well as inbound packets, we added the simula-
tion delay only to the inbound packets. This is because,
it is the RTT that typically dictates the connection char-
acteristics and hence it suffices to adding it in either of
the directions. The inter-operation times were statically
configured in the scenario files.

Figure 6 shows how IRT is affected according to the
change of bandwidth and delay, respectively. We used
the causality between operation and network activity
from log information and traces in order to remove large
IRTs which come from the the interval between the time
when last request message of previous operation was
seen and the time when the first request message of cur-
rent operation is seen because these large IRTs affected
by inter-operation time (which is decided by a user) re-
strain our understanding about applications’ behavior.
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Figure 6: Average IRT variation for different network parameters.

From Figure 6(a), we can observe that, as network
bandwidth increases, the average IRT of Maps decreases
fast, but the extent to which Mail’s IRT distribution de-
creases is small. The graph shows that Maps fetches con-
tents more aggressively than Mail does. On the contrary,
Figure 6(b) shows that IRTs of both applications are rel-
atively less affected by the increase of delay. The figure
indicates that IRT feature is more sensitive to bandwidth
rather than delay. Because Ajax applications can ac-
tively fetch data before the data are actually required by
users, network delay may have little sensitivity. On the
other hand, network bandwidth directly impacts the per-
formance of Ajax applications since it takes more time
to pre-fetch the content. We believe that our tool helps
answer whether a given Web site is more sensitive to ei-
ther bandwidth or latency by allowing different settings
for the Web site.

10 Mbps 1 Mbps 56 Kbps
NET1 100% 0% 0%
NET2 70% 20% 10%
NET3 20% 50% 30%
NET4 10% 20% 70%
NET5 0% 0% 100%

Table 3: Configuration for weighted IRT simulation.

Since these results indicate a direct dependency of IRT
on the network conditions, we consider how IRT distri-
butions change when different clients with different net-
work conditions are mixed together, as a router in the
middle of the network would probably observe. Thus,
we conduct a simple simulation by mixing together dif-
ferent proportion of clients with different network condi-
tions (particularly 10Mbps, 1Mbps and 56Kbps clients)
in Figure 6(a). The parameters for the simulation are
summarized in Table 3. Figure 6(c) shows these different
IRT distributions for these different combinations.

We believe our mechanism provides interesting pro-
jections into how the IRT distribution varies according to
the traffic mixes. For example, as we move from NET1
which consists of users with extremely high bandwidth

(100% users have 10 Mbps) to the NET5 (100% users
have 56Kbps), we see the progressive shift in the curves
to the right, indicating a stark increase in the IRT distri-
butions.

We also investigate how the number of requests per
flow is affected by changes of bandwidth and network
delay constraints. (Due to space constraints, we omit
showing the graphs.) We observed that as more band-
width becomes available, both Maps and Mail services
increase the number of requests per flow. As we in-
crease the delay, we found that Mail application showed
a slight dip in the number of requests (4 reqs/flow at
10ms down to about 2 reqs/flow at 160ms) while Maps
shows variations of 9-15 reqs/flow at 10-80ms but de-
creases 7 reqs/flow from 160ms because the number of
flows itself increases (about 200 flows to 80ms and about
340-400 flows from 160ms).

4.3 Characterizing individual operations
We begin our discussion with explaining methodology
for characterizing individual operations. In Table 4, we
show the candidate operations within Google Maps and
mail applications we selected for our analysis. These op-
erations are by no means exhaustive; we hand-selected
only basic operations that seem to represent the main ob-
jective of the application. We can easily instrument the
tool for characterizing other operations as well. For this
analysis, we collected about 250 MB of data representing
about 10,000 flows across the two candidate applications
for the operations included within Table 4. Each opera-
tion has been repeated several times for statistical signif-
icance, with exact counts for each operation outlined in
Table 4. The counts are different for different operations
because we wrote different scenario files, each of which
represent different sequences of operations and extracted
out the individual operations from the sessions.

We configured the scenario files for each application
with a 60 second interval between two adjacent opera-
tions (120 seconds for ‘idle state’ of Mail) to eliminate
any interference between them. We then matched the



App. Operation Meaning Count

Google Maps

drag map dragging a mouse on the map area 140
zoom in zooming in map area by moving wheel button on a mouse 69
zoom out zooming out map area by moving wheel button on a mouse 62

click search button clicking the search button for finding a location 102

Google Mail

delete mail clicking mail deletion button after selecting a mail 52
attach file inputting a file path, and then waiting to be uploaded 37
idle state letting Google Mail idle without operations for 120 seconds 56

click inbox clicking inbox and listing mails 125
read mail reading a mail by clicking mail 70
send mail clicking send button to send a mail 96

Table 4: Candidate set of operations selected within GoogleMaps and Mail applications for characterization. These
are some of the most commonly used operations within these applications.

mouse event timing recorded in the logs with the trace
files to extract out the relevant network activity. To deter-
mine the causal relationship, we collected all flows gen-
erated within 5 seconds of the mouse events and analyze
their network-level behavior. In the means of correlat-
ing operation and traffic, the time value is selected em-
pirically. While in different applications we may have
to use the time value different from one used in this pa-
per or require different approaches, we find that the ap-
proach works fine for the given two applications in our
setting. Thus, only flows that are a direct result of the
event are considered for the analysis; some asynchronous
flows reflective of the polling mechanisms, such as those
employed in Mail, are considered separately through an
‘idle state’. To ensure minimal interference with active
user activity, the ‘idle state’ is not mixed with any other
user action.

We had to make a few other minor adjustments. The
first involves the ‘file attach’ operation in Mail. File at-
tachments in Mail are handled by specifying a file direc-
tory path information in the form, which then attaches
and uploads the file automatically after a fixed 10 sec-
onds because there is no explicit upload button; thus, we
configured the tool to collect all network activity within
11 seconds (which ensures that any flows that occur as a
result of this activity are started within 11 seconds). The
other adjustment we required was for the ‘idle state’ of
Mail, which unlike Maps, continuously exchanges infor-
mation with the server even in the absence of any par-
ticular mouse event. To accommodate this, we chose 60
seconds as the window interval to include flows gener-
ated during ‘idle state’ to obtain a finite snapshot of the
polling mechanisms in use. Note that once we identify
the flows belonging to a specific operation, we analyzed
every packets until the flows are closed. The time thresh-
olds are only to identify which flows to keep track of.

To obtain flow-concurrency, we counted the number

of concurrent flows per distinct host (i.e., on a per-IP ad-
dress basis) and the number of distinct hosts contacted
within a window ofα seconds of each other. In our anal-
ysis, we setα to 0.1 seconds, which is an adjustable pa-
rameter in our analyzer. This ensures that flows that are
generated automatically as a result of a particular action
are obtained and not necessarily those that are related to
human actions.

We considered two types of network-level metrics:
flow- and message-oriented. Along flow-based metrics,
we mainly considered concurrency in terms of number
of simultaneous flows generated. For message-oriented
metrics, we selected number of request messages per
flow. We have analyzed a few more, such as flow inter-
arrival time, inter-request time, bytes transferred, request
and response message length, and so on, but in the inter-
est of space, we do not show them in this paper. We can
potentially also consider packet-level metrics, such as
packet size distribution and their timing, but we chose to
model mainly Ajax application’s characteristics; packet
size distributions are dependent on how the TCP layer
segments individual packets, and thus is less intrinsic to
the Ajax application itself.

Connection Distribution. We analyze connection distri-
bution along three dimensions—total number of connec-
tions, number of connections per server, and the num-
ber of servers contacted per operation. However, due
to space limitation, we only provide a graph about to-
tal number of connections in this paper, but briefly ex-
plain the other two results. From Figures 7(a) and 7(b),
we observe that Maps opens the most number of total
connections (up to 15) as well as the most number of
connections per server (up to 8). This phenomenon is
because Maps requires the fastest responsiveness as ev-
ery user activity leads to a large number of requests for
fairly large map image tiles. While the Mail application
also requires fast responsiveness, the responses are usu-
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Figure 7: Total connection distributions.

ally small, and thus fewer connections are sufficient to
fetch the required information.

Among operations within Maps, ‘click search button’
starts the most number of connections with up to 8 con-
nections per server and up to 5 different servers. This is
because clicking on the search button typically leads to
the whole refresh of a page thus involving most amount
of response data. Other operations on Maps involve more
connections (around 4–9) as well, but typically to a much
lesser number of servers (around 1 or 2). We believe
this might be because operations such as ‘drag and drop’
typically fetch a few tiles that are adjacent to the current
location on the displayed map, thus resulting in smaller
amount of data compared to the total refresh when the
search button is clicked.

For Mail, we observe that most connections are found
in the case of ‘read mail’ operation. To identify the rea-
son, we inspected the HTTP headers and observed that
along with the mail content, several advertisements were
fetched from different servers causing more number of
connections. The ‘idle state’ operation came next in
terms of the number of connections and servers involved.
This is because we use a window interval of 60 seconds,
which in turn results in a lot of client requests generated
to synchronize with the server for any further updates.

One concern is that the characteristics of Gmail ses-
sions may be dependent on the inbox content. Our ap-
proach cannot effectively model the application if there
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is a lot of variation based on different inboxes, unless ap-
propriate state is created in the form of different logins
and different numbers of emails at the server side. In our
future work, we will study how sensitive the character-
istics of these applications are to the size of the inbox
contents or the amount of content at the server side.
Number of request messages per flow.The middle
graphs of Figures 8(a) and 8(b) show the CDF of the
number of request messages per flow. In the case of
Maps, most operations tend to have multiple requests in a
flow. Specifically, zooming in and out results in changes
of the map scale, and, as a result, the client needs to fetch
whole new tile images repeatedly. On the other hand, in
the case of ‘drag map’ operation, the probability of re-
peated fetching is lower. The ‘click search button’ op-
eration also requires to fetch several tile images, but it
achieves its goal through multiple connections to servers
(shown later in Figure 7(a)). Unlike Maps, most opera-
tions in Mail have less than 9 requests in a flow.

5 Related Work
Given the recent emergence of Cloud-based applications
into the mainstream Web, there has been limited research
work in characterization of these applications. A recent
paper by Schneideret al. [21] made one of the first at-
tempts to characterize these application protocols by ex-
amining the contents of HTTP headers over ISP traces.
In this work, they study the distributions of several fea-



tures such as bytes transferred, inter-request times, etc.,
associated with popular cloud-based application traffic.
Our work is significantly different from (and in many re-
spects complimentary to) theirs, as we focus on generat-
ing user interactions with a Web service in a controlled
fashion to generate and obtain our traces.

Web traffic has been extensively studied in the past.
While some studies focus on the user-level behavior
in terms of the number of request and response mes-
sages and application-specific properties such as refer-
ence counts and page complexity (e.g., [5, 9]), network-
level characteristics were examined in others such as
[12, 6, 7]. Several traffic generators based on statistical
models have also contributed to understanding the im-
pact of Web traffic (see [3] for a list of these) on the net-
work. These models and tools, however, do not factor
the exact cloud application traffic characteristics.

There also exist a lot of tools developed for the classi-
cal Web. Web automation tools such as Chickenfoot [8],
CARENA [19], and SWAT [1] enable one to navigate
a Web site automatically and repeatedly. However, these
tools are mainly tailored for static navigation of Websites
using automatic filling of forms and lack the functional-
ity to interact with cloud applications.

Traditionally, characterizing and modeling network-
level behavior of Web applications is largely trace-
driven. For example, prior measurement efforts [21, 7,
10, 14] used Gigabytes to Terabytes of traces collected
from core routers. On the other hand, we use end-host
based active profiling to study the network-level behavior
of individual operations within application.

The idea of end-host based active profiling is not new
by itself. There have been several contexts where the
idea has been applied. For example, Cunhaet al. char-
acterized Web traffic by collecting measurements from a
modified Web browser [13]. In [17], Krishnamurthyet
al. use Firefox add-on features to demonstrate how to
collect statistics about page downloads. Our tool, shares
some similarity, but is more tuned towards cloud applica-
tions and is designed to be browser agnostic as opposed
to the other approaches.

6 Conclusion
As the popularity of cloud Web services increases, it
becomes critical to study and understand their network-
level behavior. A lot of tools designed for classical Web
characterization are difficult to adapt to cloud applica-
tions due to the rich interface used by them. While
trace-based approaches are standard for characterization,
they do not allow characterizing individual operations
within an application or provide any understanding on
how these applications behave under different network
conditions. We described the design and implementa-
tion details of AJAXTRACKER that is designed to ad-

dress these limitations. It successfully captures realis-
tic network-level flow measurements by imitating the set
of mouse/keyboard events specified in the scenario file.
The traffic shaper functionality allows it to simulate arbi-
trary network conditions.As part of ongoing work, based
on our tool’s capability, we hope to classify and detect
cloud applications in the middle of the network. This is
particularly useful given that cloud applications cannot
easily be detected using port number approaches alone.
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