
Mining Invariants from Logs for
System Problem Detection

Jian-Guang LOU, Qiang FU

Software Analytics

Microsoft Research Asia

Background
Many systems produce log messages for
trouble-shooting.

– Logs usually record important system actions or
events for trouble shooting, and can reflect the
execution paths of a program

– Logs are used to detect problems:

• Work flow errors -- there are errors occur in the
execution paths;

• Low performance problems -- the execution time or
the loop number is much larger than normal cases.

Problems
• Manually inspecting logs is not feasible

– Large scale of system

– High complexity of system

• Traditional rule/keyword based log analysis tools:

– Heavily depend on the knowledge of operators

– Difficult to keep rules updated when components are
frequently revised or upgraded

Automatic Log Analysis
• Statistical model based methods:

 -- treat a log sequence as a feature vector
– [Xu et al. 2009]: Mine console logs for large-scale system

problem detection based on PCA analysis.

– [Mirgorodskiy et al. 2006]: Use string edit distance to
categorize logs and detect anomalies.

• Behavior model based methods:

 -- view a log sequence as a program work flow
– [Tan et al. 2008]: Learn and visualize control flow models

from Hadoop logs based on some pre-defined log tokens.

– [Cotroneo et al. 2007]: Derive work flow models for a Java
VM.

4

Our Basic Idea

5

Normal behaviors can be learned from logs, and then be
used to detect anomalies.

Sample Logs

Constant Strings in

EXE/DLL files
Log Parser

……

Linear Invariants

Incoming request no. %d

Start handle req. %d

… …

Request %d. commit

Request %d. complete

… …

18:00:01.123 Incoming request no. 1

18:00:01.125 Start handle req. 1

18:00:01.256 Request 1 enqueue

… …

18:00.01.375 Request 1. commit

18:00.01.576 Request 1. complete

… …

Count(open_file)=Count(close_file)

Count(task_add)=Count(sel_localdata)+

Count(sel_remotedata)

New Logs Structured Logs

ID LOG KEY

0 Incoming request#

1 Start task=

2 Write file size=

3 Write file complete

… …

… …

… …

xxx Return response …

… …

ID LOG KEY

0 Incoming request#

1 Start task=

2 Write file size=

3 Write file complete

… …

… …

… …

xxx Return response …

… …

ID LOG KEY

0 Incoming request#

1 Start task=

2 Write file size=

3 Write file complete

… …

… …

… …

xxx Return response …

… …

18:00:102 Incoming request#1...

18:00:124 Start task=request#1

18:00:430 Write file size=150K..

18:00:500 Write file complete

18:00:503 Read …

…

…

18:00:908 Return response …
...

Anomalies Detection

18:00:102 Incoming request#1...

18:00:124 Start task=request#1

18:00:430 Write file size=150K..

18:00:500 Write file complete

18:00:503 Read …

…

…

18:00:908 Return response …
...

18:00:01.123 Incoming request no. 1

18:00:01.125 Start handle req. 1

18:00:01.256 Request 1 enqueue

… …

18:00.01.375 Request 1. commit

18:00.01.576 Request 1. complete

… …

18:00:01.123 Incoming request no. 1

18:00:01.125 Start handle req. 1

18:00:01.256 Request 1 enqueue

… …

18:00.01.375 Request 1. commit

18:00.01.576 Request 1. complete

… …

18:00:01.123 Incoming request no. 1

18:00:01.125 Start handle req. 1

18:00:01.256 Request 1 enqueue

… …

18:00.01.375 Request 1. commit

18:00.01.576 Request 1. complete

… …

Linear Program Invariant

• A predicate always holds the same value
under different normal executions.

– For example:

A B

C

D

ECond.

X!=0

X==0

𝑐𝑜𝑢𝑛𝑡 𝐵 = 𝑐𝑜𝑢𝑛𝑡 𝐶 + 𝑐𝑜𝑢𝑛𝑡(𝐷)

𝑐𝑜𝑢𝑛𝑡 𝐴 = 𝑐𝑜𝑢𝑛𝑡 𝐵 = 𝑐𝑜𝑢𝑛𝑡(𝐸)

6

Invariant and Execution Path

Linear invariants reflect the properties of
execution path.

A B

C

D

ECond.

X!=0

X==0

7

𝑐𝑜𝑢𝑛𝑡 𝐴 = 𝑐𝑜𝑢𝑛𝑡 𝐵 = 𝑐𝑜𝑢𝑛𝑡(𝐸)

Sequential Execution

𝑐𝑜𝑢𝑛𝑡 𝐵 = 𝑐𝑜𝑢𝑛𝑡 𝐶 + 𝑐𝑜𝑢𝑛𝑡(𝐷)

Execution Branch

Invariant Violation and Anomaly(1)

• A violation of invariant often indicates a
system problem.

𝑐𝑜𝑢𝑛𝑡 𝐸𝑛𝑡𝑒𝑟 ≠ 𝑐𝑜𝑢𝑛𝑡(𝐿𝑒𝑎𝑣𝑒)

Enter Critical
Section

Program
Operations

Leave Critical
Section

Problem
on Critical Section Operations

Invariant Violation and Anomaly(2)

• Violated invariants often give diagnosis cues.

A B

C

D

ECond.

X!=0

X==0

𝑐𝑜𝑢𝑛𝑡 𝐵 > 𝑐𝑜𝑢𝑛𝑡 𝐶 + 𝑐𝑜𝑢𝑛𝑡(𝐷)

Execution Branch

𝑐𝑜𝑢𝑛𝑡 𝐴 > 𝑐𝑜𝑢𝑛𝑡(𝐵)

Sequential Execution

Formulation of Invariant

• A linear invariant can be presented as a linear
equation:

 where xi is the message count of message i.

• Given a set of logs, we have

 where

𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑚𝑥𝑚 = 0

𝜃 = a0, a1, a2, ⋯ , am T

𝑿𝜃 =

1 𝑥11 𝑥12 … 𝑥1𝑚

1 𝑥21 𝑥22 ⋱ 𝑥2𝑚

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

 𝜃 = 0

What Is A Meaningful Invariant?
-- Sparse Non-zero Coefficients

Any vector in the Null Space of X is an invariant;

Only sparse invariants are interested.

𝑐 𝐴 + 3𝑐 𝐵 − 2𝑐 𝐸 − 2𝑐 𝐶 − 2𝑐 𝐷 = 0

𝑐 𝐵 = 𝑐 𝐶 + 𝑐(𝐷)

𝑐 𝐴 = 𝑐 𝐵

are more meaningful than

A B

C

D

ECond.

X!=0

X==0

What Is A Meaningful Invariant?
-- Integer Coefficients

Elementary work flow structures can be interpreted by
integer invariants.

 A B

C
B C

A

B

A

… …

Sequential Branch Join

Integer invariants are easy to be understood by human
operators.

Problem Statement

• Due to noise pollution, mining invariants is to find
integer sparse solutions of regression.

– Challenges:

• A typical integer sparse regulation problem (NP-Hard)

• Traditional method is to relax 0-norm to 1-norm. However, it
cannot guarantee to find all invariants.

𝒂𝒓𝒈 𝒎𝒊𝒏 𝑿𝜃 𝟎 𝑿𝜃 =

1 𝑥11 𝑥12 … 𝑥1𝑚

1 𝑥21 𝑥22 ⋱ 𝑥2𝑚

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

 𝜃 = 0

Learning Invariant Overview

Four Steps:
Log parsing, Message Grouping and Counting,
Search Invariants, and Anomaly Detection

Invariant Parsing
Message

Count Vector

00001: [1,1,1,2,5,3]
00002: [1,3,3,3,6,3]
00003: [1,2,2,2,4,2]
00004: [1,1,1,2,5,3]
00006: [1,3,3,3,6,3]
00007: [1,2,2,2,4,2]
00007: [1,2,2,2,4,2]
00007: [1,2,2,2,4,2]

… …

......

]1,1,1,0,0,0,0[

],0,0,0,1,1,0,0[

],0,0,0,0,0,1,1[

3

2

1













00091: [1,1,0,0,0,0]
violates the invariant
θ2

00732: [1,3,3,3,4,2]
violates the invariant
θ3
… …

… …

Anomalies

Step 1: Log Parsing

• Goal: Free text logs → structured logs

• Basic idea:

– Log messages of the same message type usually have
a high similarity.

– Words of log message signatures are often embedded
as constant strings in DLL/EXE files (e.g. symbols).

New job added to schedule, jobId = 8821, priority = 64

Log Msg Signature

Parameters

Parsing: Our Solution

Limitation:

 Coverage depends on the sample logs.

Exe/DLL

Const Strings

Sample Logs

Parameters

CS in Log
Message

Log Signature
Status

Parameters

Classification & Splitting

Step 2: Message Grouping
-- Cogenetic Parameters

• Cogenetic parameters: parameters record the
value of the same system variable.

18:51:05.767 Image file of job 00001 loaded in 0 seconds, size 57717.

18:51:06.048 ...

18:51:06.329 Start a new thread 0x0CE4 to lunch job 00001.

18:51:06.501 ...

18:51:06.658 Job 00001 finished.

18:51:06.673 Image file of job 00002 loaded in 0 seconds, size 70795.

…

Job_ID

Detecting Cogenetic Parameter Groups

• Two parameters are cogenetic, if

– (1) they have the same value set(e.g. A=B),

– (2) one parameter’s value set is a sub-set of the other’s (e.g.
B⊇C),

– (3) there is a mid-parameter satisfying (2) with these two
parameters. (e.g. B⊇C && B⊇D)

• Each cogentic parameter group corresponds a system
variable.

A B

C

D

ECond.

X!=0

X==0

Results of Parameter Grouping

• Testing on Hadoop logs, we detect the
following meaningful program variables:

– Map/Reduce Task ID, Map/Reduce Task Attempt
ID, Block ID, and JVM ID, Storage ID, IP address
and port, and write data size of task shuffling.

• Testing on CloudDB, we found program
variables:

– request ID, CASNode ID, replica operation ID, …

18:51:05.767 Image file of job 00001 loaded ...
…
18:51:06.329 Start a new thread 0x0CE4 to
lunch job 00001.
…
…
…
…
…
…
18:51:06.758 Job 00001 finished.
…
…
…

Message Grouping

• Variables that identify objects are often recorded in
logs, which can be used to group messages.

– e.g. Request ID, task ID, ...

18:51:06.048 ...

18:51:06.433 Image file of job 00002 loaded in
0 seconds, size 70795.
18:51:06.501 ...
18:51:06.629 Start a new thread 0x0DE5 to
lunch job 00002.
18:51:06.701 ...

…
18:51:06.927 Job 00002 finished.
…

Message Count Vector
• Count number for each message type in a group.

18:51:05.767 Image file of job 00001 loaded ...
…
18:51:06.329 Start a new thread 0x0CE4 to
lunch job 00001.
…
…
…
…
…
…
18:51:06.758 Job 00001 finished.
…
…
…

18:51:06.048 ...

18:51:06.433 Image file of job 00002 loaded in
0 seconds, size 70795.
18:51:06.501 ...
18:51:06.629 Start a new thread 0x0DE5 to
lunch job 00002.
18:51:06.701 ...

…
18:51:06.927 Job 00002 finished.
…

… Image loaded Job lunch Job finished …

Log group 1 1 1 1 …

Log group 2 1 1 1 …

Step 3: Search Invariant

• A hypotheses and testing framework:

– Try any combination of non-zero coefficients to
construct invariant candidates,

– Then validate whether they fit the log data.

• Computational cost

How to reduce computational cost based on
properties of log analysis?

Reduce Computational Cost(1)

• Divide and conquer: (message grouping)
– Log messages often form some groups. There are strong correlations

in the same group, and no obvious inter-group correlation.

• Limit number of non-zero coefficients :
– In most systems, the dimension of row space of X is often very small

(e.g. r<=5), the number of non-zero coefficients is very small [Xu2009].

𝑜 𝑐𝑚1
𝑖

𝑚1

𝑖=1

+ 𝑜 𝑐𝑚2
𝑖

𝑚2

𝑖=1

+ ⋯

Reduce Computational Cost(2)

• Early termination:
– According to linear algebra, there is at most k independent

invariants, k is the dimension of X’s Null Space. We can
early terminate the search process once we obtain k
independent invariants.

• Skipping strategy:
– A linear combination of invariants is also a valid invariant.

We can skip the searching on the combinations of
obtained invariants.

Results of Computational Cost
Reduction

Message group of related object identifier Full search space

size

Our search space

size

Hadoop logs with MapTask ID 128 37

Hadoop logs with ReduceTask ID 8 6

Hadoop logs with MapTask Attempt ID 268435456 3310

Hadoop logs with ReduceTask Attempt ID 33554432 730

Hadoop logs with JVM ID 128 16

Our reduction strategy largely reduces the computational cost,
especially when the dimension is large.

Results of Discovered Invariants on
Hadoop Log

Message groups of related object identifiers Invariants

(≤3 coef.)

Invariants (≥4

coef.)

Hadoop logs with MapTask ID 3 0

Hadoop logs with ReduceTask ID 1 0

Hadoop logs with MapTask Attempt ID 21 3

Hadoop logs with ReduceTask Attempt ID 17 0

Hadoop logs with Data Block ID 9 0

Hadoop logs with JVM ID 5 0

Hadoop Logs with Storage ID 3 0

Logs with IP/port 4 0

Logs with task write packet size 1 0

Note: we also find invariants for CloudDB logs, but no ground truth for evaluation.

Based on manually checking, we find all discovered invariants are reasonable, no
false positive.

Results of Anomaly Detection on
Hadoop Log

Anomaly Description PCA based Method Our Method

Tasks fail due to heart beat lost. 397 779

A killed task continued to be in RUNNING state in both the JobTracker and that

TaskTracker for ever

730 1133

Ask more than one node to replicate the same block to a single node simultaneously 26 26

Write a block already existed 25 25

Task JVM hang 204 204

Swap a JVM, but mark it as unknown. 87 87

Swap a JVM, and delete it immediately 211 211

Try to delete a data block when it is opened by a client 3 6

JVM inconsistent state 73 416

The pollForTaskWithClosedJob call from a Jobtracker to a task tracker times out

when a job completes.

3 3

We compare our results with PCA based algorithm [Xu09]. Our method not only detects anomalies,
but also gives the cue why they are abnormal.

False Positive Description PCA Method Our Method

Killed speculative tasks 585 1777

Job cleanup and job setup tasks 323 778

The data block replica of Java execution file 56 0

Unknown Reason 499 0

A Detail Case
-- Anomaly of “a task JVM hang”

𝑐 𝐽𝑉𝑀 𝑠𝑝𝑎𝑤𝑛𝑒𝑑 ≠ 𝑐 𝐽𝑉𝑀 𝑒𝑥𝑖𝑡𝑒𝑑 𝑐 𝐽𝑉𝑀 𝑠𝑝𝑎𝑤𝑛𝑒𝑑 = 𝑐 𝑔𝑖𝑣𝑒𝑛 𝑡𝑎𝑠𝑘

a JVM spawned
but did not exit

A task was given
after a JVM spawned

JVM was hung. JVM got hung
after it was assigned a task

Results on Production Programs

• CloudDB logs:

– 266 invariants are learned from CASNode level
logs;

– 9 anomalies are detected in one test set and
confirmed by a tester.

• SharePoint logs:

– Detected anomalies are checked by developers;

– About 78% anomalies are real errors.

Summary

• We proposed an automatic anomaly detection
technique by mining linear invariants from
logs including:
– A method to automatically identify a set of

parameters that correspond to the same program
variable;

– A method to discover sparse integer linear
invariants from logs;

– A method to detect anomalies based on invariants
and gives intuitive cues for diagnosis.

THANKS!

