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Abstract

Desktop computers are often compromised by the inter-
action of untrusted data and buggy software. To address
this problem, we present Apiary, a system that trans-
parently contains application faults while retaining the
usage metaphors of a traditional desktop environment.
Apiary accomplishes this with three key mechanisms. It
isolates applications in containers that integrate in a con-
trolled manner at the display and file system. It intro-
duces ephemeral containers that are quickly instantiated
for single application execution, to prevent any exploit
that occurs from persisting and to protect user privacy.
It introduces the Virtual Layered File System to make
instantiating containers fast and space efficient, and to
make managing many containers no more complex than
a single traditional desktop. We have implemented Api-
ary on Linux without any application or operating sys-
tem kernel changes. Our results with real applications,
known exploits, and a 24-person user study show that
Apiary has modest performance overhead, is effective in
limiting the damage from real vulnerabilities, and is as
easy for users to use as a traditional desktop.

1 Introduction

In today’s world of highly connected computers, desk-
top security and privacy are major issues. Desktop users
interact constantly with untrusted data they receive from
the Internet by visiting new web sites, downloading files,
and emailing strangers. All these activities use informa-
tion whose safety the user cannot verify. Data can be
constructed maliciously to exploit bugs and vulnerabili-
ties in applications, enabling attackers to take control of
users’ desktops. For example, a major flaw was recently
discovered in Adobe Acrobat products that enables an
attacker to take control of a desktop when a maliciously
constructed PDF file is viewed [2].

The prevalence of untrusted data and buggy software
makes application fault containment increasingly impor-
tant. Many approaches have been proposed to isolate ap-
plications from one another using mechanisms such as
process containers [24, 28, 32] or virtual machines [39].

Faults are confined so that if an application is compro-
mised, only that application and the data it can access
are available to an attacker.

However, existing approaches suffer from an unre-
solved tension between ease of use and degree of fault
containment. Some approaches [20, 26] provide an in-
tegrated desktop feel but only provide partial isolation.
They maintain traditional usage metaphors, but do not
prevent vulnerable applications from compromising the
system itself. Other approaches [34,39] have less of an
integrated desktop feel but fully isolate applications into
distinct environments, typically by using separate virtual
machines. These approaches effectively limit the impact
of compromised applications, but are harder to use be-
cause users are forced to learn new ways to use these
systems as well as having to manage many environments.

To address these problems, we introduce Apiary, a
system that provides strong isolation for robust appli-
cation fault containment while retaining the integrated
look, feel, and ease of use of a traditional desktop en-
vironment. Apiary accomplishes this using three key
mechanisms that combine well-understood technologies
like thin clients, operating system containers, and union-
ing file systems in novel ways.

First, it decomposes a desktop’s applications into iso-
lated containers. Each container is an independent appli-
ance that provides all services an application needs to ex-
ecute. This prevents an application exploit from compro-
mising other applications. To retain traditional desktop
semantics, Apiary integrates these containers in a con-
trolled manner at the display and file system.

Second, it introduces the concept of ephemeral con-
tainers. Ephemeral containers are execution environ-
ments with no access to the user’s data that are quickly
instantiated from a clean state for only a single appli-
cation execution. When the application terminates, the
container is archived and never used again. Ephemeral
containers have three benefits. First, they prevent com-
promises, because exploits, even if triggered, cannot per-
sist. Second, they protect users from compromised ap-
plications. Even when an application has been compro-
mised, a new ephemeral container running that applica-
tion in parallel will remain uncompromised. Third, they



help protect user privacy when using the Internet. Api-
ary uses ephemeral containers as a fundamental building
block of the integrated desktop experience.

Third, Apiary introduces the Virtual Layered File Sys-
tem (VLES). Apiary introduces the VLFS to efficiently
store and instantiate containers. Each software package
or application is stored as a read-only software file sys-
tem layer. Layers are analogous to software packages
in current systems. A VLFS dynamically composes to-
gether a set of shared software layers into a single file
system view. In Apiary, each container has its own inde-
pendent VLFS. Since each container’s VLFS will share
the layers that are common to them, Apiary’s storage re-
quirements are the same as a traditional desktop. Simi-
larly, since no data has to be copied to create anew VLEFS
instance, Apiary is able to quickly instantiate ephemeral
containers for a single application execution.

We have implemented an Apiary Linux prototype
without any application or operating system kernel
changes. We evaluated its effectiveness by conducting
various experiments with real applications, vulnerabili-
ties, and users in a user study. Our results show that Api-
ary can instantiate application containers in under a sec-
ond, can upgrade a set of containers in under a seconds,
has scalable storage requirements, and has only modest
file system performance overhead. Our results show that
Apiary is effective at containing real exploits. It quickly
returns the desktop to a clean uncompromised state in
cases where the exploit forces a complete reinstall when
it occurs on a traditional desktop system. Finally, our re-
sults from a blind user study show that users find Apiary
as easy to use as a traditional desktop.

2 Apiary Usage Model

Figure 1 shows the Apiary desktop. It looks and feels like
a regular desktop. Users launch programs from a menu
or from within other programs, switch among launched
programs using a taskbar, interact with running programs
using the keyboard and mouse, and have a single display
with an integrated window system and clipboard func-
tionality that contains all running programs.

Although Apiary works similarly to a regular desktop,
it provides fault containment by isolating applications
into separate containers. Containers provide all the re-
sources an application needs to run. This includes an iso-
lated execution context, independent display driver and
complete file system. As each container’s file system is
independent, each container has its own isolated home
directory to store files created by the user in that con-
tainer and to isolate them from every other container. For
example, if one had a web browsing container and a word
processing container, each application would store their
contents in the container’s version of the user’s home
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Figure 1: Apiary desktop session: (1) application menu, (2)
window list, (3) composited display

directory. This enables containers to enforce isolation
without the creation of any isolation rules.

Apiary isolates individual applications, not individual
programs. An application in Apiary is a software appli-
ance made up of multiple programs that are used together
in a single environment to accomplish a specific task. For
instance, a user’s web browser and word processor are
separate applications and isolated from one another. This
software appliance model means that users can install
separate isolated applications that contain many or all of
the same programs, but used for different purposes. For
example, a banking application contains a web browser
for accessing a bank’s website, while a web surfing appli-
cation also contains a web browser, but for general web
browsing. Both appliances make use of the same web
browser program, but are listed as different applications
in the application menu. This model can be extended
to the point where individual containers are provided for
many individual sites, such as Amazon and eBay. While
this model differs from a regular desktop, it is similar to
what users experience on mobile devices, such as iPhone
and Android phones, where they install website specific
applications to gain more efficient access to those sites.

Apiary provides two types of containers: ephemeral
and persistent. Ephemeral containers are created fresh
for each application execution. Persistent containers
maintain their state across application executions. Api-
ary lets users select whether an application should launch
within an ephemeral or a persistent container.

Ephemeral containers provide a powerful mechanism
for protecting desktop security and user privacy. Users
will typically run multiple ephemeral containers, even
for the same application, at the same time. They provide
important benefits for a wide range of uses.

Ephemeral containers prevent compromises because
exploits cannot persist. For example, a malicious PDF



document that exploits an ephemeral PDF viewer will
have no persistent effect on the system because the ex-
ploit is isolated in the container and will disappear when
the container finishes executing.

Ephemeral containers protect user privacy when using
the Internet. For example, many websites require cook-
ies to function, but also store advertisers’ cookies that
can compromise a user’s privacy. Apiary makes it easy
to use multiple ephemeral web browser containers simul-
taneously, each with separate cookies, and prevents the
cookies from persisting.

Ephemeral containers protect users from compromises
that may have already occurred on their desktop. If a
web browser has been compromised, parallel and future
uses of the web browser will allow an attacker to steal
sensitive information when the user accesses important
websites. Ephemeral containers are guaranteed to launch
from a clean slate. For example, by using a separate
ephemeral web browser container for accessing a bank-
ing site, Apiary ensures that an already exploited web
browser installation cannot compromise user privacy.

Ephemeral containers allow applications to launch
other applications safely. For example, users often re-
ceive viewable email attachments such as PDF docu-
ments. To avoid compromising an email container, Api-
ary creates an ephemeral PDF viewer container for the
PDF. Even if it is malicious, it cannot effect the user’s
desktop, as it only affects the ephemeral container.

Persistent containers are necessary for applications
that maintain state across executions to prevent a single
application compromise from affecting the entire system.
Unlike ephemeral containers, users use only one persis-
tent container per application. Some applications only
use one type of container, while others use both. For ex-
ample, email is typically used in a persistent container
to maintain email state across executions. On the other
hand, a web browser may be used both in a persistent
container, to access a user’s trusted websites, and in an
ephemeral container, to view untrusted websites.

Apiary’s containers work together to provide a secu-
rity system that differs fundamentally from common se-
curity schemes that attempt to lock down applications
within a restricted-privilege environment. In Apiary,
each application container is an independent entity that
is entirely isolated from every other application container
on the Apiary desktop. One does not have to apply any
security analysis or complex isolation rules to determine
which files a specific application should be able to ac-
cess. Also, in most other schemes, an application, once
exploited, will continue to be exploited, even if the ex-
ploited application is restricted from accessing other ap-
plications’ data. Apiary’s ephemeral containers, how-
ever, prevent an exploit from persisting between appli-
cation execution instances.

Apiary provides every desktop with two ways to share
files between containers. First, containers can use stan-
dard file system share concepts to create directories that
can be seen by multiple containers. This has the benefit
of any data stored in the shared directory being automat-
ically available to the other containers that have access to
the share. Second, Apiary supplies every desktop with a
special persistent container with a file explorer. The ex-
plorer has access to all of the user’s containers and can
manage all of the user’s files, including copying them be-
tween containers. This is useful if the user wants to pre-
serve a file from an ephemeral container, or move a file
from one persistent container to another, as, for instance,
when emailing a set of files. The file explorer container
cannot be used in an ephemeral manner. Its functionality
cannot be invoked by any other application on the system
and no other application is allowed to execute within it.
This prevents an exploited container from using the file
explorer container to corrupt others.

It should be noted that both of these mechanism break,
to some degree, the container’s isolation. File system
shares can be used by an exploited container as a vector
to infect other containers by tricking a user into moving
a malicious file between containers. However, this is a
tension that will always exist in security systems that are
meant to be usable to a diverse crowd of users. To mit-
igate this, Apiary lets documents stored in a persistent
manner be viewable, by default, in an ephemeral con-
tainer. For example, PDF files can be stored persistently,
but always viewed in ephemeral containers. However,
to persistently edit a PDF file, it would still have to be
opened within a persistent container such that a mali-
cious PDF would have a persistent effect.

3 Architecture

To support its container model, Apiary must have four
capabilities. First, Apiary must be able to run applica-
tions within secure containers to provide application iso-
lation. Second, Apiary must provide a single integrated
display view of contains all running applications. Third,
Apiary must be able to instantiate individual containers
quickly and efficiently. Third, for a cohesive desktop
experience, Apiary must allow applications in different
containers to interact in a controlled manner.

Apiary does this by using a virtualization architecture
that consists of three main components: an operating sys-
tem container that provides a virtual execution environ-
ment, a virtual display system that provides a virtual dis-
play server and viewer, and the VLFS. Apiary also pro-
vides a desktop daemon that runs on the host to instan-
tiate containers, manage their lifetimes, and ensure that
they are correctly integrated.



3.1 Process Container

Apiary’s containers enable applications to be isolated
from one another. Individual applications can run in par-
allel within separate containers, and have no conception
that there are other applications running. This enforces
fault containment, as an exploited process only has ac-
cess to files available within its own container.

Apiary’s containers leverage commodity operating
system features such as Solaris’s zones [32], FreeBSD’s
jails [21], and Linux’s containers [24] to create isolated
and independent execution environments. Each con-
tainer has its own private kernel namespace, file system,
and display server, providing total isolation at the pro-
cess, file system, and display levels. Programs within
separate containers can only interact using normal net-
work communication mechanisms. Each container is
provided with an application control daemon that enables
the virtual display viewer to query the container for its
contents and interact with it.

3.2 Display

Apiary’s virtual display system is crucial to complete
process isolation and a cohesive desktop experience. In
Apiary, each container has a virtual display similar to
existing systems [4,11,37,38]. This virtual display oper-
ates by decoupling the display state from the underlying
hardware and enabling the display output to be redirected
anywhere. This is necessary, since if containers were
to share a single display directly, malicious applications
could leverage built-in mechanisms in commodity dis-
play architectures [13,27] to insert events and messages
into other applications that share the display, enabling
the malicious application to remotely control the others,
effectively exploiting them as well. Many existing com-
modity security systems do not isolate applications at the
display level, providing an easy avenue for attackers to
further exploit applications on the desktop.

However, if each container’s display is independent,
they will not provide a single cohesive display. Apiary
provides a cohesive display in two ways. First, it inte-
grates the displays views into a single view. While a
regular remote framework provides all the information
needed to display each desktop, it assumes that there is
no other display in use, and therefore expects to be able
to draw the entire display area. In Apiary, where multi-
ple containers are in use, this assumption does not hold.
Therefore, to enable multiple displays to be integrated
into a single view, the Apiary viewer does Porter-Duff
compositing [30] of the displays using the over com-
positing operation.

Second, Apiary’s display viewer provides the normal
desktop metaphors that users expect, including a single

menu structure for launching applications and an inte-
grated task switcher that allows the user to switch among
all running applications. Apiary leverages the applica-
tion control daemon running within each container to
enumerate all the available applications within the con-
tainer, much like a regular menu application does in a
traditional desktop. Instead of providing the menu di-
rectly in the screen, however, it transmits the collected
data back to the viewer, which then integrates this in-
formation into its own menu, associating the menu entry
with the container it came from. When a user selects a
program from the viewer’s menu, the viewer instructs the
correct daemon to execute it within its container.
Similarly, to manage running applications effectively,
Apiary provides a single taskbar with which the user can
switch between all applications running within the in-
tegrated desktop. Apiary leverages the system’s ability
to enumerate windows and switch applications [15] to
have the daemon enumerate all the windows provided by
its container and transmit this information to the viewer.
The viewer then integrates this information into a sin-
gle taskbar with buttons corresponding to application
windows. When the user switches windows using the
taskbar, the viewer communicates with the daemon and
instructs it to bring the correct window to the foreground.

3.3 Virtual Layered File System

Apiary requires containers to have file systems that are
efficient in storage space, instantiating time, and man-
agement costs. A container’s file system has to be effi-
cient in storage space to enable regular desktops to sup-
port the large number of application containers that will
be used within the Apiary desktop. A container’s file
system has to be efficient to instantiate to provide fast
interactive response time, especially for launching eph-
emeral containers. Finally, a container’s file system has
to be efficient to manage as Apiary increases the number
of file systems that are in use.

There are many existing file system approaches that
could be used for Apiary, but they all suffer drawbacks.
Package management [12, 35] is useful for managing a
file system, however, it does not help provision a file sys-
tem quickly nor is it space efficient if each independent
container’s file system has its own copy of the package.
This also impacts management as each file system would
have to be updated independently. File systems that sup-
port a branching semantic [7,29] can be used to instan-
tiate an ephemeral container quickly from a template file
system. However, each template is independent and is
therefore inefficient in space and in its ability to be main-
tained. Finally, even a single template file system with all
the programs desired for every container does not help
since it reduces isolation between programs.



Apiary introduces the concept of a VLFS to meet these
requirements. The VLFS extends the package manage-
ment concept to enable file systems to be created by com-
posing shareable layers together into a single file system
namespace view. VLFSs are built by combining a set
of shared software layers together in a read-only manner
with a per container private read-write layer. The VLFS’s
software layers are analogous to packages in a traditional
system, and just like a file system will have hundreds of
packages installed into it, a VLFS can be composed of
hundreds of layers as well. Similar to a regular file sys-
tem, where package management tools are used to update
and install packages and their dependencies into the sys-
tem, in Apiary, the same type of tools are used to create
VLFSs and keep them up to date.

Unlike multiple regular file systems that will each
need their own copy of a file, multiple VLFSs provid-
ing multiple applications are as efficient as a single reg-
ular file system as all files that are common among them
will be stored once in the set of shared layers. There-
fore, Apiary is able to store the file systems needed by
its containers in an efficient manner. This also enables
Apiary to manage its containers easily, as all one has to
do is replace the single layer that contains the files that
have to be updated to update each VLFS that uses it. The
VLES also enables Apiary to efficiently instantiate each
container’s file system. As no data has to be copied into
place and each of the software layers is shared in a read-
only manner, instantiating a file system is nearly instan-
taneous, and occurs transparently to the end user.

Layers are the primary building block of a VLFS. Lay-
ers are composed of three elements: the metadata files
that describe the layers, configuration scripts that en-
able the layer to be added and removed from the VLFS
correctly, and the primary component, its file system
namespace. The layer’s file system namespace is a self-
contained set of files providing a specific set of function-
ality. The files are the individual items in the layer that
are composed into a larger VLFS. There are no restric-
tions on the type of files. They can be regular files, sym-
bolic links, hard links or device nodes. The layer’s file
system namespace can be viewed as a directory stored
on the shared file system that contains the same file and
directory structure that would be created if the individual
items were installed into a traditional file system. On a
traditional UNIX system, the directory structure would
typically contain directories such as /usr, /bin and
/etc. Symbolic links work as expected between layers
since they work on path names, but a limitation is that
hard links cannot exist between layers.

To support the VLFS, Apiary must solve a number of
file system related problems. First, to enable quick in-
stantiation, the VLFS must be able to quickly compose
numerous distinct file system layers into a single static

view. Second, as users expect to be able to interact with
the VLFS as a normal file system, such as by creating
and modifying files, Apiary has to enable an instantiated
VLES to be fully modifiable, while enforcing the read-
only semantics for the software layers. Finally, Apiary
has to support the ability to dynamically add and remove
layers without taking the file system off-line. This is
equivalent to installing, removing or upgrading a soft-
ware package while a monolithic file system is online.

To solve these problems, Apiary leverages and ex-
pands upon unioning file systems [41]. Unioning file
systems enable Apiary to solve the first problem as they
allow the system to join multiple distinct file system
namespaces into a single namespace view. These direc-
tories are unioned by layering directories on top of one
another, joining all the files provide by all the layers into
a single file system namespace view. As unioning re-
quires no copying, it occurs quickly, enabling Apiary to
be efficient in terms of provisioning.

To solve the second problem, union semantics are ex-
tended [41] to enable the assignment of properties to the
layers, defining some layers to be read only, while others
are read-write. This results in a model that borrows from
copy-on-write (COW) file systems, where modifying a
file on a lower read-only layer will cause it to be copied to
the topmost writable layer in a COW fashion. The VLFS
leverages this property to enable multiple VLFSs to share
a set of software layers in a read-only manner, while pro-
viding each instantiated VLFS with its own read-write
private layer to store file system modifications. This en-
ables Apiary to be efficient in terms of storage.

This layering model also provides semantics that di-
rectory entries located at higher layers in the stack ob-
scure the equivalent directory entries at lower levels. To
provide a consistent semantic, if a file is deleted, a white-
out mark is also created to ensure that files existing on a
lower layer are not revealed. The white-out mechanism
enables obscuring files on the read only lower layers, by
just creating the white-out file on the topmost read-write
private layer.

However, this creates a problem where a file deleted
from a read-only share will never be able to be recreated.
In a traditional file system, a deleted system file can be
recovered by simply reinstalling the package that pro-
vided that file. In a VLFS, if the white-outs are stored in
the private layer, they will persist, and even if the layer
containing the file is replaced, the file will remain ob-
scure. The VLFS solves this problem by associating in-
dividual private writable layers with each of its shared
read-only layer for the storage of white-outs. When a
file in a shared read-only layer is deleted, instead of writ-
ing a white-out file to the top-most layer, the white-out
is stored in the shared layer’s associated white-out layer.
When a layer is replaced, its associated white-out layer



will be replaced with an empty white-out layer as well,
enabling any obscured file to be revealed.

Similarly, the VLFS has to handle the case where a
file belonging to a shared read-only layer was modified
and therefore copied up to the VLFS’s private read-write
layer. Apiary provides a revert command that enables the
owner of a file that has been modified to revert the file’s
state to its original pristine state. While a regular VLFS
unlink operation would remove the modified file from the
private layer and create a white-out mark to obscure the
original file, revert only removes the copy in the private
layer thereby revealing the original copy below it.

Finally, VLFSs also have to support being managed
while they are in use. In a traditional file system, an ad-
ministrator can remove a package containing files in use,
as deleting a file does not remove its contents from the
file system until the file is no longer in use. However, if a
layer is removed from a union, the data is effectively re-
moved as well as unions only operate on system names-
paces and not on the data the underlying files contain. If
an administrator wanted to modify the VLFS by remov-
ing a layer due to deletion or upgrade maintenance, one
would be forced to perform the maintenance off-line due
to not being able to remove layers that are in use.

The VLFS solves this problem by emulating what the
unlink operation does on a single file and applies it to
layer removal. unlink operates in two steps. It first
deletes the file name from the file system’s namespace,
while only freeing up the space taken up by the file’s
contents when it’s no longer in use. Traditional pack-
age management systems rely on these semantics to en-
able them to upgrade packages, even if files are in use,
by unlinking and then recreating them instead of directly
overwriting the files. Apiary applies these semantics to
layers. When a layer is removed from a VLFS, Apiary
marks the layer as unlinked, removing it from the file
system namespace. While this layer is no longer part of
the file system namespace and therefore cannot be used
by any operations that work on the file system names-
pace, such as open, it remains part of the VLFS enabling
data operations, such as read and write, to continue
to work correctly for files that were previously opened.

3.4 Inter-Application Integration

Apiary’s isolated containers provide effective fault con-
tainment. However, isolated containers can hinder ef-
fective use of the desktop. For instance, if one’s web
browser is totally isolated from the PDF viewer, how
does one view a downloaded PDF file? If the PDF viewer
is included within the web browser container the isola-
tion that should exist between web browser and an appli-
cation viewing untrusted content is violated. Users could
copy the file from the web browser container to the PDF

viewer container, but this is not the integrated feel that
users expect.

Apiary solves this problem by enabling applications
in one container to execute specific applications in eph-
emeral containers. Every container is preconfigured with
a list of programs that it enables other applications to
use in an ephemeral manner. Apiary refers to these as
global programs. For instance, a Firefox container can
specify /usr/bin/firefox and a Xpdf container
can specify /usr/bin/xpdf as global programs. Pro-
gram paths marked global exist in all containers. Api-
ary accomplishes this by populating a single global layer,
shared by all the container’s VLFSs, with a wrapper pro-
gram for each global program. This wrapper program is
used to instantiate a new ephemeral container and exe-
cute the requested process within it.

When executed, the wrapper program determines how
it was executed and what options were passed to it. It
connects via network mechanisms to the Apiary desk-
top daemon on the same host and passes this information
to it. The daemon maintains a mapping of global pro-
grams to containers and determines which container is
being requested to be instantiated ephemerally. This en-
sures that only the specified global programs’ containers
will be instantiated, preventing an attacker from instan-
tiating and executing arbitrary programs. Apiary is then
able to instantiate the correct fresh ephemeral container,
along with all the required desktop services, including a
display server. The display server is then automatically
connected to the viewer. Finally, the daemon executes
the program as it was initially called in the new container.

To ensure that ephemeral containers are discarded
when no longer needed, Apiary’s monitors the process
executed within the container. When it terminates, Api-
ary terminates the container. Similarly, as the Apiary
viewer knows which containers are providing windows
to it, if it determines that no more windows are being pro-
vided by the container, it instructs the desktop daemon to
terminate the container. This ensures that an exploited
process does not continue running in the background.

However, running a new program in a fresh container
is not enough to integrate applications correctly. When
Firefox downloads a PDF and executes a PDF viewer, it
must enable the viewer to view the file. This will fail
because Firefox and an ephemeral PDF viewer contain-
ers do not share the same file system. To support this
functionality, Apiary enables small private read-only file
shares between a parent container and the child ephem-
eral container it instantiates. Because well-behaved ap-
plications such as Firefox, Thunderbird, and OpenOffice
only use the system’s temporary directory to pass files
among them, Apiary restricts this automatic file sharing
ability to files located under /tmp. To ensure that there
are no namespace conflicts between containers, Apiary



provides containers with their own private directory un-
der /tmp to use for temporary files, and they are precon-
figured to use that directory as their temp directory.

But providing a fully shared temporary file directory
allows an exploited container to access private files that
are placed there when passed to an ephemeral container.
For instance, if a user downloads a malicious PDF and a
bank statement in close succession, they will both exist in
the temp directory at the same time. To prevent this, Api-
ary provides a special file system that enhances the read-
only shares with an access control list (ACL) that deter-
mines which containers can access which files. By de-
fault, these directories will appear empty to the rest of the
containers, as they do not have access to any of the files.
This prevents an exploited container from accessing data
not explicitly given to it. A file will only be visible within
the directories if the Apiary desktop daemon instructs
the file system to reveal that file by adding the container
to the file’s ACL. This occurs when a global program’s
wrapper is executed and the daemon determines that a
file was passed to it as an option. The daemon then adds
the ephemeral container to the file’s ACL. Because the
directory structure is consistent between containers, sim-
ply executing the requested program in the new ephem-
eral container with the same options is sufficient.

Situations can conceivably exist where the ephemeral
application would need to access multiple files located
within the temporary directory, such as a web page with
images where the entire web page is saved. In these
cases, Apiary’s sharing will fail to permit access to all
the files. However, in practice, these situations are un-
common and Apiary’s scheme works well. In situations
where this can occur, one can construct the application
containers to contain all the programs needed. For in-
stance, in a web development container, one will provide
a web browser to preview one’s content, instead of in-
stantiating an external ephemeral container, thereby pre-
venting this problem from occurring.

Apiary enables the file explorer container discussed in
Section 2 in a similar way. The file explorer container
is similar to Apiary’s other containers. It is fully iso-
lated from the rest of the containers and users interact
with it via the regular display viewer. However, the other
containers are not fully isolated from it. This is neces-
sary as users can store their files in multiple locations
in each container, most notably, the /tmp directory and
the user’s home directory. Apiary’s file explorer provides
read-write access to each of these areas as file shares
within the file explorer’s file system namespace. Apiary
prevents any executable located within these file systems
from executing with the file explorer container to prevent
malicious programs from exploiting it. Users are able
to use normal copy/paste semantics to move files among
containers. While this is more involved than a normal

desktop with only a single namespace, users generally
do not have to move files among containers.

The primary situation in which users might desire to
move files between containers is when interacting with
an ephemeral container, as a user might want to pre-
serve a file from there. For instance, users can run web
browsers in an ephemeral containers to maintain privacy,
but also download files they want to keep. While the
ephemeral container is active, a user can just use the file
explorer to view all active containers. To avoid situa-
tions where users only remembers after terminating the
ephemeral container that it had files they wanted to keep,
Apiary archives all newly created or modified non hid-
den files that are accessible to the file explorer when the
ephemeral container terminates. This allows a user to
gain access to them even after the ephemeral container
has terminated. Apiary automatically trims this archive
if no visible data was stored within the ephemeral con-
tainer, such as in the case of an ephemeral web browser
that the user only used to view a web page, not down-
load and save a specific file. Similarly, Apiary provides
users the ability to trim the archive to remove ephemeral
container archives that do not contain data they need.

Apiary also turns the desktop viewer into an inter-
process communication (IPC) proxy that can enable IPC
state to be shared among containers in a controlled and
secure manner. This means that only explicitly allowed
IPC state is shared. For example, one of the most
basic ways desktop applications share state is via the
shared desktop clipboard. To handle the clipboard, each
container’s desktop daemon monitors the clipboard for
changes. Whenever a change is made to one container’s
clipboard, this update is sent to the Apiary viewer, and
then propagated to all the other containers. The Apiary
viewer also keeps a copy of the clipboard so that any
future container can be initialized with the current clip-
board state. This enables users to continue to use the clip-
board with applications in different containers in a man-
ner that is consistent with a traditional desktop. However,
by allowing the clipboard of an ephemeral container to
read from the shared clipboard, Apiary does allow infor-
mation to be leaked. This can be handled by only allow-
ing ephemeral containers to write to the shared clipboard,
if the decreased functionality is acceptable.

4 Experimental Results

We have implemented a remote desktop Apiary proto-
type system for the Linux desktop without any appli-
cation, library, window system, or base kernel changes.
The prototype consists of a virtual display driver for the
X window system based on MetaVNC [37], a set of user
space utilities that enable container integration, and a
loadable kernel module for the Linux 2.6 kernel that pro-



vides the ability to create and mount VLFSs. Apiary uses
Zap [28], a predecessor to Linux containers [24], to pro-
vide the isolated containers.

For our prototype, we created 211 software layers by
converting the set of Debian packages needed by the set
of applications we tested into individual layers. Each De-
bian package can be viewed as providing three sets of
items, a set of files that is extracted into a file system, a
set of metadata that determines the dependency relation-
ship among packages, and configuration scripts that are
executed on installation and removal to ensure the pack-
ages are installed correctly. For the VLFS, we first ex-
tract the set of files into a directory that will be used for
composition. Second, we extract the metadata that de-
termines dependency relationships between the packages
and associate it with the newly created layers. Finally,
we associate the configuration scripts from each pack-
age with the layers which are used each time the layer is
added or removed from an application appliance. Using
these layers, we are able to create per application appli-
ances for each individual application by simply selecting
which high-level applications we want within the appli-
ance, such as Firefox, with the dependencies between the
layers ensuring that all the required layers are included.
Using these appliances, we are able to instantly provision
persistent and ephemeral containers for the applications
as needed.

Using this prototype, we used real exploits to evalu-
ate Apiary’s ability to contain and recover from attacks.
We conducted a user study to evaluate Apiary’s ease of
use compared to a traditional desktop. We also measured
Apiary’s performance with real applications in terms of
runtime overhead, startup time, and storage efficiency.
For our experiments, we compared a plain Linux desktop
with common applications installed to an Apiary desk-
top that has applications available for use in persistent
and ephemeral containers. The applications we used are
the Pidgin 2.4.3 instant messenger, the Firefox 3.0.3 web
browser, the Thunderbird 2.0 email client, the OpenOf-
fice.org 2.4.1 office suite, the Xpdf 3.02 PDF viewing
program, and the MPlayer 1.0-rc2 media player. Exper-
iments were conducted on an IBM HS20 eServer blade
with dual 3.06 GHz Intel Xeon CPUs and 2.5 GB RAM.
All desktop application execution occurred on the blade.
Participants in the usage study connected to the blade via
a Thinkpad T42p laptop, with a 1.8 GHz Intel Pentium-
M CPU and 2GB of RAM running the MetaVNC viewer.

4.1 Handling Exploits

We tested two scenarios that illustrate Apiary’s ability to
contain and recover from a desktop application exploit,
as well as explore how different decisions can affect the
security of Apiary’s containers.

4.1.1 Malicious Files

Many desktop applications have been shown to be vul-
nerable to maliciously created files that enable an at-
tacker to subvert the target machine and destroy data.
These attacks are prevalent on the Internet, as many
users will download and view whatever files are sent
to them. To demonstrate this problem, we use 2 mali-
cious files [14, 16] that exploit Xpdf 1.01 and mpgl23
pre0.59s. We installed the older Xpdf version in the
Xpdf container and mpgl23 in the MPlayer container.
The mpg123 exploit works by creating an invalid mp3
file that triggers a buffer overflow in old versions of
mpgl23, enabling the exploit to execute any program
it desires. The Xpdf exploit works by exploiting a be-
havior of how Xpdf launched helper programs, that is,
by passing a string to sh —c. By including a back-tick
(Y V) string within a URL embedded in the PDF file,
an attacker could get Xpdf to launch unknown programs.
Both of these exploits are able to leverage sudo to per-
form privileged tasks, in this case, deleting the entire file
system. Sudo is exploited because popular distributions
require users to use it to gain root privileges and have it
configured to run any applications. Additionally, sudo,
by default, caches the user’s credentials to avoid needing
to authenticate the user each time it needs to perform a
privileged action. However, this enables local exploits to
leverage the cached credentials to gain root privileges.

In the plain Linux system, recovering from these ex-
ploits required us to spend a significant amount of time
reinstalling the system from scratch, as we had to install
many individual programs, not just the one that was ex-
ploited. Additionally, we had to recover a user’s 23 GB
home directory from backup. Reinstalling a basic Debian
installation took 19 minutes. However, reinstalling the
complete desktop environment took a total of 50 minutes.
Recovering the user’s home directory, which included
multimedia files, research papers, email, and many other
assorted files, took an additional 88 minutes when trans-
ferred over a Gbps LAN.

Apiary protected the desktop and enabled easier re-
covery. It protected the desktop by letting the mali-
cious files be viewed within ephemeral containers. Even
though the exploits proceeded as expected and deleted
the container’s entire file system, the damage caused is
invisible to the user, because that ephemeral container
was never used again. Even when we permitted the ex-
ploits to execute within persistent containers, Apiary en-
abled significantly easier recovery from the exploits. As
shown in Table 2, Apiary can provision a file system in
just a few milliseconds. This is nearly 6 orders of mag-
nitude faster than the traditional method of recovering
a system by reinstallation. Furthermore, Apiary’s per-
sistent containers divide up home directory content be-



tween them. For instance, a web browser container’s
home directory will contain the web browser’s configura-
tion, browser cache and downloaded files, while a word
processing container will contain the documents one has
created or edited. This eliminates the need to recover all
of a user’s data if only one application is exploited.

This also shows how persistent containers can be con-
structed in a more secure manner to prevent exploits from
harming the user. As a large amount of the above user’s
data, such as media files, is only accessed in a read-only
manner, the data can be stored on file system shares. This
enables the user to allow the different containers to have
different levels of access to the share. The file explorer
container can access it in a read-write manner, enabling
a user to manage the contents of the file system share,
while the actual applications that view these files can be
restricted to accessing them in a read-only manner, pro-
tecting the files from being damaged by exploits.

4.1.2 Malicious Plugins

Applications are also exploited via malware that users
are tricked into downloading and installing. This can be
an independent program or a plugin that integrates with
an already-installed application. For example, malware
have tried to convince users to download a “codec” they
need to view a video. Recently, a malicious Firefox ex-
tension was discovered [6] that leverages Firefox’s ex-
tension and plugin mechanism to extract a user’s bank-
ing credentials from the browser when the user visits a
bank’s website. These attacks are common because users
are badly conditioned to always allow a browser to install
what it claims is needed. When installed into a traditional
environment, this malicious extension persists until the
user, or the user’s anti-virus software, discovers and re-
moves it. As it does not affect regular use of the browser,
there is little to alert users that they have been attacked.
As this exploit is not publicly available, we simulated its
presence with the non-malicious Greasemonkey Firefox
extension [18]. Like with the malicious file, ephemeral
containers prevented the extension from persisting.
However, this exploit poses a significant risk to per-
sistent web browser containers. While one might expect
Firefox extensions to be uninstallable through Firefox’s
extension manager, this is only true of extensions that
are installed through it. If an extension is installed di-
rectly into the file system, it can only be disabled this
way, but not uninstalled. This applies equally to Api-
ary and traditional machines. While Apiary users can
quickly recreate the entire persistent Firefox container,
that requires knowing that the installation was exploited.
Apiary handles this situation more elegantly by allowing
the user to use Firefox in multiple web browsing con-
tainers. In this case, we created a general-purpose web

browsing container for regular use, as well as a finan-
cial web browsing container for the bank website only.
Apiary configured the financial web browser container
to refuse to install any addons within it’s browser, keep-
ing it isolated and secure even when the general-purpose
web browsing container was compromised.

Apiary enables the creation of multiple independent
application containers, each containing the same appli-
cation, but performing different tasks, such as visiting a
bank website. Because the great majority of the VLFS’s
layers are shared, the user incurs very little cost for these
multiple independent containers. This approach can be
extended to other related but independent tasks, for in-
stance, using a media player to listen to one’s personal
collection of music, as opposed to listening to Internet
radio from an untrusted source.

This scenario also reveals a problem with how plug-
ins and other extensions are currently handled. When the
browser provides its own package management interface
independent of the system’s built-in package manager,
this impacts Apiary, because certain application exten-
sions might be needed in an ephemeral container, but if
they are not known to the package manager, they cannot
be easily included. However, many plugins and browser
extensions are globally installable and manageable via
the package manager itself in systems like Debian. In
these systems, this yields the benefit that when multiple
users wish to use an extension, it only has to be installed
once. In Apiary, it additionally provides the benefit that it
can become part of the application container’s definition,
making it available to the ephemeral container without
requiring it to be manually installed by the user on each
ephemeral execution.

4.2 Usage Study

We performed a 24-person usage study that evaluated the
ability of users to use Apiary’s containerized applica-
tion model based on our prototype environment, focus-
ing on their ability to execute applications from within
other programs. Participants were mostly recruited from
within our local university, including faculty, staff and
students. All of the users were computer-literate, though
a significant number were not power users and included
business and humanities students.

For our study, we created three distinct environments.
The first was a plain Linux environment running the
Xfce4 desktop. It provided a normal desktop Linux ex-
perience with a background of icons for files and pro-
grams and a full-fledged panel application with a menu,
task switcher, clock and other assorted applets. The sec-
ond was a full Apiary environment. It provided a much
sparser experience, as the current Apiary prototype only
provides a set of applications and not a full desktop envi-



Test Description

Untar Extract Linux 2.6.19 kernel source archive

Gzip Compress a 250 MB Linux kernel source archive
Octave | Octave 3.0.1 numerical benchmark [19]

Kernel | Build the 2.6.19 kernel

Table 1: Application Benchmarks

ronment. The third was a neutered Apiary environment
that differs from the full environment in not launching
any child applications within ephemeral containers.

The three environments enable us to compare the par-
ticipants’ experience along two axes. First, we can com-
pare the plain Linux environment, where each applica-
tion is only installed once and always run from the same
environment, to the neutered Apiary environment, where
each application is also only installed once and run from
the same environment. This allows us to measure the cost
of using the Apiary viewer, with its built-in taskbar and
application menu, against plain Linux, where the taskbar
and application menu are regular applications within the
environment. Second, the full and neutered Apiary desk-
tops enable us to isolate the actual and perceived cost to
the participants of instantiating ephemeral containers for
application execution. We presented the environments to
the participants in random order and iterated through all
6 permutations equally.

We timed the participants as they performed a num-
ber of specific multi-step tasks in each environment that
were designed to measure the overhead of using multi-
ple interacting applications. In summary, the tasks were:
(1) download and view a PDF file with Firefox and Xpdf
and follow a link embedded in the PDF back to the web;
(2) read an email in Thunderbird that contains an attach-
ment that is to be edited in OpenOffice and returned to
the sender; (3) create a document in OpenOffice that con-
tains text copied and pasted from the web and sent by e-
mail as a PDF file; (4) create a “Hello World” web page
in OpenOffice and preview it in Firefox; and (5) launch
a link received in the Pidgin IM client in Firefox.

As Figure 2 shows, the average time to complete each
task only differed by a few seconds for all tasks in all
environments. Figure 2 shows that even in tasks where
users were creating multiple new ephemeral containers,
that overhead imposed in creating these containers is
minimal and generally unnoticeable to the user. There-
fore, users were able to complete the tasks using Apiary
with the same efficiency as on a regular system.

The participants also rated their perceived ease of use
of each environment on a scale of 1 to 5. The average
rating, of both the plain Linux environment and Apiary,
was a 3.9 with a standard deviation of 0.9 and 1.1 respec-
tively. The participants were asked if they could imagine
using Apiary full time and whether they would prefer to
do so if it would keep their desktop more secure. All of

the participants expressed a willingness to use this en-
vironment full-time, and a large majority indicated that
they would prefer to use Apiary over the plain Linux en-
vironment if it would keep their data more secure.

4.3 Performance Measurements
4.3.1 Application Performance

To measure the performance overhead of Apiary on real
applications, we compared the runtime performance of
a number of applications within the Apiary environment
against their performance in a traditional environment.
To provide a conservative measure of Apiary perfor-
mance, we used a container with all of the applications
from all of our experiments to maximize the number of
layers installed.

Table 1 lists our application tests. We focus mostly
on file system benchmarks, as we have shown [4, 28]
that display and operating system virtualization have lit-
tle overhead. Untar tests file creation and throughput.
Gzip tests file system throughput and computation. Oc-
tave is a pure computation benchmark. The kernel build
tests computation and stresses the file system, because of
the large number of lookups that occur due to the large
size of the kernel source tree and the repeated execution
of the preprocessor, compiler, and linker. To stress the
system with many containers and provide a conservative
performance measure, each test was run in parallel with
25 instances. To avoid out-of-memory (OOM) condi-
tions, as the Octave benchmark requires 100 to 200 MB
of memory at various points during its execution, we ran
the benchmarks staggered 5 seconds apart to ensure they
kept their high memory usage areas isolated to avoid the
benchmarks being killed by Linux’s OOM handler. Fig-
ure 3 shows that Apiary imposes almost no overhead in
most cases, with about 10% overhead in the kernel build
case due to the VLFS’s constant need to perform lookups
on the file system incurring an extra cost. This demon-
strates that Apiary is able to scale to a large number of
concurrent containers with minimal overhead.

4.3.2 Container Creation

For ephemeral containers to be useful, container instan-
tiation must be quick and impose little overhead on ap-
plication startup time. Although our user study already
indicates that Apiary container instantiation overhead is
not noticeable to users, we measure the overhead in two
more ways. We measure both how long it takes to instan-
tiate a VLFS and how long the application takes to start
up within the container. First, we compare how long it
takes to setup a VLFS against three other potential ap-
proaches to setting up the same container file system: us-
ing traditional Debian bootstrapping tools (Create), ex-
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P F T (0] X M
Create (s) 317 | 276 | 294 | 365 | 291 | 294
Extract (s) 82 86 87 | 150 81 81
FS-Snap (s)| .016 | .015 | .016 | .020 | .009 | .010
Apiary (s) | .005 | .005 | .005 | .005 | .005 | .005
Table 2: File System Instantiating Times for (P)idgin,

(F)irefox, (T)hunderbird, (O)penOffice, (X)pdf and (M)Player

tracting the file system from a tar archive (Extract), and
using Btrfs [9], a file system with a snapshot operation,
to create a new snapshot and branch of a preexisting file
system namespace (FS-Snap). To minimize network ef-
fects with the bootstrapping tools, we used a local De-
bian mirror on the local 100 Mbps campus network, and
were able to saturate the connection while fetching the
packages to be installed.

Table 2 shows that Apiary instantiates containers with
a VLFS composed of nearly 200 layers nearly instanta-
neously. This compares very positively with traditional
ways of setting up a system. Table 2 show that it takes
a significant amount of time to create a file system for
the application container using either Debian’s bootstrap-
ping tool or extracting it from a tar archive. Therefore,
these methods are not usable for ephemeral application
containers, as users will not want to wait minutes for
their applications to start. Tar archives also suffer from
their need be actively maintained and rebuilt whenever
they need fixes. Therefore, the amount of administrative
work increases linearly with the number of applications
in use. As Apiary creates the file system nearly instan-
taneously, it is able to support the creation of ephemeral
application containers with no noticeable overhead to the
users. While Table 2 shows that file systems with a snap-
shot and branch operation can also perform quickly, the
user would have to manage each of the application’s in-
dependent file systems separately.

Second we quantify startup time by measuring how
long it takes for the application to open and then be au-
tomatically closed using ephemeral containers, persis-
tent containers, and plain Linux. In the case of Firefox,
Xpdf, and OpenOffice.org, this includes the time it takes
to display the initial page of a document, while Pidgin,
MPlayer and Thunderbird are only loading the program.
For ephemeral containers, we measure the total time it
takes to set up the container and execute the applica-

Gzip

Figure 3: Overhead at Scale
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Figure 4: Application Startup Time

tion within it, while for persistent containers and plain
Linux, we only measure application execution time as
these environments are persistent and therefore require
no setup time. We compare ephemeral container ap-
plication startup time to cold (C) and warm (W) cache
application startup times for both plain Linux and Api-
ary’s persistent containers. We include cold cache re-
sults for benchmarking purposes and warm cache results
to demonstrate the results users would normally see.

As Figure 4, shows, the startup time overhead of run-
ning within a container versus plain Linux with no con-
tainers is generally under 25% in both cold and warm
cache scenarios. This overhead is mostly due to the
added overhead of opening the many files needed by to-
day’s complex applications. The most complex applica-
tion, OpenOffice, imposes the most, while the least com-
plex application, Xpdf, has negligible overhead. While
the maximum absolute extra time spent in the cold cache
case was nearly 5 seconds for OpenOffice, in the warm
cache case it dropped to under .5 seconds. Ephemeral
containers provide an interesting result. Even though
they have a fresh new file system and would be thought
to be equivalent to a cold cache startup, they are nearly
equivalent to the warm cache case. This is because
their underlying layers are already cached by the sys-
tem. The ephemeral case has a slightly higher overhead
due to the need to create the container and execute a dis-
play server inside of it in addition to regular application
startup. However, as this takes under 10 milliseconds, it
adds only a minimal amount to the ephemeral application
startup time.

4.4 File System Efficiency

To support a large number of containers, Apiary must
store and manage its file system efficiently. This means
that storage space should not significantly increase with
an increasing number of instantiated containers and
should be easily manageable in terms of application up-
dates. For each application’s VLFS, Table 3 shows its
size, its number of layers, the amount of state shared with
the other application VLFSs, and the amount of state
unique to it. For instance, the 129 layers that make up
Firefox’s VLFS require 353 MB, of which 330 MB are



| F T (0] X M
Size (vz) 394 | 353 | 367 | 645 | 339 | 355
# Layers 147 | 129 | 125 | 186 | 130 | 162
Shared (ms) | 322 | 330 | 335 | 329 | 330 | 326
Unique (vs) 72 23 32 | 316 9 29

Table 3: VLFS Layer Storage Breakdown for (P)idgin,
(Firefox, (T)hunderbird, (O)penOffice, (X)pdf and (M)Player

shared with other applications and 23 MB are unique to
the Firefox VLFS. Table 3 shows that the majority of files
in each container are shared with other containers.

Table 4 compares the storage requirements of a plain
Linux desktop versus Apiary when using different num-
bers of containers to store the six applications listed in
Table 3. When all the applications are installed within a
single container, plain Linux and Apiary require the same
amount of storage. However, when each application is
installed within its own container, Apiary’s VLFS im-
poses no additional storage requirements while the tradi-
tional Linux method of provisioning an independent file
system for each container requires more than three times
more disk space due to the duplication of files amongst
the containers. If instead of using local desktops, multi-
ple remote desktops are provided on a server, the VLFS
usage would remain constant with the total size of all lay-
ers, while the plain Linux case would grow linearly with
the number of desktops.

Table 4 demonstrates how Apiary improves the ability
of users to maintain their many containers. We measured
the time it took to apply a security update common to all
the containers. Table 4 shows the time it took to update
a single container containing all the applications, as well
as all six application containers. The plain Linux case
is two order of magnitude longer due its need to extract
files from a package archive and copy them into the con-
tainer’s file system. In Apiary, no copying has to be per-
formed. While Table 4 demonstrates that an individual
update by itself does not take too long, the total time to
apply common updates to many containers rises linearly
with the number of containers.

5 Related Work

Isolation mechanisms such as VMs [39] and operating
system containers [24, 32] have long been used to in-
crease the security of applications. However, this re-
sults in applications not being integrated into the user’s
desktop experience. Each application is totally inde-
pendent and cannot leverage another one. Products like
VMware’s Unity [39] attempt to solve part of this issue
by combining the applications from multiple VMs into
a single display with a single menu and taskbar, as well
as providing file system sharing between host and VMs.
While VMs provide superior isolation, they suffer higher

FS Size | Update Time

1 Container Plain Linux 815 MB 18s
Apiary 815 MB 124 ms

6 Containers Plain Linux | 2453 MB 108 s
Apiary 815 MB 745 ms

Table 4: Apiary vs Traditional File System Efficiency

overhead due to running independent operating systems.
This impacts performance and makes them unusable for
ephemeral usage on account of their long startup times.
In contrast, Apiary provides lightweight containers that
can support ephemeral execution.

Tahoma [34] is similar to Apiary in that it creates fully
isolated application environments that remain part of a
single desktop. Tahoma creates browser applications that
are limited to certain resources, such as specific URLSs,
and that are fully isolated from each other. However,
it only provides these isolated application environments
for web browsers. It does not provide any way to inte-
grate these isolated environments and does not provide
ephemeral application environments. Google’s Chrome
web browser [17] builds upon some of these ideas to iso-
late web browser pages within a single browser. But the
browser as a whole does not offer any isolation from the
system. While its multiple-process model uses operating
system mechanisms to isolate separate web pages that
are concurrently viewed, it does not provide any isola-
tion from the system itself. For instance, any plugin that
is executed has the same access to the underlying system
as does the user running the browser.

Modern web browsers improve privacy by providing
private browsing modes that prevent browser state from
being committed to disk. While they serve a similar pur-
pose to ephemeral containers, private browsing is fun-
damentally different. First, it has to be written into the
program itself. Many different types of programs have
privacy modes to prevent them from recording state and
this model requires them to implement it independently.
Second, it only provides a basic level of privacy. It can-
not prevent a plugin from writing state to disk. Further-
more, it makes the entire browser and any helper program
or plugin that it executes part of the trusted computing
base (TCB). This means that the user’s entire desktop be-
comes part of the TCB. If any of those elements gets ex-
ploited, no privacy guarantees can be enforced. Apiary’s
ephemeral containers make the entire execution private
and support any application with a state a user desires to
remain private without any application modifications. It
also keeps the TCB much smaller, by only requiring that
the underlying operating system kernel and the minimal
environment of Apiary’s system daemon be trusted.

Apiary’s ability to run multiple applications in parallel
resembles Lampson’s Red/Green isolation [22] and Win-
dowBox [3]. These schemes involve users running two



or more separate environments, for instance, a red envi-
ronment for regular usage and a green environment for
actions requiring a higher level of trust. However, unlike
Apiary’s ephemeral containers, if an exploit enters the
green container, it will persist. Furthermore, by requiring
two separate virtual machines, one increases the amount
of work a user has to do to manage their machines. Api-
ary, by leveraging the VLES, minimizes the overhead re-
quired required to manage multiple machines. Storage
Capsules [8] also attempts to mitigate this problem by
securely running the applications requiring trust in the
same operating system environment as the untrusted ap-
plications, while keeping their data isolated from one an-
other. However, this involves significant startup and tear-
down costs for each execution.

File systems and block devices with branching or
COW semantics [7,29, 36] can be used to create a fresh
file system namespace for a new container quickly. How-
ever, these file systems do not help to manage the large
number of containers that exist within Apiary. Because
each container has a unique file system with different
sets of applications, administrators must create individ-
ual file systems tailored to each application. They cannot
create a single template file system with all applications
because applications can have conflicting dependency re-
quirements or desire to use the same file system path lo-
cations. Furthermore, if all applications are in a single
file system, they are not isolated from each other. This
results in a set of space-inefficient file systems, as each
file system has an independent copy of many common
files. This inefficiency also makes management harder.
When security holes are discovered and fixed, each indi-
vidual file system must be updated independently.

Many systems have been created that attempt to pro-
vide security through isolation mechanisms [1, 5, 10, 23,
25,31,33,40]. All these systems differ from Apiary in
that they try to isolate the many different components
that make up a standard fully-integrated single system
using sets of rules to determine which of the machine’s
resources the application should be able to access. This
often results in one of two outcomes. First, a policy is
created that is too strict and does not let the application
run correctly. Second, a policy is created that is too le-
nient and lets an exploited application interact with data
and applications it should not be able to access. Api-
ary, on the other hand, forces each components to be
fully isolated within its own container before determin-
ing on which levels it should be integrated. As container
setup leverages regular installation utilities to ensure all
the required components are installed, it is much easier
to ensure the container is setup correctly and provides all
the resources that the application needs to execute. As
the container is independent from all other containers on
the system, no complicated rule sets have to be created

to determine what it needs access to. Furthermore, rule
based systems do not provide ephemeral execution and
therefore if an application gets exploited, it will remain
exploited, even if the exploit is confined.

Solitude [20] provides isolation via its Isolation File
System (IFS), which a user can throw away. This is sim-
ilar to Apiary’s ephemeral containers. However, the IFSs
are not fully isolated. First, Solitude does not create a
new IFS for each application execution. Second, the IFS
is built on top of a base file system with which it can
share data, breaking the isolation. To handle this, Soli-
tude implements taint tracking on files shared with the
underlying base file system. This helps determine post
facto what other applications may have been corrupted.
Similarly, Solitude only provides isolation at the file sys-
tem level. Because each application still shares a single
display, malicious and exploited applications can lever-
age built-in mechanisms in commodity display architec-
tures [13, 27] to insert events and messages into other
applications sharing the display.

6 Conclusions

Apiary introduces a new compartmentalized application
desktop paradigm. Instead of running one’s applications
in a single environment with complex rules to isolate
the applications from each other, Apiary enables them
to be easily and completely isolated while retaining the
integrated feel users expect from their desktop computer.
The key innovations that make this possible are the intro-
duction of the Virtual Layered File System and the eph-
emeral containers they enable. The Virtual Layered File
System enables the multiple containers to be stored as ef-
ficiently as a single regular desktop, while also allowing
containers to be instantiated almost instantly. This func-
tionality enables the creation of the ephemeral contain-
ers that provide an always fresh and clean environment
for applications to run in. Ephemeral containers prevent
malicious data from having any persistent effect on the
system and isolate faults to a single application instance.

We have implemented Apiary on Linux without re-
quiring any operating system kernel or application
changes. Our results demonstrate that Apiary’s con-
tainerized desktop severely reduces the threat posed by
malicious files and plugins by isolating them in ephem-
eral containers and enabling users to quickly recover if
they penetrate a persistent container. Our 24-person us-
age study demonstrates that Apiary is as easy to use as a
regular Linux desktop by both measuring the time it took
users to perform their tasks and their subjective opinions.
Furthermore, we demonstrate that Apiary adds minimal
overhead to application performance, is as efficient as a
regular desktop in its use of storage space, and instanti-
ates ephemeral containers in less than .5 s.
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