
Tolerating Malicious Device Drivers in Linux
Silas Boyd-Wickizer and Nickolai Zeldovich

MIT CSAIL

ABSTRACT

This paper presents SUD, a system for running existing
Linux device drivers as untrusted user-space processes.
Even if the device driver is controlled by a malicious
adversary, it cannot compromise the rest of the system.
One significant challenge of fully isolating a driver is to
confine the actions of its hardware device. SUD relies on
IOMMU hardware, PCI express bridges, and message-
signaled interrupts to confine hardware devices. SUD
runs unmodified Linux device drivers, by emulating a
Linux kernel environment in user-space. A prototype of
SUD runs drivers for Gigabit Ethernet, 802.11 wireless,
sound cards, USB host controllers, and USB devices, and
it is easy to add a new device class. SUD achieves the
same performance as an in-kernel driver on networking
benchmarks, and can saturate a Gigabit Ethernet link.
SUD incurs a CPU overhead comparable to existing run-
time driver isolation techniques, while providing much
stronger isolation guarantees for untrusted drivers. Finally,
SUD requires minimal changes to the kernel—just two
kernel modules comprising 4,000 lines of code—which
may at last allow the adoption of these ideas in practice.

1 INTRODUCTION

Device drivers are a significant source of bugs in an op-
erating system kernel [11, 13]. Drivers must implement
complex features, such as wireless drivers running the
802.11 protocol, the Linux DRM graphics subsystem
supporting OpenGL operations, or the Linux X server
running with direct access to the underlying hardware.
Drivers must correctly handle any error conditions that
may arise at runtime [19]. Finally, drivers must execute in
restrictive kernel environments, such as when interrupts
are disabled, without relying on commonly-available ser-
vices like memory allocation. The result is kernel crashes
due to bugs in drivers, and even security vulnerabilities
that can be exploited by attackers [1, 5].

Significant work has been done on trying to isolate de-
vice drivers, and to make operating systems reliable in the
face of device driver failures [4, 6, 7, 10, 12, 14, 15, 21–
23, 26–29, 33–36]. Many research operating systems
include support to fully isolate device drivers [2, 15]. Un-
fortunately, work on commodity operating systems, like
Linux, focuses on fault isolation to prevent common de-
vice driver bugs, and cannot protect the rest of the system
from malicious device drivers [7, 30]. For instance, many

driver isolation techniques trust the driver not to subvert
the isolation, or not to livelock the system. If attackers
exploit a bug in the device driver [1, 5], they can proceed
to subvert the isolation mechanism and compromise the
entire system. While some systems can provide stronger
guarantees [28, 33], they rely on the availability of a fully-
trusted, precise specification of the hardware device’s
behavior, which is rarely available for devices today.

This paper presents the design and implementation of
SUD, a kernel framework that provides complete isolation
for untrusted device drivers in Linux, without the need
for any special programming languages or specifications.
SUD leverages recent hardware support to implement
general-purpose mechanisms that ensure a misbehaving
driver, and the hardware device that it manages, cannot
compromise the rest of the system. SUD allows unmod-
ified Linux device drivers to execute in untrusted user-
space processes, thereby limiting the effects of bugs or
security vulnerabilities in existing device drivers. SUD
also ensures the safety of applications with direct access
to hardware, such as the Linux X server, which today can
corrupt the rest of the system.

Moving device drivers to untrusted user-space code in
any system requires addressing three key challenges. First,
many device drivers require access to privileged CPU
instructions in order to interact with its device. However,
to protect the rest of the system, we need to confine the
driver’s execution. Second, the hardware device needs to
perform a range of low-level operations, such as reading
and writing physical memory via DMA and signaling
interrupts. However, to protect the rest of the system from
operations that a malicious driver might request of the
device, we must also control the operations that can be
performed by the device. Finally, we would like to reuse
existing driver code for untrusted device drivers. However,
existing drivers rely on a range of kernel facilities not
available in user-space applications making it difficult to
reuse them as-is.

SUD’s design addresses these challenges for Linux as
follows. First, to isolate driver code, SUD uses existing
Unix protection mechanisms to confine drivers, by run-
ning each driver in a separate process under a separate
Unix user ID. To provide the device driver with access
to its hardware device, the kernel provides direct access
to memory-mapped device IO registers using page tables,
and uses other x86 mechanisms to allow controlled access

1



to the IO-space registers on the device. The kernel also
provides special device files for safely managing device
state that cannot be directly exposed at the hardware level.

Addressing the second challenge of confining the phys-
ical hardware managed by a driver is more difficult, due
to the wide range of low-level operations that hardware
devices can perform. SUD assumes that, unlike the device
driver, the device hardware is trusted, and in particu-
lar, that it correctly implements the PCI express speci-
fication [25]. Given that assumption, SUD relies on an
IOMMU [3, 17] and transaction filtering in PCI express
bridges [25] to control the memory operations issued by
the device under the control of the driver. SUD also relies
on message-signaled interrupts [24] to route and mask
interrupts from the device.

Finally, to support unmodified Linux device drivers,
SUD emulates the kernel runtime environment in an un-
trusted user-space process. SUD relies on UML [9] to
implement the bulk of the kernel facilities, and allows
drivers to access the underlying devices by using SUD’s
direct hardware access mechanisms provided by the un-
derlying kernel. The underlying kernel, in turn, exposes
an upcall interface that allows the user-space process to
provide functionality to the rest of the system by imple-
menting the device driver API.

We have implemented a prototype of SUD for the Linux
kernel, and have used it to run untrusted device drivers
for Gigabit Ethernet cards, 802.11 wireless cards, sound
cards, and USB host controllers and devices. SUD runs ex-
isting Linux device drivers without requiring any source-
code modifications. A benchmark measuring streaming
network throughput achieves the same performance with
both in-kernel Linux drivers and the same drivers running
in user-space with SUD, saturating a Gigabit Ethernet
link, although SUD imposes an 8–30% CPU overhead.
Our experiments suggest that SUD protects the system
from malicious device drivers, even if the device driver
attempts to issue arbitrary DMA requests and interrupts
from its hardware device.

SUD provides complete isolation of untrusted user-
space processes with access to arbitrary PCI devices, with-
out relying on any specialized languages or specifications.
SUD demonstrates how this support can be used to run un-
modified Linux device drivers in an untrusted user-space
process with CPU overheads comparable to other driver
isolation techniques, and the same mechanisms can be
used to safely run other applications that require direct
access to hardware devices. Finally, we are hopeful that
by making only minimal changes to the Linux kernel—
two loadable kernel modules—SUD can finally put these
research ideas to use in practice.

The rest of this paper is structured as follows. We first
review related work in Section 2. We present the design
of SUD in Section 3, and describe our implementation of

SUD for the Linux kernel in Section 4. Section 5 eval-
uates the performance of our SUD prototype. Section 6
discusses the limitations of SUD and future work, and
Section 7 concludes.

2 RELATED WORK

There is a significant amount of related work on improv-
ing the reliability, safety, and reuse of device drivers. The
key focus of SUD is providing strong confinement of un-
modified device drivers on Linux. In contrast, many prior
systems have required adopting either a new OS kernel,
new drivers, or new specifications for devices. On the
other hand, techniques that focus on device driver relia-
bility and reuse are complementary to SUD, and would
apply equally well to SUD’s untrusted drivers. The rest of
this section surveys the key papers in this area.

Nooks [30] was one of the first systems to recognize
that many kernel crashes are caused by faulty device
drivers. Nooks used page table permissions to limit the
effects of a buggy device driver’s code on the rest of the
kernel. However, Nooks was not able to protect the ker-
nel from all possible bugs in a device driver, let alone
malicious device driver code, whereas SUD can.

A few techniques for isolating kernel code at a finer
granularity and with lower overheads than page tables
have been proposed, including software fault isolation [6,
10] and Mondrian memory protection [34, 35]. While
both SFI and MMP are helpful in confining the actions of
driver code, they cannot confine the operations performed
by the hardware device on behalf of the device driver,
which is one of the key advantages of SUD.

Microkernels partition kernel services, including
drivers, into separate processes or protection domains [2,
31]. Several microkernels, such as Minix 3 and L4, re-
cently added support for IOMMU-based isolation of de-
vice DMA, which can prevent malicious device drivers
from compromising the rest of the system [2, 15]. SUD
borrows techniques from this previous work, but differs
in that it aims to isolate unmodified Linux device drivers.
We see this as a distinct challenge from previous work,
because Linux device drivers are typically more complex
than their microkernel counterparts1 and SUD does not
change the kernel-driver interface to be more amendable
to isolation.

Virtual machine monitors must deal with similar issues
to allow guest OS device drivers to directly access underly-
ing hardware devices, and indeed virtualization is the key
reason for the availability of IOMMU hardware, which
has now been used in a number of VMMs [4, 23, 32]. In a
virtual machine, however, malicious drivers can compro-
mise their own guest OS and any applications the guest
OS is running. SUD runs a separate UML process for

1For example, the Linux e1000 Ethernet device driver is 13,000 lines
of C code, and the Minix 3 e1000 driver is only 1,250 lines.

2



each device driver; in this model, a driver compromising
its user-space UML kernel is similar to a process compro-
mising its libc. Thus, in SUD, the Linux kernel prevents a
malicious driver from compromising other device drivers
or applications.

Loki [36] shows how device drivers, among other parts
of kernel code, can be made untrusted by using physical
memory tagging. However, Loki incurs a memory over-
head for storing tags, and requires modifying both the
CPU and the DMA engines to perform tag checks, which
is unlikely to appear in mainstream systems in the near
future. Unlike SUD, Loki’s memory tagging also cannot
protect against devices issuing arbitrary interrupts.

Many of the in-kernel isolation techniques, including
Nooks, SFI, and MMP, allow restarting a crashed device
driver. However, doing so requires being able to reclaim
all resources allocated to that driver at runtime, such as
kernel memory, threads, stacks, and so on. By running
the entire driver in an untrusted user-level process, SUD
avoids this problem altogether.

Another approach to confining operations made by the
hardware device on behalf of the driver is to rely on a
declarative specification of the hardware’s state machine,
such as in Nexus [33] or Termite [28]. These techniques
can provide fine-grained safety properties specific to each
device, using a software reference monitor to control a
driver’s interactions with a device. However, if a spec-
ification is not available, or is incorrect, such a system
would not be able to confine a malicious device driver,
since it is impossible to predict how interactions between
the driver and the device translate into DMA accesses
initiated by the device.

In contrast to a specification-based approach, SUD
enforces a single safety specification, namely, memory
safety for PCI express devices. It does so without rely-
ing on precise knowledge of when a device might issue
DMA requests or interrupts, by using hardware to con-
trol device DMA and interrupts, and providing additional
system calls to allow driver manipulation of PCI regis-
ter state. The drawback of enforcing a single memory
safety property is that SUD cannot protect physical de-
vices from corruption by misbehaving drivers, unlike [33].
We expect that the two techniques could be combined,
by enforcing a base memory safety property in SUD, and
using finer-grained specifications to ensure higher-level
properties.

Nooks introduced the concept of shadow drivers [29] to
recover device driver state after a fault, and SUD’s archi-
tecture could also use shadow drivers to gracefully restart
untrusted device drivers. In SUD, shadow drivers could
execute either in fully-trusted kernel code, or in a separate
untrusted user-space process, isolated from the untrusted
driver they are shadowing. Techniques from CuriOS [8]
could likewise be applied to address this problem.

Device driver reuse is another important area of re-
lated work. Some of the approaches to this problem have
been to run device drivers in a virtual machine [22] with-
out security guarantees, or to synthesize device drivers
from a common specification language [28]. By allowing
untrusted device drivers to execute in user-space, SUD
simplifies the task of reusing existing, unmodified device
drivers safely across different kernels. A well-defined
driver interface, such as [28], would make it easier to
move drivers to user-space, but SUD’s architecture would
still provide isolation.

Even if a driver cannot crash the rest of the system,
it may fail to function correctly. A number of systems
have been developed to help programmers catch common
programming mistakes in driver code [19, 27], to make
sure that the driver cannot mis-configure the physical
device [33], and to guarantee that the driver implements
the hardware device’s state machine correctly [28]. A
well-meaning driver running under SUD would benefit
from all of these techniques, but the correctness of these
techniques, or whether they were used at all, would not
impact the isolation guarantees made by SUD.

Finally, user-space device drivers [21] provide a num-
ber of well-known advantages over running drivers in
the kernel, including ease of debugging, driver upgrades,
driver reuse, and fault isolation from many of the bugs
in the driver code. Microdrivers [12] shows that the
performance-critical aspects of a driver can be moved into
trusted kernel code, while running the bulk of the driver
code in user-space with only a small performance penalty,
even if written in a type-safe language like Java [26].

SUD achieves the same benefits of running drivers
in user-space, but does not rely on any device-specific
trusted kernel code. This allows SUD to run arbitrary de-
vice drivers and applications with direct hardware access,
without having to trust any part of them ahead of time, at
the cost of somewhat higher CPU overheads as compared
to Microdrivers. We expect that performance techniques
from other user-level device driver systems [21] can be
applied to SUD to similarly reduce the CPU overhead.

3 DESIGN

The goal of SUD is to prevent a misbehaving device driver
from corrupting or disabling the rest of the system, includ-
ing the kernel, applications, and other drivers.2 At the
same time, SUD strives to provide good performance in
the common case of well-behaved drivers. SUD assumes
that the driver can issue arbitrary instructions or system
calls, and can also configure the physical device to issue
arbitrary DMA operations or interrupts. The driver can
also refuse to respond to any requests, or simply go into

2Of course, if the application relies on the device in question, such
as a web server relying on the network card, the application will not be
able to make forward progress until a working device driver is available.

3



User-
space

Kernel

Ethernet
proxy driver

Downcall
RPCs Device

hardware

DMA

Interrupts

PCI
config

syscalls

Safe PCI device
access module

Upcall
RPCs

Sud-UML
library

Unmodified
Ethernet driver

IO
registers

PCI
config

Unmodified
driver API

Kernel
runtime

library

Interrupt
messages

Figure 1: Overview of the interactions between components of SUD
(shaded). Shown in user-space is an unmodified Ethernet device driver
running on top of SUD-UML. A separate driver process runs for each
device driver. Shown in kernel-space are two SUD kernel modules, an
Ethernet proxy driver (used by all Ethernet device drivers in SUD), and
a safe PCI device access module (used by all PCI card drivers in SUD).
Arrows indicate request flow.

an infinite loop. To confine drivers, SUD assumes the use
of recent x86 hardware, as we detail in Section 3.2.

The design of SUD consists of three distinct compo-
nents, as illustrated in Figure 1. First, a proxy driver
Linux kernel module allows user-space device drivers to
implement the device driver interface expected by the
Linux kernel. This kernel module acts as a proxy driver
that can implement a particular type of device, such as an
Ethernet interface or a wireless card. The proxy driver’s
job is to translate kernel calls to the proxy driver into
upcalls to the user-space driver. A safe PCI device ac-
cess kernel module allows user-space drivers to manage a
physical hardware device, while ensuring that the driver
cannot use the device to corrupt the rest of the system.
Finally, a user-space library based on User-Mode Linux
(UML) [9], called SUD-UML, allows unmodified Linux
device drivers to run in untrusted user-space processes.

The rest of this section describes how the user-space de-
vice driver interacts with the rest of the system, focusing
on how isolation is ensured for malicious device drivers.

3.1 API between kernel and driver
Traditional in-kernel device drivers interact with the ker-
nel through well-known APIs. In Linux a driver typically
registers itself with the kernel by calling a register func-
tion and passing a struct initialized with driver specific
data and callbacks. The kernel invokes the callbacks to
pass data and control to the driver. Likewise, drivers
deliver data and execute kernel functions by calling pre-
defined kernel functions.

As a concrete example, consider the kernel device
driver for an imaginary “nic” Ethernet device, whose
pseudo-code is shown in Figure 2. The Linux PCI

void nic_xmit_frame(struct sk_buff *skb)

{

/*

* Transmit a packet on behalf of the networking

* stack.

*/

nic_tx_buffer(skb->data, skb->data_len);

}

void nic_do_ioctl(int ioctl, char *result)

{

/* Return MII media status. */

if (ioctl == SIOCGMIIREG)

nic_read_mii(result);

}

void nic_irq_handler(void)

{

/*

* Pass a recently received packet up to the

* networking stack.

*/

struct sk_buff *skb = nic_rx_skb();

netif_rx(skb);

}

void nic_open(void)

{

/*

* Register an IRQ handler with the kernel and

* enable the nic.

*/

request_irq(nic_irq_num(),

nic_irq_handler);

nic_enable();

}

void nic_close(void)

{

free_irq(nic_irq_num());

}

struct net_device_ops nic_netdev_ops = {

.ndo_open = nic_open,

.ndo_stop = nic_close,

.ndo_start_xmit = nic_xmit_frame,

.ndo_do_ioctl = nic_do_ioctl,

};

int nic_probe(void)

{

/* Register a device driver with the kernel. */

char mac[6];

struct net_device *netdev = alloc_etherdev();

netdev->netdev_ops = &nic_netdev_ops;

nic_read_mac_addr(mac);

memcpy(netdev->dev_addr, mac, 6);

register_netdev(netdev);

return 0;

}

Figure 2: Example in-kernel Ethernet driver code, with five callback
functions nic open, nic close, nic xmit frame, nic do ioctl,
and nic irq handler. Ethernet drivers for real device require more
lines of code.

4



code calls nic probe when it notices a PCI device that
matches the nic’s PCI device and vendor ID. nic probe
allocates and initializes a struct net device with
the nic’s MAC address and set of device specific call-
back functions then registers with Linux by calling
register netdev. When a user activates the device
(e.g. by calling ifconfig eth0 up), Linux invokes the
nic open callback, which registers an IRQ handler to
handle the device’s interrupts, and enables the nic. When
the Linux networking stack needs to send a packet, it
passes the packet to the nic xmit frame callback. Like-
wise, when the nic receives a packet it passes the packet
to the networking stack by calling netif rx.

In order to move device drivers into user-space pro-
cesses, SUD must translate the API between the kernel
and the device driver, such as the example shown in Fig-
ure 2, into a message-based protocol that is more suitable
for user-kernel communication. SUD uses proxy drivers
for this purpose. A SUD proxy driver registers with the
Linux device driver subsystem, providing any callback
functions and data required by the class of drivers it sup-
ports. When the kernel invokes a proxy driver’s callback
function, the proxy driver translates the callback into an
RPC call into a user-space driver. The kernel-driver API
can also include shared memory that is accessed by either
the driver or the kernel without invoking each other’s func-
tions. In our Ethernet driver example, the card’s MAC
address is stored in netdev->dev addr, and is accessed
without the use of any function calls. The proxy driver
synchronizes such shared memory locations by mirroring,
as we will discuss in Section 3.3.

SUD proxy drivers use a remote procedure call abstrac-
tion called user channels (or uchans for short), which
we’ve optimized for messaging using memory shared be-
tween kernel and user address spaces. Figure 3 provides
an overview of the SUD uchan interface. SUD imple-
ments uchans as special file descriptors. A uchan library
translates the API in Figure 3 to operations on the file
descriptor.

When the kernel invokes one of the proxy driver’s call-
backs, such as the function for transmitting a packet, the
proxy driver marshals that request into an upcall into
the user-space process. In the case of transmitting a
packet, the proxy driver copies packet information into
a msg t, and calls sud asend to add the msg t to the
queue holding kernel-to-user messages. Since transmit-
ting a packet does not require an immediate reply, the
proxy asynchronously sends the msg t. On the other
hand, synchronous upcalls are used for operations that
require an immediate reply, such as ioctl calls to query
the current MII media status of an Ethernet card, and
result in the message being sent with sud send, which
blocks the callback until the user-space driver replies to
the message.

kernel and user-space functions
sud send(msg t) Send a synchronous message.
sud asend(msg t) Send an asynchronous message.
buf t sud alloc() Allocate a shared buffer.
sud free(buf t) Free a shared buffer.

user-space functions
msg t sud wait() Wait for a message.
sud reply(msg t) Reply to a message.

Figure 3: Overview of the SUD uchan and memory allocation API.

The user-space process is responsible for handling ker-
nel upcall messages, and typically the driver waits for a
message from the kernel by calling sud wait. When the
proxy driver places on a message on the kernel-to-user
queue, sud wait dequeues the message and returns it to
the user-space driver. The user-space driver processes
the message by unmarshaling the arguments from the
message, and invoking the corresponding callback in the
driver code. If the callback returns a result (i.e. the kernel
called sud send), the user-space driver marshals the re-
sponse into a msg t, and calls sud reply, which places
the msg t on a queue holding user-to-kernel messages.

When the user-to-kernel message queue contains a re-
ply message, the proxy driver removes the message from
the queue and unblocks the callback waiting for the reply.
The callback completes by returning appropriate results
to its caller. In the ioctl example, the kernel passes a
buffer to the callback that the callback copies the result
from the user-space driver reply into.

User-space drivers may also need to invoke certain
kernel functions, such as changing the link status of the
Ethernet interface. This is called a downcall in SUD, and
is implemented in an analogous fashion, where the user-
space driver and the in-kernel proxy driver reverse roles
in the RPC protocol. One notable difference is that the
kernel returns results of downcalls directly by copying
the results into the message buffer the driver passed to
sud send, instead of by sending a separate message to
the driver process.

3.1.1 Protecting the kernel from the device driver

Moving device drivers to user-space prevents device
drivers from accessing kernel memory directly. This pre-
vents buggy or malicious device drivers from crashing
the kernel. However, a buggy or malicious user-space
device driver may still break the kernel, other processes,
or other devices, unless special precautions are taken at
the user-kernel API. The kernel, and the proxy driver in
particular, needs to make as few assumptions as possi-
ble about the behavior of the user-space device driver.
The rest of this subsection describes how SUD handles
liveness and semantic assumptions.

Liveness assumptions. One assumption that is often
made of trusted in-kernel drivers is that they will handle

5



requests in a timely fashion. However, if a malicious
user-space device driver fails to respond to upcalls, many
threads in the kernel may eventually be blocked waiting
for responses that will never arrive. SUD addresses this
problem in two ways. First, for upcalls that require a
response from the user-space device driver before the in-
kernel proxy can proceed, the upcall is made interruptable.
This allows the user to abort (Ctrl-C) an operation that
appears to have hung, such as running ifconfig on an
unresponsive driver. To implement interruptable upcalls,
the user-kernel interface must be carefully designed to
allow any synchronous upcall to return an error.

Second, SUD uses asynchronous upcalls whenever pos-
sible. Asynchronous upcalls can be used in situations
where the in-kernel proxy driver does not require any re-
sponse from the user-space driver in order to return to its
caller safely, such as packet transmission. If the device
driver’s queue is full, the kernel can wait a short period of
time to determine if the user-space driver is making any
progress at all, and if not, the driver can be reported as
hung to the user.

Asynchronous upcalls are also necessary for handling
upcalls from threads running in a non-preemptable con-
text, such as when holding a spinlock. A thread in a non-
preemptable context cannot go to sleep, and therefore can-
not allow the user-space driver to execute and process the
upcall. While multi-core systems can avoid this problem
by running the driver and the non-preemptable context
concurrently, SUD still must not rely on the liveness of
the untrusted device driver.

A potential problem can occur if a non-preemptable
kernel thread invokes the in-kernel proxy driver and ex-
pects a response (so that the proxy driver might need
to perform an upcall). One solution to this problem is
rewriting the kernel code so a non-preemptable context is
unnecessary. In Linux, for example, we could replace the
spin lock with a mutex. However, this solution is unde-
sirable, because it might require restructuring portions of
the kernel and affect performance poorly.

To address this problem, we observe that the work per-
formed by functions called in a non-preemptable context
is usually small and well-defined; after all, the kernel
tries to avoid doing large amounts of work in a non-
preemptable context. Thus, for every class of devices, the
corresponding SUD proxy driver implements any short
functions invoked by the kernel as part of the driver API.3

Any state required by these functions is mirrored and
synchronized between the real kernel and the SUD-UML
kernel. For example, the Linux 802.11 network stack

3While we have found that this approach works for device drivers
we have considered so far, it is possible that other kernel APIs have
long, device-specific functions invoked in a non-preemptable context.
Supporting these devices in SUD would require modifying the kernel,
as Section 3.1.3 discusses.

calls the driver to enable certain features, while executing
in a non-preemptable context; the driver must respond
with the features it supports and will enable. The wire-
less proxy driver mirrors the (static) supported feature set,
and when the kernel invokes the function to enable some
feature, the proxy driver queues an asynchronous upcall
to SUD-UML containing the newly-enabled features.

Semantic assumptions. A second class of assumptions
that kernel code may make about trusted in-kernel drivers
has to do with the semantics of the driver’s responses. A
hypothetical kernel might rely on the fact that, once the
kernel changes the MAC address of an Ethernet card, a
query to get the current MAC address will return the new
value. SUD does not enforce such invariants on drivers,
because we have not found any examples of such assump-
tions in practice. Infact, Linux subsystems that interact
with device drivers (such as the network device subsys-
tem) are often robust to driver mistakes, and print error
messages when the driver is acting in unexpected ways.
At this point, the administrator can kill the misbehaving
user-space driver. If the kernel did rely on higher-level
invariants about driver behavior, the corresponding proxy
driver would need to be modified to keep track of the
necessary state, and to enforce the invariant.

3.1.2 Uchan optimizations

Two potential sources of performance overhead in SUD
come from the context switches due to upcalls and down-
calls, and from data copying, such as the packets in an
Ethernet driver.

The SUD uchan implementation optimizes the num-
ber of context switches due to upcalls and downcalls by
mapping message queues into memory shared by the ker-
nel and user-space driver. SUD uchans implement the
message queues using ring buffers. The kernel writes
messages into the head of the kernel-to-user ring. When
the user-space driver calls sud wait to wait for a mes-
sage, sud wait polls the kernel-to-user ring tail pointer.
If the tail points to a message sud wait dequeues the
message by incrementing the tail pointer, the user-space
driver processes the message, and possibly returns results
by calling sud reply. When the tail of the ring equals
the head, the queue is empty and the user-space process
sleeps by calling select on the uchan file descriptor.
select returns when the kernel adds a message to the
head of the kernel-to-user ring. This interface allows a
user-space process to process multiple messages without
entering the kernel.

The downcall message queues work in a similar fashion,
except that the user-space driver writes to the head of the
ring and the kernel reads from the tail of the ring. When a
user-space driver calls sud asend, the uchan library adds
the message to the queue, but does not notify the kernel

6



of the pending message until the user-space driver calls
sud wait or sud send. This allows user-space drivers
to batch asynchronous downcalls.

SUD also optimizes data copying overhead by pre-
allocating data buffers in the user-space driver, and hav-
ing the in-kernel proxy driver map them in the kernel’s
address space. A call to sud alloc returns one of the
shared messages buffers and sud free returns the mes-
sage buffer to the shared heap. In an Ethernet driver, this
allows packet transmit upcalls and packet receive down-
calls to exchange pointers using sud send, and avoid
copying the data. As we will describe later, the same
shared buffers are passed to the physical device to access
via DMA, avoiding any additional data copy operations
in the user-space driver.

The in-kernel proxy driver may need to perform one
data copy operation to guard against malicious user-space
drivers changing the shared-memory data after it has been
passed to the kernel. For example, a malicious driver
may construct an incoming packet to initially look like a
safe packet that passes through the firewall, but once the
firewall approves the packet, the malicious driver changes
the packet in shared memory to instead connect to a fire-
walled service. In the case of network drivers, we can
avoid the overhead of this additional data copy operation
by performing it at the same time that the packet’s check-
sum is computed and verified, at which point the data
is already being brought into the CPU’s data cache. An
alternative design may be to mark the page table entries
read-only, but we have found that invalidating TLB entries
from the IOMMU’s page table is prohibitively expensive
on current hardware.

3.1.3 Limitations

The implementation of the Linux kernel imposes several
limitations on what types of device drivers SUD supports
and what driver features a proxy driver can support.

It is unlikely SUD will ever be able to support device
drivers that are critical for a kernel to function. For ex-
ample, Linux relies on a functioning timer device driver
to signal the scheduler when a time quantum elapses. A
buggy or malicious timer driver could deadlock the kernel,
even while running as a SUD user-space driver.

Another limitation is how proxy drivers handle call-
backs when the calling kernel thread is non-preemptable.
Servicing the callback in the in-kernel proxy allow SUD
to support common functions for several device classes,
but it does not work in all cases. For SUD to support
all the functions of Linux kernel devices it is likely that
some kernel subsystems would need to be restructured so
non-preemptable threads do not need to make upcalls.

Despite these limitations SUD supports common fea-
tures for several widely used devices. We could incremen-
tally add support for more functions.

3.2 Confining hardware device access
The key challenge to isolating an untrusted device driver
is making sure that a malicious driver cannot misuse its
access to the underlying hardware device to escape iso-
lation. In this subsection, we discuss how SUD confines
the driver’s interactions with the physical device, first
focusing on operations that the driver can perform on
the device, and second discussing the operations that the
device itself may be able to perform.

To control access to devices without knowing the de-
tails of the specific device hardware interface, SUD as-
sumes that all devices managed from user-space are PCI
devices. This assumption holds for almost all devices of
interest today.

3.2.1 Driver-initiated operations

In order for the user-space device driver to function,
it must be able to perform certain operations on the
hardware device. This includes accessing the device’s
memory-mapped IO registers, accessing legacy x86 IO
registers on the device, and accessing the device’s PCI
configuration registers. SUD’s safe PCI device access
module, shown in Figure 1, is responsible for supporting
these operations.

To allow access to memory-mapped IO registers, SUD’s
PCI device access module allows a user-space device
driver to directly map them into the driver’s address space.
To make sure that these page mappings do not grant un-
intended privileges to an untrusted device driver, SUD
makes sure that all memory-mapped IO ranges are page-
aligned, and does not allow untrusted drivers to access
pages that contain memory-mapped IO registers from
multiple devices.

Certain devices and drivers also require the use of
legacy x86 IO-space registers for initialization. To al-
low drivers to access the device’s IO-space registers, SUD
uses the IOPB bitmask in the task’s TSS [16] to permit
access to specific IO ports.

Finally, drivers need to access the PCI configuration
space of their device to set certain PCI-specific param-
eters. However, some of the PCI configuration space
parameters might allow a malicious driver to intercept
writes to arbitrary physical addresses or IO ports, or issue
PCI transactions on behalf of other devices. To prevent
such attacks, SUD exposes PCI configuration space access
through a special system call interface, instead of grant-
ing direct hardware access to the user-space driver. This
allows SUD to ensure that sensitive PCI configuration
registers are not modified by the untrusted driver.

3.2.2 Device-initiated operations

A malicious user-space driver may be able to escape iso-
lation by asking the physical hardware device to perform

7



operations on its behalf, such as reading or writing physi-
cal memory via DMA, or raising arbitrary interrupts. To
prevent such problems, SUD uses hardware mechanisms,
as shown in Figure 4, to confine each physical device
managed by an untrusted device driver.

DMA. First and foremost, SUD must ensure that the de-
vice does not access arbitrary physical memory via DMA.
To do so, SUD relies on IOMMU hardware available in
recent Intel [17] and AMD [3] CPUs and chipsets to in-
terpose on all DMA operations. The PCI device access
module specifies a page table for each PCI device in the
system, and the IOMMU translates the addresses in each
DMA request according to the page table for the origi-
nating PCI device, much like the CPU’s MMU. By only
inserting page mappings for physical pages accessible to
the untrusted driver into the corresponding PCI device’s
IO page table, SUD ensures that a PCI device cannot ac-
cess any physical memory not already accessible to the
untrusted driver itself.

Peer-to-peer DMA. Although an IOMMU protects the
physical memory of the system from device DMA re-
quests, a subtle problem remains. Traditional PCI bridges
route DMA transactions according to the destination phys-
ical address, and a PCI device under the control of a
malicious driver may be able to DMA into the memory-
mapped registers of another PCI device managed by a
different driver. As can be seen in Figure 4, a DMA trans-
action from device A to the physical address of device
B’s registers would not cross the IOMMU, and thereby
would not be prevented.

To avoid this problem, SUD requires the use of a PCI
express bus, which uses point-to-point physical links be-
tween PCI devices and switches, as opposed to traditional
PCI which uses a real bus shared by multiple devices.
When multiple devices share the same physical PCI bus,
there is nothing that can prevent a device-to-device DMA
attack. With PCI express, at least one PCI express switch
is present between any two devices, and can help us avoid
this problem.

To ensure that all PCI requests pass through the
root switch, SUD enables PCI access control services
(ACS) [25] on all PCI express switches. ACS allows the
operating system to control the routing and filtering of
certain PCI requests. In particular, SUD enables source
validation, which ensures that a downstream PCI device
cannot spoof its source address, and P2P request and com-
pletion redirection, which ensures that all DMA requests
and responses are always propagated from devices to the
root (where the IOMMU is located), and from the root to
the devices, but never from one device to another.

Interrupts. The final issue that SUD must address is
interrupts that can be raised by devices. Although inter-

PCI
Device A

PCI
Device B

PCI express
switchIOMMU

DRAM

CPU MSI

Physical
memory
bus

APIC bus

Figure 4: Overview of the hardware mechanisms used by SUD to con-
fine hardware devices managed by untrusted drivers. In some systems,
the APIC bus is overlaid on the physical memory bus, and in some
systems the DRAM is attached directly to the CPU.

rupts are unlikely to corrupt any system state on their own,
a malicious driver could use an interrupt storm to force
CPUs to keep handling interrupts, thereby livelocking
the system. Traditionally, the device driver’s interrupt
handler is responsible for clearing the interrupt condition
before interrupts are re-enabled. In some cases devices
share an interrupt and are expected to coordinate inter-
rupt handling. With untrusted device drivers, however,
the kernel cannot rely on a driver to clear the interrupt
condition or cooperate with other drivers, so SUD takes a
few measures to prevent this from happening.

First, SUD prevents devices from raising legacy inter-
rupts shared by multiple devices. SUD does so by restrict-
ing drivers from directly accessing the PCI configuration
registers to change the interrupt configuration. Instead
of legacy interrupts, SUD relies on message-signaled in-
terrupts (MSI), which are mandatory for PCI express
devices, and support generic interrupt masking that does
not depend on the specific device.

Second, SUD forwards device interrupts to untrusted
drivers via the upcall mechanism that was described in
Section 3.1. When an interrupt comes in, SUD issues an
upcall to the corresponding driver indicating that an inter-
rupt was signaled. At this point, SUD does not mask fur-
ther MSI interrupts, since they are edge-triggered. How-
ever, if another interrupt for the same device comes in,
before the driver indicates that it has finished process-
ing the interrupt, SUD uses MSI to make sure further
interrupts do not prevent the driver’s forward progress.

Note that this design allows the OS scheduler to sched-
ule device drivers along with other processes in the system.
When the device driver’s time quantum expires, it will
be descheduled, and even if it were handling an inter-
rupt, MSI will be used to mask subsequent interrupts until
the driver can run again. Of course, in practice it may
be desirable to run device drivers with high priority, to
make sure that devices are serviced promptly, but should

8



a driver misbehave, other processes will still be able to
execute.

The final consideration has to do with how message-
signaled interrupts are implemented on x86. A device
signals an MSI by performing a memory write to a re-
served physical memory address, and the MSI controller
on the other side of the IOMMU picks up writes to that
memory address and translates them into CPU interrupts
on the APIC bus, as shown in Figure 4. Unfortunately,
it is impossible to determine whether a write to the MSI
address was caused by a real interrupt, or a stray DMA
write to the same address. SUD can mask real interrupts
by changing the MSI register in the PCI configuration
space of the device, but cannot prevent stray DMA writes
to the MSI address.

To avoid interrupt storms and arbitrary interrupts
caused by a malicious driver using DMA to the MSI
address, SUD uses two strategies, depending on which
IOMMU hardware it has available to it. On Intel’s VT-
d [17], SUD uses interrupt remapping support. Interrupt
remapping allows the OS kernel to supply a table trans-
lating potential MSI interrupts raised by each device to
the physical interrupt that should be raised as a result, if
any. Changing an interrupt remapping table is more ex-
pensive than using MSI masking, so SUD first tries to use
MSI to mask an interrupt, and if that fails, SUD changes
the interrupt remapping table to disable MSI interrupts
from that device altogether. With AMD’s IOMMU [3],
SUD removes the mapping for the MSI address from that
particular device’s IO page table, thereby preventing that
device from performing any MSI writes.

3.3 Running unmodified drivers in user-space

To allow unmodified Linux device drivers to run in un-
trusted user-space processes, SUD uses UML [9] to supply
a kernel-like runtime environment in user-space, which
we call SUD-UML. SUD-UML’s UML environment pro-
vides unmodified drivers with all of the kernel code they
rely on, such as kmalloc() and jiffies.

SUD-UML differs from traditional UML in three key
areas that allow it to connect drivers to the rest of the
world. First, SUD-UML replaces low-level routines that
access PCI devices and allocate DMA memory with calls
to the underlying kernel’s safe PCI device access module,
shown in Figure 1. For example, when the user-space
driver calls pci enable device to enable a PCI device,
SUD-UML performs a downcall to the underlying kernel
to do so. When the user-space driver allocates DMA-
capable memory, SUD-UML requests that the newly-
allocated memory be added to the IOMMU page table for
the relevant device. When the driver registers an interrupt
handler, SUD-UML asks the underlying kernel to forward
interrupt upcalls to it.

Second, SUD-UML implements the user-kernel RPC
interface that we described in Section 3.1 by invoking the
unmodified Linux driver when it receives an upcall from
the kernel, and sends the response, if any, back to the
kernel over the same file descriptor. For example, when
an interrupt upcall is received by SUD-UML, it invokes
the interrupt handler that was registered by the user-space
driver.

Finally, SUD-UML mirrors shared-memory state that
is part of the driver’s kernel API, by maintaining the same
state in both the real kernel and SUD-UML’s UML kernel,
and synchronizing the two copies as needed. For example,
the Linux kernel uses shared memory variables to track
the link state of an Ethernet interface, or the currently
available bitrates for a wireless card. The SUD proxy
driver and SUD-UML cooperate to synchronize the two
copies of the state. If the proxy driver updates the kernel’s
copy of the state, it sends an upcall to SUD-UML with
the new value. In SUD-UML, we exploit the fact that
updates to driver shared memory variables are done via
macros, and modify these macros to send a downcall with
the new state to the real kernel. This allows the user-space
device driver to remain unchanged.

Updates to shared-memory state are ordered with re-
spect to all other upcall and downcall messages, which
avoids race conditions. Typically, any given shared-
memory variable is updated by either the device driver or
by the kernel, but not both. As a result, changes to shared-
memory state appear in the correct order with respect to
other calls to or from the device driver. However, for secu-
rity purposes, the only state that matters is the state in the
real kernel. As discussed in Section 3.1.1, the Linux ker-
nel is robust with respect to semantic assumptions about
values reported by device drivers.

Poorly written or legacy drivers often fail to follow ker-
nel conventions for using system resources. For example,
some graphics cards set up DMA descriptors with physi-
cal addresses instead of using the kernel DMA interface to
get a DMA capable address. A poorly written driver will
run in SUD-UML until it attempts to accesses a resource
that it has not properly allocated. When this happens the
SUD-UML process terminates with an error.

4 IMPLEMENTATION

We have implemented a prototype of SUD as a kernel
module for Ubuntu’s Linux 2.6.30-5 kernel on x86-64
CPUs. We made several minor modifications to the Linux
kernel proper. In particular, we augmented the DMA map-
ping interface to include functions for flushing the IOTLB,
mapping memory starting at a specified IO virtual address,
and garbage collecting an IO address space. We have only
tested SUD on Intel hardware with VT-d [17], but the
implementation does not rely on VT-d features, and SUD
should run on any IOMMU hardware that provides DMA

9



Feature Lines of code
Safe PCI device access module 2800
Ethernet proxy driver 300
Wireless proxy driver 600
Audio card proxy driver 550
USB host proxy driver 0
SUD-UML runtime 5000

Figure 5: Lines of code required to implement our prototype of SUD,
SUD-UML, and each of the device-specific proxy drivers. SUD-UML
uses about 3 Mbytes of RAM, not including UML kernel text, for each
driver process.

address translation, such as AMD’s IOMMU [3]. SUD-
UML, our modified version of UML, is also based on
Ubuntu’s Linux 2.6.30-5 kernel.

Our current prototypes of SUD and SUD-UML include
proxy drivers and UML support for Ethernet cards, wire-
less cards, sound cards, and USB host controllers and
devices. On top of this, we have been able to run a
range of device drivers as untrusted user-space processes,
including the e1000e Gigabit Ethernet card driver, the
iwlagn5000 802.11 wireless card driver, the ne2k-pci Eth-
ernet card driver, the snd hda intel sound card driver, the
EHCI and UHCI USB host controller drivers, and various
USB device drivers, all with no modifications to the driver
itself.

Figure 5 summarizes the lines of code necessary to
implement the base SUD system, the base SUD-UML
environment, and to add each class of devices. The USB
host driver class requires no code beyond what is provided
by the SUD core. Some USB devices, however, require
additional driver classes. For example, a USB 802.11
wireless adapter can use the existing wireless proxy driver,
and a USB sound card could use the audio card proxy
driver. We are working on a block device proxy driver to
support USB storage devices.

4.1 User-mode driver API
SUD’s kernel module exports four SUD device files for
each PCI device that it manages, as shown in Figure 6.
The device files are initially owned by root, but the system
administrator can set the owner of these devices to any
other UID, and then run an untrusted device driver for
this device under that UID.

When the system administrator starts a driver, SUD-
UML searches sysfs for a matching device. If SUD-
UML finds a matching device, it invokes the kernel to
start a proxy driver and open a uchan shared with the
proxy driver.

SUD-UML translates Linux kernel device driver API
calls to operations on the SUD device files. When a
device driver calls dma alloc coherent, SUD-UML
uses mmap to allocate anonymous memory from the
dma coherent device. This allocates the requested num-
ber of memory pages in the driver’s process, and also

maps the same pages at the same virtual address in the cor-
responding device’s IOMMU page table. Likewise, SUD-
UML allocates cacheable DMA memory using anony-
mous mmap on dma caching. The mmio file exports the
PCI device’s memory-mapped IO registers, which the
driver accesses by mmaping this device. Finally, The ctl
file is used to handle kernel upcalls and to issue downcalls.
Figure 7 gives sample of upcalls and downcalls.

System administrators can manage user-space drivers
in the same way they manage other processes and dae-
mons. An administrator can terminate a misbehaving or
buggy driver with kill -9, and restart it by starting a
new SUD-UML process for the device. The Linux func-
tions for managing resource limits, such as setrlimit,
work for user-space drivers. For example, an administra-
tor might use setrlimit to limit the amount of memory
a suspicious driver is allowed to allocate.

Some device drivers, such as sound card drivers, might
require real time scheduling constraints to function prop-
erly, for example to ensure a high bit rate. For these
devices an administrator can use sched setscheduler
to assign the user-space driver one of Linux’ real-time
scheduling policies. If the audio driver turns out to be ma-
licious or buggy, it could consume a large fraction of CPU
time, but unlike a fully-trusted kernel driver, it would not
be able to lock up the system entirely.

4.2 Performance optimizations
Most of the performance overhead in SUD comes from
SUD-UML. Our efforts to optimize SUD-UML are ongo-
ing, but we have implemented several important optimiza-
tions, which we describe in the following paragraphs.

One optimization is to handle upcalls and invoke call-
backs directly from the UML idle thread. This must be
done with care, however, because some drivers implement
callbacks that block the calling thread, but expect other
threads to continue to invoke driver callbacks. For exam-
ple, the e1000e driver determines which type of interrupt
to configure (e.g. legacy or MSI) by triggering the inter-
rupt, sleeping, and then checking a bit that should have
been set by the e1000e interrupt handler.

To handle this case, when the UML idle thread receives
an upcall, it checks if the corresponding callback is al-
lowed to block (according to kernel conventions). If the
callback is not allowed to block, the UML idle thread
invokes the callback directly. Otherwise, the idle thread
creates and runs a worker thread to invoke the callback.
We optimize worker thread creation using a thread pool.

Another optimization, which we have not implemented
yet, but we expect to improve performance, it to use su-
perpages to map SUD-UML’s memory, including mem-
ory shared with the kernel. The kernel must flush all
non-kernel mappings when it performs a context switch
between user-space virtual address spaces. This impacts

10



File Use
/sys/devices/.../sud/ctl Transfers upcall and downcall messages.
/sys/devices/.../sud/mmio Represents the PCI device’s memory-mapped IO regions; intended for use with mmap.
/sys/devices/.../sud/dma coherent Allocates anonymous non-caching memory on mmap, mapped at the same virtual address

in both the driver’s page table, and the device’s IOMMU page table.
/sys/devices/.../sud/dma caching Allocates anonymous caching memory on mmap, mapped at the same virtual address

in both the driver’s page table, and the device’s IOMMU page table.

Figure 6: An overview of device files that SUD exports for each PCI device.

Upcall Description
ioctl Request that the driver perform a device-specific ioctl.
interrupt Invoke the SUD-UML driver interrupt handler.
net open Prepare a network device for operation.
bss change Notify an 802.11 device that the BSS has changed.

Downcall Description
interrupt ack Request that SUD unmask the device interrupt line.
request region Add IO-space ports to the driver’s IO permission bitmask.
netif rx Submit a received packet to the kernel’s network stack.
pci find capability Checks if device supports a particular capability.

Figure 7: A sample of SUD upcalls and downcalls.

user-space drivers, because the drivers often have a large
working set of DMA buffers. For example, the e1000e
allocates 256 buffers, which might span multiple pages,
for both the transmit and receive DMA rings. In the case
of the e1000e driver, the driver might read the contents
of the DMA buffer after a packet has been received. This
results in a TLB miss if the kernel context-switched from
the SUD-UML process to another process since the last
time the driver read the DMA buffer. By mapping all
the DMA buffers using several super pages, SUD-UML
could avoid many of these TLB misses.

5 EVALUATION

To evaluate SUD, we wanted to understand how hard it
is to use SUD, how well it performs at runtime, and how
well it protects the system from malicious drivers. The
implementation section already illustrated that SUD al-
lows existing Linux device drivers to be used as untrusted
user-space drivers with no source-code modifications. In
this section, we focus on the runtime overheads imposed
by SUD for running device drivers in user-space, and on
the isolation guarantees that SUD provides.

In short, our results show that SUD incurs performance
overheads comparable to other device driver isolation
techniques, while providing stronger guarantees. To il-
lustrate SUD’s security guarantees, we have verified that
SUD prevents both DMA and interrupt attacks, as well as
the driver’s attempts to mishandle kernel upcalls. The rest
of this section describes our experimental evaluation in
more detail.

5.1 Network driver performance
The primary performance concern in running device
drivers as user-space processes is the overhead of context
switching and copying data. To understand the perfor-
mance overhead imposed by SUD, we consider the worst-

case scenario—a Gigabit Ethernet device that requires
both high throughput and low latency to achieve high
performance, using both small and large packets—so that
any overhead introduced by SUD’s protection mechanisms
will show up clearly in the benchmark results. In practice,
we expect most of the drivers running under SUD to be
less performance-critical (for example keyboard, mouse,
printer, or sound card drivers), and thus any performance
penalties imposed by SUD on those drivers would be even
less noticeable.

We run four netperf [18] benchmarks to exercise the
e1000e Linux device driver running under SUD on an
Thinkpad X301 with a 1.4GHz dual-core Intel Centrino.
The Thinkpad is connected to a 2.8GHz dual-core Pen-
tium D Dell Optiplex by a Gigabit switched network.
We configure netperf to run experiments to report results
accurate to 5% with 99% confidence.

Figure 8 summarizes performance results and CPU
overheads for the untrusted driver running in SUD and the
trusted driver running in the kernel. The first benchmark,
TCP STREAM, measures TCP receive throughput and is
run with 87380 byte receive buffers and 16384 byte send
buffers. SUD offers the same performance as the kernel
driver with little overhead, because SUD-UML is able to
batch delivery of many large packets to the kernel in one
downcall.

The UDP STREAM TX and RX benchmarks measure
throughput for transmitting and receiving 64 byte UDP
packets. These benchmarks are more CPU intensive than
TCP STREAM, and demonstrate overheads in SUD that
might have been obscured by the use of large packets in
TCP STREAM. For both TX and RX, SUD performs com-
parably to the kernel driver, but has about a 11% overhead
for TX and a 30% overhead for RX.

The final benchmark, UDP RR, is designed to measure
driver latency. The UDP RR results are given in transac-

11



tions per second. The client completes a transaction when
it sends a 64 byte UDP packet and waits for the server
to reply with a 64 byte UDP packet. In some ways this
is a worst case benchmark for SUD, which has a CPU
overhead of 2x. After each packet transmit or receive the
e1000e process sleeps to wait for the next event. Unfortu-
nately, waking up the sleeping process can take as long
as 4µs in Linux. If e1000e driver has more work and
sleeps less, such as in the UDP STREAM benchmark, this
high wakeup overhead is avoided.

5.2 Security

We argued in Section 3 that SUD uses IOMMUs to pre-
vent devices from accessing arbitrary physical memory.
Figure 9 shows the IO virtual memory mappings for the
e1000e driver. We read all mappings by walking the
e1000e device’s IO page directory. This ensures that the
BIOS or other system software does not create special
mappings for device use. The lack of any other map-
pings indicates that a malicious device driver can at most
corrupt its own transmit and receive buffers, or raise an
interrupt using MSI.

Our experimental machine does not have support for
interrupt remapping in its IOMMU hardware, so our con-
figuration is vulnerable to livelock by a malicious driver
issuing DMA requests to the MSI address. Unfortunately,
Intel VT-d always includes an implicit identity mapping
for the MSI address in every page table, so it was not
possible to prevent this type of attack. A newer chipset
version would have avoided this weakness, and we expect
that doing so would not impact the performance of SUD.
Alternatively, AMD’s IOMMU does not include an im-
plicit MSI mapping, and we could simply unmap the MSI
address on an AMD system when an interrupt storm is
detected, to prevent further interrupts from a device.

We tested SUD’s security by constructing explicit test
cases for the attacks we described earlier in Section 3, in-
cluding arbitrary DMA memory accesses from the device
and interrupt storms. In all cases, SUD safely confined
the device and the driver. We have also relied on SUD’s
security guarantees while developing SUD-UML and test-
ing drivers. For example, in one situation a bug in our
SUD-UML DMA code was returning an incorrect DMA
address, which caused the USB host controller driver to at-
tempt a DMA to an unmapped address. The bug, however,
was easy to spot, because it triggered a page fault. As
another example, the SUD-UML interrupt code responsi-
ble for handling upcalls was not invoking the iwlagn5000
interrupt handler, but was re-enabling interrupts with SUD.
The resulting interrupt storm was easily fixed by killing
the SUD-UML process. It is also relatively simple to
restart a crashed device driver by restarting the device
driver process.

Test Driver Throughput CPU %

TCP STREAM
Kernel driver 941 Mbits/sec 12%
Untrusted driver 941 Mbits/sec 13%

UDP STREAM TX Kernel driver 317 Kpackets/sec 35%
Untrusted driver 308 Kpackets/sec 39%

UDP STREAM RX Kernel driver 238 Kpackets/sec 20%
Untrusted driver 235 Kpackets/sec 26%

UDP RR
Kernel driver 9590 Tx/sec 5%
Untrusted driver 9489 Tx/sec 10%

Figure 8: TCP streaming, minimum-size UDP packet streaming, and
UDP request-response performance for the e1000e Ethernet driver run-
ning as an in-kernel driver and as an untrusted SUD driver. Each UDP
packet is 64-bytes.

Memory use Start End
TX ring descriptor 0x42430000 0x42431000
RX ring descriptor 0x42431000 0x42433000
TX buffers 0x42433000 0x42C33000
RX buffers 0x42C33000 0x43433000
Implicit MSI mapping 0xFEE00000 0xFEF00000

Figure 9: The IO virtual memory mappings for the e1000e driver.

6 DISCUSSION

We think SUD demonstrates that unmodified device
drivers can be run as user-space processes with good
performance. This section examines some limitations of
SUD and explores directions of future work.

New hardware. Our test machine does not support in-
terrupt remapping, which leaves SUD vulnerable to a live-
lock attack from a malicious driver. The ability to remap
interrupts is necessary to prevent this attack, but could
also be useful for improving performance. For example,
it might be faster to mask an interrupt by remapping the
MSI page instead of by reconfiguring the PCI device.

Hardware queued IOTLB invalidation, which is present
in some Intel VT-d implementations, allows software to
queue several IOTLB invalidations efficiently. SUD could
use this feature to unmap DMA buffers from the user-
space device driver while they are being processed by the
kernel.

Device delegation. In the current SUD design, the ker-
nel defines all of the devices in the system (e.g., all PCI
devices), and grants user-space drivers access at that gran-
ularity (e.g., one PCI device). An alternative approach
that we hope to explore in the future is to allow one un-
trusted device driver to create new device objects, which
could then be delegated to separate device driver pro-
cesses. For example, the system administrator might start
a PCI express bus process, which would scan the PCI
express bus and start a separate driver process for each
device it found. If one of the devices on the PCI express
bus was a USB host controller, the USB host controller
driver might start a new driver process for each USB de-
vice it found. If the device was a SATA controller, the
SATA driver may likewise start a new driver for each disk.

12



Finally, a network card with hardware support for multi-
ple virtual queues, such as the Intel IXGBE, could give
applications direct access to one of its queues.

Optimized drivers. Supporting unmodified device
drivers is a primary goal SUD-UML. However, porting
drivers to a SUD interface might eliminate some CPU
overhead that results from supporting unmodified drivers.
For example, SUD-UML constructs Linux socket buffers
for each packet the kernel transmits, because this is what
the unmodified device expects. By modifying device
drivers to take advantage of the SUD interface directly, we
may be able to achieve lower CPU overheads as in [21].

Applications. There are some applications that are not
necessarily suitable to run in the kernel, but that benefit
from direct access to hardware. These applications either
make do with sub-optimal performance, or are imple-
mented as trusted modules and run in the kernel, in spite
of the security concerns. For example, the Click [20]
router runs as a kernel module so that it has direct ac-
cess to packets as they are received by the network card.
With SUD, these applications could run as untrusted SUD-
UML driver processes, with direct access to hardware,
and achieve good performance without the security threat.

7 CONCLUSION

SUD is a new system for confining buggy or malicious
Linux device drivers. SUD confines malicious drivers by
running them in untrusted user-space processes. To en-
sure that hardware devices controlled by untrusted drivers
do not compromise the rest of the system through DMA
or interrupt attacks, SUD uses IOMMU hardware, PCI ex-
press switches, and message-signaled interrupts. SUD can
run untrusted drivers for arbitrary PCI devices, without
requiring any specialized language or specification. Our
SUD prototype demonstrates support for Ethernet cards,
wireless cards, sound cards, and USB host controllers, and
achieves performance equal to in-kernel drivers with rea-
sonable CPU overhead, while providing strong isolation
from malicious drivers. SUD requires minimal changes to
the Linux kernel—a total of two kernel modules compris-
ing less than 4,000 lines of code—which may finally help
these research ideas to be applied in practice.

ACKNOWLEDGMENTS

We thank Austin Clements and M. Frans Kaashoek for
their feedback on this paper. Thanks to the anonymous
reviewers, and to our shepherd, Jaeyeon Jung, for helping
improve this paper as well.

REFERENCES

[1] Linux kernel i915 driver memory corruption vul-
nerability. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2008-3831.

[2] The L4Ka Project. http://l4ka.org/.

[3] Advanced Micro Devices, Inc. AMD I/O Virtualiza-
tion Technology (IOMMU) Specification, February
2006.

[4] M. Ben-Yehuda, J. Mason, J. Xenidis, O. Krieger,
L. van Doorn, J. Nakajima, A. Mallick, and
E. Wahlig. Utilizing IOMMUs for virtualization
in linux and xen. In Proceedings of the2006 Ottawa
Linux Symposium, Ottawa, Canada, July 2006.

[5] L. Butti and J. Tinnes. Discovering and exploiting
802.11 wireless driver vulnerabilities. Journal in
Computer Virology, 4(1), Feburary 2008.

[6] M. Castro, M. Costa, J. P. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast byte-granularity software fault isolation. In Pro-
ceedings of the 22nd ACM Symposium on Operating
Systems Principles, Big Sky, MT, October 2009.

[7] P. Chubb. Linux kernel infrastructure for user-level
device drivers. In In Linux Conference, 2004.

[8] F. M. David, E. M. Chan, J. C. Carlyle, and R. H.
Campbell. CuriOS: Improving reliability through
operating system structure. In Proceedings of the
8th Symposium on Operating Systems Design and
Implementation, San Diego, CA, December 2008.

[9] J. Dike. The user-mode Linux kernel home page.
http://user-mode-linux.sf.net/.

[10] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: software guards for system ad-
dress spaces. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation,
Seattle, WA, November 2006.

[11] A. Ganapathi, V. Ganapathi, and D. Patterson. Win-
dows XP kernel crash analysis. In Proceedings of
the 20th USENIX Large Installation System Admin-
istration Conference, Washington, DC, December
2006.

[12] V. Ganapathy, M. Renzelmann, A. Balakrishnan,
M. Swift, and S. Jha. The design and implemen-
tation of microdrivers. In Proceedings of the 13th
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, Seattle, WA, March 2008.

[13] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and
G. Hunt. Debugging in the (very) large: Ten years
of implementation and experience. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles, Big Sky, MT, October 2009.

13



[14] H. Härtig, J. Loeser, F. Mehnert, L. Reuther,
M. Pohlack, and A. Warg. An I/O architecture for
microkernel-based operating systems. Technical Re-
port TUD-FI03-08, TU Dresden, Dresden, Germany,
July 2003.

[15] J. N. Herder, H. Bos, B. Gras, P. Homburg, and
A. Tanenbaum. Fault isolation for device drivers. In
Proceedings of the2009 IEEE Dependable Systems
and Networks Conference, Lisbon, Portugal, June–
July 2009.

[16] Intel. Intel 64 and IA-32 Architectures Developer’s
Manual, November 2008.

[17] Intel. Intel Virtualization Technology for Directed
I/O, September 2008.

[18] R. Jones. Netperf: A network performance
benchmark, version 2.45, 2009. http://

www.netperf.org.

[19] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tol-
erating hardware device failures in software. In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles, Big Sky, MT, October
2009.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transac-
tions on Computer Systems, 18(4):263–297, Novem-
ber 2000.

[21] B. Leslie, P. Chubb, N. Fitzroy-dale, S. Götz,
C. Gray, L. Macpherson, D. Potts, Y. Shen, K. El-
phinstone, and G. Heiser. User-level device drivers:
Achieved performance. Journal of Computer Sci-
ence and Technology, 20, 2005.

[22] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Un-
modified device driver reuse and improved system
dependability via virtual machines. In Proceedings
of the 6th Symposium on Operating Systems Design
and Implementation, San Francisco, CA, December
2004.

[23] A. Menon, S. Schubert, and W. Zwaenepoel. Twin-
Drivers: semi-automatic derivation of fast and safe
hypervisor network drivers from guest os drivers. In
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages
and Operating Systems, Washington, DC, March
2009.

[24] PCI-SIG. PCI local bus specification, revision 3.0
edition, February 2004.

[25] PCI-SIG. PCI Express 2.0 base specification, revi-
sion 0.9 edition, September 2006.

[26] M. J. Renzelmann and M. M. Swift. Decaf: Moving
device drivers to a modern language. In Proceedings
of the 2009 USENIX Annual Technical Conference,
San Diego, CA, June 2009.

[27] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo:
Taming device drivers. In Proceedings of the ACM
EuroSys Conference, Nuremberg, Germany, March
2009.

[28] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and
G. Heiser. Automatic device driver synthesis with
Termite. In Proceedings of the 22nd ACM Sympo-
sium on Operating Systems Principles, Big Sky, MT,
October 2009.

[29] M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering device drivers. ACM Transactions
on Computer Systems, 24(4), November 2006.

[30] M. M. Swift, B. N. Bershad, and H. M. Levy. Im-
proving the reliability of commodity operating sys-
tems. ACM Transactions on Computer Systems,
22(4), November 2004.

[31] A. S. Tanenbaum and A. S. Woodhull. Operating
Systems: Design and Implementation. Prentice Hall,
1997.

[32] VMware. Configuration examples
and troubleshooting for VMDirect-
Path. http://www.vmware.com/pdf/

vsp 4 vmdirectpath host.pdf.

[33] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer,
and F. B. Schneider. Device driver safety through
a reference validation mechanism. In Proceedings
of the 21st ACM Symposium on Operating Systems
Principles, Stevenson, WA, October 2007.

[34] E. Witchel, J. Cates, and K. Asanovic. Mondrian
memory protection. In Proceedings of the 10th In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems,
San Jose, CA, October 2002.

[35] E. Witchel, J. Rhee, and K. Asanovic. Mondrix:
memory isolation for Linux using Mondriaan mem-
ory protection. In Proceedings of the 20th ACM Sym-
posium on Operating Systems Principles, Brighton,
UK, October 2005.

[36] N. Zeldovich, H. Kannan, M. Dalton, and
C. Kozyrakis. Hardware enforcement of application
security policies. In Proceedings of the 8th Sympo-
sium on Operating Systems Design and Implemen-
tation, pages 225–240, San Diego, CA, December
2008.

14


