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ABSTRACT

This paper presents the first wireless pairing protocol

that works in-band, with no pre-shared keys, and protects

against MITM attacks. The main innovation is a new key

exchange message constructed in a manner that ensures

an adversary can neither hide the fact that a message was

transmitted, nor alter its payload without being detected.

Thus, any attempt by an adversary to interfere with the

key exchange translates into the pairing devices detect-

ing either invalid pairing messages or an unacceptable

increase in the number of such messages. We analytically

prove that our design is secure against MITM attacks,

and show that our protocol is practical by implementing a

prototype using off-the-shelf 802.11 cards. An evaluation

of our protocol on two busy wireless networks (MIT’s

campus network and a reproduction of the SIGCOMM

2010 network using traces) shows that it can effectively

implement key exchange in a real-world environment.

1 INTRODUCTION

Recent trends in the security of home WiFi networks are

driven by two phenomena: ordinary users often strug-

gle with the security setup of their home networks [14],

and, as a result, some of them end up skipping security

activation [19, 26]. Simultaneously, there is a prolifera-

tion of WiFi gadgets and sensors that do not support an

interface for entering a key. These include WiFi sound

systems, medical sensors, USB keys, light and tempera-

ture sensors, motion detectors and surveillance sensors,

home appliances, and game consoles. Even new models

of these devices are unlikely to support a keypad because

of limitations on their form factor, style, cost, or func-

tionality. Responding to these two requirements—easing

security setup for home users, and securing devices that

do not have an interface for entering a key—the WiFi

Alliance has introduced the Push Button Configuration

(PBC) mechanism [26]. To establish a secure connec-

tion between two WiFi devices, the user pushes a button

on each device, and the devices broadcast their Diffie-

Hellman public keys [7], which they then use to protect

all future communication. PBC is a mandatory part of

the new WiFi Protected Setup certification program [27].

It is already adopted by the major WiFi manufacturers

(e.g., Cisco, NetGear, HP, Microsoft, Sony) and imple-

mented in about 2,000 new products from 117 different

companies [25].

Unfortunately, the PBC approach taken by the WiFi

Alliance does not fully address WiFi security. Diffie-

Hellman’s key-exchange protocol [7] protects against only

passive adversaries that snoop on the wireless medium to

obtain key exchange messages. Since the key exchange

messages are not authenticated in any way, the protocol is

vulnerable to an active man-in-the-middle (MITM) attack.

That is, an adversary can impersonate each device to

the other, convincing both devices to establish a secure

connection via the adversary. With WiFi increasingly

used in medical sensors that transmit a patient’s vital

signals [11] and surveillance sensors that protect one’s

home [16, 21], there is a concern that, being vulnerable

to MITM attacks, PBC may give users a false sense of

security [15, 26].

One may wonder why the WiFi Alliance did not

adopt a user-friendly solution that also protects against

MITM attacks. We believe the reason is that exist-

ing user-friendly solutions to MITM attacks require de-

vices to support an out-of-band communication chan-

nel [6, 10, 17, 18, 20, 22]. For example, devices can

exchange keys over a visual channel between an LCD and

a camera [18], an audio channel [10], an infrared chan-

nel [2], a dedicated wireless channel allocated exclusively

for key exchange [6], etc. Given the cost, size, and capa-

bility constraints imposed on many WiFi products, it is

difficult for the industry to adopt a solution that requires

an out-of-band communication channel.

This paper presents tamper-evident pairing (TEP), a

novel protocol that provides simple, secure WiFi pairing

and protects against MITM attacks without an out-of-band

channel. TEP can also be incorporated into PBC devices

and existing WiFi chipsets without hardware changes.

TEP’s main challenge in avoiding MITM attacks comes

from operating on a shared wireless network, where an

adversary can mask an attack behind cross traffic, making

it difficult to distinguish an adversary’s actions from legit-

imate traffic patterns. To understand this, consider a key

exchange between Alice and Bob, where Bob sends his

Diffie-Hellman public key to Alice. Lucifer, the adversary,

could tamper with this key exchange as follows:

• Collision: Lucifer can jam Bob’s message, causing a

collision, which would not look out-of-the-ordinary on

a busy wireless network. The collision prevents Alice

from decoding Bob’s message. Lucifer can now send

his own message to Alice, in lieu of Bob’s message,

perhaps with the help of a directional antenna so that

Bob does not notice the attack.
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Figure 1: The format of a tamper-evident announcement (TEA).

• Capture effect: Lucifer can transmit simultaneously

with Bob, but at a significantly higher power, to produce

a capture effect at Alice [24]. In this case, Alice will

decode Lucifer’s message, in which he impersonates

Bob, despite Bob’s concurrent transmission. Bob will

not know about Lucifer’s transmission.

• Timing control: Lucifer can try to impersonate Alice

by continuously occupying the wireless medium after

Bob sends out his key, so that Lucifer can send out a

message pretending to be Alice, but Alice does not get

a chance to send her legitimate key.

To address these attacks in TEP, we introduce a tamper-

evident announcement (TEA) primitive. The key charac-

teristics of a TEA message is that an attacker can neither

hide a TEA transmission from other nodes within radio

range, nor can it modify the content of the TEA without

being detected. Thus, a TEA provides stronger guarantees

than payload integrity because it also protects the fact that

a message was transmitted in the first place.

Fig. 1 shows the structure of a TEA. First, to ensure that

Lucifer cannot mask Bob’s TEA message by introducing

a collision, the TEA starts with an exceptionally long

packet. Since standard WiFi collisions are significantly

shorter, Alice needs to detect only exceptionally long

collisions (i.e., exceptionally long bursts of energy) as

potential attacks on the key exchange process.

Second, to ensure that Lucifer cannot alter the pay-

load of Bob’s TEA by transmitting his own message at

a high power to create a capture effect, we force any

TEA message to include silence periods. As shown in

Fig. 1, the payload of the TEA message is followed by a

sequence of short equal-size packets, called slots, where

the transmission of a packet is interpreted as a “1” bit,

and an idle medium is interpreted as a “0” bit. The bit

sequence produced by the slots must match a hash of the

TEA payload. If Lucifer overwrites Bob’s message with

his own, he must transmit slots corresponding to a hash

of his message, including staying silent during any zero

hash bits. However, since the hash of Lucifer’s message

differs from that of Bob’s message, Bob’s message will

show up on the medium during Lucifer’s “0” slots. Alice

will detect a mismatch between the slots and the message

hash and reject Lucifer’s message.

Third, to ensure that legitimate nodes do not mess up

the timing of Alice and Bob’s key exchange, the TEA

message includes a CTS-to-SELF, as shown in Fig. 1.

CTS-to-SELF is an 802.11 message that requires honest

nodes to refrain from transmitting for a time period spec-

ified in the packet. TEP leverages this message for two

goals. First, it uses it to reserve the medium for the dura-

tion of the TEA slots to ensure that legacy 802.11 nodes,

unaware of the structure of a TEA message, do not sense

the medium as idle and transmit during a TEA’s silent

slots. Second, TEP also uses CTS-to-SELF to reserve the

medium for a short period after the TEA slots, to enable

Alice to send her key to Bob within the interval allowed

by PBC. Once Alice starts her transmission, the medium

will be occupied, and honest 802.11 nodes will abstain

from transmitting concurrently. If Lucifer transmits dur-

ing the reserved time frame, Alice will still transmit her

TEA message, and cause a collision, and hence an invalid

TEA message that Bob can detect.

We build on TEA to develop the TEP pairing protocol.

TEP exploits the fact that any attempts to alter or hide

a TEA can be detected. Thus, given a pairing window,

any attempt by an adversary to interfere with the pairing

exchange translates into either an increase in the number

of TEA messages or some invalid TEA messages. This

allows the pairing devices to detect the attack and indicate

to the user that pairing has failed and that she should

retry. The cost of such a mechanism is that the user has to

wait for a pre-determined duration of the pairing window.

In §5.4, we describe how one may eliminate this wait by

having a user push the button on a device a second time.

This paper formalizes the above ideas to address possi-

ble interactions between the pairing devices, adversaries,

and other users of the medium, and formally proves that

the resulting protocol is secure against MITM attacks.

Further, we build a prototype of TEP as an extension to

the Ath5k driver [1], and evaluate it using off-the-shelf

802.11 Atheros chipsets. Our findings are as follows:

• TEP can be accurately realized using existing OS and

802.11 hardware. Specifically, our prototype sender

can schedule silent and occupied slots at a resolution

of 40µs, and its 95th percentile scheduling error is as

low as 1.65µs. Our prototype receiver can sense the

medium’s occupancy over periods as small as 20µs and

can distinguish occupied slots (“1” bits) from silent

slots (“0” bits) with a zero error rate.

• Results from running the protocol on our campus net-

work and applying the traces from the network during

the SIGCOMM 2010 conference, show that TEP never

confuses honest 802.11 traffic for an attack. Further-

more, though our implementation is for 802.11, it can

coexist with nearby Bluetooth devices which do not

respect TEP silent slots. In this case, TEP can still

perform a key exchange using 1.4 attempts, on average.

Contributions: This paper presents, to our knowledge,

the first wireless pairing protocol that defeats MITM at-

tacks without any key distribution or out-of-band channels.

2



It does so by introducing TEA, a new key exchange mes-

sage constructed in a manner that ensures an adversary

can neither hide the fact that a message was transmitted,

nor alter its payload without being detected. Our proto-

col is prototyped using off-the-shelf 802.11 devices and

evaluated in production WiFi networks.

2 RELATED WORK

There has been a lot of interest in user-friendly secure

wireless pairing, which has led to a number of innovative

solutions [2, 6, 10, 17, 18, 20, 22]. TEP builds on this

foundational work. However, TEP is the first to provide a

secure pairing scheme that defeats MITM attacks without

out-of-band channels, or key distribution or verification.

Closest to TEP is the work on integrity codes [5], which

protects the integrity of a message’s payload by inserting

a particular pattern of ON-OFF slots. Integrity codes,

however, assume a dedicated out-of-band wireless chan-

nel. In contrast, on shared channels, honest nodes may

disturb the ON-OFF pattern by acquiring the medium

during the OFF slots. Further, the attacker can hide the

fact that a message was transmitted altogether, by using

collisions or a capture effect. We build on integrity codes,

but introduce TEA, a new communication primitive that

not only protects payload integrity but also ensures that an

attacker cannot hide that a message was transmitted. We

further construct TEP by integrating TEA with the 802.11

standard, the PBC protocol, and the existing OS network

stack. Finally, we implement TEP on off-the-shelf WiFi

devices and evaluate it in operational networks.

TEP is also related to work on secure pairing, which

traditionally required the user to either enter passwords

or PINs [3, 4, 12], or distribute public keys (e.g., STS [8],

Radius in 802.11i [13], or any other public key infras-

tructure). These solutions are appropriate for enterprise

networks and for a certain class of home users who are

comfortable with security setup. However, the need to

ease security setup for non-technical home users has moti-

vated multiple researchers to propose alternative solutions

for secure pairing. Most previous solutions use a trusted

out-of-band communication channel for key exchange.

The simplest channel is a physical wired connection be-

tween the two devices. Other variants of out-of-band

channels include the use of a display and a camera [18],

an audio-based channel [10], an infra-red channel [2],

a tactile channel [22], or an accelerometer-based chan-

nel [17]. While these proposals protect against MITM

attacks, many devices cannot incorporate such channels

due to size, power, or cost limitations. In contrast, TEP

eases the security setup for home users and defeats MITM

attacks, without any out-of-band channel.

Finally, multiple user studies [14, 19, 26] have empha-

sized the difficulty in pairing devices for ordinary users.

Our work is motivated by these studies. TEP requires the
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Figure 2: A timeline depicting the operation of Push Button Con-

figuration (PBC) between an enrollee and a registrar.

user to just push a button on each device—exactly as in

PBC—and does not require any additional user involve-

ment in key generation or verification.

3 PBC AND 802.11 BACKGROUND

3.1 Push Button Configuration

The WiFi-Alliance introduced the Push Button Configura-

tion (PBC) mechanism to ease the security setup process

for ordinary users, and to deal with devices that do not

have an interface to enter passwords or PINs. In this

section, we provide an overview of how PBC works.

Consider a home user who wants to associate an en-

rollee (PBC’s term for the new device, e.g., a gaming

console) with a registrar (PBC’s term for, effectively,

the access point). The user first pushes a button on the

enrollee and then, within 120 seconds (called the walk

time), pushes the button on the registrar. Once the but-

tons are pushed on the two devices, the devices perform a

Diffie-Hellman key exchange to establish a secret key.

As shown in Fig. 2, once the button is pushed on the en-

rollee, it periodically sends probes [26] requesting replies

from registrars whose PBC button has been pressed. Once

the enrollee receives a reply, it makes a note of the reply

and continues to scan all the 802.11 channels for addi-

tional replies. If the enrollee receives replies from more

than one registrar, across all 802.11 channels, it raises a

session overlap error, indicating that the user should try

again later. On the other hand, if it receives a reply from

only one registrar, it proceeds with the registration proto-

col, using the Diffie-Hellman key from that one reply.

A registrar, for its part, stays on its dedicated channel,

and replies to probe requests only if the user has pushed

its PBC button. Once the button is pushed, the registrar

replies to PBC requests from potential enrollees. To detect

conflicts, the registrar checks for requests in the last 120

seconds. If there are requests from more than one enrollee,

the registrar signals a session overlap error and refuses

to perform the PBC registration protocol, requiring the

user to retry. If there was only one enrollee request, the

registrar proceeds with the registration protocol using the

Diffie-Hellman public key from that one request.
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While PBC’s use of Diffie-Hellman protects the de-

vices from eavesdropper attacks, an active adversary can

hide or change any of the messages, by resorting to colli-

sions, capture effect attacks, or hogging the medium and

delaying these messages. This allows an adversary to gain

access to the user’s registrar (e.g., their home network),

the enrollee device, or to intercept and alter any future

messages between the enrollee and registrar. Defending

against such adversaries requires a system that is robust

to MITM attacks, which is the main contribution of TEP.

3.2 802.11

Since our protocol involves low-level details of the 802.11

standard, we summarize the relevant aspects of 802.11

in this section. 802.11 requires nodes to sense the wire-

less medium for energy, and transmit only in its absence.

802.11 nodes can transmit using a range of bit rates, with

the minimum bit rate of 1 Mbps. Coupling this with the

fact that the maximum packet size used by higher layers

is typically 1500 bytes, an honest node can occupy the

channel for a maximum of 12 ms. 802.11 requires back-

to-back packets to be separated by an interval called the

DCF Inter-Frame Spacing (DIFS), whose value can be

34µs, 50µs, or 28µs, depending on whether the network

uses 802.11a, b, or g. 802.11 acknowledgment packets,

however, can be transmitted after a shorter duration of

10µs, called the Short Inter-Frame Spacing (SIFS).

4 SECURITY MODEL

TEP addresses the problem of authenticating key ex-

change messages between two wireless devices, in the

presence of an active adversary that may try to mount a

man-in-the-middle attack.

4.1 Threat Model

The adversary can eavesdrop on all the signals on the chan-

nel, including all prior communications. The adversary

can also be active and transmit with an arbitrary power, at

any time, thereby corrupting or overpowering other con-

current transmissions. The adversary may know the TEP

protocol, the precise times when devices transmit their

announcements, and their exact locations. In addition, the

adversary can know the exact channel between the pairing

devices, and the channel from the pairing devices to the

adversary. The adversary can also be anywhere in the

network and is free to move. Multiple adversaries may

exist in the network and can collude with each other.

The adversary can have access to state-of-the-art RF

technologies: he can have a multi-antenna system, he may

be able to simultaneously receive and transmit signals,

and he can use directional antennas to ensure that only

one of the pairing devices can hear its transmissions.

The adversary, however, does not have physical control

over the pairing devices or their surroundings. Specifi-

cally, the adversary cannot place either of the two devices

Term Definition

Tamper-evident

announcement

A wireless message whose presence and the in-

tegrity of its payload are guaranteed to be detected

by every receiver within radio range (Figure 1).

Synchronization

packet

An exceptionally long packet whose presence in-

dicates a TEA. To detect a synchronization packet,

it is sufficient to detect that the medium is contin-

uously occupied for the duration of the synchro-

nization packet, which is 19 ms.

Payload packet The part of a TEA containing the data payload

(e.g., a device public key).

ON-OFF slot The interval used to convey one bit from sender

to receiver. The slot time is 40µs. The bits in the

slots are balanced, as described in §5.1.2.

Occupied/ON slot A slot during which the medium is busy with a

transmission.

Silent/OFF slot A slot during which the medium is idle.

Sensing

window

The interval over which the receiver collects ag-

gregate information for whether the medium is

occupied or silent.

Fractional

occupancy

The fraction of time the medium was busy during

a sensing window.

Table 1: Terminology used to describe TEP.

in a Faraday cage to shield all signals. We also assume

that the adversary cannot break traditional cryptographic

constructs, such as collision-resistant hash functions.

Finally, we assume that the PBC buttons operate accord-

ing to the PBC standard [26] and that the user performs

the PBC pairing as prescribed in the standard, i.e., the

user puts the two devices in range then pushes the buttons

on the two devices within 120 seconds of each other.

4.2 Security Guarantees

Under the assumptions outlined above, TEA guarantees

that an adversary cannot tamper with the payload of a

TEA message, or mask the fact that a TEA message was

transmitted. Building on the TEA mechanism, TEP guar-

antees that in the absence of an active adversary, two

pairing devices can establish secure pairing. In the pres-

ence of an adversary who is actively mounting MITM

attacks (or in the presence of more than two devices at-

tempting to pair at the same time), TEP ensures that the

pairing devices will signal an error and never be tricked

into pairing with the adversary (or, more generally, with

the wrong device). In other words, TEP provides the PBC

security guarantees augmented with protection against

MITM attacks.

5 TEP DESIGN

TEP’s design is based upon the TEA mechanism, a uni-

directional announcement protocol that guarantees that

adversaries cannot tamper with or mask TEA messages

without detection. TEP uses TEA to exchange public

keys between the PBC enrollee and registrar in a way that

resists MITM attacks. At a high level, when an enrollee

enters PBC mode, it sends out a TEA message containing

its public key. When a registrar in PBC mode receives
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this message (or suspects that an adversary may have tried

to tamper with or mask such a message), it responds with

its own public key. Both the enrollee and the registrar

collect all TEA messages received during PBC’s walk

time period. If, during that time, each received exactly

one unique public key (and no tampered messages), they

can conclude that this public key came from the other

party, and can use it for pairing. Otherwise, PBC reports

a session overlap error (e.g., because multiple enrollees

or registrars were pairing at the same time, or because an

adversary interfered), and asks the user to retry.

The rest of this section describes our protocol in more

detail, starting with the TEA mechanism, using terminol-

ogy defined in Table 1.

5.1 Tamper-Evident Announcement (TEA)

The goal of TEA is to guarantee that if an attacker tampers

with the payload of a TEA message, or tries to mask the

fact that a message was transmitted at all, a TEA receiver

within communication range will detect such tampering.

In other words, TEA receivers will always detect when a

TEA message was, or may have been, transmitted.

To provide this guarantee, TEA messages have a spe-

cialized structure, as shown in Figure 1. First, there is a

synchronization packet, which protects the TEA’s trans-

mission from being masked, by unambiguously indicating

to a TEA receiver that a TEA message follows. The syn-

chronization packet contains random data, to ensure that

an adversary cannot cancel out its energy.1

Second, the TEA message contains the announcement

payload. The payload is always of fixed length, to ensure

that an adversary cannot truncate or extend the payload in

flight, but otherwise has no restrictions on its content or

encoding. In our pairing protocol, the payload of a TEA

message contains the sender’s Diffie-Hellman public key,

along with other registration information.

Third, the TEA message contains ON-OFF slots, which

guarantee that any tampering with a TEA payload is de-

tectable. Similar to the synchronization packet, the con-

tent of the ON slots is randomized. The first two slots, as

shown in Fig. 3, encode the direction flag, which defines

whether this TEA message was sent by an enrollee (called

a TEA request, flag value “10”) or by a registrar (called a

TEA reply, flag value “01”). The remaining slots contain

a cryptographic hash of the payload. While it is possible

to also encode the payload using slots, it would be ineffi-

cient for long payloads, and unnecessary, since protecting

a cryptographic hash suffices. To detect tampering, TEA

encodes all slots in a way that guarantees that exactly half

of the slots are silent, as we describe in §5.1.2.

1In practice, it is very hard to cancel a signal in flight but in theory

an attacker that knows the transmitted signal and the channels to the

receiver can construct a signal that cancels out the original signal at the

receiver. Making the data random eliminates this option.

Direction
Hash of

the message

128 bits2 bit

Figure 3: Data encoded in the ON-OFF slots. The first two bits

specify the direction of the message, and the rest of the bits contain

a cryptographic hash of the payload.

5.1.1 Detecting tampering

To determine if an adversary may have tampered with a

TEA message, a TEA receiver performs several checks.

First, the receiver continuously monitors the medium for

possible synchronization packets. If it detects any burst

of energy at least as long as the synchronization packet,

it interprets it as the start of a TEA announcement. The

receiver conservatively assumes that any such period of

energy is a TEA message, and signals a missed message

if it is unable to decode and verify the subsequent payload.

To minimize false positives, we choose a synchronization

packet that is longer than any regular contiguous WiFi

transmission. An adversary cannot cancel out a legitimate

synchronization packet because the adversary cannot elim-

inate the power on the channel. In fact, since the payload

of the synchronization packet is random, the adversary

cannot cancel the power from the packet even if he knows

the exact channel between Alice and Bob, and is fully

synchronized with the transmitter. Thus, an adversary

cannot tamper with the presence of a TEA message by

masking it out.

Second, once a TEA receiver detects the start of a TEA

announcement, it attempts to decode the payload packet

and the hash bits in the ON-OFF slots. If the receiver can-

not decode the payload (i.e., the packet checksum fails),

it indicates tampering. If the payload is decoded, the re-

ceiver verifies that the hash bits match the hash of the

payload– i.e., it verifies that hashing the payload produces

the same bits in the ON-OFF slots and that the number of

ON slots is equal to that of OFF slots. If the receiver can-

not verify the hash bits, it conservatively assumes that an

adversary is tampering with the transmission. Once tam-

pering is detected, the receiver signals a session overlap

error (as in PBC), requiring the user to retry later.

5.1.2 Balancing the ON-OFF Slots

An adversary can transform an OFF slot to an ON slot

(by transmitting in it) but cannot transform an ON slot to

an OFF slot. Hence, to ensure that the adversary cannot

tamper with even a single OFF slot without being detected,

we make the number of the OFF slots in a TEA message

equal to that of the ON slots, i.e., we balance the slots. The

number of slots is fixed by the TEP protocol, thus avoiding

truncation or extension attacks. Since the direction flag is

already encoded in two balanced bits, we now focus on

balancing the rest of the slots.
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Our balancing algorithm takes the hash bits of the TEA

payload and produces a balanced bit sequence to be sent

in the ON-OFF slots. One inefficient but simple trans-

formation is to use Manchester encoding of the hash bits

to produce a balanced output bit sequence with twice as

many output bits. TEA, however, introduces an efficient

encoding that takes an even number, N, of input bits and

produces M = N + 2⌈logN⌉ output bits which have an

equal number of zeros and ones. The details of our effi-

cient encoding algorithm are presented in Appendix A.

5.1.3 Interoperating with 802.11

To interoperate with other 802.11 devices that may not be

TEA-aware, the ON-OFF slots are preceded by a CTS-

to-SELF packet, which reserves the medium for the TEA

message. This serves two purposes. First, since the sender

does not transmit during the OFF slots, another 802.11

node could sense the wireless medium to be idle for more

than a DIFS period, and start transmitting its own packet

during that OFF slot. The 802.11 standard requires 802.11

nodes that hear a CTS-to-SELF on the channel to abstain

from transmitting for the period mentioned in that packet,

which will ensure that no legitimate transmission overlaps

with the slots. Second, in case of a TEA message from an

enrollee to a potential registrar, the CTS-to-SELF packet

reserves the medium so that the registrar can immediately

reply with its own TEA message. This prevents legiti-

mates nodes from hogging the medium and delaying the

registrar’s response. However, reserving the channel for

the entire length of a TEA message is inefficient, if no

registrar is present. To avoid under-utilization of the wire-

less medium, the enrollee’s CTS-to-SELF only reserves

the channel for a DIFS period past its slot transmissions.

If a PBC-activated registrar is present, it must start trans-

mitting its response message within the DIFS period. On

the other hand, if there is no registrar, other legitimate

devices will resume transmissions promptly.

To maximize the probability that all devices can decode

the CTS-to-SELF, it is transmitted at the most robust bit

rate of 1 Mbps. Current 802.11 implementations obey a

CTS-to-SELF that reserves the channel up to 32 ms. Our

TEA message requires 144 slots,2 and the slot duration is

40 µs (§6). This translates to about 5.8 ms, which is less

than the 32 ms allowed by the CTS-to-SELF.

Finally, as shown in Figure 1, there is a gap between

the synchronization and payload packets. If this gap is

large, other 802.11 nodes would sense an idle wireless

medium, and start transmitting, thus appearing to tamper

with the TEA. To avoid this, we exploit the fact that

2Two of the slots are for the direction bit, and the remaining 142

are for the bit-balanced hash bits. More specifically, the bit balancing

algorithm, in §5.1.2, takes N input bits and outputs N + 2⌈logN⌉ bits.

Since the hash is a 128 bit function, the bit balancing algorithm produces

142 bit balanced hash bits.

802.11 nodes are only allowed to transmit if they find

the medium continuously idle for a DIFS. Thus, a TEA

sender sends the payload packet immediately after the

synchronization packet with a gap of a Short Interframe

Space (SIFS), which is much less than DIFS.

5.1.4 API Summary

The interface provided by TEA is as follows. For the

sender side, there is a single blocking function,

• void TEA SEND (bool dir, str msg, time t),

which sends an announcement containing payload msg.

The dir flag specifies the direction of the message, that

is, whether it is a request message (from the enrollee)

or a reply message (from the registrar). Time t specifies

the deadline by which the message must start transmis-

sion. The TEA sender tries to respect carrier-sense in

the medium access control (MAC) protocol, and waits

until the medium is idle before transmitting its message.

However, if the message cannot be transmitted by time t

(e.g., because an adversary is hogging the medium), the

sender overrides the MAC’s carrier-sense, and transmits

the announcement anyway, so that recipients will detect

tampering. Note that the CTS-to-SELF requires honest

nodes to release the medium for the registrar to transmit

its own TEA reply.

For the receiver side, TEA provides two functions,

• handle TEA RECV START (bool dir), and

• msg list TEA RECV GET (handle h).

The first function, TEA RECV START, starts listening

on the wireless medium for TEA messages that are ei-

ther requests (from an enrollee) or replies (from a reg-

istrar), based on the dir flag. The second function,

TEA RECV GET, is used to retrieve the set of messages

accumulated by the receiver since TEA RECV START or

TEA RECV GET was last invoked. If TEA RECV GET

could not decode a possible TEA message (or verify that it

was not tampered with), it returns a special value RETRY,

which causes the caller (i.e., TEP) to re-run its proto-

col. As an optimization, if all of the TEA messages that

TEA RECV GET was unable to decode were overlapping

with the receiver’s own transmissions (i.e., a concurrent

TEA SEND), TEA RECV GET returns a special value

OVERLAP instead of RETRY. We describe in §6.4 how

a node detects TEA messages that overlap with its own

transmissions, and in Appendix B how we use the overlap

information to optimize wireless medium utilization.

5.2 Securing PBC using TEA

Using the TEA mechanism, we will now describe how

TEP—a modified version of the PBC protocol—avoids

man-in-the-middle attacks.
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Once the button is pressed on the enrollee, the enrollee

repeatedly scans the 802.11 channels in a round robin

manner, as in the current PBC protocol. On each channel,

the enrollee transmits a TEA request, i.e., a TEA message

with the direction flag set to “10”. The TEA request con-

tains the enrollee’s public key (and any PBC information

included in an enrollee’s probe). If an adversary continu-

ously occupies the medium for tx tmo (e.g., 1 second), the

enrollee overrides carrier-sense and transmits its message

anyway. The enrollee then waits for a TEA response from

a registrar, which is required to immediately respond. The

enrollee records the responses, if any, and after a speci-

fied period on each channel it moves to the next 802.11

channel and repeats the process. The enrollee continues

to cycle through all 802.11 channels for PBC’s walk time

period. The enrollee’s logic corresponds to the following

pseudo-code to build up r, the set of registrar responses:

r←∅

for 120 sec+#channels× (tx tmo+2× tea duration)
do ⊲ walk time + max enrollee scan period

switch to next 802.11 channel

h← TEA RECV START (reply)
TEA SEND (request, enroll info, now+ tx tmo)
SLEEP (tea duration)
r← r ∪ TEA RECV GET (h)

end for

A registrar follows a similar protocol. Once the PBC

button is pressed, the registrar starts listening for possible

TEA requests on its 802.11 channel. Every time a TEA

message is received, the registrar records the message

payload, and immediately sends its own TEA message in

response, containing the registrar’s public key. It is safe

to reply immediately because the sender’s TEA message

ended with a CTS-to-SELF, which reserved the medium

for the registrar’s reply. The registrar’s pseudo-code to

build up e, the set of enrollee messages, is as follows:

e←∅

h← TEA RECV START (request)
for 120 sec+#channels× (tx tmo+2× tea duration)

do ⊲ walk time + max enrollee scan period

m← TEA RECV GET (h)
if m 6= ∅ then ⊲ enrollee, RETRY, or OVERLAP

e← e ∪ m

TEA SEND (reply, registrar info, now)
⊲ send reply immediately

end if

end for

After the PBC’s walk time expires, both the enrollee

and the registrar check the list of received messages. Suc-

cessful pairing requires that both the enrollee and the

registrar receive exactly one unique public key via TEA

messages, and that no messages were tampered with (i.e.,

TEA RECV GET never returned RETRY or OVERLAP). If

exactly one public key was received, it must have been the

public key of the other party, and TEP can safely proceed

with pairing. If more than one public key was received,

or RETRY or OVERLAP was returned, then a session over-

lap error is raised, indicating that more than one pair of

devices may be attempting to pair, or that an adversary is

mounting an attack. In this situation, the user must retry

pairing.

5.2.1 Reducing Medium Occupancy

The protocol described above is correct and secure (as

we will prove in §7.1). However, it can be inefficient if

somehow multiple registrars transmit overlapping replies

at almost the same time. Each of them will then assume

it may have missed a request from some enrollee (since it

sensed a concurrent TEA message), and each will re-send

its reply. This cycle may continue for the walk time of 120

seconds, unnecessarily occupying the wireless medium.

In Appendix B, we describe an optimization that avoids

this situation and we prove that the optimized protocol

maintains the same security guarantees.

5.3 Example scenarios

Figure 4 shows how TEP works in five potential scenar-

ios. In scenario (a), there is no attacker. In this case,

the enrollee sends a request to which the registrar replies

immediately. The two devices can thus proceed to com-

plete pairing after 120 seconds. In scenario (b), the en-

rollee transmits its request, but the attacker immediately

jams it so that the registrar can not decode the enrollee’s

request. However, the registrar detects a long burst of

energy, which the registrar interprets as a TEA announce-

ment, causing it to reply to the enrollee.

In scenario (c), the enrollee sends the request; the at-

tacker then captures the medium at the same time as the

registrar, and transmits a reply, at a high power, imperson-

ating the registrar. Because of capture effect, the enrollee

decodes the message payload from the attacker. But since

the registrar and the attacker transmit the hash function

of different messages in the ON-OFF slots, the enrollee

notes that the slots do not have equal number of zeros and

ones and hence detects tampering with the announcement.

In scenario (d), the adversary sends a request message

in an attempt to gain access to the registrar; as stipulated

by TEP, the registrar replies to this request. However,

since the registrar waits for 120 seconds before complet-

ing the pairing, it also hears the request from the enrollee.

Since the registrar receives requests from two devices, it

raises a session overlap error.

Finally, in scenario (e), the adversary sends a TEA re-

quest, receives the registrar’s reply, and then continuously

jams the enrollee using a directional antenna. By using

a directional antenna, the adversary ensures that the reg-

istrar does not detect the jamming signal and hence does

not interpret it as an invalid TEA. The enrollee carrier-
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Figure 4: Timelines of five example runs of the TEP protocol.

senses, detects that the medium is occupied, and does not

transmit until it times out after tx tmo seconds, at which

point it ignores carrier sense and transmits its TEA re-

quest. The registrar listens to this request message and

detects the presence of the enrollee. Since the registrar

receives requests from two devices, it raises a session

overlap error.

5.4 Making Pairing Faster

The extension of PBC to use TEA, described above, re-

quires the enrollee and registrar to wait for 120 seconds

before completing the association process. If the enrollee

does not wait for a full 120 seconds, and simply picks

the first responding registrar, it may pick an adversary’s

registrar—a legitimate registrar only replies when its PBC

button has been pushed, and the user might push the reg-

istrar’s PBC button slightly later than the enrollee’s. Be-

cause the enrollee does not know if the user has already

pushed the registrar’s button, it has to wait for 120 sec-

onds to be sure that the user has pushed the button. In this

section, we describe how one can eliminate this delay.

First, if the user always pushes the enrollee’s button

before the registrar’s button, then the registrar does not

need to wait for 120 seconds; the registrar needs to wait

for just the time it takes an enrollee to cycle through all

of 802.11’s channels (which is less than 12s). Second, we

can also eliminate the enrollee’s wait time. Specifically,

if the user explicitly tells the enrollee that the registrar’s

button was pushed, the enrollee can complete the associa-

tion process after one cycle through the 802.11 channels,

eliminating the additional wait time.

For example, one approach would be to have the user

first press the button on the enrollee, then press the button

on the registrar, and then again push the button on the

enrollee. Note that, in this approach, the registrar does

not have to wait for 120 seconds: because the registrar’s

button is always pushed after the enrollee, the registrar

knows that the enrollee is active, and is guaranteed to see

the enrollee’s TEA message within the time required for

the enrollee to cycle through all 802.11 channels. (Of

course, if the 120 second period expires on the enrollee

without any additional button pushes, the enrollee can pro-

ceed to completion as before, with 2 total button pushes

from the user.)

6 TEA ON OFF-THE-SHELF HARDWARE

We implement TEA on Atheros AR5001X+ chipsets by

modifying the ath5k driver, and running TEA’s timing-

sensitive code in a kernel driver.

6.1 Scheduling Slot Transmission

To reduce the air time of a TEA, we must minimize the

size of a single slot packet in the ON-OFF slots. Since

the slot packet’s payload need not be decoded (just the

presence or absence of a slot packet conveys a 1 or 0 bit),

we transmit slot packets at the highest bitrate, 54 Mbps,

for a total of 40 µs.

In addition to reducing the size of a slot packet, TEA

must transmit slot packets at precise slot boundaries.

Queueing in the kernel and carrier-sense in the card make

precise transmission timing challenging. We avoid ker-

nel queueing by implementing TEA in a kernel driver

and using high-resolution timers. We avoid delays in the

wireless card itself through several changes to the card

firmware and driver, as follows. For the duration of the

slots, we disable binary exponential backoff (802.11 BEB)
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by setting CWMIN and CWMAX to 1. To prevent carrier-

sense backoff, we disable automatic noise calibration by

setting the noise floor register to “high”. We place slot

packets in the high-priority queue. Finally, we disable the

transmitter’s own beacons by disabling the beacon queue.

In aggregate, these changes allow us to make slot packets

as short as 40 µs and maintain accurate slot timing.

6.2 Energy Detection at the Receiver

A TEA receiver detects a synchronization packet and dis-

tinguishes ON from OFF slots by checking the energy

level on the medium. Hence, the receiver needs to dis-

tinguish the noise level, which is around -90dB, from an

actual transmission. To do this, we set the noise floor

to -90dB and deactivate auto-calibration while running

TEP.3

While an ideal receiver would detect energy at the finest

resolution (i.e., every signal sample), existing wireless

chipsets do not give access to these samples. Instead,

we exploit two registers provided by the ath5k firmware:

AR5K PROFCNT CYCLE and AR5K PROFCNT RXCLR.

The first register is incremented every clock cycle based

on the clock on the wireless hardware. The second register

on the other hand is increment only if the hardware finds

high energy during that clock cycle.

Using these registers, we define a sensing window (SW)

as the interval over which the receiver collects aggregate

information for whether the medium is occupied or silent,

as defined in Table 1. At the beginning of a SW, a TEA re-

ceiver resets both registers to 0, and reads them at the end

of the SW. The ratio of these two registers at the end of

the SW, AR5K PROFCNT RXCLR
AR5K PROFCNT CYCLE

, is defined as the fractional

occupancy. By putting a threshold on the fractional occu-

pancy, a TEA receiver can detect whether the medium is

occupied in a particular SW, and hence can detect energy

bursts and measure their durations in units of the sensing

window. Similar to the sender, a TEA receiver runs in the

kernel to precisely schedule sensing windows.

Our implementation dynamically adjusts the length of

the sensing window to minimize system overhead. The

TEA receiver uses a long sensing window of 2 ms, un-

til it detects a burst of energy longer than 17 ms. This

indicates a synchronization packet, at which point the

receiver switches to a 20 µs sensing window to accurately

measure energy during slots, providing on average two

sensing window measurements for every slot.

3 There is a tradeoff between the noise floor and the permissible

distance between the pairing devices. In particular, pairing devices

separated by large distances have a weak signal and hence, to ensure

detection, the noise floor should be set to a low value. On the other

hand, pairing devices that are closer have a stronger signal, and hence

the noise floor can be set to a higher value. We pick -90dB because it is

the default noise floor value in typical WiFi implementations. Manufac-

turers, however, can pick a higher default value, as long as the pairing

devices are placed closer to each other.

The receiver must be careful to ensure that a 20 µs sens-

ing window allows accurate detection of slot occupancy.

But, because the sender and receiver are not synchronized,

sensing windows may not be aligned with slots, and in

the worst case, will be off by half a sensing window, i.e.,

10 µs. However, having a sensing window that is half

the length of a slot ensures that at least one of every two

sensing windows is completely within a slot (i.e., does not

cross a slot boundary). Thus, to measure slot occupancy,

the receiver compares the variance of odd-numbered sens-

ing window measurements and even-numbered sensing

window measurements, and uses the one with the highest

variance. Because the slots are bit-balanced, the correct

sequence will have an equal number of ones and zeros,

having the higher variance.

This technique for measuring slot occupancy is secure

in the presence of an adversary. As we will prove in

Proposition 7.1, an adversary can introduce energy, but

cannot cancel energy in an occupied slot. Thus, the adver-

sary can only increase – but cannot reduce– the computed

occupancy ratios in either the odd or the even windows.

As a result, the adversary cannot create a different bit

sequence in either the odd or even windows which still

has an equal number of ones and zeros. Thus, sampling

at twice the slot rate maintains TEA’s security guarantees.

6.3 Sending A Synchronization Packet

To transmit a long synchronization packet, TEA trans-

mits the maximum-sized packet allowed by our hardware

(2400 bytes) at the lowest bit rate (1 Mbps), resulting in a

19 ms synchronization packet. While many receivers drop

such long packets (the maximum packet size permissible

by the higher layers is 1500 bytes), this does not affect a

TEA receiver, since it does not need to decode the packet;

it only needs to detect a long burst of energy.

6.4 Checking for TEA While Transmitting

While executing the TEP protocol (which lasts for 120

seconds), a node must detect TEA messages transmitted

by other nodes even if they overlap with its own trans-

missions. We distinguish two cases: First, when the node

transmits a standard 802.11 packet, it conservatively as-

sumes that the channel has been occupied by part of a

synchronization packet for the duration of its transmis-

sion. The node samples the medium before and after its

transmission, checking for continuous occupancy by a

synchronization packet. As our evaluation shows (§7.3),

the longest packets in operational WiFi networks are about

4 ms (a collision of two packets sent at the lowest 802.11g

rate of 6 Mb/s), making synchronization packet false pos-

itives unlikely even with the conservative assumption that

the entire 4 ms transmission overlapped with part of a
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synchronization packet (19 ms).4

Second, a node that is transmitting a TEA request must

not miss a concurrently transmitted TEA reply, and simi-

larly a node that is transmitting a reply must not miss a

concurrent request. To detect partially-overlapping TEA

messages, a node samples the medium before and after

every synchronization packet, and after the slots of every

TEA message, and if it detects energy, it assumes that it

may have missed an overlapping TEA message (and thus,

TEA RECV GET will return OVERLAP, unless it observes

other possibly-missed messages, in which case it will re-

turn RETRY.) Since the total length of the ON-OFF slots

is shorter than the length of the synchronization packet,

sampling the medium after the end of a synchronization

packet (i.e., before the start of the payload and slots) and

after the end of the slots suffices to detect an overlapping

synchronization packet. Finally, in the case when two

TEA messages are perfectly synchronized, the node uses

the direction bits to detect a collision. Since the direction

flag for a request is “10” and a reply “01”, the node checks

for this scenario by checking the energy level during the

OFF slot in the direction field in its own transmission. If

the OFF slot shows a high energy level, TEA RECV GET

will return OVERLAP (or RETRY, if there are other missed

messages).

7 EVALUATION

We evaluate TEP along three axes: security, accuracy, and

performance. Our findings are as follows:

• TEP is provably secure to MITM attacks.

• TEP can be accurately realized using existing OS and

802.11 hardware. Specifically, our prototype sender can

schedule ON-OFF slots at a resolution of 40µs, and

its 95th percentile scheduling error is as low as 1.65µs.

Our prototype receiver can sense the medium’s occu-

pancy over periods as small as 20µs and can distinguish

ON slots from OFF slots with a zero error rate.

• Results from two operational networks—our campus

network and SIGCOMM 2010—show that TEP never

confuses cross traffic for an attack. Further, even in

the presence of Bluetooth devices which do not obey

CTS-to-SELF and may transmit during TEP’s OFF

slots, TEP can perform key exchange in 1.4 attempts,

on average.

7.1 Evaluating TEP’s Security

We analyze TEP’s security using the threat model in §4.1.

To do so, we formally state our definitions, then prove

that a TEA is tamper resistant and that wireless pairing

using TEP is secure to MITM attacks.

4Note that even if some networks have normal packets that are much

larger than 4 ms, this may create false positives but does not affect the

security of the protocol.

Definition Tamper evident: A message is said to be tam-

per evident if an adversary can neither change the mes-

sage’s content without being detected nor hide the fact

that the message has been transmitted.

Before we proceed to prove that a TEA is tamper ev-

ident we first prove the following proposition about the

capability of an adversary.

Proposition 7.1 Let s(t) be the transmitted signal, and

h(t) be the channel impulse function. Assuming the trans-

mitted signal is unpredictable, and the receiver is within

radio range of the sender, an adversary cannot cancel the

signal energy at the receiver even if he knows the channel

function between the sender and receiver, h(t).

Proof The received signal is a convolution of the trans-

mitted signal and the channel impulse function, plus the

adversary’s signal a(t), plus white Gaussian noise n(t),
i.e., r(t) = h(t)∗s(t)+a(t)+n(t). To cancel the received

energy, the adversary needs to produce a signal a(t) so

that r(t)≈ n(t), or equivalently, h(t)∗ s(t)+a(t)≪ n(t).
Since the receiver is within radio range of the sender,

we know h(t)∗ s(t)≫ n(t), and, since n(t) is physically

unpredictable, that a(t)≈−h(t)∗ s(t). But an adversary

that can compute such an a(t) directly contradicts our as-

sumption that s(t) is unpredictable, and thus an adversary

cannot compute such an a(t). �

Since the synchronization packet and ON slots have

random contents, Prop. 7.1 implies that an adversary can-

not hide the channel energy during the transmission of the

synchronization packet or the ON slots from a receiver.

Based on this result we proceed to prove the following:

Proposition 7.2 Given the transmitter and receiver are

within range, and the receiver is sensing the medium, a

TEA, described in 5.1, is tamper evident.

Proof We prove Prop. 7.2 by contradiction. Assume that

one party, Alice, sends a TEA to a second party, Bob. Sup-

pose that Alice’s TEA to Bob fails to be tamper-evident.

This can happen because the adversary succeeds either in

hiding from Bob that Alice sent a TEA, or in changing

the TEA content without being detected by Bob. To hide

Alice’s TEA, the adversary must convince Bob that no

synchronization packet was transmitted. This requires

the adversary to cancel the energy of the synchronization

packet at Bob, which contradicts Prop. 7.1. Thus, the

adversary must have changed the announcement content.

Suppose the adversary changed the data encoded in the

slots. Prop. 7.1 says that the adversary cannot cancel the

energy in an ON slot, and hence cannot change an ON

slot to an OFF slot. Since the number of ON and OFF

slots is balanced, the adversary cannot change the slots
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without increasing the number of ON slots, and thus being

detected. Thus, the only alternative is that the adversary

must have changed the message packet. Since the ON-

OFF slots include a cryptographic hash of the message,

this means that the adversary constructed a different mes-

sage packet with the same hash as the original message

packet. This contradicts our assumption that the hash is

collision-resistant. Thus, the adversary cannot alter the

announcement content, and TEA is tamper-evident. �

Although Prop. 7.2 guarantees that a TEA message is

tamper-evident if the receiver is sensing the medium, the

receiver may be transmitting its own message at the same

time. We now prove that a TEA is tamper-evident even if

the receiver transmits its own messages.

Proposition 7.3 Given a receiver (Bob) that can send

its own messages, a TEA sent by a transmitter (Alice) in

range of the receiver is tamper-evident, if the receiver

follows the concurrent-transmission protocol of §6.4, and

the receiver and transmitter send TEA messages with

different directions (request or reply).

Proof If Bob detects the synchronization packet (SP)

of Alice’s TEA, the TEA is tamper-evident: either Bob

will refrain from sending during that TEA, in which case

Prop. 7.2 applies, or Bob will transmit concurrently, and

TEA RECV GET will return RETRY or OVERLAP .

If Bob fails to detect Alice’s SP, it must have hap-

pened while Bob was sending his own message (other-

wise, Prop. 7.2 applies). Since regular 802.11 packets

are shorter than a SP, and §6.4 conservatively assumes

the medium was occupied for the entire duration of the

transmitted packet, Bob could not have missed a SP while

sending a regular packet. Thus, the only remaining option

is that Alice’s SP overlapped with a TEA sent by Bob.

Consider four cases for when Alice’s SP was sent in re-

lation to the SP of Bob’s TEA. First, if Alice’s SP started

before Bob’s SP, Bob would detect energy before starting

to transmit his SP and return OVERLAP or RETRY (§6.4),

making the TEA tamper-evident. Second, if Alice’s SP

started exactly at the same time as Bob’s SP, Bob would

detect energy during the direction bits and return OVER-

LAP or RETRY (§6.4), making the TEA tamper-evident.

Third, if Alice’s SP started during Bob’s SP, Bob would

detect energy after his SP and return OVERLAP or RETRY

(§6.4), making the TEA tamper-evident. Fourth, if Al-

ice’s SP started after Bob’s SP ended, Bob would detect

energy from Alice’s SP after the end of his TEA slots

and return OVERLAP or RETRY (§6.4), making the TEA

tamper-evident. Thus, in all cases, the TEA is tamper-

evident. �

We now prove TEP is secure against a MITM attack.

Proposition 7.4 Suppose an enrollee and a registrar are

within range, both are following the TEP protocol as

described in §5.2 and the user does the stipulated actions

required by PBC. Under the threat model defined in §4.1,

an adversary cannot convince either the enrollee or the

registrar to accept any public key that is not the legitimate

public key of the other device.

Proof We prove Prop. 7.4 by contradiction, considering

first the registrar, and then the enrollee.

First, suppose an adversary convinces the registrar to

accept a public key other than that of the enrollee. By

§5.2, this means the registrar received exactly one public

key (and, thus, did not receive the enrollee’s key), and

TEA RECV GET never returned OVERLAP or RETRY. By

assumption, the enrollee and registrar entered PBC mode

within 120 seconds of each other, which means they were

concurrently running their respective pseudo-code for

at least #channels× (tx tmo+2× tea duration) seconds,

and therefore the enrollee must have transmitted at least

one TEA message on the registrar’s channel while the reg-

istrar was listening. Prop. 7.3 guarantees that the registrar

must have either received that one message, or detected

tampering (and returned OVERLAP or RETRY), which con-

tradicts our assumption that the registrar never received

the enrollee’s message and never returned OVERLAP or

RETRY. Thus, an adversary cannot convince the registrar

to accept a public key other than that of the enrollee.

Second, suppose an adversary convinces the enrollee to

accept a public key other than that of the registrar. By §5.2,

this means that the enrollee received exactly one public

key response to its requests (and, thus, did not receive

the registrar’s key), and TEA RECV GET never returned

OVERLAP or RETRY. As above, there must have been a

time when the registrar was listening, and the enrollee

transmitted its request message on the registrar’s channel.

Prop. 7.3 guarantees that the registrar must have either

received the enrollee’s message, or detected tampering

(and returned OVERLAP or RETRY). In both of those

cases, §5.2 requires the registrar to send a reply. Prop 7.3

similarly guarantees that the enrollee must have either

received the registrar’s reply, or detected tampering (and

returned OVERLAP or RETRY), which directly contradicts

our supposition. Thus, an adversary cannot convince the

enrollee to accept a public key other than the registrar’s,

and TEP is secure. �

7.2 Evaluating TEP’s Accuracy

We check whether TEP can be accurately realized us-

ing existing operating systems and off-the-shelf 802.11

hardware. Our experiments use our Ath5K prototype de-

scribed in §6 and run over our campus network. Figure 5

shows the locations of the TEP nodes, which span an area
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Figure 5: Locations of nodes (indicated by blue circles) in our ex-

perimental testbed, which operates as part of our campus network.
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Figure 6: CDF of TEP slot scheduling errors. The figure shows

that the maximum scheduling error is 1.8 µs which is significantly

lower than the slot duration of 40µs.

of 21,080 square feet (1,958 m2) with both line-of-sight

and non-line-of-sight links.

7.2.1 Transmitter

The performance of TEP hinges on the transmitter accu-

rately scheduling the transmission of the ON-OFF slots.

The difficulty in accurate scheduling arises from the fact

that we want to implement the protocol in software using

standard 802.11 chipsets. Hence, we are limited by the

operating system and the hardware interface. For exam-

ple, if the kernel or the hardware introduces extra delays

between the slot packets, it will alter the bit sequence con-

veyed to the receiver, and will cause failures. Given that

our slot is 40µs, we need an accuracy that is on the order

of few microseconds. Can we achieve such an accuracy

with existing kernels and chipsets?

Experiment. We focus on the most challenging ON-

OFF slot sequence from a scheduling perspective: al-

ternating zeros and ones which requires the maximum

scheduling precision. We set the slot time to 40µs, by

sending a packet at the highest bitrate of 54 Mbps. To

measure the produced slots accurately, we capture the

signal transmitted by our 802.11 sender using a USRP2

software radio board [9]. Our USRP2 board can mea-

sure signal samples at a resolution of 0.16 µs, allowing

us to accurately compute the duration of the produced

slots. We run the experiment 1000 times for each sender

in our testbed and measure the exact duration of every

slot. We then compute the scheduling error as the differ-

ence between the measured slot duration and the intended

40 µs.
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Figure 7: CDFs of the fractional occupancy during ON slots and

OFF slots. The figure shows that the two distributions have no

overlap and hence the receiver cannot confuse ON and OFF slots.

Results. Fig. 6 shows the CDF of slot scheduling errors.

The figure shows that the median scheduling error is less

than 0.4 µs and the maximum error is 1.8 µs. Thus,

despite operating in software and with existing chipsets,

a TEP sender can accurately schedule the ON-OFF slots

at microsecond granularity.

7.2.2 Receiver

TEP’s security depends on the receiver’s ability to distin-

guish ON slots from OFF slots. In this section, we check

that given that the receiver is within the sender’s radio

range (i.e., can sense the sender’s signal), it can clearly

distinguish ON slots from OFF slots.

Experiment. In each run, the sender sends a sequence

of alternating ON-OFF slots, using a slot duration of

40 µs. The receiver uses a sensing window of 20µs to

measure fractional occupancy. This means the receiver

has twice as many measurements of fractional occupancy

as there are slots. As explained in §6.2, the receiver keeps

either the odd or even measurements depending on which

sequence has higher variance. Hence, for each slot, the re-

ceiver has exactly one fractional occupancy measurement.

We then compare the measured fractional occupancy for

known ON slots vs. known OFF slots to determine if the

receiver can reliably distinguish between them based on

measured fractional occupancy. We randomly pick two

nodes in the testbed to be sender and receiver, and repeat

the experiment for various node pairs in the testbed.

Results. Fig. 7 plots the CDFs of fractional occupancy

for ON slots and OFF slots. The figure shows that the two

CDFs are completely separate; that is, there is no overlap

in the values of fractional occupancy that correspond to

OFF slots and those that correspond to ON slots. Hence,

by looking at the fractional occupancy the receiver can

perfectly distinguish the ON slots from OFF slots. This

result shows that a TEP receiver based on current OSes

and 802.11 hardware can accurately decode the ON-OFF

slots necessary for the TEP protocol.

7.3 Evaluating TEP’s Performance

We are interested in how TEP interacts with cross traffic

in an operational network. Cross traffic does not hamper

TEP’s security (the proofs in §7.1 apply in the presence

of cross traffic). However, cross traffic may cause false
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Figure 8: CDF of the duration of energy bursts in the SIG-

COMM 2010 network and our campus network. The figure shows

that energy bursts caused by normal traffic are much shorter than

a TEP synchronization packet (19 ms). Thus, it is unlikely that

TEP will confuse normal traffic as a synchronization packet.

positives, where a node incorrectly declares that a TEP

message has been tampered with by an adversary. Such

events can unnecessarily delay secure pairing.

We investigate TEP’s interaction with cross traffic using

results from two operational networks: the SIGCOMM

2010 network, which is a heavily congested network, and

our campus network, which is a moderately congested

network. As in §7.2, our experiments use our modified

Ath5k driver on AR5001X+ Atheros chipsets. In addition

to cross-traffic on the TEP channel, both networks carried

traffic on adjacent 802.11 channels.

7.3.1 Impact of Cross Traffic on a Sync Packet

In TEP, a receiver detects a TEA if the medium is contin-

uously occupied for a period longer than the duration of a

synchronization packet (19 ms). We would like to check

that a receiver is unlikely to encounter false positives

while detecting synchronization packets. False positives

could occur in two scenarios: either (1) legitimate traffic

includes such continuous long bursts of energy, or (2)

a TEP receiver is incapable of detecting the short DIFS

intervals that separate legitimate packets, and mistakes a

sequence of back-to-back WiFi packets as a continuous

burst of energy.5 We empirically study each case below.

Experiment 1. We first check whether legitimate traf-

fic can cause the medium to be continuously occupied

for a duration of 19 ms. We use two production net-

works: our campus network and the SIGCOMM 2010

network. Since we would like to capture all kinds of en-

ergy bursts, including collisions, we sense the medium

using USRP2 radios. USRP2s allow us to directly look

at the signal samples and hence are much more sensitive

than 802.11 cards. We used a USRP2 board to eavesdrop

on the channel on which these networks operate and log

the raw signal samples. In order to compute the length of

bursts on the channel, we need to be able to identify the

beginning of a burst and its end in an automated way. To

5A data packet and its ACK are separated by a SIFS, which is smaller

than a DIFS, but ACKs are short packets and the next data packet is

separated by a DIFS. Hence the maximum packing occurs with back-to-

back data packets without ACKs.

do so, we use the double sliding window packet detection

algorithm6 typically used in hardware to detect packet

arrivals [23]. We collected over a million packets on the

SIGCOMM network and about the same number on our

campus network. We processed each trace to extract the

energy bursts and their durations (as explained above) and

plot the CDF of energy burst durations in Fig. 8.

Result 1. The results in Fig. 8 show that all energy

bursts in both networks lasted for less than 4.3 ms, which

is much shorter than a TEP synchronization packet. In par-

ticular, the majority of energy bursts last between 0.25 ms

and 2 ms. This corresponds to a packet size of 1500 bytes

transmitted at a bit rate between 6 Mb/s and 48 Mb/s,

which spans the range of 802.11g bit rates. A few bursts

lasted for less time which are likely to be short ACK pack-

ets. Also a few bursts have lasted longer than 2 ms. Such

longer bursts are typically due to collisions. Fig. 9 illus-

trates this case, where the second packet starts just before

the first packet ends, causing a spike in the energy level

on the channel. Soon after, the first packet ends, causing

the energy to drop again, but the two transmissions have

already collided.7 Interestingly, the bit rates used in our

campus network are lower than those used at SIGCOMM.

This is likely because at SIGCOMM, the access point was

in the conference room and in line-of-sight of senders and

receivers, while in our campus, an access point serves

multiple offices that span a significant area and are rarely

in line-of-sight of the access point.

Overall, the results in Fig. 8 indicate that bursts of

energy in today’s production networks have significantly

shorter durations than TEP’s synchronization packet, and

hence are unlikely to cause false positives.

Experiment 2. The second scenario in which a node

may incorrectly detect a synchronization packet occurs

when the node confuses a sequence of back-to-back pack-

ets separated by DIFS as a single continuous energy burst.

Thus, we evaluate our prototype’s ability to distinguish

a synchronization packet from a stream of back-to-back

802.11 packets. To do so, we randomly pick two random

nodes in our testbed in Fig. 5, and make one node trans-

mit a stream of back-to-back 1500-byte packets at the

lowest rate of 1 Mbps, while the other node senses the

6The double sliding window algorithm compares the energy in two

consecutive sliding windows. If there is no packet, i.e., the two windows

are both capturing noise, the ratio of their energy is around one. Simi-

larly, if both windows are already in the middle of a packet, their relative

energy is one. In contrast, when one window is partially sliding into a

packet while the other is still capturing noise, the ratio between their

energy starts increasing. The ratio spikes, when one window is fully

into a packet while the other is still fully in the noise, which indicates

that the beginning of the packet is at the boundary between the two

windows. Analogously, a steep dip in energy corresponds to the end of

a packet [23].
7Collisions of two 1500-byte packets transmitted at 6 Mb/s may be

slightly longer than 4 ms because of the additional symbols correspond-

ing to link layer header and trailer, and the PHY layer preamble.

13



0 200 400 600 800 1000 1200
0

0.005

0.01

0.015

USRP2 Sample id

A
m

p
lit

u
d
e Collision between

two 6Mbps packets

Figure 9: The energy pattern of the maximum energy burst in

the SIGCOMM trace. The figure indicates that such relatively long
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other spikes correspond to packets sent at higher bit rates.
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for transmissions of either a synchronization packet or a sequence

of back-to-back 1500-byte packets separated by DIFS. The figure

shows a full separation between the two CDFs, indicating that a

TEP receiver does not confuse back-to-back packets as a synchro-

nization packet.
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Figure 11: Energy pattern for TEA slots in the presence of a

Bluetooth device causing interference.

medium using the default sensing window of 2 ms. We

then make the same sender transmit a stream of synchro-

nization packets while the receiver senses these packets

using a 2 ms window. For both cases, we compute the

fractional occupancy in each sensing window. We repeat

the experiment with multiple node pairs and compare the

fractional occupancy during back-to-back packets and

synchronization packets.

Result 2. Fig. 10 compares the CDF of the fractional

occupancy during a synchronization packet and the CDF

of the fractional occupancy when the sensing window in-

cludes back-to-back packets separated by a DIFS,8 taken

over 100K synchronization packets and 100K DIFS oc-

currences. The figure shows that the two CDFs are suf-

ficiently separate making it unlikely that TEP confuses

back-to-back packets as a synchronization packet.

8Sometimes the DIFS may be split between two consecutive sensing

windows, in this case we include in the CDF whichever of these two

window has the lower fractional energy. This is because it is sufficient

that one sensing window shows a relatively low fractional occupancy to

declare the end of energy burst.
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Figure 12: Number of attempts required for TEP to successfully

pair in the presence of an interfering Bluetooth device.

7.4 Performance with Non-802.11 Traffic

Finally, while 802.11 nodes comply with the rules of CTS-

to-SELF, and abstain from transmitting during TEA’s ON-

OFF slots, other devices may continue to transmit, caus-

ing TEA nodes to detect tampering. Fig. 11 shows a

collision between a TEA and a Bluetooth transmission

from an Android phone as captured by a USRP2. Blue-

tooth devices do not typically decode 802.11 CTS-to-

SELF packets, and hence, as shown in the figure, end up

transmitting during the ON-OFF slots. In this section we

examine the impact of a nearby Bluetooth device on TEA.

Experiment. We place a TEA sender in location 1

(Fig. 5) and make other nodes act as TEA receivers. We

co-locate a Bluetooth device next to the TEA sender. The

sender periodically sends an announcement. The receivers

first detect the synchronization packets, decode the CTS-

to-SELF, and then try to verify the slots. If the receiver

can successfully verify, it declares success. Otherwise, it

attempts to verify the slots in the next time period.

Results. Fig. 12 shows the CDF of the number of

required attempts before a TEA receiver succeeds in re-

ceiving a correct TEA. Bluetooth transceivers operate on

79 bands in 2402-2480 MHz and frequently jump across

these bands. Thus, the probability that they interfere with

TEA in successive runs of the protocol is relatively low.

The figure shows that, even in the presence of Bluetooth

devices which cannot decode a CTS-to-SELF, a TEA re-

ceiver requires 1.4 attempts on average, and 4 attempts

maximum, before it receives the announcement.

8 CONCLUSION

This paper presented Tamper-Evident Pairing (TEP), the

first wireless pairing protocol that works in-band, with

no pre-shared keys, and protects against MITM attacks.

TEP relies on a Tamper-Evident Announcement (TEA)

mechanism, which guarantees that an adversary cannot

tamper with either the payload in a transmitted message,

or with the fact that the message was sent. We formally

proved that the design protects from MITM attacks. Fur-

ther, we implemented a prototype of TEA and TEP for the

802.11 wireless protocol using off-the-shelf WiFi devices,

and showed that TEP is practical on real-world 802.11

networks and devices.
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A BIT-BALANCING ALGORITHM

TEA’s bit-balancing algorithm takes an even number, N, of input

bits and produces M = N +2⌈logN⌉ output bits which have an

equal number of zeros and ones. If the input sequence has an

odd number of bits, we pad a 1 bit to it to make it an even length

sequence.

Let the input bit sequence of our algorithm be denoted by

IN, and the output bit-balanced sequence be denoted by OUT .

We define D0 to be the difference between the number of ones

and zeros in the input IN. Also Di is defined as the difference

between the number of ones and zeros after flipping the first i

15

http://wireless.kernel.org/en/users/Drivers/ath5k
http://wireless.kernel.org/en/users/Drivers/ath5k
http://ettus.com
http://ettus.com
http://geekdoctor.blogspot.com/2010/04/telemonitoring-for-home.html
http://geekdoctor.blogspot.com/2010/04/telemonitoring-for-home.html
http://www.wi-fi.org/news_articles.php?f=media_news&news_id=1
http://www.wi-fi.org/news_articles.php?f=media_news&news_id=1
http://ezinearticles.com/?id=3963601
http://ezinearticles.com/?id=3963601
http://www.sensormetrics.com/wifi.html
http://www.sensormetrics.com/wifi.html
http://www.wi-fi.org/search_products.php
http://www.wi-fi.org/search_products.php
http://www.wi-fi.org/news_articles.php?f=media_news&news_id=263
http://www.wi-fi.org/news_articles.php?f=media_news&news_id=263


Input Sequence: 1 0 0 0, D0 =−2

i = 1 : 1 0 0 0 → 0 0 0 0, D1 =−4

i = 2 : 0 0 0 0 → 0 1 0 0, D2 =−2

i = 3 : 0 1 0 0 → 0 1 1 0, D3 = 0

Output Sequence: 0 1 1 0 1 0 0 1

Table 2: Example run of our 0-1 balanced function

bits in the input IN. Our algorithm works as follows.

• Step 1: Compute the difference D0 between the number of

ones and number of zeros in IN. Set i to 1 and S0 to IN.

• Step 2: Flip the ith bit in Si−1 to get Si. Then compute the

new difference, Di as Di = Di−1±2 depending on whether

the ith bit is one or zero.

• Step 3: If Di = 0, then set INDEX to i and OUT temp to Si and

go to Step 4. Otherwise increment i and go to Step 2.

• Step 4: Set the output OUT to be the concatenation of

OUT temp and the Manchester encoding of the bit represen-

tation of INDEX− 1. Since SINDEX is N bits long and the

Manchester encoding of INDEX−1 is 2⌈log(N)⌉ bits long,

the output OUT is N +2⌈log(N)⌉ bits long.

To see how the above algorithm works, let us take the 4 bit

input sequence, 1000, shown in Table 2. The difference D0 for

this sequence is −2. In the first iteration, we flip the first bit to

get the bit sequence 0000 which has a difference D1 =−4. In

the second iteration, we flip the second bit to get 0100 which has

a difference D2 =−2. Finally, in the third iteration, we flip the

third bit to get 0110 which has a difference D3 = 0. Thus, we

output this sequence concatenated with the Manchester encoding

of 3−1, which is 1001. Thus, the bit balanced output sequence

is 01101001.

The above algorithm relies on the fact that there exists an

INDEX bit position for which DINDEX = 0. Such an INDEX al-

ways exists for the following reason. First, because the sequence

S0 has an even number of bits, D0 is even. Further, for every bit

flipped, Di differs from Di−1 by exactly±2. Finally, since SN is

the bitwise opposite of S0 and thus DN =−D0, there must exist

an INDEX for which DINDEX = 0.

Note that this is a one-to-one mapping and the decoding

can be done in linear time. Specifically the decoder takes the

last 2⌈log(N)⌉ bits and constructs INDEX from its Manchester

encoding. Then it takes the first N bits and flips the first INDEX

bits in the first N bits to get the original bit sequence.

B REDUCING MEDIUM OCCUPANCY

TEP’s specifications in §5.2 ensure that if there is any possibility

that a registrar missed a TEA request (i.e., if TEA RECV GET

returned RETRY or OVERLAP), that registrar will immediately

transmit a TEA reply, without regard for carrier-sense. Thus, if,

by some chance, multiple registrars transmit overlapping replies

at almost the same time, each of them will then assume it may

have missed a request from some enrollee (since it sensed a

concurrent TEA message), and each will re-send its reply. This

cycle of replies may continue until each registrar’s PBC walk

time (120 sec) expires. This section shows how to modify the

basic TEP protocol to avoid occupying the medium for 120

seconds in this situation.

To address this issue, we make two changes to the TEP pro-

tocol from §5.2. First, the registrar does not re-transmit replies

if all of the possibly-missed TEA requests overlapped with its

previous transmission. In other words, the registrar performs

TEA SEND only if m 6= OVERLAP. Not re-sending the reply

is safe only if enrollees whose requests may not get a reply

also learn of the TEA overlap (and thus return a session overlap

error). To guarantee this, we make a second change, to the

enrollee, so that it listens for tea duration both before and af-

ter transmitting its request. This ensures that an enrollee hears

any TEA replies (from registrars) that overlap its own TEA

request. (As before, if an enrollee detects a TEA message it

cannot decode, it triggers a session overlap error.) Thus, the en-

rollee pseudo-code is augmented as follows (changing the loop

duration and introducing an additional SLEEP before sending):

r←∅

for 120 sec+#channels× (tx tmo+3× tea duration) do

⊲ walk time + max enrollee scan period

switch to next 802.11 channel

h← TEA RECV START (reply)
SLEEP (tea duration)
TEA SEND (request, enroll info, now+ tx tmo)
SLEEP (tea duration)
r← r ∪ TEA RECV GET (h)

end for

The registrar must also wait for the same increased loop time

to accommodate the modified enrollee. With these changes,

TEP safely avoids occupying the medium for the whole walk

time in cases when multiple registrars hear each other’s replies.

B.1 Extending the Security Proof

Next, we prove that the above optimization is secure.

Proposition B.1 An enrollee and registrar following the opti-

mized TEP protocol (from Appendix B) cannot be tricked into

accepting an incorrect public key, as in Prop. 7.4.

Proof The only change in the optimized protocol that affects

the proof for Prop. 7.4 is that the registrar does not resend its

reply when m = OVERLAP. The registrar still computes the

same set e of enrollee messages as in Prop. 7.4, and therefore

cannot be tricked into accepting an incorrect public key.

We prove that the enrollee also cannot be tricked, by contra-

diction. Suppose that the enrollee is tricked into accepting the

wrong key. From the proof of Prop. 7.4, this must be because

the registrar did not respond to the enrollee’s request. This must

be because the registrar’s TEA RECV GET returned OVERLAP,

i.e., the registrar missed zero or more requests, all of which

overlapped the registrar’s TEA SEND. Thus, the enrollee must

have transmitted its request within tea duration of the registrar

transmitting a reply.

By the enrollee pseudo-code in Appendix B, the enrollee was

listening for TEA messages for tea duration before and after

sending its request. If the enrollee’s TEA RECV GET returned

the registrar’s reply, the enrollee could not have accepted a dif-

ferent key (by Prop. 7.4). Thus, the enrollee’s TEA RECV GET

must have returned RETRY or OVERLAP . But in both of these

cases, the enrollee would not have accepted any key. Thus, by

contradiction, the enrollee cannot be tricked, and the optimized

TEP protocol is secure. �
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