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Abstract

Biometric security is a topic of rapidly growing impor-
tance, especially as it applies to user authentication and
key generation. In this paper, we describe our initial
steps towards developing evaluation methodologies for
behavioral biometrics that take into account threat mod-
els which have largely been ignored. We argue that the
pervasive assumption that forgers are minimally moti-
vated (or, even worse, naı̈ve), or that attacks can only
be mounted through manual effort, is too optimistic and
even dangerous. To illustrate our point, we analyze a
handwriting-based key-generation system and show that
the standard approach of evaluation significantly over-
estimates its security. Additionally, to overcome current
labor-intensive hurdles in performing more accurate as-
sessments of system security, we present a generative
attack model based on concatenative synthesis that can
provide a rapid indication of the security afforded by the
system. We show that our generative attacks match or ex-
ceed the effectiveness of forgeries rendered by the skilled
humans we have encountered.

1 Introduction

The security of many systems relies on obtaining human
input that is assumed to not be readily reproducible by
an attacker. Passwords are the most common example,
though the assumption that these are not reproducible is
sensitive to the number of guesses that an attacker is al-
lowed. In online attacks, the adversary must submit each
request to a nonbypassable reference monitor (e.g., a lo-
gin prompt) that accepts or declines the password and
permits a limited number of incorrect attempts. In con-
trast, an offline attack permits the attacker to make a num-
ber of guesses at the password that is limited only by the
resources available to the attacker, i.e., time and memory.
When passwords are used to derive cryptographic keys,
they are susceptible to offline attacks.

An alternative form of user input that is intended to
be difficult for attackers to reproduce are biometrics.
Like passwords, biometrics have typically been used as
a technique for a user to authenticate herself to a refer-
ence monitor that can become unresponsive after a cer-
tain number of failed attempts. However, biometrics
also have been explored as a means for generating user-
specific cryptographic keys (see for example, [30, 21]).
As with password-generated keys, there is insufficient
evidence that keys generated from biometric features
alone will typically survive offline attacks. As such, an
alternative that we and others have previously explored
is password hardening whereby a cryptographic key is
generated from both a password and dynamic biometric
features of the user while entering it [22, 23].

While these directions may indeed allow for the use
of biometrics in a host of applications, we believe the
manner in which biometric systems have been tested in
the literature (including our prior work) raises some con-
cerns. In particular, this work demonstrates the need
for adopting more realistic adversarial models when per-
forming security analyses. Indeed, as we show later,
the impact of forgeries generated under such conditions
helps us to better understand the security of certain
biometric-based schemes.

Our motivation for performing this analysis is primar-
ily to show that there exists a disconnect between realis-
tic threats and typical “best” practices [17] for report-
ing biometric performance—one that requires rethink-
ing as both industry and the research community gains
momentum in the exploration of biometric technologies.
We believe that the type of analysis presented herein
is of primary importance for the use of biometrics for
authentication and cryptographic key generation (e.g.,
[21, 7, 2, 12]), where weakest-link analysis is paramount.

Moreover, to raise awareness of this shortcoming we
explore a particular methodology in which we assume
that the adversary utilizes indirect knowledge of the tar-
get user’s biometric features. That is, we presume that
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the attacker has observed measurements of the biometric
in contexts outside its use for security. For example, if
the biometric is the user’s handwriting dynamics gener-
ated while providing input via a stylus, then we presume
the attacker has samples of the user’s handwriting in an-
other context, captured hardcopies of the user’s writing,
or writings from users of a similar style. We argue that
doing so is more reflective of the real threats to biomet-
ric security. In this paper, we explore how an attacker
can use such data to build generative models that predict
how a user would, in this case, write a text, and evaluate
the significance of this to biometric authentication.

2 Biometric Authentication

Despite the diversity of approaches examined by the bio-
metrics community [1], from the standpoint of this in-
vestigation several key points remain relatively constant.
For instance, the traditional procedure for applying a bio-
metric as an authentication paradigm involves sampling
an input from a user, extracting an appropriate set of fea-
tures, and comparing these to previously stored templates
to confirm or deny the claimed identity. While a wide
range of features have been investigated, it is univer-
sally true that system designers seek features that exhibit
large inter-class variability and small intra-class variabil-
ity. In other words, two different users should be unlikely
to generate the same input features, while a single user
ought to be able to reproduce her own features accurately
and repeatably.

Likewise, the evaluation of most biometric systems
usually follows a standard model: enroll some number of
users by collecting training samples, e.g., of their hand-
writing or speech. At a later time, test the rate at which
users’ attempts to recreate the biometric to within a pre-
determined tolerance fail. This failure rate is denoted
as the False Reject Rate (FRR). Additionally, evaluation
usually involves assessing the rate at which one user’s
input (i.e., an impostor) is able to fool the system when
presented as coming from another user (i.e., the target).
This evaluation yields the False Accept Rate (FAR) for
the system under consideration. A tolerance setting to
account for natural human variation is also vital in as-
sessing the limits within which a sample will be consider
as genuine, while at the same time, balancing the delicate
trade-off of resistance to forgeries. Typically, one uses
the equal error rate (EER)—that is, the point at which the
FRR and the FAR are equal—to describe the accuracy of
a given biometric system. Essentially, the lower the EER,
the higher the accuracy.

Researchers also commonly distinguish between forg-
eries that were never intended to defeat the system (“ran-
dom” or naı̈ve forgeries), and those created by a user
who was instructed to make such an attempt given infor-

mation about the targeted input (i.e., so-called “skilled”
forgeries). However, the evaluation of biometrics un-
der such weak security assumptions can be misleading.
Indeed, it may even be argued that because there is no
strong means by which one can define a good forger
and prove her existence (or non-existence), such analysis
is theoretically impossible [29]. Nevertheless, the bio-
metric community continues to rely on relatively simple
measures of adversarial strength, and most studies to date
only incorporate unskilled adversaries, and very rarely,
“skilled” impersonators [13, 29, 11, 19, 20, 15].

This general practice is troubling as the evaluation of
the FAR is likely to be significantly underestimated [29,
28]. Moreover, we believe that this relatively ad hoc ap-
proach to evaluation misses a significant threat: the use
of generative models to create synthetic forgeries which
can form the basis for sophisticated automated attacks
on biometric security. This observation was recently re-
iterated in [32], where the authors conjectured that al-
though the complexity of successful impersonations on
various biometric modalities can be made formidable,
biometric-based systems might be defeated using var-
ious strategies (see for example [31, 9, 26, 15]). As
we show later, even rather simplistic attacks launched
by successive replication of synthetic or actual samples
from a representative population can have adverse effects
on the FAR—particularly for the weakest users (i.e., the
so-called “Lambs” in the biometric jargon for a hypo-
thetical menagerie of users [3]).

In what follows, we provide what we believe is the
most in-depth study to date that emphasizes the extent of
this problem. Furthermore, as a first step towards provid-
ing system evaluators with a stronger methodology for
quantifying performance under various threats, we de-
scribe our work on developing a prototype toolkit using
handwriting dynamics as a case in point.

3 Handwriting Biometrics

Research on user authentication via handwriting has had
a long, rich history, with hundreds of papers written on
the topic. The majority of this work to date has focused
on the problem of signature verification [27]. Signatures
have some well known advantages: they are a natural
and familiar way of confirming identity, have already
achieved acceptance for legal purposes, and their capture
is less invasive than most other biometric schemes [6].
While each individual has only one true signature—a no-
table limitation—handwriting in general contains numer-
ous idiosyncrasies that might allow a writer to be identi-
fied.

In considering the mathematical features that can be
extracted from the incoming signal to perform authen-
tication, it is important to distinguish between two dif-
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ferent classes of inputs. Data captured by sampling the
position of a stylus tip over time on a digitizing tablet
or pen computer are referred to as online handwriting,
whereas inputs that are presented in the form of a 2-D
bitmap (e.g., scanned off of a piece of paper) are referred
to as offline handwriting. To avoid confusion with the tra-
ditional attack models in the security community, later
on in this paper we shall eschew that terminology and
refer to the former as covering both temporal and spa-
tial information, whereas the latter only covers spatial
information. Features extracted from offline handwriting
samples include bounding boxes and aspect ratios, stroke
densities in a particular region, curvature measurements,
etc. In the online case, these features are also available
and, in addition, timing and stroke order information that
allows the computation of pen-tip velocities, accelera-
tions, etc. Studies on signature verification and the re-
lated topic of handwriting recognition often make use of
50 or more features and, indeed, feature selection is it-
self a topic for research. The features we use in our own
work are representative of those commonly reported in
the field [8, 33, 18, 14]. Repeatability of features over
time is, of course, a key issue, and it has been found that
dynamic and static features are equally repeatable [8].

In the literature, performance figures (i.e., EER) typ-
ically range from 2% to 10% (or higher), but are dif-
ficult to compare directly as the sample sizes are often
small and test conditions quite dissimilar [5]. Unfortu-
nately, forgers are rarely employed in such studies and,
when they are, there is usually no indication of their pro-
ficiency. Attempts to model attackers with a minimal de-
gree of knowledge have involved showing a static im-
age of the target signature and asking the impostor to try
to recreate the dynamics [24]. The only serious attempt
we are aware of, previous to our own, to provide a tool
for training forgers to explore the limits of their abili-
ties is the work by Zoebisch and Vielhauer [35]. In a
small preliminary study involving four users, they found
that showing an image of the target signature increased
false accepts, and showing a dynamic replay doubled the
susceptibility to forgeries yet again. However, since the
verification algorithm used was simplistic and they do
not report false reject rates, it is difficult to draw more
general conclusions.

To overcome the “one-signature-per-user” (and
hence, one key) restriction, we employ more general
passphrases in our research. While signatures are likely
to be more user-specific than arbitrary handwriting,
results from the field of forensic analysis demonstrate
that writer identification from a relatively small sample
set is feasible [10]. Indeed, since this field focuses
on handwriting extracted from scanned page images,
the problem we face is less challenging in some sense
since we have access to dynamic features in addition

to static. Another concern, user habituation [5], is
addressed by giving each test subject enough time to
become comfortable with the experimental set-up and
requiring practice writing before the real samples are
collected. Still, this is an issue and the repeatability of
non-signature passphrases is a topic for future research.

4 Experimental Design

We collected data over a two month period to analyze
six different forgery styles. We consider three standard
evaluation metrics: naı̈ve, static, and dynamic 1 forg-
eries [13, 29, 11], as well as three metrics that will
provide a more realistic definition of security: naı̈ve*,
trained, and generative. Naı̈ve, or “accidental”, forg-
eries are not really forgeries in the traditional sense; they
are measured by authenticating one user’s natural writing
samples of a passphrase against another user’s template
for the same passphrase. Static (resp. dynamic) forgeries
are created by humans after seeing static (resp. real-time)
renderings of a target user’s passphrase. Naı̈ve* forgeries
are similar to naı̈ve forgeries except that only writings
from users of a similar style are authenticated against a
target user’s template. Trained forgeries are generated
by humans under certain conditions, which will be de-
scribed in greater detail later. Lastly, generative forgeries
exploit information about a target user to algorithmically
generate forgeries. Such information may include sam-
ples of the user’s writing from a different context or gen-
eral population statistics.

4.1 Data Collection

Our results are based on 11,038 handwriting samples col-
lected on digitized pen tablet computers from 50 users
during several rounds. We used NEC VersaLite Pad and
HP Compaq TC1100 tablets as our writing platforms.
The specifics of each round will be addressed shortly.
To ensure that the participants were well motivated and
provided writing samples reflective of their natural writ-
ing (as well as forgery attempts indicative of their innate
abilities), several incentives were awarded for the most
consistent writers, the best/most dedicated forgers, etc.

Data collection was spread across three rounds. In
round I, we collected two distinct data sets. The first
set established a baseline of “typical” user writing. After
habituation on the writing device [5], users were asked to
write five different phrases, consisting of two-word oxy-
morons, ten times each. We chose these phrases as they
were easy to remember (and therefore, can be written
naturally) and could be considered of reasonable length.
Signatures were not used due to privacy concerns and
strict restrictions on research involving human-subjects.
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More importantly, in the context of key-generation, sig-
natures are not a good choice for a hand-writing biomet-
ric as the compromise of keying material could prevent
a user from using the system thereafter. This part of the
data set was used for two purposes: to establish biomet-
ric templates to be used for authentication, and to provide
samples for naive and naive* forgeries. To create a strong
underlying representative system, users were given in-
structions to write as naturally (and consistently) as pos-
sible.

The second data set from round I, our “generative
corpus”, was used to create our generative forgeries and
consisted of a set of 65 oxymorons. This set was re-
stricted so that it did not contain any of the five phrases
from the first data set, yet provided coverage of the first
set at the bi-gram level. As before, we chose oxymorons
that were easy to recall, and users were asked to write
one instance of each phrase as naturally as possible. The
average elapsed time for round I was approximately
one hour.
Round II started approximately two weeks later.

The same set of users wrote the five phrases from round
I ten times. Additionally, the users were asked to forge
representative samples (based on writing style, handed-
ness of the original writer, and gender) from round
I to create two sets of 17 forgeries. First, users were
required to forge samples after seeing only a static rep-
resentation. This data was used for our static forgeries.
Next, users were asked to forge the same phrases again,
but this time, upon seeing a real-time rendering of the
phrase. At this stage, the users were instructed to make
use of the real-time presentation to improve their render-
ing of the spatial features (for example, to distinguish
between one continuous stroke versus two strokes that
overlap) and to replicate the temporal features of the
writing. This data comprised our dynamic forgeries. On
average, round II took approximately 90 minutes for
each user.

Lastly, in round III we selected nine users from
round II who, when evaluated using the authentica-
tion system to be described in §4.2 and §4.3, exhibited
a natural tendency to produce better forgeries than the
average user in our study (although we did not include
all of the best forgers). This group consisted of three
“skilled” (but untrained) forgers for each writing style.
(One of “cursive”, “mixed”, or “block”, where the classi-
fication is based on the percent of the time that users con-
nect adjacent characters.) Each skilled forger was asked
to forge writing from the style which they exhibited an
innate ability to replicate and was provided with a gen-
eral overview and examples of the types of temporal and
spatial characteristics that handwriting systems typically
capture. As we were trying to examine (and develop)
truly skilled adversaries, our forgers were asked to forge

15 writing samples from their specified writing style,
with 60% of the samples coming from the weakest 10
targets, and the other 40% chosen at random. (In §5 we
also provide the results of our trained forgeries against
the entire population.) From this point on, these forg-
ers (and their forgeries) will be referred to as “trained”
forgers. We believe that the selection of the naturally
skilled forgers, the additional training, and the selection
of specific targets produced adversaries who realistically
reflect a threat to biometric security.

The experimental setup for these educated forgers is
as follows. First, a real-time reproduction of the target
sample is displayed (at the top half of the tablet) and the
forger is allowed to attempt forgeries (at her own pace)
with the option of saving the attempts she liked. She can
also select and replay her forgeries and compare them
to the target. In this way, she is able to fine-tune her
attempts by comparing the two writing samples. Next,
she selects the forgery she believes to be her best attempt,
and proceeds to the next target. The average elapsed time
for this round was approximately two hours.

4.2 Authentication System

In order to have a concrete platform to measure the
FAR for each of our six forgery styles, we loosely
adapted the system presented in [34, 33] for generation of
“biometric hashes”. We note that our results are system-
independent as we are only evaluating biometric inputs,
for which we evaluated features that are reflective of the
state of the art [14, 18, 8, 33].

For completeness, we briefly describe relevant aspects
of the system; for a more detailed description see [33].
To input a sample to the system, a human writes a
passphrase on an electronic tablet. The sample is rep-
resented as three signals parameterized by time. The dis-
crete signals x(t) and y(t) specify the location of the pen
on the writing surface at time t, and the binary signal p(t)
specifies whether the pen is up or down at time t. The
tablet computes a set of n statistical features (f1, . . . , fn)
over these signals. These features comprise the actual in-
put to the authentication or key-generation system.

During an enrollment phase, each legitimate user
writes a passphrase a pre-specified number (m) of times,
and the feature values for each sample are saved. Let
fi,1, . . . , fi,n denote the feature values for sample i. Us-
ing the feature values from each user and passphrase,
the system computes a global set of tolerance values
(T = {ε1, . . . , εn}) to be used to account for natural
human variation [34]. Once the m readings have been
captured, a biometric template is generated for each user
and passphrase as follows: Let `′j = mini∈[1,m] fi,j ,
h′

j = maxi∈[1,m] fi,j , and ∆j = h′

j − `′j + 1. Set `j =
`′j − ∆jεj , and hj = h′

j + ∆jεj . The resulting template
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is an n × 2 matrix of values {{`1, h1}, . . . , {`n, hn}}.
Later, when a user provides a sample with feature

values f1, . . . , fn for authentication, the system checks
whether fj ∈ [`j , hj ] for each feature fj . Each fj 6∈
[`j , hj ] is deemed an error, and depending on the thresh-
old of errors tolerated by the system, the attempt is ei-
ther accepted or denied. We note that as defined here,
templates are insecure because they leak information
about a user’s feature values. We omit discussion of se-
curely representing biometric templates (see for exam-
ple [22, 4]) as this is not a primary concern of this re-
search.

4.3 Feature Analysis

Clearly, the security of any biometric system is directly
related to the quality of the underlying features. A de-
tailed analysis of proposed features for handwriting ver-
ification is presented in [33], although we argue that the
security model of that work sufficiently differs from our
own and so we believe a new feature-evaluation metric
was required. In that work, the quality of a feature was
measured by the deviation of the feature and entropy of
the feature across the population. For our purposes, these
evaluation metrics are not ideal: we are not only con-
cerned with the entropy of each feature, but rather how
difficult the feature is to forge — which we argue is a
more important criteria. When systems are evaluated us-
ing purely naı̈ve forgeries, then entropy could be an ac-
ceptable metric. However, as we show later, evaluation
under naı̈ve forgeries is not appropriate 2.

As our main goal is to highlight limitations in current
practices, we needed to evaluate a robust yet usable sys-
tem based on a strong feature set. To this end, we im-
plemented 144 state of the art features [33, 8, 25, 14]
and evaluated each based on a quality metric (Q) defined
as follows. For each feature f , we compute the propor-
tion of times that f was missed by legitimate users in
our study, denoted rf , and the proportion of times that
f was missed by forgers from round II (with access
to dynamic information), denoted af . Then, Q(f) =
(af − rf + 1)/2, and the range of Q is [0, 1]. Intu-
itively, features with a quality score of 0 are completely
useless—i.e., they are never reliably reproduced by orig-
inal users and are always reproduced by forgers. On the
other hand, features with scores closer to 1 are highly de-
sirable when implementing biometric authentication sys-
tems.

For our evaluation, we divided our feature set into two
groups covering the temporal and spatial features, and or-
dered each according to the quality score. We then chose
the top 40 from each group, and disregarded any with a
FRR greater than 10%. Finally, we discounted any fea-
tures that could be inferred from others (e.g., given the

width and height of a passphrase as rendered by a user,
then a feature representing the ratio between width and
height is redundant). This analysis resulted in what we
deem the 36 best features—15 spatial and 21 temporal—
described in Appendix A.

5 Human Evaluation

This section presents the results for the five evaluation
metrics that use forgeries generated by humans. Be-
fore we computed the FRR and the FAR, we removed
the outliers that are inherent to biometric systems. For
each user, we removed all samples that had more than
δ = 3 features that fell outside k = 2 standard deviations
from that user’s mean feature value. The parameters δ
and k were empirically derived. We also did not include
any samples from users (the so-called “Goats” [3]) who
had more than 25% of their samples classified as out-
liers. Such users “Failed to Enroll” [17]; the FTE rate
was ≈ 8.7%. After combining this with outlier removal,
we still had access to 79.2% of the original data set.

To compute the FRR and the FAR we use the sys-
tem described in §4.2 using the features from §4.3. The
FRR is computed as follows: we repeatedly randomly
partition a user’s samples into two groups and use the
first group to build a template and authenticate the sam-
ples in the second group against the template. To com-
pute the FAR we use all of the user’s samples to generate
a template and then authenticate the forgeries against this
template.

5.1 Grooming Sheep into Wolves

Our experiments were designed to illustrate the discrep-
ancy in perceived security when considering traditional
forgery paradigms and a more stringent, but realistic, se-
curity model. In particular, we assume that at the very
minimum, that a realistic adversary (1) attacks victims
who have a writing style that the forger has a natural
ability to replicate, (2) has knowledge of how biomet-
ric authentication systems operate, and (3) has a vested
interest in accessing the system, and therefore is willing
to devote significant effort towards these ends.

Figure 1 presents ROC curves for forgeries from im-
personators with varying levels of knowledge. The
plot denoted FAR-naı̈ve depicts results for the tradi-
tional case of naı̈ve forgeries widely used in the litera-
ture [13, 29, 11]. In these cases, the impersonation at-
tempts simply reflect taking one user’s natural render-
ing of phrase p as an impersonation attempt on the tar-
get writing p. Therefore, in addition to ignoring the tar-
get writer’s attributes as is naturally expected of forgers,
this classification makes no differentiation based on the
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forger’s or the victim’s style of writing, and so may in-
clude, for example, block writers “forging” cursive writ-
ers. Arguably, such forgeries may not do as well as the
less standard (but more reasonable) naı̈ve* classification
(FAR-naı̈ve*) where one only attempts to authenticate
samples from writers of similar styles.
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Figure 1: Overall ROC curves for naı̈ve, naı̈ve*, static,
dynamic, and trained forgers.
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Figure 2: ROC curves against all mixed writers. This
grouping appeared the easiest to forge by the users in our
study.

The FAR-static plots represent the success rate of forg-
ers who receive access to only a static rendering of the
passphrase. By contrast, FAR-dynamic forgeries are pro-
duced after seeing (possibly many) real-time renderings
of the image. One can easily consider this a realistic
threat if we assume that a motivated adversary may cap-
ture the writing on camera, or more likely, may have
access to data written electronically in another context.
Lastly, FAR-trained presents the resulting success rate

of forgeries derived under our forgery model which cap-
tures a more worthy opponent. Notice that when classi-
fied by writing style, the trained forgers were very suc-
cessful against mixed writers (Figure 2).

Intuitively, one would expect that forgers with ac-
cess to dynamic and/or static representations of the tar-
get writing should be able to produce better forgeries
than those produced under the naı̈ve* classification. This
is not necessarily the case, as we see in Figure 1 that
at some points, the naı̈ve* forgeries do better than the
forgeries generated by forgers who have access to static
and/or dynamic information. This is primarily due to the
fact that the naı̈ve* classification reflects users’ normal
writing (as there is really no forgery attempt here). The
natural tendencies exhibited in their writings appear to
produce better “forgeries” than that of static or dynamic
forgers (beyond some point), who may suffer from un-
natural writing characteristics as a result of focusing on
the act of forging.

One of the most striking results depicted in the fig-
ures is the significant discrepancy in the FAR between
standard evaluation methodologies and that of the trained
forgeries captured under our strengthened model. While
it is tempting to directly compare the results under the
new model to those under the more traditional metrics
(i.e., by contrasting the FAR-trained error rate at the EER
under one of the older models), such a comparison is
not valid. This is because the forgers under the new
model were more knowledgeable with respect to the in-
tricacies of handwriting verification and had performed
style-targeted forgeries.

However, the correct comparison considers the EERs
under the two models. For instance, the EER for this sys-
tem under FAR-trained forgeries is approximately 20.6%
at four error corrections. However, for the more tradi-
tional metrics, one would arrive at EERs of 7.9%, 6.0%,
5.5% under evaluations of dynamic, static and naı̈ve
forgeries, respectively. These results are indeed inline
with the current state of the art [13, 29, 11]. Even worse,
under the most widely used form of adversary consid-
ered in the literature (i.e., naı̈ve) we see that the security
of this system would be over-estimated by nearly 375%!

Forger Improvement Figure 3 should provide assur-
ance that the increase in forgery quality is not simply a
function of selecting naturally skilled individuals from
round II to participate in round III. The graph
shows the improvement in FAR between rounds II and
III for the trained forgers. We see that the improvement
is significant, especially for the forgers who focused on
mixed and block writers. Notice that at the EER (at seven
errors) induced by forgers with access to dynamic infor-
mation (Figure 1), our trained mixed, block, and cursive
forgers improved their FAR by 0.47, 0.34, and 0.18, re-
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Figure 3: Forger improvement between rounds II and
III.

spectively. This improvement results from less than two
hours of training and effort, which is likely much less
than what would be exerted by a dedicated or truly skilled
forger.

The observant reader will note that the trained forgers
faced a different distribution of “easy” targets in Round
III then they did in Round II. We did this to analyze
the system at its weakest link. However, after normaliz-
ing the results so that both rounds had the same makeup
of “easy” targets, the change in EER is statistically in-
significant, shifting from 20.6% to 20.0% at four errors
corrected.

6 Generative Evaluation

Unfortunately, finding and training “skilled” forgers is a
time (and resource) consuming endeavor. To confront
the obstacles posed by wide-scale data collection and
training of good impersonators, we decided to explore
the use of an automated approach using generative mod-
els as a supplementary technique for evaluating behav-
ioral biometrics. We investigated whether an automated
approach, using limited writing samples from the tar-
get, could match the false accept rates observed for our
trained forgers in §5.1. We believe that such generative
attacks themselves may be a far more dangerous threat
that, until now, have yet to be studied in sufficient detail.

For the remaining discussion we explore a set of
threats that stem from generative attacks which assume
knowledge that spans the following spectrum:

I. General population statistics: Gleaned, for exam-
ple, via the open sharing of test data sets by the
research community, or by recruiting colleagues to
provide writing samples.

II. Statistics specific to a demographic of the targeted
user: In the case of handwriting, we assume the at-
tacker can extract statistics from a corpus collected
from other users of a similar writing style (e.g., cur-
sive).

III. Data gathered from the targeted user: Excluding di-
rect capture of the secret itself, one can imagine the
attacker capturing copies of a user’s handwriting,
either through discarded documents or by stealing
a PDA.

To make this approach feasible, we also explore the
impact of these varying threats. A key issue that we con-
sider is the amount of recordings one needs to make these
scenarios viable attack vectors. As we show later, the
amount of data required may be surprisingly small for
the case of authentication systems based on handwriting
dynamics.

6.1 A generative toolkit for performance
testing

The approach to synthesizing handwriting we explore
here is to assemble a collection of basic units (n-grams)
that can be combined in a concatenative fashion to mimic
authentic handwriting. In this case, we do not make use
of an underlying model of human physiology, rather, cre-
ation of the writing sample is accomplished by choosing
appropriate n-grams from an inventory that may cover
writing from the target user (scenario III above) as well
as representative writings by other members of the pop-
ulation at large (scenarios I and II). The technique we
apply here expands upon earlier rudimentary work [16],
and is similar in flavor to approaches taken to generate
synthesized speech [21] and for text-to-handwriting con-
version [9].

6.1.1 Forgeries

As noted earlier, each writing sample consists of three
signals parameterized by time: x(t), y(t) and p(t). The
goal of our generative algorithm is to generate t, x(t),
y(t) and p(t) such that the sample is not only accepted
as authentic, but relies on acquiring a minimal amount of
information from the target user (again, in a different se-
curity context). In particular, when attacking user u, we
assume the adversary has access to a generative corpus
Gu, in addition to samples from users of similar writing
styles GS ; where S is one of “block”, “mixed”, or “cur-
sive”. We assume that both Gu and GS are annotated so
that there is a bijective map between the characters of
each phrase and the portion of the signal that represents
each character. As is the case with traditional compu-
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Figure 4: Example generative forgeries against block, mixed and cursive forgers. For each box, the second rendering
is a trained human-generated forgery of the first, and the third was created by our generative algorithm.

tations of the EER we also assume that passphrase p is
known.

General Knowledge Assume that the adversary
wishes to forge user u with passphrase p and writing
style S. Ideally, she would like to do so using a min-
imal amount of information directly collected from u.
Fortunately, the success of the naı̈ve* forgeries from §5
suggests that a user’s writing style yields a fair amount
of pertinent information that can potentially be used to
replicate that user’s writing. Thus, to aid in generating
accurate forgeries, the adversary can make use of sev-
eral statistics computed from annotated writing samples
in GS\Gu. In what follows, we discuss what turn out to
be some very useful measures that can likely be easily
generalized for other behavioral biometrics.

Denote as Pc(i, j, c1, c2) the probability that writers of
style S connect the ith stroke of c1 to c2, given that c1 is
comprised of j strokes. Let Pc(i, j, c1, ∗) be the proba-
bility that these writers connect the ith stroke of c1 (again
rendered with j strokes) to any adjacent letter. For ex-
ample, many cursive writers will connect the first stroke
of the letter ‘i’ to proceeding letters; for such writers
Pc(1, 2,i, ∗) ≈ 1. Note that in this case, the dot of the
‘i’ will be rendered after proceeding letters, we call this
a “delayed” stroke.

Let δw(c1, c2) denote the median gap between the ad-
jacent characters c1 and c2 (i.e., the distance between
the maximum value of x(t) for c1 and the minimum
value of x(t) for c2), δw(c1, ∗) the median gap between
c1 and any proceeding character, and δw(∗) the median
gap between any two adjacent characters. Intuitively,
δw(c1, c2) < 0 if users tend to overlap characters. Sim-
ilarly, let δt(c1, c2) denote the median time elapsed be-
tween the end of c1 and the beginning of c2. Definitions
of δt(c1, ∗) and δt(∗) are analogous to those for δw.

Finally, the generative algorithm clearly must also
make use of a user’s pen-up velocity. This can be es-
timated from the population by computing the pen-up
velocity for each element in GS and using the 75th per-

centile of these velocities. We denote this value as vS .
Having acquired her generalized knowledge, the ad-

versary can now select and combine her choices of n-
grams that will be used for concatenative-synthesis in the
following manner:

n-gram Selection At a high level, the selection of n-
grams that allow for a concatenative-style rendering of p
involves a search of Gu for possible candidates. Let Gu,p

be a set of u’s renderings of various n-grams in p. There
may be more than one element in Gu,p for each n-gram
in p. The attacker selects k renderings g1, . . . , gk from
Gu,p such that g1||g2|| . . . ||gk = p. Our selection algo-
rithm is randomized, but biased towards longer n-grams.
However, the average length of each n-gram is small as
shorter n-grams are required to “fill the gap” between
larger n-grams. To explore the feasibility of our genera-
tive algorithm we ensure that gi and gi+1 do not originate
from the same writing sample, but an actual adversary
might benefit from using n-grams from the same writing
sample.

n-gram Combination Given the selection of n-grams
(g1, . . . , gk) the attacker’s task is to combine them to
form a good representation of p. Namely, she must ad-
just the signals that compose each gi (tgi

, x(tgi
), y(tgi

)
and p(tgi

)) to create a final set of signals that authenti-
cates to the system. The algorithm is quite simple. At
a high level, it proceeds as follows: The adversary nor-
malizes the signals tgi

, x(tgi
) and y(tgi

) by subtracting
the respective minimum values from each element in the
signal. The y(tgi

) are shifted so that the baselines of
the writing match across gi. To finalize the spatial trans-
forms, the adversary horizontally shifts each x(tgi

) by

δx,i = δx,i−1 + max(x(tgi−1
)) + δw(ei−1, si)

where ei (resp. si) is the last (resp. first) character in gi

and δx,1 = 0. Once the adversary has fixed the (x, y)
coordinates, she needs to fabricate t and p(t) signals to
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complete the forgery. Modifying p(t) consists of decid-
ing whether or not to connect adjacent n-grams. To do
this, the adversary uses knowledge derived from the pop-
ulation. If ei−1 is rendered with j′ strokes, and gi starts
with si, the adversary connects the jth stroke of ei−1

to si with probability Pc(j, j
′, ei−1, si). To generate a

more realistic connection, the adversary smoothes the
last points of ei−1 and the first points of si. Additionally,
all strokes that occur after stroke j are “pushed” onto a
stack, which is emptied on the next generated pen-up.
This behavior simulates a true cursive writer returning to
dot ‘i’s and cross ‘t’s at the end of a word, processing
characters closest to the end of the word first.

Adjusting the t signal is also straightforward. Let T
be the time in tgi−1

that the last non-delayed stroke in
ei−1 ends. If there are no delayed strokes in ei−1, T =
max(tgi−1

). Then, the adversary can simply shift tgi
,

i > 1 by

δτ,i = δτ,i−1 + T + δt(ei−1, si)

and δτ,1 = 0. The only other time shift occurs when de-
layed strokes are popped from the stack. We can make
use of global knowledge to estimate the time delay by
using vS and the distance between the end of the previ-
ous stroke and the new stroke. Note that it is beneficial to
take vS as the 75th percentile instead of the median ve-
locity because, for cursive writers in particular, the ma-
jority of pen-up velocities is dominated by the time be-
tween words. However, these velocities are intuitively
slower as the writer is now thinking about creating a new
word as opposed to finishing a word that already exists.

If the adversary does not have access to the statisti-
cal measure δw(ei−1, si), she can first base her estimate
of inter-character spacing on δw(ei−1, ∗), and then on
δw(∗). She proceeds similarly for the measures δt and
Pc.

6.2 Results

To evaluate this concatenative approach we analyzed
the quality of the generated forgeries on user u writing
passphrase p. However, rather than using all 65 of the
available samples from the generative corpus, we instead
choose 15 samples at random from Gu,p — with the one
restriction being that there must exist at least one instance
of each character in p among the 15 samples. Recall that
this generative corpus contains writing samples from u,
but does not include p. The attacker’s choice of n-grams
g1, . . . , gk are selected from this restricted set.

Additionally, we limit GS to contain only 15 randomly
selected samples from each user with a similar writing
style as u. Denote this set of writings as G′

S . We purpose-
fully chose to use small (and arguably, easily obtainable)

data sets to illustrate the power of this concatenative at-
tack. Our “general knowledge” statistics are computed
from G′

S . Example forgeries derived by this process are
shown in Figure 4.

We generated up to 25 forgery attempts for each user
u and phrase p and used each as an attempt to authenti-
cate to the biometric template corresponding to u under
p. Figure 5 depicts the average FAR across all forgery
attempts. As a baseline for comparison, we replot the
FRR and the FAR-trained plots from §5. The FAR-
generative plot shows the results of the generative algo-
rithm against the entire population. Observe that under
these forgeries there is an EER of 27.4% at three error
correction compared to an EER of 20.6% at four error
corrections when considering our trained forgers.
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Figure 5: ROC curves for generative forgeries. Even
with access to only limited information, the algorithm
out-performs our trained forgers, shifting the EER from
20.6% at four errors to 27.4% at three errors.

We note that on average each generative attempt only
used information from 6.67 of the target user’s writing
samples. Moreover, the average length of an n-gram was
1.64 characters (and was never greater than 4). More im-
portantly, as we make no attempt to filter the output of
the generative algorithm by rank-ordering the best forg-
eries, the results could be much improved. That said,
we believe that given the limited information assumed
here, the results of this generative attack on the secu-
rity of the system warrant serious consideration. Fur-
thermore, we believe that this attack is feasible because
annotation of the samples in Gu,p, while tedious, poses
only a minor barrier to any determined adversary. For in-
stance, in our case annotation was accomplished with the
aide of an annotation tool that we implemented which is
fairly automated, especially for block handwriting: tak-
ing ≈ 30 sec. to annotate block phrases and ≈ 1.5 min.
for cursive phrases.
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7 Other Related Work

There is, of course, a vast body of past work on the topic
of signature verification (see [27] for a comprehensive if
somewhat dated survey, [11] for a more up-to-date look
at the field). However, to the best of our knowledge, there
is relatively little work that encompass our goals and at-
tack models described herein.

Perhaps the work closest to ours, although it predomi-
nately involves signatures, is that by Vielhauer and Stein-
metz [33]. They use 50 features extracted from a hand-
writing sample to construct a biometric hash. While
they performed some preliminary testing on PIN’s and
passphrases, the bulk of their study is on signatures,
where they evaluated features based on intrapersonal de-
viation, interpersonal entropy with respect to their hash
function, and the correlation between these two values.
That work however does not report any results for mean-
ingful attempts at forgery (i.e, other than naı̈ve attacks).

Also germane are a series of recent papers that have
started to examine the use of dynamic handwriting for the
generation of cryptographic keys. Kuan, et al. present a
method based on block-cipher principles to yield crypto-
graphic keys from signatures [12]. They test their al-
gorithm on the standard data set from the First Inter-
national Signature Verification Competition and report
EERs between 6% and 14% if the forger has access to
a stolen token. The production of skilled forgeries in
the SVC data set [37] resembles part of the methodol-
ogy used in round II of our studies and so does not
account for motivation, training, or talent.

In the realm of signature verification we also note
work on an attack based on hill-climbing, but that makes
the assumption that the system reveals how close of a
match the input is [36]. We believe this to be clearly un-
realistic, and our attack models are chosen to be more
pragmatic than this.

Finally, there have been a handful of works on us-
ing generative models to attack biometric authentication.
However, we note there exists significant disagreement
in the literature concerning the potential effectiveness of
similar (but inherently simpler) attacks on speaker verifi-
cation systems (e.g., [26, 21]). Lindberg and Blomberg,
for example, determined that synthesized passphrases
were not effective in their small-scale experiments [15],
whereas Masuko et al. found that their system was easily
defeated [20].

8 Conclusions

Several fundamental computer security mechanisms rest
on the ability of an intended user to generate an input
that an attacker is unable to reproduce. In the biometric
community, the security of biometric-based technologies

hinges on this perceived inability of the attacker to re-
produce the target user’s input. In particular, the evalua-
tion of biometric technologies is usually conducted under
fairly weak adversarial conditions. Unfortunately, this
practice may significantly underestimate the real risk of
accepting forgeries as authentic. To directly address this
limitation we present an automated technique for pro-
ducing generative forgeries that assists in the evaluation
of biometric systems. We show that our generative ap-
proach matches or exceeds the effectiveness of forgeries
rendered by trained humans in our study.

Our hope is that this work will serve as a solid foun-
dation for the work of other researchers and practition-
ers, particularly as it pertains to evaluating biometric au-
thentication or key-generation systems. Admittedly, such
evaluations are difficult to undertake due to the reliance
of recruiting large numbers of human subjects. In that
regard, the generative approach presented herein should
reduce the difficulty of this task and allow for more rig-
orous evaluations as it pertains to biometric security.

Additionally, there is much future work related to the
topics presented here. For instance, although the forg-
eries generated by our trained forgers were alarmingly
successful, it remains unclear as to the extent to which
these forgeries would fool human judges, including for
example, forensic document examiners. Exploring this
question is one of our short term goals. Lastly, there are
several directions for incorporating more sophisticated
generative algorithms into our evaluation paradigm. We
hope to explore these in the coming months.
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Notes

1Although the biometric literature often refers to static or dynamic
forgeries as skilled forgeries, here we make a distinction between these
three types. For example, despite access to static or dynamic informa-
tion, a weak forger might not be able to successfully replicate another
user’s writing.

2It is interesting to note, however, that each strong feature as defined
in [33] may be inferred from our best features. However, we did find
several other features that were not included in the original work.
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A Features

Using the quality metric, Q, as described in §4.3 we nar-
rowed 144 state of the art features to the 36 most useful
features (see Table 1). The 15 static features consisted
of: the number of strokes used in rendering the phrase,
the number of local horizontal and vertical extrema, and
the integrated area to the left and below the writing [33].
Additional static features included the writing width and
height, the total distance travelled by the pen on and off
the tablet, the total area enclosed within writing loops,
and the vertical centroid of these loops [8]. We also
considered the distance between the upper (lower) base-
line and the top (bottom) line [18], the median stroke-
slant [18], and the distance between the last x (y) coordi-
nate and the maximum x (y) coordinate [14]. Note that
these final two features could be considered dynamic as
one may not know which coordinate is the last one ren-
dered without access to timing information.

The 21 dynamic features consisted of: The total time
spent writing, the ratio of pen-up time to pen-down time,
the median pen velocity, the number of times the pen
ceases to move horizontally (vertically), and the total
time spent moving to the left, right, up, and down [14].
Additional dynamic features included the time of occur-
rence of the following events: maximum pen velocity,
maximum pen velocity in the horizontal (vertical) direc-
tion, minimum velocity in the horizontal (vertical) direc-
tion, and the maximum stroke slant [14]. Finally, we con-
sidered six invariant moments of the writing, which mea-
sure the number of samples, horizontal (vertical) mass,
diagonality, and horizontal (vertical) divergence [8].
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Feature (f ) Description Q(f)

Spatial Features

Pen-down distance Total distance travelled by the pen-tip while touching the screen [8]. 0.81
Median θ Median stroke-slant, normalized to θ ∈ [0, π] [18]. 0.71
Vert. end dist. Distance between the last y-coordinate and maximum y-coordinate [14]. 0.67
Y-Area Integrated area beneath the writing [33]. 0.65
Writing width Total width of the writing [33, 8]. 0.65
Writing height Total height of the writing [33, 8]. 0.65
Pen-up distance Euclidean distance between pen-up and pen-down events. 0.64
# of strokes Number of strokes used to render the passphrase [33]. 0.63
# of extrema Number of local extrema in the horizontal and vertical directions [33]. 0.62
Lower zone Distance between baseline and bottomline of the writing [18]. 0.62
X-Area Integrated area to the left of the writing [33]. 0.62
Loop y centroid The average value of all y coordinates contained within writing loops [8]. 0.62
Loop area Total area enclosed within loops generated by overlapping strokes [8]. 0.61
Upper zone Distance between upper-baseline and topline of the writing [18]. 0.61
Horiz. end dist. Distance between the last x-coordinate and maximum x-coordinate [14]. 0.60

Temporal Features

Time Total time spent writing (measured in ms) [14]. 0.87
# of times vx = 0 Number of times the pen ceases to move horizontally [14]. 0.86
# of times vy = 0 Number of times the pen ceases to move vertically [14]. 0.85
Inv. Mom. 00

∑
x

∑
y f(x, y); f(x, y) = 1 if there is a point at (x, y) and 0 otherwise [8]. 0.85

Inv. Mom. 10
∑

x

∑
y f(x, y) · x. Measures the horizontal mass of the writing [8]. 0.82

Inv. Mom. 01
∑

x

∑
y f(x, y) · y. Measures the vertical mass of the writing [8]. 0.79

Inv. Mom. 11
∑

x

∑
y f(x, y) · xy. Measures diagonality of the writing sample [8]. 0.78

Time of max vx Time of the maximum pen-velocity in the horizontal direction [14]. 0.78
Inv. Mom. 21

∑
x

∑
y f(x, y) · x2y. Measures vertical divergence [8]. 0.76

Inv. Mom. 12
∑

x

∑
y f(x, y) · xy2. Measures horizontal divergence [8]. 0.75

Median pen velocity Median speed of the pen-tip [14]. 0.74
Duration vx > 0 Total time the pen spends moving to the right [14]. 0.73
Duration vy > 0 Total time the pen spends moving to the up [14]. 0.73
Time of max vel. Time of the maximum pen-velocity [14]. 0.72
Pen up/down ratio Ratio time spent with the pen off and on the tablet [14]. 0.71
Time of max θ Time of maximum stroke slant. 0.70
Duration vy < 0 Total time the pen spends moving to the down [14]. 0.70
Duration vx < 0 Total time the pen spends moving to the left [14]. 0.69
Time of min vx Time of the minimum pen-velocity in the horizontal direction [14]. 0.69
Time of min vy Time of the minimum pen-velocity in the vertical direction [14]. 0.68
Time of max vy Time of the maximum pen-velocity in the vertical direction [14]. 0.68

Table 1: The statistical features used to evaluate the biometric authentication system. Features were chosen based on
the quality score Q defined in §4.3. θ is the angle of a given stroke, v, vx, vy are overall, horizontal, and vertical
velocity, respectively.
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