
Type-Safe Disks

Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok
Stony Brook University

Abstract

We present the notion of a type-safe disk (TSD). Un-
like a traditional disk system, a TSD is aware of the
pointer relationships between disk blocks that are im-
posed by higher layers such as the file system. A TSD
utilizes this knowledge in two key ways. First, it enables
active enforcement of invariants on data access based on
the pointer relationships, resulting in better security and
integrity. Second, it enables semantics-aware optimiza-
tions within the disk system. Through case studies, we
demonstrate the benefits of TSDs and show that a TSD
presents a simple yet effective general interface to build
the next generation of storage systems.

1 Introduction
Pointers are the fundamental means by which modern
file systems organize raw disk data into semantically-
meaningful entities such as files and directories. Point-
ers define three things: (1) the semantic dependency
between blocks (e.g., a data block is accessible only
through a pointer from an inode block); (2) the logical
grouping of blocks (e.g., blocks pointed to by the same
indirect block are part of the same file or directory); and
even (3) the importance of a block (e.g., blocks with
many outgoing pointers are important because they im-
pact the accessibility of a large set of blocks).

Despite the rich semantic information inherently
available through pointers, pointers are completely
opaque to disk systems today. Due to a narrow read-
write interface, storage systems view data simply as a
raw sequence of uninterpreted blocks, thus losing all se-
mantic structure imposed on the data by higher layers
such as the file system or database system. This leads
to the well-known information gap between the storage
system and higher layers [8, 10]. Because of this infor-
mation gap, storage systems are constrained in the range
of functionality they can provide, despite the powerful
processing capability and the great deal of low-level lay-
out knowledge they have [25–27].

We propose the notion of a type-safe disk (TSD),
a disk system that has knowledge of the pointer rela-
tionships between blocks. A TSD uses this knowledge
in two key ways. First, semantic structure conveyed
through pointers is used to enforce invariants on data ac-
cess, providing better data integrity and security. For ex-
ample, a TSD prevents access to an unallocated block.

Second, a TSD can perform various semantics-aware
optimizations that are difficult to provide in the current
storage hierarchy [25, 26].

A TSD extends the traditional block-based read-write
interface with three new primitives: block allocation,
pointer creation, and pointer removal. By performing
block allocation and de-allocation, a TSD frees the file
system from the need for free-space management. Simi-
lar in spirit to type-safe programming languages, a TSD
also exploits its pointer awareness to perform automatic
garbage collection of unused blocks; blocks which have
no pointers pointing to them are reclaimed automati-
cally, thus freeing file systems of the need to track refer-
ence counts for blocks in many cases.

We demonstrate the utility of a TSD through two pro-
totype case studies. First, we show that a TSD can pro-
vide better data security by constraining data access to
conform to implicit trust relationships conveyed through
pointers. ACCESS (A Capability Conscious Extended
Storage System) is a TSD prototype that provides an
independent perimeter of security by constraining data
access even when the operating system is compromised
due to an attack. ACCESS enforces the invariant that for
a block to be accessed, a parent block pointing to this
block should have been accessed in the recent past.

ACCESS also allows certain top-level blocks to be as-
sociated with explicit read and write capabilities (i.e.,
per-block keys); access to all other blocks is then vali-
dated through the implicit capability vested by the fact
that a parent block pointing to that block was success-
fully accessed before. Such path-based capabilities en-
able applications to encode arbitrary operation-level ac-
cess policies and sharing modes by constructing separate
pointer chains for different modes of access.

Our second case study is secure delete [13], a TSD
prototype that automatically overwrites deleted blocks.
When the last pointer to a block is removed, our secure
deletion TSD schedules the block for overwrite and will
not reuse it until the overwrite completes.

Overall, we find that a TSD presents an improved di-
vision of labor between file systems and storage. By
building on the existing block-based interface, a TSD re-
quires minimal modifications to the file system. All the
modifications required are implementation-level, unlike
design-level modifications that are required with brand
new interfaces. To demonstrate the ease with which ex-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 15

isting file systems can be ported to TSDs, we have mod-
ified two file systems, Linux Ext2 and VFAT, to use our
TSD prototype; in both cases the changes were minimal.

Despite its simplicity, we find the interface to be quite
powerful, since it captures the essence of a file sys-
tem’s semantic structure [24]. We describe how various
kinds of functionality enhancements enabled by alterna-
tive approaches [19, 27] can be readily implemented in
our model. We also find that the notion of type-safety is
largely independent of the exact unit of block access. For
example, even with recent proposals for an object-based
interface to disks [11, 19], the ability to convey relation-
ship between objects through pointers has benefits very
similar to what we illustrate in our case studies.

We evaluate our prototype implementations by using
micro-benchmarks and real workloads. We find that the
primary performance cost in a TSD arises from the var-
ious forms of state that the disk tracks for block alloca-
tion, capability enforcement, etc. The costs, however,
are quite minimal. For typical user workloads, a TSD
has an overhead of just 3% compared to regular disks.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss the utility of pointer information at the
disk. Section 3 discusses the design and implementation
of the basic TSD framework. In Section 4 we describe
file system support for TSDs. Sections 6 and 7 present
detailed case studies of two applications of TSDs: AC-
CESS and secure deletion. We evaluate all our prototype
implementations in Section 8. We discuss related work
in Section 9, and conclude in Section 10.

2 Motivation

In this section we present an extended motivation.

Pointers as a proxy for data semantics. The inter-
linkage between blocks conveys rich semantic informa-
tion about the structure imposed on the data by higher
layers. Most modern file systems and database systems
make extensive use of pointers to organize disk blocks.
For example, in a typical file system, directory blocks
logically point to inode blocks which in turn point to in-
direct blocks and regular data blocks. Blocks pointed
to by the same pointer block are often semantically re-
lated (e.g., they belong to the same file or directory).
Pointers also define reachability: if an inode block is cor-
rupt, the file system cannot access any of the data blocks
it points to. Thus, pointers convey information about
which blocks impact the availability of the file system
to various degrees. Database systems are very similar in
their usage of pointers. They have B-tree indexes that
contain on-disk pointers, and their extent maps track the
set of blocks belonging to a table or index.

In addition to being passively aware of pointer rela-
tionships, a type-safe disk takes it one step further. It

actively enforces invariants on data access based on the
pointer knowledge it has. This feature of a TSD enables
independent verification of file system operations; more
specifically, it can provide an additional perimeter of se-
curity and integrity in the case of buggy file systems or a
compromised OS. As we show in Section 6, a type-safe
disk can limit the damage caused to stored data, even
by an attacker with root privileges. We believe this ac-
tive nature of control and enforcement possible with the
pointer abstraction makes it powerful compared to other
more passive information-based interfaces.

Pointers thus present a simple but general way of cap-
turing application semantics. By aligning with the core
abstraction used by higher-level application designs, a
TSD has the potential to enable on-disk functionality
that exploits data semantics. In the next subsection,
we list a few examples of new functionality (some pro-
posed in previous work in the context of alternative ap-
proaches) that TSDs enable.

Applications. There are several possible uses of
TSDs. (1) Since TSDs are capable of differentiating
data and pointers, they can identify metadata blocks as
those blocks that contain outgoing pointers and repli-
cate them to a higher degree, or distribute them evenly
across all the disks. This could provide graceful degra-
dation of availability as provided by D-GRAID [26]. (2)
Using the knowledge of pointers, a TSD can co-locate
blocks along with their reference blocks (blocks that
point to them). In general, blocks will be accessed just
after their pointer blocks are accessed, and hence there
would be better locality during access. (3) TSDs can
perform intelligent prefetching of data because of the
pointer information. When a pointer block is accessed,
a TSD can prefetch the data blocks pointed to by it, and
store it in the on-disk buffers for improved read perfor-
mance. (4) TSDs can provide new security properties
using the pointer knowledge by enforcing implicit capa-
bilities. We discuss this in detail in Section 6. (5) TSDs
can perform automatic secure deletion of deleted blocks
by tracking block liveness using pointer knowledge. We
describe this in detail in Section 7.

3 Type-Safety at the Disk Level

Having pointer information inside the disk system en-
ables enforcement of interesting constraints on data ac-
cess. For example, a TSD allows access to only those
blocks that are reachable through some pointer path.
TSDs manage block allocations and enforce that every
block must be allocated in the context of an existing
pointer path, thus preventing allocated blocks from be-
coming unreachable. More interestingly TSDs enable
disk-level enforcement of much richer constraints for
data security as described in our case study in section 6.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association16

Enforcing such access constraints based on pointer re-
lationships between blocks is a restricted form of type-
safety, a well-known concept in the field of program-
ming languages. The type information that a TSD ex-
ploits, however, is narrower in scope: TSDs just differ-
entiate between normal data and pointers.

We now detail the TSD interface, its operation, and
our prototype implementation. Figure 1 shows the archi-
tectural differences between normal disks and a TSD.

Management
Namespace

(a) Traditional Disk (b) Type−safe Disk

R
E
A
D

W
R
I
T
E

D
E
L
E
T
E
_
P
T
R

C
R
E
A
T
E
_
P
T
R

A
L
L
O
C
_
B
L
O
C
K
S

Management Management
Namespace Freespace

R
E
A
D

W
R
I
T
E

DISK/RAID DISK/RAID

Physical StoragePhysical Storage

Management Manager
Pointer

Firmware
Firmware

File SystemFile System

Freespace

Figure 1: Comparison of traditional disks vs. type-safe disks

3.1 Disk API
A type-safe disk exports the following primitives, in ad-
dition to the basic block-based API:

• SET BLOCKSIZE(Size): Sets the file system block
size in bytes.

• ALLOC BLOCKS(Ref, Hint, Count): Allocates
Count number of new file system blocks from the
disk-maintained free block list, and creates pointers
to the allocated blocks, from block Ref . Allocated
blocks need not be contiguous. Ref must be a valid
block number that was previously allocated. Hint

is the block number closest to which the new blocks
should be allocated. Hint can be NULL, which
means the disk can choose the new block totally at
its own discretion. Returns an array of addresses
of the newly allocated blocks, or NULL if there are
not enough free blocks on the device.

• ALLOC CONTIG BLOCKS(Ref, Hint, Count):
Follows the same semantics as ALLOC BLOCKS,
except that it allocates Count number of contigu-
ous blocks if available.

• CREATE PTR(Src, Dest): Creates a pointer from
block Src to block Dest. Both Src and Dest must
be previously allocated. Returns success or failure.

• DELETE PTR(Src, Dest): Deletes a pointer from
block Src that points to block Dest. Semantics
similar to CREATE PTR.

• GET FREE: Returns the number of free blocks left.

3.2 Managing Block Pointers
A TSD needs to maintain internal data-structures to keep
track of all pointers between blocks. It maintains a
pointer tracking table called PTABLE that stores the set of
all pointers. The PTABLE is indexed by the source block
number and each table entry contains the list of destina-
tion block numbers. A new PTABLE entry is added every
time a pointer is created. Based on pointer information,
TSD disk blocks are classified into three kinds: (a) Ref-
erence blocks: blocks with both incoming and outgoing
pointers (such as inode blocks). (b) Data blocks: blocks
without any outgoing pointers but just incoming point-
ers. (c) Root blocks: a pre-determined set of blocks that
contain just outgoing pointers but not incoming point-
ers. Root blocks are never allocated or freed, and they
are statically determined by the disk. Root blocks are
used for storing boot information or the primary meta-
data block of file systems (e.g., the Ext2 super block).

3.3 Free-Space Management
To perform free-space management at the disk level, we
track live and free blocks. A TSD internally maintains
an allocation bitmap, ALLOC-BITMAP, containing one
bit for every logical unit of data maintained by the higher
level software (e.g., a file system block). The size of a
logical unit is set by the upper-level software through
the SET BLOCKSIZE disk primitive. When a new block
need to be allocated, the TSD can choose a free block
closest to the hint block number passed by the caller.
Since the TSD can exploit the low level knowledge it
has, it chooses a block number which requires the least
access time from the hint block.

TSDs use the knowledge of block liveness (a block
is defined to be dead if it has no incoming pointers) to
perform garbage collection. Unlike traditional garbage
collection systems in programming languages, garbage
collection in TSD happens synchronously during a par-
ticular DELETE PTR call which deletes the last incoming
pointer to a block. A TSD maintains a reference count
table, RTABLE, to speed up garbage collection. The ref-
erence count of a block gets incremented every time a
new incoming pointer is created and is decremented dur-
ing pointer deletions. When the reference count of a
block drops to zero during a DELETE PTR call, the block
is marked free immediately. A TSD performs garbage
collection one block at a time as apposed to perform-
ing cascading deletes. Garbage collection of reference
blocks with outgoing pointers is prevented by disallow-
ing deletion of the last pointer to a reference block before
all outgoing pointers in it are deleted.

3.4 Consistency
As TSDs maintain separate pointer information, TSD
pointers could become inconsistent with the file system

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 17

pointers during system crashes. Therefore, upon a sys-
tem crash, the consistency mechanism of the file system
is triggered which checks file system pointers against
TSD pointers and first fixes any inconsistencies between
both. It then performs a regular scan of the file system
to fix file system inconsistencies and update the TSD
pointers appropriately. For example, if the consistency
mechanism creates a new inode pointer to fix an incon-
sistency, it also calls the CREATE PTR primitive to up-
date the TSD internal pointers. Alternatively, we can ob-
viate the need for consistency mechanisms by just mod-
ifying file systems to use TSD pointers instead of main-
taining their own copy in their meta-data. However, this
involves wide-scale modifications to the file system.

File system integrity checkers such as fsck for TSDs
have to run in a privileged mode so that they can per-
form a scan of the disk without being subjected to the
constraints enforced by TSDs. This privileged mode can
use a special administrative interface that overrides TSD
constraints and provides direct access to the TSD pointer
management data-structures.

Block corruption. When a block containing TSD-
maintained pointer data-structures gets corrupted the
pointer information has to be recovered, as the data
blocks pertaining to the pointers could still be reachable
through the file system meta-data. Block corruption can
be detected using well-known methods such as check-
summing. Upon detection, the TSD notifies the file sys-
tem, which recreates the lost pointers from its meta-data.

3.5 Prototype Implementation

We implemented a prototype TSD as a pseudo-device
driver in Linux kernel 2.6.15 that stacks on top of an ex-
isting disk block driver. It contains 3,108 lines of ker-
nel code. The TSD layer receives all block requests,
and redirects the common read and write requests to
the lower level device driver. The additional primi-
tives required for operations such as block allocation and
pointer management are implemented as driver ioctls.

We implemented PTABLE and RTABLE as in-memory
hash tables which gets written out to disk at regular in-
tervals of time through an asynchronous commit thread.
In implementing the RTABLE, we add an optimization to
reduce the number of entries maintained in the hash ta-
ble. We add only those blocks whose reference count is
greater than one. A block which is allocated and which
does not have an entry in the RTABLE is deemed to have
a reference count of one and an unallocated block (as
indicated by the ALLOC BITMAP) is deemed to have a
reference count of zero. This significantly reduces the
size of our RTABLE, because most disk blocks have ref-
erence counts of zero or one (e.g., all data blocks have
reference counts zero or one).

4 File System Support
We now describe how a file system needs to be modified
to use a TSD. We first describe the general modifications
required to make any file system work with a TSD. Next,
we describe our modifications to two file systems, Linux
Ext2 and VFAT, to use our framework.

Since TSDs perform free-space management at the
disk-level, file systems using TSD are freed from the
complexity of allocation algorithms, and tracking free
block bitmaps and other related meta-data. However, file
systems now need to call the disk API to perform alloca-
tions, pointer management, and getting the free blocks
count. The following are the general modifications re-
quired to existing file systems to support type-safe disks:

1. The mkfs program should set the file system block
size using the SET BLOCKSIZE primitive, and store
the primary meta-data block of the file system (e.g.,
the Ext2 super block) in one of the TSD root blocks.
Note that the TSD root blocks are a designated set
of well-known blocks known to the file system.

2. The free-space management sub-system should be
eliminated from the file system, and TSD API
should be used for block allocations. The file sys-
tem routine that estimates free-space, should call
the GET FREE disk API, instead of consulting its
own allocation structures.

3. Whenever file systems add new pointers to their
meta-data, CREATE PTR disk primitive should be
called to create a TSD pointer. Similarly, the
DELETE PTR primitive has to be called when point-
ers are removed from the file system.

In the next two sub-sections we describe the modifica-
tions that we made to the Ext2 and the VFAT file systems
under Linux, to support type-safe disks.

4.1 Ext2TSD
We modified the Linux Ext2 file system to support type-
safe disks; we call the modified file system Ext2TSD.
The Ext2 file system groups together a fixed number of
sequential blocks into a block group and the file system
is managed as a series of block groups. This is done to
keep related blocks together. Each block group contains
a copy of the super block, inode and block allocation
data-structures, and the inode blocks. The inode table
is a contiguous array of blocks in the block group that
contain on-disk inodes.

To modify Ext2 to support TSDs, we removed the no-
tion of block groups from Ext2. Since allocations and
de-allocations are done by using the disk API, the file
system need not group blocks based on their order. How-
ever, to perform easy inode allocation in tune with Ext2,
we maintain inode groups which we call ISEGMENTS.
Each isegment contains a segment descriptor that has an

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association18

inode bitmap to track the number of free inodes in that
isegment. The inode allocation algorithm of Ext2TSD
is same as that of Ext2. The mkfs user program of
Ext2TSD writes the super block, and allocates the in-
ode segment descriptor blocks, and inode tables using
the allocation API of the disk. It also creates pointers
from the super block to all blocks containing isegment
descriptors and inodes tables.

The organization of file data in Ext2TSD follows the
same structure as Ext2. When a new file data or indirect
block is allocated, Ext2TSD calls ALLOC BLOCKS with
the corresponding inode block or the indirect block as
the reference block. While truncating a file, Ext2TSD
just deletes the pointers in the indirect block branches
in the right order such that all outgoing pointers from
the parent block to its child blocks are deleted before
deleting the incoming pointer to the parent block. Thus
blocks belonging to truncated or deleted files are auto-
matically reclaimed by the disk.

In the Ext2 file system, each directory entry contains
the inode number for the corresponding file or directory.
This is a logical pointer relationship between the direc-
tory block and the inode block. In our implementation
of Ext2TSD, we create physical pointers between a di-
rectory block and the inode blocks corresponding to the
inode numbers contained in every directory entry in the
directory block. Modifying the Ext2 file system to sup-
port TSD was relatively simple. It took 8 days for us
to build Ext2TSD starting from a vanilla Ext2 file sys-
tem. We removed 538 lines of code from Ext2 which are
mostly the code required for block allocation and bitmap
management. We added 90 lines of new kernel code and
modified 836 lines of existing code.

4.2 VFATTSD
The next file system we consider is VFAT, a file sys-
tem with origins in Windows. Specifically, we consider
the Linux implementation of VFAT. We chose to modify
VFAT to support TSDs because it is sufficiently different
in architecture from Ext2 and hence shows the general-
ity of the pointer level abstraction provided by TSDs.
We call our modified file system VFATTSD.

The VFAT file system contains an on-disk structure
called the File Allocation Table (FAT). The FAT is a
contiguous set of blocks in which each entry contains
the logical block number of the next block of a file or
a directory. To get the next block number of a file, the
file system consults the FAT entries corresponding to the
previous block of the file. Each file or directory’s first
block is stored as part of the directory entry in the corre-
sponding directory block. The FAT entry corresponding
to the last block of a file contains an EOF marker. VFAT
tracks free blocks by having a special marker in the FAT
entry corresponding to the blocks.

In the context of TSDs, we need not use the FAT to
track free blocks. All block allocations are done us-
ing the allocation API provided by a TSD. The mkfs
file system creation program allocates and writes the
FAT blocks using the disk API. Modifying the VFAT file
system to support TSDs was substantially simpler com-
pared to Ext2, as VFAT does not manage data blocks
hierarchically. We had to maintain substantially lesser
number of pointers.

In VFAT, we created pointers from each directory
block to all blocks belonging to files which have their
directory entries in the directory block. Each FAT block
points to the block numbers contained in the entries
present within. The TSD therefore tracks all blocks be-
longing to files in the same directory block. Also, all
the directory blocks and the FAT blocks contain outgo-
ing pointers. The disk can track the set of all metadata
blocks present in the file system by just checking if a
block is a data block or a reference block.

Modifying the VFAT file system to support TSD was
relatively straightforward. It took 4 days for us to build
VFATTSD from the VFAT file system. We added 83
lines of code, modified 26 lines of code, and deleted
71 lines of code. The deleted code belonged to the free
space management component of VFAT.

5 Other Usage Scenarios

In this section we discuss how the TSD abstraction that
we have presented fits three other usage scenarios.

RAID systems. The TSD architecture requires a one-
to-one correspondence between a file system and a TSD.
However, in aggregated storage architectures such as
RAID, a software or hardware layer could exist between
file systems and TSDs. In this scenario, the file system
gets distributed across several TSDs and no single piece
has all the pointer information.

To realize the benefits of TSDs in this model, we pro-
pose the following solution: all the layers between the
file systems and the TSDs should be aware of the TSD
interface. Reference blocks should be replicated across
the TSDs, and the software layer that performs aggrega-
tion should route the pointer management calls to the
appropriate TSD that contains the corresponding data
blocks. Therefore, in an aggregated storage system, each
TSD contains a copy of all the reference blocks, but has
only a subset of pointers pertaining to the data blocks
in them. This ensures that whatever information that a
single TSD has is sufficient for its own internal opera-
tions such as garbage collection, and the global structure
can be used by the aggregation layer by combining the
information present in each of the TSDs. The aggrega-
tion layer intercepts the CREATE PTR and DELETE PTR

calls and invokes the disk primitives of the TSD which

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 19

contains the corresponding data blocks. The aggrega-
tion layer also contains an allocation algorithm to route
the ALLOC BLOCKS call from the file system to the ap-
propriate TSD. For example, if there are three TSDs in
a software RAID system and a file is striped across the
three, all the disks will contain the file’s inode block.
However, each disk’s pointer data-structures will con-
tain only the pointers from the inode blocks to those data
blocks that are present in that disk. In this case, the first
disk only contains pointers from the inode block to block
offsets 0, 3, 6, and so on. A related idea explored in the
context of Chunkfs is allowing files and directories to
span across different file systems by having continuation
inodes in each file system [14].

Journalling file systems. Journalling file systems
maintain a persistent log of operations for easy recov-
ery after a crash. A journalling file system that uses
a TSD should pre-allocate the journal blocks using the
ALLOC BLOCKS primitive with the reference block as
one of the root blocks. For example, Ext3 can create
pointers from the super block to all the journal blocks.
Journalling file systems should also update TSD point-
ers during journal recovery, using the pointer manage-
ment API of the TSD, to ensure that the TSD pointer
information is in sync with the file system meta-data.

Software dependent on physical locations. Software
that needs to place data in the exact physical location
on the disk, such as some physical backup tools, may
not benefit as much from the advantages of TSDs. This
is because TSDs do not provide explicit control to the
upper level software to choose the precise location of a
block to allocate. However, such software can be sup-
ported by TSDs by using common techniques such as
preallocating all blocks in the disk and then managing
them at the software level. For example, a log-structured
file system can allocate all TSD blocks using the AL-
LOC BLOCKS primitive during bootstrapping, and then
perform its normal operation within that range of blocks.

6 Case Study: ACCESS
We describe how type-safety can enable a disk to pro-
vide better security properties than existing storage sys-
tems. We designed and implemented a secure stor-
age system called ACCESS (A Capability Conscious
Extended Storage System) using the TSD framework;
we then built a file system on top, called Ext2ACCESS.

Protecting data confidentiality and integrity during in-
trusions is crucial: attackers should not be able to read or
write on-disk data even if they gain root privileges. One
solution is to use encryption [6, 30]; this ensures that in-
truders cannot decipher the data they steal. However,
encryption does not protect the data from being over-
written or destroyed. An alternative is to use explicit

disk-level capabilities to control access to data [1, 11].
By enforcing capabilities independently, a disk enables
an additional perimeter of security even if the OS is com-
promised. Others explored using disk-level versioning
that never overwrites blocks, thus enabling the recovery
of pre-attack data [28].

ACCESS is a type-safe disk that uses pointer infor-
mation to enforce implicit path-based capabilities, ob-
viating the need to maintain explicit capabilities for all
blocks, yet providing similar guarantees.

ACCESS has five design goals. (1) Provide an infras-
tructure to limit the scope of confidentiality breaches on
data stored on local disks even when the attacker has root
privileges or the OS and file systems are compromised.
(2) The infrastructure should also enable protection of
stored data against damage even in the event of a net-
work intruder gaining access to the raw disk interface.
(3) Support efficient and easy revocation of authentica-
tion keys, which should not require costly re-encryptions
upon revocation. (4) Enable applications to use the in-
frastructure to build strong and easy-to-use security fea-
tures. (5) Support data recovery through administrative
interfaces even when authentication tokens are lost.

6.1 Design
The primitive unit of storage in today’s commodity disks
is a fixed-size disk block. Authenticating every block
access using a capability is too costly in terms of perfor-
mance and usability. Therefore, there needs to be some
criteria by which blocks are grouped and authenticated
together. Since TSDs can differentiate between normal
data and pointers, they can perform logical grouping of
blocks based on the reference blocks pointing to them.
For example, in Ext2 all data blocks pointed to by the
same indirect block belong to the same file.

ACCESS provides the following guarantee: a block x

cannot be accessed unless a valid reference block y that
points to this block x is accessed. This guarantee im-
plies that protecting access to data simply translates to
protecting access to the reference blocks. Such group-
ing is also consistent with the fact that users often ar-
range files of related importance into individual folders.
Therefore, in ACCESS, a single capability would be suf-
ficient to protect a logical working set of user files. Re-
ducing the number of capabilities required is not only
more efficient, but also more convenient for users.

In ACCESS, blocks can have two capability strings: a
read and a write capability (we call these explicit ca-
pabilities). Blocks with associated explicit capabilities,
which we call protected blocks, can be read or written
only by providing the appropriate capability. By per-
forming an operation on a block Ref using a valid ca-
pability, the user gets an implicit capability to perform
the same operation on all blocks pointed to by Ref ,

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association20

which are not directly protected (capability inheritance).
If a particular reference block i points to another block
j with associated explicit capabilities, then the implicit
capability of i is not sufficient to access j; the explicit
capability of j is needed to perform operations on it.

As all data and reference blocks are accessed using
valid pointers stored on disk, root blocks are used to
bootstrap the operations. In ACCESS, there are two
kinds of access modes: (1) All protected blocks are ac-
cessed by providing the appropriate capability for the
operation. (2) Blocks which are not protected can in-
herit their capability from an authenticated parent block.

ACCESS meta-data. ACCESS maintains a table
named KTABLE indexed by the block number, to store
the blocks’ read and write capabilities. It also main-
tains a temporal access table called LTABLE which is in-
dexed by the reference block number. The LTABLE has
entries for all reference blocks whose associated implicit
capabilities have not timed out. The timed out entries in
the LTABLE are periodically purged.

Preventing replay attacks. In ACCESS, data needs to
be protected even in situations where the OS is com-
promised. Passing clear-text capabilities through the
OS interface could lead to replay attacks by a silent in-
truder who eavesdrops capabilities. To protect against
this, ACCESS associates a sequence number with ca-
pability tokens. To read a protected block, the user
has to provide a HMAC checksum of the capability
(Cu) concatenated with a sequence number (Su) (Hu =
HMAC(Cu + Su, Cu)). This can be generated using
an external key card or a hand-held device that shares
sequence numbers with the ACCESS disk system. Each
user has one of these external devices, and ACCESS
tracks sequence numbers for each user’s external device.
Upon receiving Hu for a block, ACCESS retrieves the
capability token for that block from the KTABLE and
computes HA = HMAC(CA +SA, CA), where CA and
SA are the capability and sequence number for the block,
and are maintained by ACCESS. If Hu and HA do not
match, ACCESS denies access. Skews in sequence num-
bers are handled by allowing a window of valid sequence
numbers at any given time.

ACCESS operation. During every reference block ac-
cess, an optional timeout interval (Interval) can be pro-
vided, during which the implicit capabilities associated
with that reference block will be active. Whenever a ref-
erence block Ref is accessed successfully, an LTABLE

entry is added for it. This entry stays until Interval

expires. It is during this period of time, that we call
the temporal window, all child blocks of Ref which are
not protected inherit the implicit capability of access-
ing Ref . Once the timeout interval expires, all further
accesses to the child blocks are denied. This condition

should be captured by the upper level software, which
should prompt the user for the capability token, and then
call the disk primitive to renew the timeout interval for
Ref . The value of Interval can be set based on the se-
curity and convenience requirements. Long-running ap-
plications that are not interactive in nature should choose
larger timeout intervals.

At any instant of time when the OS is compromised,
the subset of blocks whose temporal window is active
will be vulnerable to attack. This subset would be
a small fraction of the entire disk data. The amount
of data vulnerable during OS compromises can be re-
duced by choosing short timeout intervals. One can
also force the timeout of the temporal window using the
FORCE TIMEOUT disk primitive described below.

ACCESS API. To design the ACCESS API, we ex-
tended the TSD API (Section 3) with capabilities, and
added new primitives for managing capabilities and
timeouts. Note that some of the primitives described
below let the file system specify the reference block
through which the implicit capability chain is estab-
lished. However, as we describe later, this is only used as
a hint by the disk system for performance reasons; AC-
CESS maintains its own structures that validate whether
the specified reference block was indeed accessed, and it
has a pointer to the actual block being accessed. In this
section when we refer to read or write capabilities, we
mean the HMAC of the corresponding capabilities and a
sequence number.

• SET CAPLEN(Length): Sets the length of capabil-
ity tokens. This setting is global.

• ALLOC BLOCKS(Ref, Refr|Cw, Count): Oper-
ates similar to the TSD ALLOC BLOCKS primitive
with the following two changes. (1) If Ref is pro-
tected the call takes the write capability of Ref ,
Cw; (2) otherwise, the call takes the reference block
Refr of Ref , to verify that the caller has write ac-
cess to Ref .

• ALLOC CONTIG BLOCKS(Ref, Refr|Cw, Count):
Same as the ALLOC BLOCKS primitive, but allo-
cates contiguous blocks.

• READ(Bno, Ref |Crw, T imeout): Reads the
block represented by Bno. Ref is the reference
block that has a pointer to Bno. Crw is either the
read or the write capability of block Bno. The
second argument of this primitive must be Ref if
Bno is not protected for read, and must be Crw if
Bno is protected. T imeout is the timeout interval.

• WRITE(Bno, Ref |Cw, timeout): Writes the block
represented by Bno. Cw is the write capability of
Bno. Other semantics are similar to READ.

• CREATE PTR(Src, Dest, Refs|Csw, Cdw|Refdw):
Creates a pointer from block Src to block Dest. If

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 21

Src or Dest are protected, their capabilities have
to be provided. For blocks which are not protected,
the caller must provide valid reference blocks
which point to Src and Dest. Note that although
the pointer is created only from the source block,
we need the write capability for the destination
block as well; without this requirement, one can
create a pointer to any arbitrary block and gain
implicit write capabilities on that block.

• DELETE PTR(Src, Dest, Refs|Csw): Deletes a
pointer from block Src to block Dest. Write cre-
dentials for Src has to be provided.

• KEY CONTROL(Bno, Cow , Cnr, Cnw, Ref): This
sets, unsets, or changes the read and write capa-
bilities associated with the block Bno. Cow is the
old write capability of Bno. Cnr and Cnw are the
new read and write capabilities respectively. A ref-
erence block Ref that has a pointer to Bno needs
to be passed only while setting the write key for
a block that did not have a write capability be-
fore. For all other operations, like unsetting keys or
changing keys, Ref need not be specified because
Cow can be used for authentication.

• RENEW CAPABILITY(Ref, Crw, Interval): Re-
news the capability for a given reference block.
Crw is the read or write key associated with Ref .
Interval is the timeout interval for the renewal.

• FORCE TIMEOUT(Ref): Times out the implicit ca-
pabilities associated with reference block Ref .

• SET BLOCKSIZE and GET FREE TSD primitives
(Section 3) can be called through the secure admin-
istrative interface discussed in Section 6.3.

6.2 Path-Based Capabilities

Capability systems often use capabilities at the granu-
larity of objects (e.g., physical disk blocks, or memory
pages); each object is associated with a capability that
needs to be presented to gain access.

In contrast, the implicit capabilities used by ACCESS
are path-level. In other words, they authenticate an ac-
cess based on the path through which the access was
made. This mechanism of authenticating paths instead
of individual objects is quite powerful in enabling ap-
plications to encode arbitrary trust relationships in those
paths. For example, a database system could have a pol-
icy of allowing any user to access a specific row in a
table by doing an index lookup of a 64-bit key, but re-
strict scans of the entire table only to privileged users.
With per-block (or per-row) capabilities, this policy can-
not be enforced at the disk unless the disk is aware of
the scan and index lookup operations. With path-based
capabilities, the database system could simply encode
this policy by constructing two separate pointer chains:
one going from each block in the table to the next, and

another from the index block to the corresponding table
block—and just have different keys for the start of both
these chains. Thus, the same on-disk data item can be
differentiated for different application-level operations,
while the disk is oblivious to these operations.

Another benefit of the path-based capability abstrac-
tion is that it enables richer modes of sharing in a file
system context. Let’s assume there are n users in a file
system and each user shares a subset of files with another
user. With traditional encryption or per-object capabil-
ity systems, users has to use a separate key for each other
user that shares their files; this is clearly a key manage-
ment nightmare (with arbitrary sharing, we would need
n2 keys). In our model, users can use the same key re-
gardless of how many users share pieces of their data.
To enable another user to share a file, all that needs to be
done is a separate link be created from the other user’s
directory to this specific file. The link operation needs
to take capabilities of both users, but once the operation
is complete, the very fact that the pointer linkage exists
will enable the sharing, but at the same time limit the
sharing to only those pieces of data explicitly shared.

6.3 Key Revocation and Data Recovery
ACCESS enables efficient and easy key revocation. In
normal encryption based security systems, key revoca-
tion could become pretty costly in proportion to the size
of the data, as all data have to be decrypted and re-
encrypted with the new key. With ACCESS, one just
changes the capability for the reference blocks instead
of the entire set of data blocks. Data need not be modi-
fied at all while revoking capabilities.

Secure key backup is a major task in any encryption-
based data protection system. Once an encryption key is
lost, usually the data is fully lost and cannot be recov-
ered. ACCESS does not have this major problem. Data
is not encrypted at all, and hence even if keys are lost,
data can be retrieved or the keys may be reset using the
administrative interface described below.

Often system administrators need to perform backup
and or administrative operations for which the restricted
ACCESS interface might not be sufficient. ACCESS
will have a secure administrative interface, which could
be through a special hardware port requiring physical ac-
cess, in combination with a master key. Using the secure
administrative interface, the administrator can backup
files, delete unimportant files, etc., because the data is
not stored internally in encrypted format.

6.4 ACCESS Prototype
We extended our TSD prototype to implement ACCESS.
We implemented additional hash tables for storing the
KTABLE and LTABLE required for tracking capabilities
and temporal access locality. All in-memory hash tables

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association22

were periodically committed to disk through an asyn-
chronous commit thread. The allocation and pointer
management ioctls in TSD were modified to take ca-
pabilities or reference blocks as additional arguments.
We implemented the KEY CONTROL primitive as a new
ioctl in our pseudo-device driver.

To authenticate the read and write operations, we
implemented a new ioctl, KEY INPUT. We did this to
simplify our implementation and not modify the generic
block driver. The KEY INPUT ioctl takes the block
number and the capabilities (or reference blocks) as
arguments. The upper level software should call this
ioctl before every read or write operation to authenti-
cate the access. Internally, the disk validates the creden-
tials provided during the ioctl and stores the success or
failure state of the authentication. When a read or write
request is received, ACCESS checks the state of the pre-
vious KEY INPUT for the particular block to allow or dis-
allow access. Once access is allowed for an operation,
the success state is reset. When a valid KEY INPUT is
not followed by a subsequent read or write for the block
(e.g., due to software bugs), we time out the success state
after a certain time interval.

6.5 The Ext2ACCESS File System
We modified the Ext2TSD file system described in Sec-
tion 4.1 to support ACCESS; we call the new file sys-
tem Ext2ACCESS. To demonstrate a usage model of
ACCESS disks, we protected only the inode blocks of
Ext2ACCESS with read and write capabilities. All other
data blocks and indirect blocks had implicit capabilities
inherited from their inode blocks. This way users can
have a single read or write capability for accessing a
whole file. An alternative approach may be to protect
only directory inode blocks. ACCESS provides an in-
frastructure for implementing security at different levels,
which upper level software can use as needed.

To implement per-file capabilities, we modified the
Ext2 inode allocation algorithm. Ext2 stores several in-
odes in a single block; so in Ext2ACCESS we needed
to ensure that an inode block has only those inodes that
share the same capabilities. To handle this, we associ-
ated a capability table with every isegment (Section 4.1).
The capability table persistently stores the checksums
of the capabilities of every inode block in the particular
isegment. Whenever a new inode needs to be allocated,
an isegment with the same key is chosen if available.

Ext2ACCESS has two file system ioctls, called
SET KEY and UNSET KEY, which can be used by user
processes to set and unset capabilities for files. The
life of a user’s key in kernel memory can be decided
by the user. For example, a user can call the SET KEY

ioctl before an operation and then immediately call the
UNSET KEY ioctl after the operation is completed to

erase the capability from kernel memory; in this case
the life of the key in kernel memory is limited to a sin-
gle operation. Ext2ACCESS uses the KEY INPUT device
ioctl of ACCESS to send the user’s key before reading
an inode block. For all other blocks, it sends the cor-
responding reference block as an implicit capability, for
temporal authentication.

An issue that arises in Ext2ACCESS is that general
file system meta-data such as super block and descrip-
tors need to be written to all the time (and hence must
have their capabilities in memory). This can potentially
make them vulnerable to modifications by attackers. We
address this vulnerability by mapping these blocks to
root blocks and enforce that no pointer creations or dele-
tions can be made to root blocks except through an ad-
ministrative interface. Accordingly, mkfs creates set of
pointers to the relevant inode bitmap and isegment de-
scriptor blocks, but this cannot change after that. Thus,
we ensure confidentiality and write protection of all pro-
tected user files and directories.

Although the above solution protects user data during
attacks, the contents of the metadata blocks themselves
could be modified (for example, free block count, inode
allocation status, etc). Although most of this information
can be reconstructed by querying the pointer structure
from the disk, certain pieces of information are hard to
reconstruct. Our current implementation does not han-
dle this scenario, but there are various solutions to this
problem. First, we could impose that the disk perform
periodic snapshotting of root blocks; since these are very
few in number, the overhead of snapshotting will be min-
imal. Alternatively, some amount of NVRAM could be
used to buffer writes to these global metadata blocks
and periodically (say once a day) an administrator “com-
mits” these blocks to disk using a special capability after
verifying its integrity.

7 Case Study: Secure Deletion
In this section we describe our next case study: a disk
system that automatically performs secure deletion of
blocks that are freed. We begin with a brief motivation
and then move on to the design and implementation of
our Secure Deletion Type-Safe Disk (SDTSD).

Data security often includes the ability to delete data
such that it cannot be recovered [3, 13, 23]. Several
software-level mechanisms exist today that delete disk
data securely [16, 22]. However, these mechanisms are
fundamentally insecure compared to disk-level mecha-
nisms [25], because the former do not have knowledge
of disk internals and therefore cannot guarantee that
deleted data is overwritten.

Since a TSD automatically tracks blocks that are not
used, obtaining liveness information about blocks is sim-
ple as described in Section 3. Whenever a block is

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 23

garbage collected, an SDTSD just needs to securely
delete the block by overwriting it one or more times.
The SDTSD must also ensure that a garbage collected
block that is not yet securely deleted is not re-allocated;
an SDTSD achieves this by deferring the update of the
ALLOC BITMAP until a block is securely deleted.

To improve performance, an SDTSD overwrites
blocks in batches. Blocks that are garbage collected
are automatically added to a secure-deletion list. This
list is periodically flushed and the blocks to be se-
curely deleted are sorted for sequential access. Once a
batch of blocks is overwritten multiple times, the AL-
LOC BITMAP is updated to mark all those blocks as free.

We extended our prototype TSD framework described
in Section 3.5 to implement secure-deletion functional-
ity. Whenever a block is garbage collected, we add the
block number to a list. An asynchronous kernel thread
wakes up every second to flush the list into a buffer, sort
it, and perform overwrites. The number of overwrites
per block is configurable. We added 403 lines of kernel
code to our existing TSD prototype.

8 Evaluation

We evaluated the performance of our prototype TSD
framework in the context of Ext2TSD and VFATTSD.
We also evaluated our prototype implementations of AC-
CESS and secure delete. We ran general-purpose work-
loads and also micro-benchmarks on our prototypes and
compared them with unmodified Ext2 and VFAT file
systems on a regular disk. This section is organized as
follows: first we talk about our test platform, configura-
tions, and procedures. Next, we analyse the performance
of the TSD framework with the Ext2TSD and VFATTSD
file systems. Finally, we evaluate our prototypes for AC-
CESS and SDTSD.

Test infrastructure. We conducted all tests on a
2.8GHz Xeon with 1GB RAM, and a 74GB, 10Krpm,
Ultra-320 SCSI disk. We used Fedora Core 4, running a
vanilla Linux 2.6.15 kernel. To ensure a cold cache, we
unmounted all involved file systems between each test.
We ran all tests at least five times and computed 95%
confidence intervals for the mean elapsed, system, user,
and wait times using the Student-t distribution. In each
case, the half-widths of the intervals were less than 5%
of the mean. Wait time is the elapsed time less CPU time
used and consists mostly of I/O, but process schedul-
ing can also affect it. We recorded disk statistics from
/proc/diskstats for our test disk. We provide the
following detailed disk-usage statistics: the number of
read I/O requests (rio), number of write I/O requests
(wio), number of sectors read (rsect), number of sec-
tors written (wsect), number of read requests merged
(rmerge), number of write requests merged (wmerge),

total time taken for read requests (ruse), and the total
time taken for write requests (wuse).

Benchmarks and configurations. We used Postmark
v1.5 to generate an I/O-intensive workload. Postmark
stresses the file system by performing a series of opera-
tions such as directory lookups, creations, and deletions
on small files [17]. For all runs, we ran Postmark with
50,000 files and 250,000 transactions.

To simulate a relatively CPU-intensive user workload,
we compiled the Linux kernel source code. We used a
vanilla Linux 2.6.15 kernel, and analyzed the overheads
of Ext2TSD and Ext2ACCESS, for the untar, make
oldconfig, and make operations combined.

To isolate the overheads of individual file system
operations, we ran micro-benchmarks that analyze the
overheads associated with the create, lookup, and
unlink operations. For all micro-benchmarks, we used
a custom user program that creates 250 directories and
1,000 files in each of these directories, creating a to-
tal of 250,000 files. For performing lookups, we called
the stat operation on each of these files. We called
stat by specifying the full path name of the files so
that readdir was not called. For the unlink micro-
benchmarks, we removed all 250,000 files created.

Unless otherwise mentioned, the system time over-
heads were caused by the hash table lookups required
during the CREATE PTR and DELETE PTR TSD calls.
This CPU overhead is due to the fact that our prototype
is implemented as a pseudo-device driver that runs on
the same CPU as the file system. In a real TSD setting,
the hash table lookups will be performed by the proces-
sor embedded in the disk and hence will not influence
the overheads on the host system.

8.1 Ext2TSD
We analyze the overheads of Ext2TSD over our TSD
framework in comparison with the overheads of regu-
lar Ext2 over a regular disk. We discuss the Postmark,
kernel compilation, and micro-benchmark results.

0

50

100

150

200

250

300

350

400

450

Ext2TSD(a)Ext2(a)

E
la

ps
ed

T
im

e
(s

ec
on

ds
)

342.5 345.5

Wait
User

System

(a) Postmark

0

500

1000

1500

2000

2500

Ext2TSD(b)Ext2(b)

E
la

ps
ed

T
im

e
(s

ec
on

ds
) 2042 2101

Wait
User

System

(b) Kernel compile

rio ruse rsect rmerge wio wuse wsect wmerge

Ext2(a) 1456 48K 14K 275 162K 43M 3M 62K
Ext2TSD(a) 721 66K 13K 927 170K 49M 3M 221K
Ext2(b) 16K 133K 771K 2K 27K 3M 3M 54K
Ext2TSD(b) 17K 105K 567K 50K 20K 2M 3M 338K

Figure 2: Postmark and Kernel compile results for Ext2TSD

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association24

Postmark. Figure 2(a) shows the comparison of
Ext2TSD over TSD with regular Ext2. Ext2TSD has
a system time overhead of 81% compared to regular
Ext2. This is because of the hash table lookups re-
quired for creating and deleting pointers. The wait time
of the Ext2TSD configurations was 5% lower than reg-
ular Ext2. This is because of better spatial locality in
Ext2TSD for the Postmark workload. This is evidenced
by the higher rmerge and wmerge values of Ext2TSD
compared to Ext2. Ext2’s allocation policy takes into
account future file growth and hence leaves free blocks
between newly created files. In Ext2TSD, we did not
implement this policy and hence we have better locality
for small files. Overall, the elapsed times for Ext2 and
Ext2TSD under Postmark are similar.

Kernel compile. The Ext2TSD results for the kernel
compilation benchmark are shown in Figure 2(b). The
wait time overhead for Ext2TSD is 77%. This increase
in wait time is not because of increase in I/O, as shown
in the disk statistics. The increase is because of the in-
creased sleep time of the Postmark process context while
the TSD commit thread (described in Section 3.5) pre-
empts it to commit the hash tables. The asynchronous
commit thread runs in a different context and has to tra-
verse all hash tables to commit them, taking more sys-
tem time, which is reflected as wait time in the context of
Postmark. Since a kernel compile is not an I/O-intensive
workload, the system time overhead is lower than the
overhead for Postmark. The elapsed time overhead of
Ext2TSD compared to Ext2 under this benchmark is 3%.

Micro-benchmarks. We ran the CREATE, LOOKUP,
and UNLINK micro-benchmarks on Ext2TSD and com-
pared them with Ext2TSD.

0

5

10

15

20

25

30

Ext2ACCESSExt2TSDExt2

E
la

ps
ed

T
im

e
(s

ec
on

ds
)

14.1 15.0

29.6Wait
User

System

rio ruse rsect rmerge wio wuse wsect wmerge

Ext2 3609 14K 63k 4K 160 28K 71K 7944
Ext2TSD 3806 14K 63k 4K 156 19K 71K 8690
Ext2ACCESS 5120 20K 63k 3K 341 70K 71K 8523

Figure 3: Create micro-benchmark results

Figure 3 shows the results for the CREATE micro-
benchmark. The wait time overhead is 36%, which is
due to the increase in the sleep time due to CPU con-
text switches required for the TSD commit thread. Since
this benchmark has a significant system time compo-
nent, this is more pronounced. The wuse and ruse val-
ues in the disk statistics have not increased and hence the
higher wait time is not because of additional I/O.

0

1

2

3

4

5

6

7

8

Ext2ACCESSExt2TSDExt2

E
la

ps
ed

T
im

e
(s

ec
on

ds
)

4.7 4.1

6.3
Wait
User

System

rio ruse rsect rmerge wio wuse wsect wmerge

Ext2 9K 2096 71k 0 0 0 0 0
Ext2TSD 9K 1593 71k 0 0 0 0 0
Ext2ACCESS 9K 1427 71k 0 0 0 0 0

Figure 4: Lookup micro-benchmark results

Figure 4 shows the results of the LOOKUP micro-
benchmark. Ext2TSD had a 12% lower elapsed time
than Ext2. This is mainly because of the 24% savings in
wait time thanks to the better spatial locality evidenced
by the ruse value of the disk statistics.

0

2

4

6

8

10

Ext2ACCESSExt2TSDExt2

E
la

ps
ed

T
im

e
(s

ec
on

ds
)

4.2 4.1

9.4Wait
User

System

rio ruse rsect rmerge wio wuse wsect wmerge

Ext2 8850 2148 71k 0 70 17K 63K 7782
Ext2TSD 8856 1627 71k 0 74 18K 63K 7771
Ext2ACCESS 8857 1471 71k 0 236 75K 63K 7611

Figure 5: Unlink micro-benchmark results

Figure 5 shows the results of the UNLINK micro-
benchmark. Ext2TSD is comparable to Ext2 in terms to
elapsed time. This is because the 21% increase in sys-
tem time is compensated for by the 12% decrease in the
wait time, due to better spatial locality.

8.2 VFATTSD
We evaluated the overheads of VFATTSD compared to
VFAT, by running Postmark on a regular VFAT file
system and on VFATTSD. Figure 6 shows the Post-
mark results for VFATTSD. The increase in wait time
in VFATTSD (31%) is due to the increased seek times
while updating FAT entries. This is because VFATTSD’s
FAT blocks are not contiguous. This is evident from the
increased value of wuse for similar values of wsect.

0

50

100

150

200

250

300

350

400

450

VFATTSDVFAT

E
la

ps
ed

T
im

e
(s

ec
on

ds
)

269.5

367.0
Wait
User

System

rio ruse rsect rmerge wio wuse wsect wmerge

VFAT 3601 141K 3601 0.2 199K 27M 3M 2.8M
VFATTSD 1765 42K 5884 4119 220K 50M 2.6M 2.4M

Figure 6: Postmark results for VFATTSD

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 25

8.3 ACCESS

We now discuss the results for Ext2ACCESS under Post-
mark, kernel compilation, and micro-benchmarks.

0

50

100

150

200

250

300

350

400

450

Ext2ACCESS(a)Ext2(a)

E
la

ps
ed

T
im

e
(s

ec
on

ds
) 342.5

356.7

Wait
User

System

(a) Postmark

0

500

1000

1500

2000

2500

Ext2ACCESS(b)Ext2(b)

E
la

ps
ed

T
im

e
(s

ec
on

ds
) 2042

2198

Wait
User

System

(b) Kernel compile

rio ruse rsect rmerge wio wuse wsect wmerge

Ext2(a) 1456 48K 14K 275 162K 43M 3M 62K
Ext2ACCESS(a) 1116 113K 19K 1241 173K 50M 3M 222K
Ext2(b) 16K 133K 771K 2K 27K 3M 3M 54K
Ext2ACCESS(b) 19K 119K 634K 60K 20K 2M 3M 338K

Figure 7: Postmark and Kernel compile results for
Ext2ACCESS

Postmark. Figure 7(a) shows the Postmark results
for Ext2ACCESS and Ext2. The overheads of Ext2-
ACCESS are similar to Ext2TSD except that the
system time overheads have increased significantly.
Ext2ACCESS has 60% more system time than Ext2.
This is because of the additional information such as
keys and the temporal locality of reference blocks that
ACCESS needs to track. Even though ACCESS incurs
the overhead to write the capability table (Section 6.5)
for each isegment, it has not affected the wait time be-
cause of better spatial locality.

Kernel compile. Figure 7(b) shows the results
for the Ext2ACCESS kernel compile benchmark.
Ext2ACCESS had 21% more system time than Ext2, due
to the additional information being tracked by ACCESS.
Ext2ACCESS’s wait time was 2.5 times larger because
of the increase in sleep time of the compile process con-
text due to the preemption of the TSD commit thread.
The sleep time has increased compared to Ext2TSD be-
cause ACCESS is more CPU-intensive than Ext2TSD.

Micro-benchmarks. Figures 3, 4, and 5 also show
the results for the CREATE, LOOKUP, and the UNLINK

micro-benchmarks for Ext2ACCESS, respectively. For
the CREATE workload the system time and wait time of
Ext2ACCESS increased by 44% and 2.2 times, respec-
tively, compared to regular Ext2. The increase in wait
time is because of two reasons. First, the I/O time for
Ext2ACCESS is greater because of the additional seeks
required to access the capability table. This is shown
in the disk statistics. The wuse and ruse values of
Ext2ACCESS are significantly higher than regular Ext2.
Second, the preemption of the benchmark process con-
text by the TSD commit thread has resulted in increased

sleep time. The results for the lookup workload are sim-
ilar to that of Ext2TSD, except for the 12% increase in
system time. For the unlink workload, Ext2ACCESS
shows significant overheads: 90% more system time
and 85% more wait time. This is because unlinking
files involve several calls to the DELETE PTR disk prim-
itive which requires multiple hash table lookups. The
increase in wait time is due to the increase in the time
taken for writes as evidenced by the high wuse value of
disk statistics. This is because of the additional seeks re-
quired to update the capability tables for each isegment.

8.4 Secure Deletion

To evaluate the performance of our next case study
(SDTSD), we ran an unlink micro-benchmark. Figure 8
shows the results of this benchmark. The I/O overhead
of SDTSD over Ext2TSD was 40% compared to regu-
lar Ext2, mainly because of the additional I/O caused by
overwrites for secure deletion. This is evidenced by the
high wsect and wuse values for SDTSD, as expected.

0

5

10

15

20

SDTSDExt2TSDExt2

E
la

ps
ed

T
im

e
(s

ec
on

ds
)

11.8 12.2

16.5Wait
User

System

rio ruse rsect rmerge wio wuse wsect wmerge

Ext2 10K 2111 71k 0 70 16K 63K 7783
Ext2TSD 10K 1663 71k 0 73 18K 63K 7772
SDTSD 10K 1452 71k 0 237 77K 63K 7610

Figure 8: Unlink benchmark for secure delete

9 Related Work

Type-safety. The concept of type safety has been
widely used in the context of programming languages.
Type-safe languages such as Java are known to make
programming easier by providing automatic memory
management. More importantly, they improve security
by restricting memory access to legal data structures.
Type-safe languages use a philosophy very similar to
our model: a capability to an encompassing data struc-
ture implies a capability to all entities enclosed within
it. Type-safety has also been explored in the context
of building secure operating systems. For example, the
SPIN operating system [4] enabled safe kernel-level ex-
tensions by constraining them to be written in Modula-3,
a type-safe language. Since the extension can only ac-
cess objects it has explicit access to, it cannot change
arbitrary kernel state. More recently, the Singularity op-
erating system [15] used a similar approach, attempting
to improve OS robustness and reliability by using type-
safe languages and clearly defined interfaces.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association26

Interface between file systems and disks. Our work
is closely related to a large body of work examining new
interfaces between file systems and storage. For exam-
ple, logical disks expand the block-based interface by
exposing a list-based mechanism that file systems use
to convey grouping between blocks [7]. The Universal
File Server [5] has two layers where the lower layer ex-
ists in the storage level, thereby conveying directory-file
relationships to the storage layer. More recent research
has suggested the evolution of the storage interface from
the current block-based form to a higher-level abstrac-
tion. Object-based Storage Device (OSD) is one exam-
ple [19]; in OSDs the disk manages variable-sized ob-
jects instead of blocks. Similar to TSD, object-based
disks handle block allocation within an object, but still
do not have information on the relationships across ob-
jects. Another example is Boxwood [18]; Boxwood
considers making distributed file systems easier to de-
velop by providing a distributed storage layer that ex-
ports higher-level data structures such as B-Trees. Un-
like many of these interfaces, TSD considers backwards
compatibility and ease of file system modification as an
important goal. By following the block-based interface
and augmenting it with minimal hooks, we enable file
systems to be more readily portable to this interface,
as this paper demonstrates. Others examine the stor-
age interface by trying to keep the interface constant, but
move some intelligence into the disk system. For exam-
ple, the Loge disk controller implemented eager-writing
by writing to a block closest to its disk arm [9]. The
log-based programmable disk [29] extended this work,
adding free-space compaction. These systems, while be-
ing easily deployable by not requiring interface change,
are quite limited in the functionality they extend to disks.

A more recent example of work on improving stor-
age functionality without changing the interface is
Semantically-smart Disk Systems (SDSs) [27]. An SDS
enables rich functionality by automatically tracking in-
formation about the file system or DBMS using the stor-
age system, by carefully watching updates. However,
semantic disks need to be tailored to the specifics of the
file system above. In addition, they involve a fair amount
of complexity to infer semantic information underneath
asynchronous file systems. As the authors point out [25],
SDS is valuable when the interface cannot be changed,
but serves better as an evolutionary step towards an even-
tual change to an explicit interface such as TSD.

Capability-based access control. Network-Attached
Secure Disks (NASDs) incorporate capability based ac-
cess control in the context of distributed authentication
using object-based storage [1, 11, 20]. Temporal time-
outs in ACCESS are related to caching capabilities dur-
ing a time interval in OSDs [2]. The notion of using a

single capability to access a group of blocks has been
explored in previous research [1, 12, 21].

In contrast to their object-level capability enforce-
ment, ACCESS uses implicit path-based capabilities us-
ing pointer relationships between blocks.

10 Conclusions
In this paper, we have taken the well-known concept of
type-safety and applied it in the context of disk storage.
We have explored a simple question: what can a disk
do if it knew about pointers? We find that pointer in-
formation enables rich functionality within storage, and
also enables better security through active enforcement
of constraints within the disk system. We believe that
this pointer abstraction explores an interesting and ef-
fective design choice in the large spectrum of work on
alternative interfaces to storage.

Our experience with TSDs and the case studies has
also pointed to some limitations with this approach.
First, TSDs assume that a block is an atomic unit of file
system structure. This assumption makes it hard to en-
force constraints on data objects that occupy a partial
block (e.g., multiple inodes per block). Second, the lack
of higher level control over block allocation may limit
the benefits of TSDs with software that need to place
data in the exact physical locations on disk. While the
current interface presents a reasonable choice, only fu-
ture research will identify if more fine tuning is required.

11 Acknowledgments
We like to thank the anonymous reviewers for their help-
ful comments, and especially our shepherd Garth Gib-
son, whose meticulous and detailed comments helped
improve the work. We thank Muthian Sivathanu for
his valuable feedback during the various stages of this
project. We would also like to thank the following peo-
ple for their comments and suggestions on the work:
Remzi H. Arpaci-Dusseau, Tzi-cker Chiueh, Christos
Karamanolis, Patrick McDaniel, Ethan Miller, Abhishek
Rai, R. Sekar, Radu Sion, Charles P. Wright, and the
members of our research group (File systems and Stor-
age Lab at Stony Brook).

This work was partially made possible by NSF CA-
REER EIA-0133589 and NSF CCR-0310493 awards.

References
[1] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,

E. Oertli, D. Andersen, M. Burrows, T. Mann, and C. A.
Thekkath. Block-Level Security for Network-Attached
Disks. In Proc. of the Second USENIX Conf. on File and
Storage Technologies, pp. 159–174, San Francisco, CA,
March 2003.

[2] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor,
N. Rinetzky, O. Rodeh, J. Satran, A. Tavory, and

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 27

L. Yerushalmi. Towards an object store. In Mass Storage
Systems and Technologies (MSST), 2003.

[3] S. Bauer and N. B. Priyantha. Secure Data Deletion for
Linux File Systems. In Proc. of the 10th Usenix Secu-
rity Symposium, pp. 153–164, Washington, DC, August
2001.

[4] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
D. Becker, M. Fiuczynski, C. Chambers, and S. Eggers.
Extensibility, safety, and performance in the SPIN op-
erating system. In Proc. of the 15th ACM Symposium
on Operating System Principles, pp. 267–284, Copper
Mountain Resort, CO, December 1995.

[5] A. D. Birrell and R. M. Needham. A universal file server.
In IEEE Transactions on Software Engineering, volume
SE-6, pp. 450–453, September 1980.

[6] M. Blaze. A Cryptographic File System for Unix. In
Proc. of the first ACM Conf. on Computer and Commu-
nications Security, pp. 9–16, Fairfax, VA, 1993

[7] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The log-
ical disk: A new approach to improving file systems. In
Proc. of the 19th ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, October 2003.

[8] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Bridging the information gap in storage pro-
tocol stacks. In Proc. of the Annual USENIX Technical
Conf., pp. 177–190, Monterey, CA, June 2002.

[9] R. English and A. Stepanov. Loge : A self-organizing
disk controller. HP Labs, Tech. Rep., HPL91(179), 1991.

[10] G. R. Ganger. Blurring the Line Between OSes and Stor-
age Devices. Tech. Rep. CMU-CS-01-166, CMU, De-
cember 2001.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A cost-effective, high-bandwidth stor-
age architecture. In Proc. of the Eighth International
Conf. on Architectural Support for Programming Lan-
gauges and Operating Systems (ASPLOS-VIII), pp. 92–
103, New York, NY, December 1998

[12] H. Gobioff. Security for a High Performance
Commodity Storage Subsystem. PhD thesis,
Carnegie Mellon University, May 1999. cite-
seer.ist.psu.edu/article/gobioff99security.html.

[13] P. Gutmann. Secure Deletion of Data from Magnetic
and Solid-State Memory. In Proc. of the Sixth USENIX
UNIX Security Symposium, pp. 77–90, San Jose, CA,
July 1996.

[14] V. Henson. Chunkfs and continuation inodes. The 2006
Linux Filesystems Workshop (Part III), 2006.

[15] G. Hunt, J. Laurus, M. Abadi, M. Aiken, P. Barham,
M. Fahndrich, C. Hawblitzel, O. Hodson, S. Levi,
N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and
B. Zill. An Overview of the Singularity Project. Tech.
Rep. MSR-TR-2005-135, Microsoft Research, 2005.

[16] N. Joukov and E. Zadok. Adding Secure Deletion to
Your Favorite File System. In Proc. of the third inter-
national IEEE Security In Storage Workshop, San Fran-
sisco, CA, December 2005.

[17] J. Katcher. PostMark: A New Filesystem Benchmark.
Tech. Rep. TR3022, Network Appliance, 1997. www.

netapp.com/tech_library/3022.html.
[18] J. MacCormick, N. Murphy, M. Najork, C. Thekkath,

and L. Zhou. Boxwood: Abstractions as the Foundation
for Storage Infrastructure. In Proc. of the 6th Symposium
on Operating Systems Design and Implementation, pp.
105–120, San Francisco, CA, December 2004.

[19] M. Mesnier, G. R. Ganger, and E. Riedel. Object based
storage. IEEE Communications Magazine, 41, August
2003. ieeexplore.ieee.org.

[20] E. Miller, W. Freeman, D. Long, and B. Reed. Strong
Security for Network-Attached Storage. In Proc. of the
First USENIX Conf. on File and Storage Technologies,
pp. 1–13, Monterey, CA, January 2002.

[21] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C.
Reed. Strong security for network-attached storage. In
USENIX Conf. on File and Storage Technologies (FAST),
pp. 1–14, jan 2002.

[22] Overwrite, Secure Deletion Software. www.kyuzz.org/

antirez/overwrite.
[23] R. Perlman. Secure Deletion of Data. In Proc. of the

third international IEEE Security In Storage Workshop,
San Fransisco, CA, December 2005.

[24] M. Sivathanu, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and S Jha. A Logic of File Systems. In Proc.
of the Fourth USENIX Conf. on File and Storage Tech-
nologies, pp. 1–16, San Francisco, CA, December 2005.

[25] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Life or Death at
Block-Level. In Proc. of the 6th Symposium on Oper-
ating Systems Design and Implementation, pp. 379–394,
San Francisco, CA, December 2004.

[26] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Improving Storage Sys-
tem Availability with D-GRAID. In Proc. of the Third
USENIX Conf. on File and Storage Technologies, pp.
15–30, San Francisco, CA, March/April 2004.

[27] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Semantically-Smart Disk Systems. In Proc.
of the Second USENIX Conf. on File and Storage Tech-
nologies, pp. 73–88, San Francisco, CA, March 2003.

[28] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing Storage: Pro-
tecting Data in Compromised Systems. In Proc. of the
4th Usenix Symposium on Operating System Design and
Implementation, pp. 165–180, San Diego, CA, October
2000.

[29] R. Y. Wang, T. E. Anderson, and D. A. Patterson. Vir-
tual Log Based File Systems for a Programmable Disk.
In Proc. of the Third Symposium on Operating Systems
Design and Implementation, pp. 29–44, New Orleans,
LA, February 1999.

[30] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A
Secure and Convenient Cryptographic File System. In
Proc. of the Annual USENIX Technical Conf., pp. 197–
210, San Antonio, TX, June 2003.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association28

