
Windows XP Kernel Crash Analysis
Archana Ganapathi, Viji Ganapathi, and David Patterson

– University of California, Berkeley

ABSTRACT

PC users have started viewing crashes as a fact of life rather than a problem. To improve
operating system dependability, systems designers and programmers must analyze and understand
failure data. In this paper, we analyze Windows XP kernel crash data collected from a population
of volunteers who contribute to the Berkeley Open Infrastructure for Network Computing
(BOINC) project. We found that OS crashes are predominantly caused by poorly-written device
driver code. Users as well as product developers will benefit from understanding the crash
behaviors elaborated in this paper.

Introduction

Personal Computer (PC) reliability has become a
rapidly growing concern both for computer users as
well as product developers. Personal computers run-
ning the Microsoft Windows operating system are
often considered overly complex and difficult to man-
age. As modern operating systems serve as a conflu-
ence of a variety of hardware and software compo-
nents, it is difficult to pinpoint unreliable components.

Such unconstrained flexibility allows complex,
unanticipated, and unsafe interactions that result in an
unstable environment often frustrating the user. To
troubleshoot recurring problems, it is beneficial to
data-mine, analyze and document every interaction for
erroneous behaviors. Such failure data provides
insight into how computer systems behave under var-
ied hardware and software configurations.

To improve dependability, systems designers and
programmers must understand operating system failure
data. In this paper, we analyze crash data from a small
number of Windows machines. We collected our data
from a population of volunteers who contribute to the
Berkeley Open Infrastructure for Network Computing
(BOINC) project. As our analysis is based on a small
amount of data (with a self-selection bias due to the
nature of BOINC), we acknowledge that our results do
not represent the entire PC population. Nonetheless,
the data reveals several useful results for PC users as
well as researchers and product developers.

Most Windows users have experienced at least
one ‘‘bluescreen’’ during the lifetime of their machine.
A sophisticated PC user will accept Windows crashes
as a fact and attempt to cope with them. However, a
novice user will be terrified by the implications of a
crash and will continue to be preoccupied with the
thought of causing severe damage to the computer.
Analyzing failure data can help users gauge the
dependability of various products and understand the
source of their crashes.

From a research perspective, the motivation
behind failure data-mining is manifold. First, it reveals

the dominant failure cause of popular computer sys-
tems. In particular, it identifies products that cause the
most user frustration, thus facilitating our efforts to
build stable, resilient systems. Furthermore, it enables
product evaluation and development of benchmarks
that rank product quality. These benchmarks can influ-
ence design prototypes for reliable systems.

Within an organization, analyzing failure data
can improve quality of service. Often, corporations
collect failure data to evaluate causes of downtime. In
addition, they perform cost-benefit analysis to
improve service availability. Some companies extend
their analyses to client sites by gathering failure data
at deployment locations.

For example, Microsoft Corporation collects
crash data for their Windows operating system as well
as applications used by their customers. Unfortunately,
due to legal concerns, corporations such as Microsoft
will usually not share their data with academic
research groups. Companies do not wish to reveal
their internal vulnerabilities, nor can they share third
party products’ potential weaknesses. In addition,
many companies disable the reporting feature after
viewing proprietary data in the report. While abundant
failure data is generated on a daily basis, very little is
readily sharable with the research community.

The remainder of this paper describes our data
collection and analysis methodology, including: related
work in the areas of system dependability and failure
data analysis, background information about Windows
crash data and the data collection process, crash data
analysis and results, a discussion of the merits of
potential extensions to our work, and a conclusion.

Related Work

Jim Gray’s work [Gra86, Gra90] serves a model
for most contemporary failure analysis work. Gray did
not perform root cause analysis but rather Outage Cause
that considers the last in the fault chain. In 1989, he
found that the major source of outages was software,
contributing about 55%, far outrunning its immediate
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successor, system operations, which contributed 15%.
This observation led him to blame software for almost
every failure. In an earlier study [G05, GP05], we ana-
lyzed Windows application crashes to understand causal
relationships in the user-level. Departing from Gray’s
outage cause analysis, in our study we perform root
cause analysis under the assumption that the first crash
in a sequence of crashes is responsible for all subse-
quent crashes within that event chain.

The past two decades have produced several stud-
ies in root-cause analysis for operating systems (OS)
ranging from Guardian OS and Tandem Non-Stop UX
OS to VAX/VMS and Windows NT [Gra90, Kal98,
LI95, SK+00, SK+02, TI92, TI+95]. In server environ-
ments, Tandem computers, VAX clusters as well as
several operating systems and file servers have been
examined for software defects by several researchers.
Lee and Iyer focussed on software faults in the Tandem
GUARDIAN operating system [LI95], Tang and Iyer
considered two VAX clusters running the VAX/VMS
operating system [TI92], and Sullivan and Chillarege
examined software defects in MVS, DB2, and IMS
[SC91]. Murphy and Gent also focussed on system
crashes in VAX systems over an extended period,
almost a decade [MG95]. They concluded that system
management was responsible for over 50% of failures
with software trailing at 20% followed by hardware
that is responsible for about 10% of failures.

While examining NFS data availability in Net-
work Appliance’s NetApp filers, Lancaster and Rowe
attributed power failures and software failures as the
largest contributors to downtime; operator failure con-
tributions were negligible [LR01]. Thakur and Iyer
examined failures in a network of 69 SunOS worksta-
tions [TI96]. They divided problem root causes into
network, non-disk and disk-related machine problems.
Kalyanakrishnam, et al. perused six months of event
logs from a LAN comprising of Windows NT work-
stations that delivered emails [KK+99]. Using a state
machine model of detailed system failure states to
describe failure timelines on a single node, they con-
cluded that most automatic system reboot problems
are software-related; the average downtime is two
hours. Similarly, Xu, et al. considered Windows NT
event log entries related to system reboots for a net-
work of workstations that were used for enterprise in-
frastructure, allowing operators to annotate event logs
to indicate the reason for reboot [XK+99].

In this progression, our study of Windows’ crash
data gauges the evolution of PC reliability. Koopman, et
al. test operating systems against the POSIX specification
[KD00]. Our study is complementary to this work as we
consider actual crash data that leads to OS unreliability.

Recently, in Windows XP Machines, Murphy
deduced that display drivers were a dominant crash
cause and memory is the most frequently failing hard-
ware component [Mur04]. We extend this work by
studying actual crash instances experienced by users

rather than injecting artificial faults as performed by
fuzz testing [FM00]. Our study of crash data differs
from error log analysis performed by Kalakech, et al.
[KK+04]; we determine the cause of crashes in addi-
tion to time and frequency.

Several researchers have provided insights on
benchmarking and failure data analysis [BC+02,
BS97, OB+02, WM+02]. Wilson, et al. suggest evalu-
ating the relationship between failures and service
availability [WM+02]. Among other metrics, when
evaluating dependability, system stability is a key con-
cern. Ganapathi, et al. examine Windows XP registry
problems and their effect on system stability [GW+04].
Levendel suggests using the catastrophic nature of fail-
ures to evaluate system stability [Lev89]. Brown, et al.
provide a practical perspective on system dependability
by incorporating users’ experience in benchmarks
[BC+02, BS97]. In our study of crashes, we consider
these factors when evaluating various applications.

Overview of Crashes and Crashdumps

A crash is an event caused by a problem in the
operating system (OS) or application (app) requiring
OS or app restart. App crashes occur at user level and
typically involve restarting the crashing application.
An OS crash occurs at kernel-level, and is usually
caused by memory corruption, bad drivers or faulty
system-level routines. OS crashes are more frustrating
than application crashes as they require the user to kill
and restart the Windows Explorer process at a mini-
mum, more commonly forcing a full machine reboot.
While there are a handful of crashes due to memory
corruption and other common systems problems, a
majority of these OS crashes are caused by device driv-
ers. These drivers are related to various components
such as display monitors, network and video cards.

Upon each OS crash or bluescreen generated by
the operating system, Windows XP collects failure
data as a minidump. Users have three different options
for the amount of information that is collected upon a
crash. We use the default (and smallest) option of col-
lecting small dumps, which are only 64K in size.
These small minidumps contain a partial snapshot of
the computer’s state at the time of crash. They include
a list of loaded drivers, the names and timestamps of
binaries that were loaded in the computer’s memory at
the time of crash, the processor context for the stopped
process, and process information and kernel context
for the stopped process and thread as well as a brief
stack trace. We do not collect personal data files for
our study. However, portions of such data may be resi-
dent in memory at the time of crash and will conse-
quently appear in our crash dumps. To disable per-
sonal data inadvertently being sent, crash reporting
may be disabled or the user can choose not to send a
particular crash report.

When an OS crash occurs, typically the entire
machine must be rebooted. Any relevant information
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that can be captured before the reboot is saved in a
.dmp file in the %windir%\Minidump directory. These
minidumps are uniquely named with the date of the
crash and a serial number to eliminate conflicting
names for multiple crashes on the same day.

Overview of BOINC Crash Collector

Berkeley Open Infrastructure for Network Com-
puting (BOINC) is a platform for pooling computer
resources from volunteers to collect data and run dis-
tributed computations [And03]. A popular example of
an application using this platform is SETI@home,
which aggregates computing power to ‘search for
extraterrestrial intelligence.’ BOINC provides services
to send and receive data from its users via the HTTP
protocol using XML formatted files. It allows applica-
tion writers to run and maintain a server that can com-
municate with numerous client machines through a
specified Applications Programmer Interface (API).
Each subscribed user’s machine, when idle, is used to
run BOINC applications. Project groups can create
project web sites with registration services for users to
subscribe and facilitate a project. The web site can
also display statistics for contributing users.

Ta k i n g advantage of these efforts, we have created
a data collection application to run on this platform.
BOINC provides a good opportunity to collect and
aggregate data from users outside our department while
addressing privacy concerns. BOINC anonymizes user
information while allowing us to correlate data from the
same user. We have written tools to read minidumps
from users’ machines and send the data to our BOINC
server. The drawback of this mechanism is that we can
only collect crash dumps that are stored in known loca-
tions on the user’s computer, consequently excluding
application crash dumps that are stored in unknown
app-specific locations. Furthermore, configuring the
BOINC server is a tedious and meticulous task. We
must also monitor the number of work units we allot
for the BOINC projects; if there are not enough work
units, the application will not run on client machines.

An attractive aspect of using BOINC is that we
can add more features to our application as and when
necessary. We can also provide users with personal-
ized feedback pages, consequently rewarding the users
with an incentive for sharing data. However, we must
verify the integrity of each crashdump we receive from
the users; users often create files in the crashdump
directory to inflate their crash contribution ranking.

We use a combination of Microsoft’s analysis
tools and custom-written scripts to parse, filter and ana-
lyze the crash data. Received crash dumps are parsed
using Microsoft’s ‘‘Debugging Tools for Windows’’
(WinDbg), publicly available at http://www.microsoft.
com/whdc/devtools/debugging/default.mspx. We retrieve
debugging symbols from Microsoft’s publicly avail-
able symbol server (http://www.microsoft.com/whdc/
devtools/debugging/symbolpkg.mspx). Parsing crash

dumps using WinDbg reveals the module that caused
the crash as well as the proximate cause of the crash
via an error code of the crashing routine. The draw-
back of this approach is that we rely on the complete-
ness and accuracy of Microsoft’s symbols. For legal
reasons, Microsoft does not make third party debug-
ging symbols available, especially those related to
antivirus and firewall software.

We have conducted experiments and noted that
10% of crashdumps parsed with publicly available
debugging symbols have different analysis results as
compared to results when parsed with Microsoft’s
internal symbols. Microsoft-written components such
as ntoskrnl take the blame for several third party and
antivirus/firewall-related crashes.

Once crash dumps are parsed by WinDbg, the
importance of filtering data is evident. When a com-
puter crashes, the application or entire machine is ren-
dered unstable for some time during which a subse-
quent crash is likely to occur. Specifically, if a partic-
ular piece of hardware is broken, or part of memory is
corrupt, repeated use is likely to reproduce the error.
It is inaccurate to double-count subsequent crashes
that occur within the same instability window. To
avoid clustering unrelated events while capturing all
related crash events, we cluster individual crash events
from the same machine based on temporal proximity
of the events. The data that is collected can be used to
gather a variety of statistics. We can provide insight to
the IT team about the dominant cause of crashes in the
organization and how to increase product reliability.
We can also use crash behavior to track any potential
vulnerability as frequent crashes may be a result of
malware on the machine. In the long run, we may be
able to develop a list of safe and unsafe hardware and
software configurations and installation combinations
that result in crashes.

Understanding Crash Data

To study a broad population of Windows users,
we studied data from public-resource computing vol-
unteers. Numerous people enthusiastically contribute
data to projects on BOINC rather than corporations as
they favor a research cause. Additionally, users appre-
ciate incentive either through statistics that compares
their machine to an average BOINC user’s machine,
or through recognition as pioneering contributors to
the project.

Currently, we have about 3500 BOINC users
signed up to our project. Over the last year, we have
received 2528 OS crashes from 617 of these users;
several users experienced (and reported) multiple OS
crashes while a majority of them reported zero or one
crash. Users reporting no crashes most likely do not
actively run the BOINC client on their machine.

According to results shown in Figure 1 most
users experienced (submitted) only one crash; how-
ever, several users suffered multiple OS crashes. One
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user appears to have experienced over 200 OS crashes
over the last year! The number is staggering consider-
ing that this data is for kernel-level crashes. Perhaps
the user’s user-mode crash counts are as bad, if not
worse, considering there is more opportunity for vari-
ability in user-mode components.
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Figure 1: A histogram of the number of crashes experienced by users over the last year. One data point was omitted
from the graph for clarity (443 users experienced only 1 crash each).

First we analyze each crash as a unique entity to
determine statistics on what components cause the
Windows OS to crash often. Then, to understand how
crashes on the same machine relate to each other, we
carefully examined machines that experienced more
than 5 kernel crashes within a 24 hour time period. In
several cases, we observed the same crash occurring
repeatedly (i.e., same fault in same module). There
were also scenarios with crashes in various compo-
nents interleaved with one another. We examine user
behavior, temporal patterns and device driver software
reliability to understand these crashes.

A Human Perspective
The human user plays a huge role in the wear

and tear of a computer. User-interaction is among the
most difficult patterns to quantify. We extracted three
distinct user-scenarios from examining crash
sequences from our data:

• Case 1: The user retries the same action repeat-
edly, and consequently experiences the same
crash multiple times. He believes the repetition
will eventually resolve the problem (which may
be true over a long period of time). In this sce-
nario, the user’s model of how things work is
incomplete. He does not understand the com-
plex dependencies within the system.

• Case 2: There is some underlying problem at a
lower level that is causing various different
crashes. For example, if the user has hardware
problems, he is likely to have many more
crashes in random components. In this case, the

user is simply flustered with all the crashes and
fixing each driver involved in each crash still
will not resolve his problem; he will have to fix
the root cause.

• Case 3: The user knows what the problem is
and simply does not see an incentive to fixing
it. For example, he might be using an old ver-
sion of a driver for which an update is avail-
able. There are three conceivable explanations
for not updating the crashing driver: a) fear of
breaking other working components, b) lazi-
ness, and c) fear of getting caught with an ille-
gal copy of software.

A Temporal Perspective
There are factors beyond end user behavior that

demonstrate inter-crash relationships. Figure 2 shows
a distribution of the uptime between a machine reboot
and a crash event. We observe that 25% of crashes
occur within 30 minutes of rebooting a machine. 75%
of crashes occur within a day of rebooting a machine.
Perhaps shorter system uptime intervals indicate the
trend of several consecutive related crashes.

Upon analyzing crash sequences on various
machines, we observed various distinct temporal indi-
cators of crash cause:

• <5 minute uptime: A crash that occurs within 5
minutes of rebooting a computer is most indica-
tive of a boot-time crash. The crash is not likely
to have been caused by a user action. These
crashes are the most frustrating as there is very
little the user can do between the time of reboot
and the time of crash. The user may gain insight
on such crashes by examining the boot log.

• 5 minutes-1 hour uptime: These crashes are
more likely to be caused by a specific sequence
of events initiated by the user (e.g., accessing a
particular file from a corrupt disk segment).
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They could be attributed to software problems,
hardware problems or memory corruption.
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Figure 2: A cumulative frequency graph of system uptime between reboot and crash events. The dotted line extrap-
olates what the CFG would look like if Microsoft wrote all the drivers while the dashed line suggests what the
CFG would look like if Microsoft wrote none of the drivers that crashed.

• Regular interval between crashes: Several users
experienced crashes regularly at a particular
time of day. Such crashes may be attributed to a
periodic process resembling a cron job or an
antivirus scan.

• Context-based: Various crashes are triggered by
a logically preceding event. For example, every
time a virus scanner runs, we may observe a
failed disk access. In such scenarios, we cannot
use exact time as an indicator.

• Random: Many crash sequences on users’
machines did not fit in any of the above pro-
files. Several consecutive seemingly unrelated
crashes could suggest a hardware problem
and/or memory corruption.

Temporal crash patterns are useful in narrowing down
a machine’s potential root cause problems. However,
the underlying responsibility of causing the crash lies
in the longevity and reliability of the hardware and
software on the machine.
A Device Driver Reliability Perspective

Device drivers are a major contributor of kernel-
level crashes. A device driver is a kernel-mode mod-
ule that communicates operating system requests to
the device and vice versa. These drivers are inherently
complex in nature and consequently difficult to write.
Among many reasons for device driver complexity are
that these drivers deal with asynchronous events.
Since they interact heavily with the operating system,
the code must follow kernel programming etiquette
(which is difficult to master and follow). Furthermore,
once device drivers are written, they are exceedingly

difficult to debug as the typical device driver failure is
a combination of an OS event and a device problem,
and thus very difficult to reproduce (see [SM+04] for
a detailed description of device driver problems).

Figure 3 is largely based on the OS Crash Type
field in analyzed crash reports. This field reveals
graphics driver faults, common system faults (such as
memory/pool corruption and hardware faults) and
Application faults. However, there were many
instances where the OS Crash Type was not provided
(or defaulted to ‘‘Driver Fault’’) for legal reasons. In
the absence of details revealed by the analysis tools, we
crawled the web to derive the type of each driver that
caused a crash. Where we were unable to determine the
driver type (for example, when the documentation was
not in English), we defaulted to ‘‘unknown.’’

Figure 4 shows that a handful of organizations
contribute a significant number of crash-causing driv-
ers to our data. Drivers written by seven organizations
(Microsoft, Intel, ATI Technologies, Nvidia, Syman-
tec, Zone Labs and McAfee) contributed 75% of all
crashes in our data set. This trend suggests that
crashes caused by poorly-written and/or commonly
used drivers can be reduced significantly by approach-
ing these top seven companies. On the other hand, the
graph has a heavy tail, indicating that it would be
extremely difficult to eliminate the remaining 25% of
crashes as they are caused by drivers written by sev-
eral different organizations.

Subsequently, we study the image (i.e., .exe,
.SYS, or .dll file) that caused these crashes and iden-
tify the organization that contributed the crash-causing
code see Figure 5.
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The top contender in Figure 5 is ialmdev5.dll,
the Intel graphics driver. Recently, graphics drivers
have become notorious for causing crashes and
ialmdev5.dll is perhaps one of the more commonly
used drivers in this category due to the popularity of
Intel processors.

NUMBER
OF

OS CRASH TYPE CRASHES
OS Core 726

Microsoft 488
Unknown 238

Graphics Drivers 495
Intel 287

ATI Technologies 97
Nvidia 67
Other 44

Application Drivers 482
Intel 89

Microsoft 64
Symantec 58

McAfee 55
Zone Labs 55
Unknown 13

Other 148

NUMBER OF
OS CRASH TYPE CRASHES

Networking 338
Unknown 194
Microsoft 51
Conexant 17

Other 76
136Common System Fault (Hardware

and Software Memory Corruption)

Audio 130
Avance Logic 44

C-Media 33
Microsoft 16

Other 37
Storage 106

Microsoft 82
Other 24

Other 95
Unknown 20

Figure 3: Number of OS crashes of each type based on 2528 crashes received from BOINC users. (We would need
many more samples before it would be safe generalizing these results to a larger user community.) This table
also shows the top few crash-causing driver writers in each category.
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Figure 4: Cumulative Frequency Graph of organizations responsible for crash-causing drivers in our data. This
graph does not account for driver popularity. 113 companies are represented in this graph.

The second highest contender in Figure 5 is
ntoskrnl.exe, which constitutes the bare-bones Win-
dows NT operating system kernel code. It is not sur-
prising that this executable is responsible for a number
of driver crashes because it interacts with every other
operating system component and is thus the single
most critical component that can never be perfect

enough. Furthermore, other systems code might gener-
ate bad input parameters to the ntoskrnl functions that
cause exceptions; ntoskrnl bears the blame for the
resulting crash as it generated the exception. Also, as
mentioned earlier, many antivirus/firewall-related
crashes may have been mis-categorized, blaming
ntoskrnl due to third party privacy concerns (hence the
significantly high percentage of crashes attributed to
Microsoft in Figure 3).

Other crash causing images range from I/O driv-
ers to multimedia drivers. It is difficult to debug or
even analyze these crashes further as we do not have
the code and/or symbols for these drivers.
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With the increasing need for numerous devices
accompanying the PC, it does not scale for the operat-
ing system developers to account for and write device
driver code for each device; consequently, device driv-
ers are written by device manufacturers, who are
potentially inexperienced in kernel programming. Per-
haps such lack of expertise is the most impacting
cause for driver-related OS crashes.

Image Name/
Crash Cause Image Description

Num
Crashes

%
Crashes

% Running
Total

Ialmdev5.DLL Intel graphics driver 275 11% 11%
ntoskrnl.exe NT kernel and system 187 8% 19%
CAPI20.SYS ISDN modem driver 182 7% 26%
Win32k.sys multi user win32 driver 114 5% 31%
IdeChnDr.sys Intel Application Accelerator driver 89 4% 35%
ntkrnlmp.exe

87 4% 39%
Multi-processor version of NT kernel
and system

vsdatant.sys TrueVector Device Driver 51 2% 41%
GDFSHK.SYS

48 2% 43%McAfee Privacy Service File
Guardian

V7.SYS IBM V7 Driver for Windows NT/2000 45 2% 45%
ALCXWDM.SYS

44 2% 47%
Windows WDM driver for Realtek
AC’97

Figure 5: Top 10 OS Crash-causing Images based on 2528 crashes received from BOINC users. (We would need
many more samples before it would be safe generalizing these results to a larger user community.) A description
of the crash-causing image is provided in addition to the percentage of crashes caused by each image.

Driver Fault Type Num Crashes
IRQL NOT LESS OR EQUAL 657
THREAD STUCK IN DEVICE DRIVER 327
PAGE FAULT IN NONPAGED AREA 323
KERNEL MODE EXCEPTION NOT HANDLED 305
UNEXPECTED KERNEL MODE TRAP 78
BAD POOL CALLER 74
SYSTEM THREAD EXCEPTION NOT HANDLED 73
PFN LIST CORRUPT 53
DRIVER CORRUPTED EXPOOL 38
MACHINE CHECK EXCEPTION 37

Figure 6: Top 10 crash generating driver fault types.

We also observed numerous OS crashes caused
by memory corruption. Memory corruption-related
crashes can often be attributed to hardware problems
introduced by the type of memory used (e.g., non-
ECC memory). In the event that the memory corrup-
tion was due to software, the problem cannot be
tracked down to a single image.

To further understand driver crashes, we studied
the type of fault that resulted in the crash. Figure 6
lists the number of crashes that were caused by the
various fault types. These fault types are reported by
Microsoft’s analysis tools when analyzing each OS
crash dump.

While many of these fault types are straightfor-
ward to understand from the name, many others are
abbreviations of the event they describe. Below, we
enumerate each fault type and its significance (based
on the descriptions provided in the parsed crash
dumps):

• IRQL NOT LESS OR EQUAL – An attempt was
made to access a pageable (or completely
invalid) address at an interrupt request level
(IRQL) that is too high. The driver is most
likely using an improper address.1

• THREAD STUCK IN DEVICE DRIVER – The
device driver is spinning in an infinite loop,
most likely waiting for hardware to become
idle. This usually indicates problem with the
hardware itself or with the device driver pro-
gramming the hardware incorrectly.

1The interrupt request level is the hardware priority level
at which a given kernel-mode routine runs, masking off in-
terrupts with an equivalent or lower IRQL on the proces-
sor. A routine can be preempted by an interrupt with a
higher IRQL.
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• PAGE FAULT IN NONPAGED AREA – Invalid sys-
tem memory was referenced, for example, due
to a bad pointer.

• KERNEL MODE EXCEPTION NOT HANDLED –
The exception address pinpoints the driver/
function that caused the problem. However, the
particular exception thrown by the driver/func-
tion was not handled.

• UNEXPECTED KERNEL MODE TRAP – A trap
occurred in kernel mode, either because the
kernel is not allowed to have/catch (bound trap)
the trap or because a double fault occurred.

• BAD POOL CALLER – The current thread is mak-
ing a bad pool request. Typically this is at a bad
IRQL level or double freeing the same alloca-
tion, etc.

• SYSTEM THREAD EXCEPTION NOT HANDLED –
This fault type is similar to an unhandled kernel
mode exception.

• PFN LIST CORRUPT – Typically caused by driv-
ers passing bad memory descriptor lists.

• DRIVER CORRUPTED EXPOOL – An attempt
was made to access a pageable (or completely
invalid) address at an interrupt request level
(IRQL) that is too high. This fault is caused by
drivers that have corrupted the system pool.

• MACHINE CHECK EXCEPTION – A  fatal machine-
check exception occurred (due to hardware).

Studying these fault types reveals various pro-
gramming errors that impact system behavior and
what OS problems to tackle with caution. However,
this information is more useful to the software devel-
oper than the end user. From a user’s perspective, the
most useful piece of information is ‘‘what can I fix on
my machine?’’

There are three distinct trends we observed on
machines with multiple crashes:

• The same driver causes most crashes: This sce-
nario is very simple to resolve. Most likely, the
crash-causing driver is an old version, which
has newer, more stable version available. There
were other cases where a newly downloaded
driver caused various crashes as a result of its
incompatibility with other components installed
on the machine. In both situations, updating or
rolling back the driver’s version will reduce
crashes on the machine.

• Related drivers cause most crashes: Two driv-
ers are considered related if they communicate
with the same device or pertain to the same
component. In this scenario if different, yet
related, drivers cause the machine’s crashes,
then perhaps the common underlying compo-
nent or device is at fault and needs attention.

• Unrelated drivers cause the crashes: This sce-
nario is the most difficult to comprehend. First,
we understand what the drivers have in com-
mon – whether they perform similar actions or

function calls, have similar resource require-
ments (e.g., requiring network connectivity), or
access the same objects.

In the above scenarios, it is useful to understand
inter-driver dependencies. We would also benefit from
understanding the stability of specific driver versions
and how diverse their install base is.

Discussion

Windows users have started viewing crashes as a
fact of life rather than a problem. We have the single
most valuable resource to design a system that helps
users cope with crashes better – crash data.
Microsoft’s Online Crash Analysis provides users with
feedback on each of their submitted crashes. However,
many users suffer from multiple crashes and individ-
ual per-crash analysis is not enough to identify the
optimal solution to the root problem. There is a strong
need to use historical data for each machine and use
heuristics to determine the best fix for that machine.

The human, temporal and device-driver reliabil-
ity perspectives shed light on potential root causes for
crashing behavior. There are numerous other factors
we can include to refine root cause analysis. It would
be very beneficial to scrape portions of the machine’s
event log when analyzing crashes. We can look for
significant events preceding each crash (e.g., Driver
installed/removed, process started up, etc.), pinpoint-
ing likely sources of the machine’s behavior.

It is also useful to collect various machine health
metrics such as frequency of prophylactic reboot and
frequency of virus scans. Such metrics will help us
evaluate the relative healthiness of a machine (com-
pared to the entire user population) and customize
analysis responses on a per-machine basis. Ideally we
would want our data analysis system to have a built-in
feedback loop (as seen in Figure 7) so we can continu-
ously adapt and improve our analysis engine. This
framework is useful for performing accurate post-
mortem analysis.

Data Analysis + Rule
Generation

(analyze results, driver
toxicity, temporal pattern,
bugcheck mapping etc.)

Rule
Validation

Data Aggregation
(OCA/Watson DB)
Data Aggregation
(OCA/Watson DB)

Results

Queries

In-house
Experts

-Custom ercentric
Analysis Engine

Crash
History

Event
Log

Usage
History

Machine
Config

Ranking of
Fixes to root
cause
problem(s)

Feedback on
success rate of
suggested fixes

Data Rules

Health
Metrics

Figure 7: Customer-centric kernel crash analysis
framework.
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It is equally important to understand the manifes-
tation of such problems on each machine. It is impor-
tant to characterize inter-component interactions and
model failure propagation patterns. Such analysis will
help improve inter-component isolation, reducing their
crash-likeliness. While post-mortem analysis and
debugging helps cure problems, it is also critical to
prevent problems at their source. As an industry, we
must work towards determining the characteristics of
software that dictate software dependability.

Conclusion

Our crash-data related study, despite the small
quantity of Windows XP data analyzed, has contributed
several observations. The most notable reality is that the
Wi n d o w s operating system is not responsible for a
majority of PC crashes in our data set. Poorly-written
device drivers contribute most of the crashes in our data.
It is evident that targeting a few companies to improve
their driver quality will effectively eliminate 75% of our
crashes. However, the remaining 25% of crashes are
extremely difficult to eliminate due to the large number
of organizations contributing the driver code.

Users can alleviate computer frustration by better
usage discipline and avoiding unsafe applications and
drivers. With additional data collection and mining,
we hope to make stronger claims about applications
and also extract safe product design and usage
methodology that apply universally to all operating
systems. Eventually, this research can gauge product
as well as usage evolution.

Studying failure data is as important to the com-
puting industry as it is to consumers. Product depend-
ability evaluations help evolve the industry by reducing
quality differential between various products. Once
product reliability data is publicized, users will use such
information to guide their purchasing decisions and
usage patterns. Product developers will react defensively
and resulting competition will improve quality control.

In the future, we hope to refine analysis engine
and automate many of the background queries for
each driver. We would like to improve our understand-
ing of the dependencies between analysis categories
such as the temporal and device driver perspectives.
We also plan to investigate the relationship of various
objects involved at the time of crash. Lastly, we would
like to obtain more environmental metrics and draft
more rules for analysis, and extend this work to other
Operating Systems.
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