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Abstract

Many applications take advantage of parallelism
to increase performance. Servers are a particu-
larly common case as they must multiplex resources
across many simultaneous users. Unfortunately,
writing concurrent applications is difficult and prone
to subtle and non-deterministic bugs that are dif-
ficult to reproduce. We advocate an approach to
developing concurrent programs that is safe by de-

fault. Conservative static analysis determines when
two code segments may safely run in parallel, and a
runtime scheduler respects these constraints.

We have built an analyzer for event-driven servers
that discovers data sharing to find safe parallelism
among event handlers. As a prototype, the anal-
ysis currently considers only global data, assuming
that request-specific data structures passed to event
handlers are completely independent. We have also
begun work on a runtime system that schedules
event handler execution within the constraints de-
termined by the analyzer. For performance rea-
sons, the scheduler makes additional conservative
assumptions about contention.

We have analyzed thttpd, an event-driven web
server. We show how our system can be used to
increase performance without complex synchroniza-
tion schemes.

1 Introduction

The usual approach to building concurrent servers
is to start by thinking about the serial version of
request handling and then consider how concurrent
executions of the serial code might cause race con-
ditions. Each potential race must be recognized and
appropriately synchronized before the server may be
executed safely on concurrent requests. This effort
represents a substantial intellectual investment for
even moderately complex servers.

Yet servers must take advantage of concurrency in
order to support their client loads. We believe that
a conservative static analysis can be used to help
provide safe, exploitable parallelism. In combina-
tion with a runtime system that schedules according
to constraints determined during analysis, develop-
ers may be assured that two segments of code that
potentially conflict are never run concurrently. As
such, code developed for serial execution may be
executed safely in this environment — it is safe by

default. Since this analysis must be conservative, it
may exclude some potential concurrency. The anal-
ysis will explain its discoveries so that developers
can modify their code to enable more parallelism.

The key advantage to default safety is that devel-
opers start with a correct application and apply de-
velopment effort until they are satisfied with perfor-
mance. Today, developers start with incorrect code
and must apply development effort until they fix
all races. Tomorrow’s developers might not bother
to expose every bit of potential parallelism once
they are satisfied with performance, but they will
nonetheless have a correct application.

This paper outlines our vision for safe servers, and
then describes the analysis and runtime system nec-
essary to run these applications safely and effi-
ciently. It also discusses our initial experiments to
verify that the necessary components can be built.
We have developed an analysis tool for determin-
ing the independence of handlers in event-driven
programs, and used it to analyze thttpd, an exist-
ing event-driven web server. We have also created
a runtime scheduler that executes event handlers
in multiple threads while respecting constraints on
their concurrent execution.

2 A Vision for Safe, Fast Servers

We envision a significantly improved development
model for concurrent applications, particularly
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servers. Today’s most common architecture for con-
current servers uses a thread per request. While the
code for individual threads is similar to the code
written to handle a single request in a sequential
server, it is the subtle set of required changes that
causes problems. Locks or other synchronization
primitives must be used to protect access to shared
resources, but the use of these primitives introduces
the possibility of deadlocks, livelock, potential star-
vation and other difficulties.

We liken the current state of concurrency manage-
ment to the state of memory management without
garbage collection. Using explicit memory manage-
ment, programmers are expected to avoid memory
leaks through a combination of discipline, intelli-
gence, and careful debugging. Garbage collection
eliminates the problem entirely, and incidentally re-
sults in simpler interfaces. Similarly, today’s de-
velopers must explicitly manage the more difficult
problem of concurrency, often leading to brittle in-
terfaces that must be invoked under specific con-
ditions with respect to any number of locks. Al-
though some tools exist, both static [6, 7] and dy-
namic [10, 11, 12], to help track down concurrency
bugs, we aim to eliminate the source of these bugs.

Since we aim to help developers exploit parallelism
safely, prior approaches that have attempted to au-
tomatically find parallelism [3, 4, 5] might seem sim-
ilar. The key difference in approach is that we be-
lieve developers are quite good at finding parallelism
(especially in servers that appear quite parallel),
but they sometimes make mistakes. An error that
introduces unsafe parallelism leads to an incorrect
program, while an error that hides potential paral-
lelism is simply a performance problem. Therefore
tools should focus on eliminating unsafe parallelism,
rather than finding more safe parallelism while un-
safe parallelism goes undiagnosed.

Programming model We are inspired by the
event-driven programming style for managing con-
currency in which a main loop receives events from
the operating system and invokes handlers to pro-
cess these events. These handlers are invoked with
callback arguments which we refer to as contexts,
which allow the handler to determine details about
the work that must be performed. Handlers invoke
asynchronous services and register further handlers
to react to service responses. There is debate [1]
over the ease of programming of event-driven sys-
tems, but they have an important correctness ad-
vantage over threaded systems: they naturally pro-

vide atomicity [8] for the code in each handler. Each
handler is guaranteed to run to completion without
interference from other handlers.

Unfortunately, a serial event loop precludes any par-
allelism between event handlers. In order to exploit
multi-processors, a new execution model for event-
driven applications has been described [14] in which
programmers manually specify colors for event han-
dlers to explicitly enable parallelism. Event han-
dlers of a given color never run concurrently with
other handlers of the same color.

We believe developers should program to an atomic
model, whether event-based or thread-based. It is
the job of the static analysis and runtime system to
ensure atomicity despite running much of the code
in parallel. In the near-term, it is easiest to imag-
ine implementing this vision for programs that are
written in an event-driven style, or use short, run-
to-completion threads. For programs in this style,
when the analysis errs on the side of caution and
prevents parallel execution while a particular han-
dler is running, the slow-down is limited to the life-
time of the handler. We believe our approach can
eventually be used with programs written in a long-
lived threaded style as well, however programmers
will need to indicate the segments over which they
require atomicity to be preserved.

Scheduling model An atomic programming
model allows developers to reason about the cor-
rectness of their programs, but they must consider
the scheduling model in order to understand per-
formance. The runtime will guarantee that atomic
segments that might interfere with one another do
not run in parallel. Therefore, the constraints dis-
covered by the analyzer will be of interest to the pro-
grammer; given the source of a conflict, she might
work to remove the constraint. For example, the
conflict may be the result of a rarely taken error
handling path that increments a global statistics
counter. Here, a lock may be inserted around access
to the the counter, which would allow the analyzer
to remove the constraint. An explicit lock over a
few lines of code would allow more parallelism than
a constraint that would apply to an entire handler,
regardless of whether the error handling path was
taken.

Alternatively, the programmer may split the seg-
ment into several individually atomic stages. Fig-
ure 1 illustrates a well partioned example in which
the work required to process a request is split into
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six functions. After each connection is accepted, a
chain of handlers processes the request. In this case,
most handlers are independent across requests, so
they may execute in parallel. The Query and Log
functions access global variables, however, so they
are constrained from running concurrently. If the
server were broken into fewer stages, for example by
handling the database query and response prepara-
tion together, the analysis and scheduler would be
forced to avoid concurrency for response prepara-
tion in separate requests.

3 Approach

We have advocated a programming model in which
code segments are implicitly prevented from con-
current execution if they share data unsafely. The
programmer may then spend time explicitly remov-
ing these constraints to increase performance. This
section describes the techniques used to find and
enforce these constraints.

3.1 Analysis

The analysis must determine when the set of data
read by one handler overlaps with the set written
by another. For safety, this analysis must be con-
servative. A handler that might access a particular
data object must be treated as though it will.

Independence Consider two potential handlers,
f and g. At runtime, the scheduler will consider
specific invocations of handlers on specific context
arguments, for example f(cf ) and g(cg). The static
analysis must operate on handlers, not invocations,
but should record information that allows the run-
time scheduler to make decisions about invocations.
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Figure 1: A request is processed by six handlers. The

handlers are analyzed to obtain safe scheduling constraints.

Grouped handlers have been deemed incompatible for con-

current execution. Vertical groups are contending on global

variables.

It would be infeasible to trace reachability through
contexts at runtime to determine potential conflicts.

A invocation possesses two roots from which all ac-
cesses must occur — the global variables of the pro-
gram and the context it is invoked on. Although
the analysis cannot observe the specific context for
a particular invocation, it may consider an abstract
representation of the context to determine a conser-
vative estimate of reachable objects. If the objects
reachable by f on any given context, and g on any
given context are disjoint, then we know that f(cf )
may be scheduled simultaneously with g(cg) with-
out conflict for any given cf and cg. The analysis
is performed at compile-time and thus cannot take
into account the specific arguments to f and g, nor
may it consider the state of the program’s global
variables.

If two handlers conflict because of their use of a
global, they are unsafe to execute simultaneously
under any circumstances. Conflicts on contexts are
more subtle. Context are likely to be self-contained
and unreachable from other roots. When analysis
determines this to be true of the contexts in a partic-
ular program, it makes sense not only to ask, “Are f

and g independent when invoked on unknown con-
texts?” but also “Are f and g independent when
invoked on contexts that are known to be differ-
ent?” Since we expect many handlers to conflict
only when invoked on the same context, we believe
that differentiating these cases is critical to uncov-
ering significant parallelism.

The results of the analysis must be reported to
the programmer to aid incremental improvement, as
well as compiled into the application for use by the
scheduler which must decide at run-time whether f

may be executed with this particular cf while g is
simultaneously executing with a particular cg.

Multiple contexts The analysis may be gener-
alized by considering several independent contexts.
For example, a program may use a context type
which contains two kinds of data: the identity of
the client making a request, and the details of the
request itself. There may be event handlers that
conflict if the identity of the client is the same, but
do not conflict if the request details are the same.
If the analysis considers only the single unified con-
text, it will forbid all concurrent execution of these
handlers, even when their contexts differ, because
those contexts might share the same client. This is
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overly conservative. In such cases, the static analy-
sis and scheduler might be directed to consider client
equality independently.

OS Resources The analysis must also consider
how the program uses resources such as files and
sockets. The static analysis we have described as-
sumes that conflicting objects are blocks of memory,
but they may also be operating system abstractions.
Thus, the analyzer must be aware of the semantics
of the system calls that pertain to these abstrac-
tions, and recognize safe concurrency in handlers
that access objects of these types. Two handlers
that read and write the same file may not be exe-
cuted concurrently.

3.2 Scheduling

The runtime system must honor the constraints
identified by the analysis. Handlers may only be
invoked if the analysis shows that they are safe to
run simultaneously with all other invocations cur-
rently executing. A näıve implementation of such
a scheduler might have each thread that is ready
to invoke a new handler query all other threads in
order to determine the handlers they are executing.
The thread would then select a non-conflicting han-
dler to execute from a pool of pending invocations.
However, such an approach would exhibit very poor
performance (assuming short-running invocations)
due to the need to synchronize access to this shared
state before every invocation.

Work in thread scheduling for multiprocessors [2,
13] may improve this inefficiency; however, we have
chosen to begin with a simple conservative approx-
imation (described in the next section) in an effort
to experimentally validate our analysis.

4 Validation

We have begun work by building an analysis tool
using CIL [9], a C language analysis framework, and
a scheduler using ideas from libasync-smp [14].

Analysis In our proof-of-concept analysis tool, we
make several simplifying assumptions. First, we
only analyze global data. We assume that any two
handlers will conflict if passed the same context.

This is a conservative assumption until our analy-
sis is improved. On the other hand, we assume that
handlers do not conflict, except through global vari-
ables, when their contexts are different. This is not

a conservative assumption but rather a pragmatic
one. In the programs we have built and examined, it
is common for contexts to be built out of completely
unshared data. Pragmatic or not, this assumption
must be removed when our analysis matures.. Fi-
nally, we have not begun to analyze explicit locks or
OS primitives, such as file access.

Our analyzer begins by identifying the event han-
dlers. For each handler, a complete call graph is gen-
erated, and the set of globals read and the set writ-
ten are determined for each function called. When
accessing a global variable, substructure is distin-
guished so that a write to stats->num connects is
not conflated with stats->num users. Array in-
dices are conflated, however. No attempt is made
to distinguish users[1] from users[2].

Currently, the analyzer performs rudimentary alias
analysis in order to identify code that passes globals
to functions where they are read or written. In some
cases these aliases are tracked precisely, in others the
analysis conservatively assumes the worst.

Combining the call graph and the global access sets,
the analysis determines the set of globals read and
the set written for each handler and all its descen-
dants in the call graph. Conflicts are reported for
any two handlers in which one handler reads a global
and the other writes it.

Scheduling We have built a scheduler that con-
servatively respects scheduling constraints without
requiring a global lock. Our scheduler extends ideas
described in libasync-smp [14] to schedule our richer
constraints. In libasync-smp, a handler is labeled by
a color ; like-colored handlers may not be executed
simultaneously.

A simple color based scheduler is insufficient to ex-
press the constraints of the program in Figure 1 in
which a handler like Log may not execute with an-
other handler for the same request or another Log
handler, but it would undesirable to use the same
color for all such handlers as that would preclude
safe concurrency. To address this limitation, we in-
troduce a second level of color, called a hue. Our
scheduler ensures that no two handlers of the same
hue or of the same color execute concurrently. Han-
dlers may also have no hue or color; these can be
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executed without regard to the hue or color of other
handlers. The scheduler uses a queue per color and
a queue per hue to avoid a global lock.

The hue/color scheduler can be used to execute a
conservative approximation of the constraints deter-
mined by analysis. Although hues and colors follow
the same rules, they are used differently to encode
the constraints determined during analysis. If two
handlers may not be run in parallel, regardless of
context, they are assigned the same hue. This im-
plies that when f conflicts with g, and g conflicts
with h, they must all receive the same hue—the hue
represents the transitive closure of conflict on glob-
als. This rule is conservative. g and h may not really
conflict, but this simplification is easy to implement
without expensive run-time checks.

However, if two may be run in parallel as long as
their contexts differ, they are assigned the same
color, not hue. Since we currently assume that all

handlers with the same context conflict, we use the
address of the context structure as the color. Han-
dlers that can be executed in parallel with them-
selves, even on the same context, can be given no
color though we expect this to be rare.

thttpd We have analyzed thttpd, an event-driven
web server. thttpd was written in a traditional
event-driven style. It contains no locks, and tries
to avoid blocking in handlers by using non-blocking
network I/O. However, it does not use non-blocking
file I/O, as doing so remains a complicated propo-
sition. Serial execution combined with blocking in
file I/O makes thttpd a poor choice for disk-heavy
workloads.

We hoped to learn how difficult it would be for a
developer to safely alleviate this problem with the
help of our analyzer and multi-threaded scheduler.
thttpd performs quite well on cached workloads, so
our goal was to prevent disk access from interfering
with cached requests. thttpd mostly reads the file
system through mmap therefore most blocking occurs
when memory is paged in while writing to the net-
work. In thttpd, handle send is the event handler
that performs this function.

The handle send event handler had to be made
independent with itself (when invoked on dif-
ferent contexts) so that multiple read requests
could be in flight simultaneously. Our analyzer
found six global variables that are read and writ-
ten in handle send. Five of these are modified

in really clear connection which is called by
handle send if the connection must be closed. The
sixth is a statistics counter that is updated in
handle send itself.

There are two ways to remove such conflicts. One is
to use locks to protect these accesses. The analyzer
would then, once complete, recognize this protection
and no longer report these accesses as conflicts for
handle send. The disadvantage of this approach is
that if other handlers also access these globals, it
would be necessary to use these locks at each access
in order to make handle send independent of those
handlers as well. Another way to remove conflicts
is to simply defer the variable update to a separate
handler. This not only makes handle send inde-
pendent with itself, but with other handlers as well.

We first deferred the invocation of
really clear connection to a separate han-
dler, changing two lines of code and adding a two
line function. The analyzer then reported that
handle send had a single conflict with itself–the
statistics counter. We deferred the counter update
to another handler, moving two lines of code to a
new function and adding the call to register the
action. This change removed all conflicts, not only
making handle send independent with itself (when
invoked with different contexts), but also with
almost all the other handlers.

The changes necessary to enable this independence
were minimal. The developer is guided at each step
of the way with reports that label conflicts and the
references that cause them.

5 Conclusions

The use of concurrency in servers should be safe
by default. Using static analysis and an informed
scheduler, näıve applications can be made safe from
race conditions. If default safety comes at too high
of a cost, the analysis can be used to inform develop-
ers where contention occurs so that it may be elimi-
nated. Though our experiments are preliminary, we
have been encouraged by the degree to which a real-
world server, thttpd, could be analyzed and paral-
lelized despite several conservative assumptions.

In the past, static analysis has been used to find
likely bugs in programs, but human attention is of-
ten required to confirm the bug’s existence and fix
the problem. One may view the analysis we propose
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as a search for concurrency bugs and the scheduler
as an automated fix for those bugs. In some cases,
these bugs may not really exist, but if dependabil-
ity is valued more than performance, the preference
will be to err on the side of caution and automate
the “fix.”
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