Chunkfs: Using divide—and—conquer to improve file system reliability and
repair

Val Henson
Open Source Technol ogy Center
Intel Corporation
val _henson@i nux.intel.com

Amit Gud
Kansas Sate University
gud@i s. ksu. edu

Abstract

The absolute time required to check and repair a file
system is increasing because disk capacities are growing
faster than disk bandwidth and seek time remains almost
unchanged. At the same time, file system repair is be-
coming more common, because the perbit error rate of
disks is not dropping as fast as the number of bits per
disk is growing, resulting in more errors per disk. With
existing file systems, a single corrupted metadata block
requires the entire file system to be unmounted, checked,
and repaired—a process that takes hours or days to com-
plete, during which time the data is completely unavail-
able. The resulting “fsck time crunch” is already mak-
ing file systems only a few terabytes in size impractical
to administrate. We propose chunkfs, which divides on—
disk file system data into small, individually repairable
fault—isolation domains while preserving normal file sys-
tem semantics.

1 Introduction

Looking at industry projections for disk drive technol-
ogy over the next 7 years, we see a familiar, expected
trend: the capacity of individual disk enclosures will
continue to double every 9-18 months[10]. File systems
have successfully coped with this trend for two decades
with relatively minor changes, and we might easily as-
sume that file systems will continue to cope with expo-
nential capacity growth for another two decades. But a
closer look at three associated hardware trends sets off
alarm bells (see Table 1).

2006 | 2009 | 2013 | Change
Capacity (GB) 500 | 2000 | 8000 16x
Bandwidth (Mb/s) | 1000 | 2000 | 5000 5x
Seek time (ms) 8 7.2 6.5 1.2x

Table 1: Projected disk hardware trends[10].

Arjan van de Ven
Open Source Technol ogy Center
Intel Corporation
arjan@i nux.intel.com

Zach Brown
Oracle, Inc.
zach. brown@r acl e. com

First, disk 1/0 bandwidth is not keeping up with capac-
ity. Between 2006 and 2013, disk capacity is projected to
increase by 16 times, but disk bandwidth by only 5 times.
As a result, it will take about 3 times longer to read an
entire disk. It’s as if your milkshake got 3 times big-
ger, but the size of your straw stayed the same. Second,
seek time will stay almost flat over the next 7 years, im-
proving by a pitiful factor of only 1.2. The performance
of workloads with any significant number of seeks (i.e.,
most workloads) will not scale with the capacity of the
disk. Third, the per-bit error rate is not improving as
fast as disk capacity is growing. Simply put, every time
disk capacity doubles, the per—bit error rate must be cut
in half to keep overall errors per disk the same—needless
to say, that is not happening. The absolute chance of an
error occurring somewhere on a disk increases as the size
of the disk grows.

What do these trends mean for file systems? Any op-
eration that is O(size of file system) will take longer to
complete—at least three times longer, factoring in only
the effect of lower relative bandwidth. Flat seek time will
further compromise the ability of the file system to scale
to larger disks. The number of disk corruption events per
disk will increase due to hardware—related media errors
alone. The end result is that file system repair will take
longer at the same that it also becomes more frequent—
what we call the “fsck time crunch.”

Our proposed solution, chunkfs, divides up the on—
disk file system format into individually repairable
chunks with strong fault isolation boundaries. Each
chunk can be individually checked and repaired with
only occasional, limited references to data outside of it-
self. Cross—chunk references, e.g., for files larger than a
single chunk, are rare and follow strict rules which speed
up consistency checks, such as requiring both forward
and back pointers. Our measurements show that write ac-
tivity already tends to be concentrated in relatively small
subsets of the disk at any given time, making on-line
checking, repair, and defragmentation of idle chunks ex-

ceptionally fast and simple.

2 The fsck time crunch

Most existing file systems have been designed under
the assumption that media errors are rare. In the event
that a media error corrupts file system metadata, the file
system must be unmounted and repaired with fsck, a pro-
gram that checks for and repairs file system metadata in-
consistencies. At a high level, fsck traverses all file sys-
tem metadata starting with the root directory, checking
inodes and directories for internal consistency, rebuild-
ing inode and block allocation maps, and checking for
overall consistency between all metadata. Unfortunately,
this process takes time proportional to the amount of file
system metadata and involves many seeks to follow links
and block pointers. With some exceptions, file system
metadata grows roughly as the size of the file system, and
the size of the file system grows roughly proportional as
the size of disks. As disk capacity grows, fsck time grows
proportionally.

Given increasing capacity, lower relative bandwidth,
flat seek time, and increasing number of per—disk errors,
the implications for fsck are as follows: (1) Fsck time
will grow in absolute terms, to be on the order of days
or weeks for “normal” file systems, (2) Larger file sys-
tems will have greater likelihood of suffering corruption
of at least one piece of metadata, (3) The fraction of time
data is unavailable while running fsck may asymptoti-
cally approach unity in the absence of basic architectural
changes.

What can be done to combat this trend? Journaling
file systems only speed fsck time in the case of a sys-
tem crash, disconnected disk, or other interruptions in
the middle of file system updates. They do not speed re-
covery in the case “real” metadata corruption—a journal-
ing file system must still read all metadata to correct any
kind of error other than a half-finished update. The same
goes for soft updates[11], copy—on—write[2, 8] and log—
structured file systems[14], which are again designed to
speed fsck after a crash or similar event.

Checksums on file system metadata, such as those
added to ext3 in the IRON project[13], will detect er-
rors and improve reliability, but won’t change the need
to read all file system metadata to repair consistency.
File system level replication of metadata combined with
checksums, such as in ZFS[2], can eliminate nearly all
need to run fsck for file system corruption caused be-
low the file system layer, but uses disk space and does
not help with corruption caused by file system bugs as
the inconsistency will be present in both checksummed
copies. Those inclined to dismiss file system bugs as a
significant source of file system corruption are invited to
consider the recent XFS bug in Linux 2.6.17[1] requir-
ing repair via the XFS file system repair program, caus-

ing significant downtime. While file system bugs may
be relatively rare, we must take them into consideration
when the cost of such a bug is several hours or days of
downtime to repair the file system.

RAID solutions can improve the reliability of the
underlying disks, but corruption still occurs frequently
enough that it we cannot rely on it alone when, again,
the cost is hours or days of downtime. Recently the main
server for kernel.org, which hosts several years’ worth of
Linux kernel archives, suffered file system corruption at
the RAID level; running fsck on the (journaling) ext3 file
system took over a week, more than the time required to
restore the entire file system from backup. In addition,
two of our primary design targets, desktops and laptops,
so far have not been attractive markets for RAID.

To help understand why existing techniques do not
solve the fsck time crunch in and of themselves, consider
the case of a file with a corrupted link count. To find the
true link count, you must read every directory entry and
count up all the entries with links to that file. Fundamen-
tally, answering the question of the correct value of one
bit in the block allocation bitmap requires reading every
piece of metadata in today’s file systems.

One apparent solution is to optimize fsck—perhaps
fsck only takes so long because it is (to state it baldly)
poorly written. However, when it comes to optimizing
fsck, most of the low-—hanging fruit has already been
plucked. For example, many of the more well-known in-
efficiencies of fsck[4] have been corrected in the ext2/3
fsck utility. And to compensate for exponential reduction
in performance due to hardware trends, we would have
to continuously improve fsck performance at the same
exponential rate for years—an unsustainable solution.

Another workaround is to divide up the disk into many
smaller file systems and manage them individually. This
approach has many drawbacks. Each file system must
be mounted at a particular point, and all files in each
file system must be children of the same top—level direc-
tory, constraining the organization of files. Disk space
becomes fragmented, so one file system may run out
of space while several others have plenty of free space.
When this happens, files must be rebalanced between
file systems by hand. Most existing file system code is
not designed for or tested well for 1/0 errors, and when
one file system suffers a failure, it often causes cascad-
ing failures in other supposedly independent file systems
sharing the same code or system resources. Simply par-
titioning the disk into many small file systems produces
a brittle, hard—to—manage system with somewhat lower
data loss but not much improvement in data availability.

3 Designing for the next decade

We need a file system architecture that can scale into
the next decade. Our goals are fast and robust recovery

from file system corruption, same or reduced administra-
tive burden, look and feel of a normal POSIX file system,
strong fault detection and isolation, and no O(size of file
system metadata) operations.

3.1 Repair—driven design

Traditional file system on—disk formats are designed
primarily with the goal of improving the performance of
the file system in normal use. We argue that the perfor-
mance and reliability of file system repair should also be
a major design goal when designing the on—disk format.
Trading off some steady-state performance for advan-
tages in repair and reliability especially makes sense for
file systems, for which the ultimate benchmark is how
reliably it can store and retrieve data. We describe this
philosophy as repair—driven design.

Repair—driven design encourages redundancy and
checksums in the on—disk format. Checksums, magic
numbers, UUIDs, back pointers, and outright duplica-
tion of data are all good examples of repair—driven de-
sign. Optimizations intended to compress on—disk data
and reduce redundancy are antithetical to repair—driven
design as they increase the damage possible from each
incident of file system corruption and increase the dif-
ficulty of repairing the corruption. Similarly, the on—
disk format should avoid “fragile” data structures—data
structures that are complex to update, highly interdepen-
dent with other data structures, and difficult to interpret
and repair when partially corrupted. B—trees of all sorts,
dynamic metadata allocation, complex on—disk look up
structures and the like improve on-line performance but
tend to perform badly in repair and recovery. A simple
linear directory layout performs poorly with some work-
loads but is trivial to repair.

One more aspect of repair—driven design is that the
on-disk format should be structured and laid out such
that traversing the file system in the order needed for re-
pair is fast.

4 Chunkfs architecture

The core idea of chunkfs is to split a file system
up into many small fault isolation domains on disk—
chunks, on the order of a few gigabytes in size (see Fig. 1.
Each chunk has its own block number space, allocation
bitmaps, superblock, and other traditional per—file sys-
tem metadata. A small amount of metadata about the
location and contents of the chunks is stored outside the
chunks in a summary region. The file system namespace
and available disk space are still shared, so that it still
feels like one file system to the user and administrator.

Splitting up the file system into chunks is easy. The
difficulty is in gluing it back together again to preserve
the shared namespace and disk space, while keeping
chunks fault—isolated from each other. The basic rules
are, (1) All cross—chunk references have explicit forward

and back pointers, and (2) Keep cross—chunk references
to a minimum. This section describes how we use these
principles to solve the major difficulties in implementing
chunkfs.

4.1 Continuation inodes

The first problem we encounter is how to store files
larger than the space available in a chunk. We could allo-
cate blocks from another chunk and have direct pointers
to them from our chunk, but that would make file system
repair no longer local to the chunk. To understand why;,
think about repairing the block allocation bitmap. If only
inodes inside a chunk can have pointers to blocks in that
chunk, then we only have to check the inodes inside the
chunk to determine whether a particular block is truly al-
located or not. But if we allow inodes in other chunks to
have pointers to blocks in our chunk, we have to check
all inodes in all chunks and we are back to square one.

Our solution to this problem is called continuation in-
odes. We pre-allocate forward and back pointers in ev-
ery inode. When a file outgrows a chunk, we allocate
another inode in another chunk, mark it as a continuation
inode, and fill out the forward and back pointers to cre-
ate a doubly linked list. Then we allocate blocks from
the continuation inode’s chunk and point to them from
the continuation inode. Continuation inodes are checked
in an additional final pass of fsck, to check that the for-
ward and back pointers agree. Directories that outgrow
their chunk are handled in the same way as files.

The next obvious problem is hard links between direc-
tories and files in different chunks. In order for fsck to
quickly check the number of links to an inode, the in-
ode and all directory entries referencing it must be in the
same chunk. While we prefer to allocate directories and
the files they link to in the same chunk, eventually we
have to allocate from a different chunk, creating a prob-
lem for our goal of keeping link count calculation local
to a chunk. Another more direct source of cross—chunk
hard links are files with hard links from multiple direc-
tories in different chunks—clearly the inode can’t be in
more than one chunk.

Our solution is to allocate a continuation inode for the
linked-to inode in the same chunk as the directory. If the
directory’s chunk is full, we allocate a continuation inode

Chunk 1
Metadata

Chunk 2
Metadata

Chunk 3
Metadata

Chunk 4
Metadata

Chunk 5
Metadata

Data Data Data Data Data

Figure 1: File system divided into chunks

for both directory and inode in a chunk with free space.
An inode’s link count is the sum of the link counts of all
its continuation inodes (this link count can be cached in
the “parent” inode).

4.2 Continuation inodeimplementation notes

The implementation of continuation inodes must avoid
some obvious pitfalls. First, we must avoid excessive
numbers of continuation inodes, both in terms of the to-
tal number in the file system and number per file. One
especially painful scenario is what we call the doubling
back problem, which will happen when file grows while
free space moves around the file system due to other ac-
tivity. We may end up beginning allocation in chunk A,
moving to chunk B, and then returning to chunk A be-
cause more space has been freed up in the meantime. If
we are not careful, we could end up with one data block
per inode.

Our solution is to implement sparse files and allow
each continuation inode to encompass an arbitrary set of
blocks in the file. This results in a maximum overhead
of one continuation inode per file per chunk, which is the
lowest upper bound theoretically possible (consider the
case of a single file which fills the entire file system).

In order to make intra-file seek times reasonable, we
may have to implement a lookup structure of some sort,
depending on how fragmented files end up being in typi-
cal usage. The doubly linked list structure in each inode
could be easily replaced with a tree node or hash struc-
ture to speed offset location.

The size of chunks should be small to speed up per-
chunk fsck, but large enough that the cross—chunk pass
is still fast (i.e., continuation inodes should be rare). By
definition, large files requiring continuation inodes are
rare because you cannot store many large files before you
run out of space on the file system. A quick survey of
several Linux developers’ laptop file systems during the
2006 Linux file systems workshop[6] found that 99.5%
or more of files were less than 1MB in size. We guessti-
mate that an optimal chunk size would be on the order
of 1/100th of the total file system size. With regard to
multiple hard links, keep in mind that the vast majority
of files have exactly one link and will be allocated in the
same chunk as the parent directory. Our informal laptop
file system survey found that only about 1% of file had
more than one link.

4.3 Directory hard links

We have decided to violate the strict interpretation
of usual UNIX file system semantics in favor of relia-
bility and simplicity and not allow multiple hard links
to directories, so determining proper directory reference
counts is relatively easy. The Linux VFS layer has never
supported multiple directory hard links, and all modern
UNIX implementations at minimum restrict such a capa-
bility to the superuser due to the damage directory cycles

can cause.
4.4 Filesystem repair

Our primary goal is to make fsck go fast. This is
accomplished by checking chunks in parallel and only
checking chunks that need it. During fsck, each chunk
is checked in the usual way, without referring to other
chunks. Metadata consistency checks that reference
other chunks must be done in a final pass across all
chunks; the necessary metadata from each chunk must
be quickly accessible.

5 Benefits of chunkfs

The principles of design of chunkfs are closely re-
lated to those of crash—only software[5]. Our goals
are safe crashes, quick recovery, and strong fault isola-
tion. Chunks suffering disk corruption (“bugs”) can be
unmounted (“crashed”), checked and repaired (“recov-
ered”), and remounted, all independent of other chunks
(module directory structure).

51 Reduced fsck time

When part of the file system suffers corruption (de-
tected either by checksum errors, safety checks in the file
system code, or errors reported by the underlying stor-
age), only the chunk containing it must be checked. Like-
wise, when the system crashes, only chunks with meta-
data being actively modified at the time of the crash must
be checked before the file system can be brought back
online. Since the chunks are relatively small (order of a
few gigabytes), the fsck time is correspondingly short.
5.2 Reduced fsck memory requirements

Fsck sometimes requires more memory to run than is
available to the system, especially early in boot. One au-
thor’s backup server recently could not be fsck’d because
it had so many directory entries that they could not all
fit into memory at once. Chunkfs only requires enough
memory to one chunk at a time, and to make a pass over
all cross—chunk references.

5.3 Strong fault boundaries

It is difficult for corruption in one chunk to cause cor-
ruption in another chunk, since no allocation bitmaps are
shared and continuation inodes require agreement about
forward and back pointers from the associated inode in
the separate chunk. If pointers do disagree and can’t be
repaired, the consequences for the continuation inode in
the uncorrupted chunk are at worst orphaning and a move
to the lost and found directory.

54 On-linepartial fsck

At any given time, a relatively small subset of a file
system is write—busy—that is, the metadata is being
modified. This is partly because most file systems try to
keep writes grouped on disk for better performance, and
partly because disks simply aren’t capable of writing to
the entire platter at once. We measured the distribution of

metadata updates to the file system by instrumenting ext2
to record which block groups had metadata updates using
a one-second time slice. We found that over a period of
50 minutes of active use of the file system on a develop-
ment laptop doing web-browsing, file editing, and kernel
compilation, all block groups were clean 98—-100% of the
time. While filling up the file system as quickly as possi-
ble with an artificially constructed workload using both
dd andcp -r,all block groups were clean at least 75%
of the time, and most were clean far more often. While
laptop disks are not particularly high performance, these
results confirm our intuition that metadata updates tend
to be localized in both time and space. In other words,
only a few block groups are being actively modified at
any given time.

We predict that many chunks will be idle with re-
spect to metadata writes most of the time. We can take
advantage of this to incrementally check chunks on—
line. Chunks that are too busy to check while on-line
(a relatively small subset) can be quickly and completely
checked at the next mount. We implemented a “dirty bit”
indicating whether a file system is being currently mod-
ified for the ext2 file system as a proof of concept and
found it to be a relatively easy task[7]. On-line repair
will be more difficult and will require careful handling
of open files and management of kernel structures, and
may not be worth solving if the file system need be off-
line for only a few minutes to complete the repair. In
addition, in the event of a crash, the dirty bits indicate
which chunks need to be recovered and which we can
skip, shortening recovery time significantly. We can also
randomly check a few chunks at every mount; over time
you check everything while the incremental price is low.
This kind of scrubbing is especially important given the
prevalence of latent (invisible) faults and their effects on
long-term data preservation[3].

55 Per—chunk on—disk format

Each chunk could be implemented to have different
ratios of inodes to data, different block sizes, or other
differences in layout, and can be initialized to a particu-
lar layout when first allocated. For example, a large file
could be stored in a chunk containing exactly one inode
and the associated data. File system growth is simple—
add another chunk—and file system shrinkage is much
easier, since the inode that “owns” any allocated block is
in the same chunk (rather than located potentially any-
where on disk).

6 Drawbacks of chunkfs

Chunkfs will only work if cross—chunk references can
be kept rare. Heavy fragmentation of chunk free space
resulting in many continuation inodes will waste space
and increase file system check and repair time. We ex-
pect to use a common tactic for controlling file sys-

tem fragmentation: reserve a certain percentage of free
space, avoiding worst case fragmentation and perfor-
mance degradation at the cost of relatively cheap and
plentiful disk space. Another mitigating factor is that
the chunk structure not only allows on-line file system
check, but would greatly simplify on-line defragmenta-
tion.

While most consistency checks can be done on each
chunk individually, we must still check inter-chunk con-
sistency. For example, if we check chunk A and follow a
continuation inode’s back pointer to the original inode in
chunk B, and then check chunk B and discover that the
original inode was orphaned, we will then have to free
the continuation inode and associated blocks in chunk A.

The hierarchical structure of UNIX file systems com-
plicates the goal of truly independent chunk failures,
since a component in the pathname of a file in chunk A
may be located in chunk B. If chunk B is corrupted, the
file A is disconnected and unavailable. This can be miti-
gated by directory duplication, caching parent name hints
in inodes, and by mechanisms to mount chunks indepen-
dently or otherwise get access to all files in a chunk.

7 Status

We recently released a prototype of chunkfs using
FUSE on Linux with basic functionality, and have begun
work on a chunkfs fsck. Our preliminary performance
measurements do not indicate any glaring performance
problems as yet. The next step will be an implementa-
tion based on ext2. We are not using ext3 primarily be-
cause the main advantage of ext3 over ext?2 is fast recov-
ery after a crash; since the goal of chunkfs is extremely
fast fsck, ext3’s main advantage over ext2 is reduced (we
only have to run fsck on the few chunks with metadata
being actively modified at the time of the crash).

8 Related work

As noted in Section 2, most file systems have focused
on repairing the file system after a system crash or other
cause of unclean unmount. A few file systems, such as
ZFS[2], have gone as far as checksumming and duplicat-
ing all file system metadata, which reduces the frequency
of fsck but not the overall time. At least two file systems,
ext3 and XFS, have plans underway to parallelize fsck
further within the constraints of the existing on—disk for-
mat.

A method of reducing fsck time proposed in [12] in-
volves tracking active block groups and using this infor-
mation plus a few other kinds of metadata to speed up
fsck. Some of the authors independently “rediscovered”
and evaluated a similar solution, called per-block group
dirty bits (see Section 7 in [7]). We quickly discovered
that block groups were not a meaningful boundary for
file system metadata, since any inode can refer to any

block in the file system, and any directory entry to any in-
ode. For example, operations that change link counts are
not helped by per-block group information. The method
of working around this problem used in [12], link tags,
led to a significant performance hit without an NVRAM
write cache. In Section 6 in [7], we outlined a simi-
lar approach, linked writes, which creates a list of dirty
inodes and orders writes to them such that the file sys-
tem can be recovered by scanning data pointed to by the
dirty inodes—a not particularly elegant approach which
we did not pursue.

Many distributed file systems have mechanisms for
improving fault isolation between individual servers[9,
15], mostly through replication of metadata and/or data,
but none that we know of explicitly address improving
file system repair time.

9 Conclusion

Chunkfs improves file system reliability, shortens re-
pair time, and increases data availability by dividing the
file system into chunks, small fault-isolation domains
which can be checked and repaired almost entirely inde-
pendently of other chunks. This allows fast, incremen-
tal, and partially on-line file system checking and repair.
In addition, the chunkfs architecture makes many other
useful file system features feasible, such as on-line re-
sizing, on-line defragmentation, and per—chunk on—disk
formats.

10 Acknowledgments

Thanks to Brian Warner, Kristal Pollack, Greg Ganger,
Vijayan Prabhakaran, and our anonymous reviewers for
many excellent comments and suggestions on this paper.
Thanks to the participants of the 2006 Linux file systems
workshop for their feedback on the design of chunkfs.
Finally, thanks to Theodore Y. T’so for many excellent
discussions which inspired much of this work.

References

[1] SGI Developer Central Open Source | XFS.
http://oss.sgi.com projects/xfs/
fag. ht m #dir 2.

[2] ZFS at OpenSolaris.org. htt p: // www.
opensol ari s. org/ os/ communi ty/ zfs/.

[3] M. Baker, M. Shah, D.S.H. Rosenthal, M. Rous-
sopoulos, P. Maniatis, TJ Giuli, , and P. Bungale.
A fresh look at the reliability of long-term digital
storage. In Proceedings of EuroSys 2006, 2006.

[4] EricJ. Binaand Perry A. Emrath. A faster fsck for
BSD UNIX. In USENIX Winter Technical Confer-
ence, pages 173-185, 1989.

[5] George Candeaand Armando Fox. Crash-only soft-
ware. In Proceedings of the 9th Workshop on Hot
Topics in Operating Systems (HotOS 1X), 2003.

[6] Valerie Henson.
Workshop.
190222/ .

The 2006 Linux File Systems
http://1wn.net/Articles/

[7] Valerie Henson, Zach Brown, Theodore Y. Ts’o,
and Arjan van de Ven. Reducing fsck time for ext2
file systems. In Ottawa Linux Symposium 2006,
2006.

[8] Dave Hitz, James Lau, and Michael A. Malcolm.
File system design for an NFS file server appliance.
In USENIX Winter, pages 235-246, 1994.

[9] Minwen Ji, Edward W. Felten, Randolph Wang,
and Jaswinder Pal Singh. Archipelago: An island-
based file system for highly available and scalable
Internet services. In 4th USENIX Windows System
Symposium, 2000.

[10] Mark Kryder. Future storage tech-
nologies: A look beyond the horizon.
http://ww. snwusa. conl docunent s/
present ati ons- s06/ Mar kKr yder . pdf.

[11] Marshall K. McKusick and Gregory R. Ganger.
Soft updates: A technique for eliminating most
synchronous writes in the fast filesystem. In
USENIX Annual Technical Conference, FREENIX
Track, pages 1-17. USENIX, 1999.

[12] J. Kent Peacock, Ashvin Kamaraju, and Sanjay
Agrawal. Fast consistency checking for the Solaris
file system. In USENIX Annual Technical Confer-
ence, 1998.

[13] Vijayan Prabhakaran, Lakshmi N. Bairavasun-
daram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON file systems. In SOSP ’05, pages
206-220, 2005.

[14] Mendel Rosenblum and John K. Ousterhout. The
design and implementation of a log-structured file
system. In SOSP, pages 1-15, 1991.

[15] Yasushi Saito, Christos Karamanolis, Magnus
Karlsson, and Mallik Mahalingam. Taming aggres-
sive replication in the Pangaea wide-area file sys-
tem. SIGOPS Oper. Syst. Rev., 36(SI):15-30, 2002.

