
SecondSite: Disaster Protection for the Common Server

Brendan Cully and Andrew Warfield
University of British Columbia and University of Cambridge

Disaster-tolerant systems are complex and expensive con-
structions that have hitherto been the provision of only the
very rich or the very scared. The current state of the art
for surviving site-wide failures is to mirror persistent stor-
age to a remote location and cold-start applications there in
the event of failure. This requires delicate, tailored modi-
fications to production software to restore application-level
consistency before resuming operation.

We proposeSecondSite, a novel approach to disaster recov-
ery that requires no understanding of, or interaction with,
protected applications. Servers are run in virtual machines
whose complete runtime state is continuously checkpointed
to off-site persistent storage. In the event of a primary site
failure, the recovery site (which may concurrently protect
multiple locations) immediately activates a consistent snap-
shot of a group of protected hosts as if they had simultane-
ously been migrated to the new location. We believe that
failure recovery can be made to perform well enough to re-
sult in only seconds of downtime — restored hosts should
be able to maintain open TCP connections with clients.

As regulatory and environmental changes make disaster re-
covery necessary in a broadening range of systems, the
overhead of application-specific approaches renders them
more and more untenable. By running below VMs and
capturing whole-system state,SecondSiteremoves the need
to modify services to support recovery, and consequently
avoids expensive and ongoing development, testing and de-
ployment effort. Moreover, as a platform-level service it
can be administered independently of the applications it
protects, allowing third parties such as managed hosting
providers to exploit economies of scale by sharing the costs
of protection among a large number of independent servers,
and by compressing redundant data across hosts.

1 Design Goals

To date, virtualization has seen only limited application in
disaster recovery. Current commercial offerings1 use virtu-
alization simply as an administrative container to move ma-
chine state to a new location. In these approaches, replica-

1e.g. http://www.vmware.com/products/vi/vc/ha.html

tion is limited to persistent data, and restoration requires the
same reboot and consistency checks that are used in non-
virtualized environments. Our approach carries the benefits
of virtualization much further by capitalizing on the ability
to capture the entire state of a running multi-host system in
order to make disaster recovery an automatic property of
the virtual environment. The system we propose possesses
the following characteristics:

Transparency. Virtualizing the entire hardware infras-
tructure allows services to be replicated with no change
to application, library, or OS code. This makesSecond-
Siteapplicable to a very broad range of systems, and elimi-
nates the development cost and per-instance complexity of
adding disaster recovery code to individual applications.

Speed. Transparent failover can be sufficiently fast to
maintain active TCP connections to the outside network.
To users of the system, site-wide disaster should be indis-
tinguishable from network delay. By replicating whole-
system state and failing over with very low latency, we
avoid the need to recover a large window of potentially
inconsistent data from persistent storage. This simpli-
fies system-wide recovery and supports our goal of trans-
parency by eliminating the need for application-specific
modifications to restore consistency during recovery.

Efficiency. In existing systems, the bandwidth required
just to mirror persistent storage across geographically re-
mote locations is considerable, and consistency proto-
cols can incur significant performance overhead; our pro-
posal to replicate live machine state raises these raw costs
even further. However, we believe several complementary
techniques may be applied in our environment. Redun-
dancy within and across systems may be exploited through
content-hashing, caching and compression. Servers that
modify state too rapidly to be mirrored in a timely fash-
ion may be throttled, allowing an explicit tradeoff between
protection overhead, comprehensiveness, and system per-
formance. Finally, multiple geographically diverse primary
sites can share a common backup location, further increas-
ing exploitable data redundancy while amortizing backup
facility costs across primary sites.



2 Implementation Challenges

The major challenge faced by a platform-level disaster-
recovery system is to maintain an up-to-date and consis-
tent image of each protected group of servers in the face
of the limited bandwidth and the unavoidable latency of
long-distance network links. In light of the bandwidth con-
straint, it might seem attractive to run two systems in par-
allel and tee the external input to both, discarding the out-
put from the backup site. Unfortunately, it is surprisingly
hard to guarantee the consistency of such a system: with-
out application-specific knowledge it is difficult to prevent
divergence between the two sites due to the accumulation
of small differences between the systems (e.g., differences
in scheduling or network message arrival times can result
in different database transaction orderings). A live backup
site also consumes as many resources as the primary even
when the primary site is active, and so is far less efficient
than a system that instantiates backup servers on demand
from stored state.

Our approach is to take frequent distributed checkpoints of
protected groups of servers. This is a well-studied prob-
lem in its own right, and virtualization facilitates a wide
range of synchronization techniques because it can inter-
pose itself on the scheduler and event-delivery systems. To
address the potential of visible state difference between the
primary and backup sites due to propagation lag, external
network traffic can be replicated synchronously through the
remote gateway, and the resulting traffic log used to replay
the window of outstanding events on the recovering VMs
in order to move them forward to the current time.

Capture and Replication Overhead. One drawback of a
transparent approach is that it requires significantly more
bandwidth, treating protected VMs as black boxes means
that all state must be captured. We are exploring several
techniques to reduce this to manageable levels, including:
sending the deltas of dirty pages; content-hashing pages
to discover redundancy; time dilation (slowing down VMs
that generate state faster than it can be propagated); over-
lapping request checkpointing and request handling; ig-
noring intra-cluster communication (correct snapshots will
recreate these messages when executed); and VM intro-
spection or paravirtualization techniques, e.g. marking
“hot” pages such as process stacks, whose transmission
may be deferred until a snapshot is committed.

In our initial experiments, dirty page compression alone
yields an 80% bandwidth reduction for a single VM run-
ning the mysql benchmark suite; we expect dramatic im-
provements in these savings as we improve our implemen-
tation. To give an idea of the type of support this makes
possible, the aforementioned mysql benchmark currently
requires an average of approximately 11 Mbps at a snap-
shot rate of once per second (this represents something of a
worst-case usage model for a managed-hosting provider —
web servers are likely to dirty pages at a much lower rate).
Furthermore, reduction in snapshot frequency provides bet-
ter than linear improvement in bandwidth usage: multiple

page writes will be coalesced into a single transfer. It is also
worth noting that economies of scale should allow managed
hosting providers to provision inter-site bandwidth at much
lower cost than would be available to end users.

Failover. In order for failover to be successful, network
connections must migrate undisrupted across physical lo-
cations — a considerably more challenging problem than
that of migration in the local area where ARP advertise-
ments may be used to indicate a MAC-level relocation. But
if we assume that the managed hosting provider owns both
physical facilities and that these facilities are connected to
a single, common upstream BGP autonomous system (AS),
we may use “dual-homing” for IP fail-over in the same
manner that some existing single site configurations do for
network link failure protection. The backup site is config-
ured as a dual-homed IP configuration, in which the two
“homes” are several hundred miles apart, and we generate
BGP updates in response to failure requests, hopefully long
before router failure triggers an automatic reconfiguration.
We have informally reviewed this proposal both through
a discussion on the North American Network Operators
Group (NANOG)2, and through more detailed discussions
with commercial hosting providers. The consensus seems
to be that similar configurations are used for highly avail-
able servers by some customers, and that failover times of
a few seconds are certainly reasonable.

3 Conclusion
We believe that it is both possible and desirable to provide
transparent disaster recovery services to clusters of unmod-
ified Internet-accessible application servers. Because vir-
tual machines encapsulate server state in its entirety, they
make it possible to separate both backup and recovery from
the application domain. Thus these services can be provi-
sioned by specialized third parties with the requisite infras-
tructure, on behalf of a broad range of clients.

Although the scope of this work is ambitious, we antici-
pate that incremental progress in several areas of the sys-
tem should deliver interesting and useful results. For ex-
ample, even when confined to a LAN continuous migration
can provide redundancy for entire servers (including trans-
parent recovery when hardware inevitably fails), as well
as making possible intriguing forensic tools such as time-
traveling distributed debuggers and replayable cluster-wide
intrusion logs. Likewise, even infrequent consistent snap-
shots are useful for recovery of long-running computations
of the kind frequently seen in the high-performance com-
puting community. Additionally, wide-area failover is ben-
eficial even without multi-host consistent checkpoints, es-
pecially for the many hosted services that exist within a
single server.

Those interested can follow our progress athttp://
dsg.cs.ubc.ca/secondsite/.

2“IP failover/migration question.”, June 11, 2006. NANOG archives
are available atwww.merit.edu/mail.archives/nanog/

2


