
Making Exception Handling Work
Bruno Cabral, Paulo Marques

CISUC, University of Coimbra, Portugal
{bcabral, pmarques}@dei.uc.pt

ABSTRACT
Most modern programming languages rely on exceptions for
dealing with errors. Although exception handling was a
significant improvement over other mechanisms like
checking return codes, it’s far from perfect. In fact, it can be
argued that this mechanism is seriously flawed. In this paper
we argue that exception handling should be automatically
done at the runtime/operating system level. The motivation
is similar to the one that lead to garbage collection: memory
management was a tedious and error prone process, thus
virtual machines included support for taking care of it. We
believe that many exceptions can be automatically dealt
with, and recovered, as long as appropriate mechanisms
exist in the runtime environment. We believe that this
approach may dramatically influence the way programming
languages are designed and significantly contribute to
having more robust code, being actually developed with
much less programming effort.

1. INTRODUCTION
Most modern programming languages like C#, Java or
Python rely on exceptions for dealing with errors. Although
exception handling was a significant improvement over
other mechanisms like checking return codes and error flags,
it’s far from perfect. In fact, it can be argued that this
mechanism is seriously flawed. For instance, programmers
mostly throw generic exceptions which prevent proper
handling of errors and recovery for abnormal situations
without shutting down the application; programmers catch
generic exceptions, not proving proper error handling;
programmers that try to provide proper exception handling
see their productivity seriously impaired. These practices
lead to a decrease in software quality and dependability. It is
clear that in order to develop high-quality robust software, in
a highly productive way, new advances are needed.
We argue that, in general, exception handling should
become a platform issue (at the operating system or virtual
machine level), involving little intervention from the
programmer. Whenever possible, the execution environment
should provide the means for automatically trying to recover
the system without having to resort to code explicitly written
in exception handling blocks.

2. THE APPROACH
For understanding why we believe that exception handling
should become an execution platform level issue, let’s
consider an analogy with memory management and garbage

collectors. In the past, in languages like C and C++,
programmers were forced to deal with memory management
and the explicit allocation and de-allocation of memory
blocks. Although apparently simple, memory management
was so error prone that garbage collectors were developed.
Garbage collectors provided a way for programmers to stop
worrying about memory de-allocation, dangly references,
not only paving the way to less buggy software as to
improved programming productivity.
Our thesis is that most exception handling should be done
automatically by having support on part of the virtual
machine and not explicitly by the programmer. The idea is
that virtual machines (or operating systems) should have a
kind of benign “garbage collector” for exception handling.
One of our main goals it that the programmer, in general,
doesn’t have to write catch blocks. Common exceptions
should be handled automatically if they occur. The
programmer should only have to mark blocks of code with a
simple try {...} construct, signaling that an exception
may occur in a block and, if it does happen, recovery actions
should be taken. Note that including code in try blocks
does not impair programmer’s productivity – thinking about
error handling and writing the corresponding code does.
In order to try different recovery strategies when an
exception occurs, it is necessary to be able to retry to
execute a try block (resumable exceptions). At the same
time, since a try block may be executed multiple times
while trying to recover from an exception, a “mini-
transactional system” has to exist so that try blocks start
from exactly the same state if executed several times. It
should be noted that trying out different recovery schemes
when an error occurs is a well-known technique from fault-
tolerance: they are called recovery blocks [1], supported by
atomic actions. Unfortunately, the technique was never very
successful because it relies on writing acceptance tests
which detect the occurrence of errors and trigger the
recovery mechanism. Practice dictates that writing those
acceptance tests is extremely difficult [2] except for a
handful of domain applications (e.g. matrix calculations,
finite state transition systems, etc.). The interesting aspect of
our approach is that acceptance tests (or best said: error
detection) are given for free since whenever an exception
occurs it is clear that the system is not in an acceptable state.
In that case, the recovery block can be executed. The
transactional system provides for releasing the programmer
from having to write state cleaning procedures, which is a
quite difficult task to do for generic code.

Figure 1 illustrates the process. The runtime environment
provides a set of recovery blocks that should be executed in
the presence of an exceptional event, after the execution of a
recovery block the targeted try block must be re-executed.
If the problem persists (the exception still manifests itself)
another recovery block should be tried and the process
repeated until all the code executes correctly or the
application is aborted.

Figure 1. Automatic Exception Handling

Obviously, to allow a correct treatment of an exception
inside the recovery blocks contextual information must be
available regarding the cause of the fault (e.g. the name of
the file that can’t be found, the disk identification for the
volume that is full, the database connection string regarding
the database to which the connection was lost, etc.). This
contextual information can be references to faulting
components, variables or objects, and are passed to the
recovery block as fields of the exception instance.
In this system, the programmer is not completely freed from
writing exception handling code. Specific application
exceptions still have to be dealt with, and also exceptions for
which no general recovery strategy exists. Nevertheless, this
system has several important advantages over the existing
art: programmers do not have to deal with exception
handling in many common cases; the programmer is not
introducing bugs by mishandling exceptions or by simply
silencing them; when no appropriate reusable recovery
blocks exist, the traditional try-catch approach is still
supported.

3. RELATED WORK
It’s been more than three decades since exception handling
mechanisms [3, 4] have been around. During this time there
have been a growing number of proposals for new ways to
detect and handle exceptions. Most of these proposals were
strictly attached to the design of new programming
languages or programming models. Garcia et al. presents a
detailed comparison between the different models available
in “A Comparative Study of Exception Handling
Mechanisms for Building Dependable Object-Oriented
Software” [5].

Our main contribution comes from combining the idea of
exception handling with the one of recovery blocks. In 1974
Horning described recovery blocks as a “program structure
for error detection and recovery” [1].

4. CONCLUSION
In this paper we argued that exception handling should be
done automatically at the runtime or operating system level,
as currently happens with memory allocation and garbage
collectors. In our approach, the main difficulty of using
recovery blocks, the writing of a proper acceptance test, is
eliminated increasing the usefulness of the mechanism. This
approach also diminishes the mingling of business code and
error handling code. The programmer, in general, doesn’t
have to think about error handling at the same time it thinks
about business code.
The inclusion of a mini-transactional system, besides the
obvious benefits in the re-execution of problematic code
after the realization of environmental changes, provides the
means to incorporate a new retry semantic into platforms
that lack from it like Java and .NET.

5. ACKNOWLEDGMENTS
This investigation was partially supported by the Portuguese
Research Agency – FCT, through a scholarship
(SFRH/BD/12549/2003), and by CISUC (R&D Unit
326/97).

6. REFERENCES
[1] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith and B.

Randell. A Program Structure for Error Detection and
Recovery. In Proceedings of Conference on Operating
Systems, IRIA, 1974, 177-193.

[2] B. Randell. System Structure for Software Fault
Tolerance. In IEEE Transactions on Software
Engineering, 1, 1, June 1975, 220-232.

[3] J. B. Goodenough. Exception handling: issues and a
proposed notation. In Communications of the ACM, 18,
12 (December 1975), ACM Press.

[4] F. Cristian. Exception Handling and Software Fault
Tolerance. In Proceedings of FTCS-25, 3, IEEE, 1996
(reprinted from FTCS-IO 1980, 97-103).

[5] A. Garcia, C. Rubira, A. Romanovsky, and J. Xu. A
Comparative Study of Exception Handling Mechanisms
for Building Dependable Object-Oriented Software. In
Journal of Systems and Software, 2, November 2001,
197-222

