Spark

Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury,
Michael Franklin, Scott Shenker, lon Stoica

1/
”AD T35
\ N

)



Background

MapReduce and Dryad raised level of abstraction
in cluster programming by hiding scaling & faults

However, these systems provide a limited
programming model: acyclic data flow

Can we design similarly powerful abstractions for a
broader class of applications?



Spark Goals

Support applications with working sets (datasets

reused across parallel operations)
» |terative jobs (common in machine learning)
» Interactive data mining

Retain MapReduce’s fault tolerance & scalability

Experiment with programmability
» Integrate into Scala programming language
» Support interactive use from Scala interpreter



Programming Model

Resilient distributed datasets (RDDs)
» Created from HDFS files or “parallelized” arrays
» Can be transformed with map and filter
» Can be cached across parallel operations

Parallel operations on RDDs
» Reduce, collect, foreach

Shared variables
» Accumulators (add-only), broadcast variables



Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...")

errors = lines.filter(_.startswith(“ERROR”)) riig;;jf; =

messages = errors.map(_.split(‘\t’)(2)) tasks

cachedMsgs = messages.cache() FYIANN

cachedvsgs.filter(_.contains(“foo”)).count

cachedvsgs.filter(_.contains(“bar”)).count




RDD Representation

Each RDD object maintains lineage information that
can be used to reconstruct lost partitions

Ex: cachedusgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.cache()

HdfsRDD | FilteredRDD MappedRDD

P
path: hdfs://... func: contains(...) func: split(...) CachedRDD



Example: Logistic Regression

Goal: find best line separating two sets of points

random initial line
+

\
kK
+\ + \ N\
\ \
\\ P \
N EN \\
\ g
% +
“\ ’ P -
\ \A— \\
A S -

targe



Logistic Regression Code

val data = spark.textFile(...).map(readPoint).cache()
var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p => {
val scale = (1/(Q+exp(-p.y*(w dot p.x))) - 1) * p.y
scale * p.x
}).reduce(_ + _)
w -= gradient

}

printin("Final w: + w)



Logistic Regression Performance

Running Time (s)

4500

w w &
O un O
o O O
O O O

1000

5 10 20

Number of Iterations

127 s/ iteration

/

Hadoop
& Spark

\

first iteration 174 s

further iterations 6 s
30



Demo



Conclusions & Future Work

Spark provides a limited but efficient set of fault

tolerant distributed memory abstractions
» Resilient distributed datasets (RDDs)
» Restricted shared variables

In future work, plan to further extend this model:
» More RDD transformations (e.g. shuffle)
» More RDD persistence options (e.g. disk + memory)
» Updatable RDDs (for incremental or streaming jobs)
» Data sharing across applications



Related Work

DryadLINQ
» Build queries through language-integrated SQL operations on lazy datasets
» Cannot have a dataset persist across queries
» No concept of shared variables for broadcast etc

Pig and Hive
» Query languages that can call into Java/Python/etc UDFs
» No support for caching a datasets across queries

OpenMP
» Compiler extension for parallel loops in C++
» Annotate variables as read-only or accumulator above loop
» Cluster version exists, but not %ult-tolerant

Twister and Haloop
» Iterative MapReduce implementations using caching
» Can't define multiple distributed datasets, run multiple map & reduce pairs
on them, or decide which operations to run next interactively



