
Turning down the LAMP 
Software Specialisation for the Cloud 

Anil Madhavapeddy 



Motivation: Layers 

Hardware 

Processes 

OS Kernel 

Threads 

Application 



Motivation: Layers 

Hardware 

Processes 

OS Kernel 

Threads 

Application 

Language Runtime 



Motivation: Layers 

Hardware 

Processes 

OS Kernel 

Threads 

Application 

Hypervisor 

Language Runtime 



Motivation: Security 

•  Linux Kernel 

•  Mar 1994: 176,250 LoC             May 2010: 13,320,934 LoC 

Most core Internet services still written in C / C++ 



Approach: Reconstruct 

•  Most layers are in place for compatibility 

•  Xen: to run operating systems 

•  Linux: to run POSIX applications 

•  Processes: to protect C applications 

•  If we start again, how much can things be improved? 



Language 

•  Choose a new implementation language that: 

•  Has strong static typing 

•  This improves performance (more work at compile time) 

•  Reduces run-time bugs (memory safety) 

•  Has a simple run-time system 

•  Essential for a low-level systems language 

•  Is extensible, e.g. for new methods of parallelization 



Language: Objective Caml 

•  Developed since 1996 in INRIA, France. 

•  Based on the ML type-system: type inference, static typing 

•  Proven in industry: 

•  Citrix XenServer (virtualization) 

•  Jane Street Capital (finance) 

•  Skydeck, MLState (web) 

•  Extensible type-system and grammar (FlowCaml, JoCaml, HashCaml) 



DNS: Performance of BIND (C) vs Deens (ML) 



DNS: with functional memoisation 



MirageOS: Specialised application kernels 



MirageOS: memory layout, concurrency 

Memory 

•  64-bit PV layout 
•  Single process 
•  Zero-copy I/O to Xen 
•  4MB super page mappings 

Concurrency 

Cooperative threading and events 
Fast inter-domain communication 
Works across cores and hosts 



Mirage: storage 

Language-integrated storage: 

type t = { name: string; age: int } 

let me = { name = “Anil”; age=31 } 

let save () = t_save db me 

let get () = t_get ~age:(`Gt 30) db 

Advantage: SQLite is fast and simple 

Downside: interoperability. Object SCSI (Panassus) ? 



Mirage: concurrency 

Language-integrated concurrency: 

let rec loop () = 

     printf “hello!\n”; 

     lwt s = sleep 2.5 in 

     loop () 

# val loop : unit -> Lwt.t unit = <fun> 

Advantage: Blocking functions have a special type Lwt.t 

Downside: Extra function call overhead 



MirageOS: SQL performance vs PV Linux 



MirageOS: memory performance vs PV Linux  



The Future: Multi-scale Operating System 

•  We produce highly optimized kernels from a portable 
functional language code base which can adapt to the local 
hardware. 

•  Same source code runs efficiently on: 

•  mobile phone environment (e.g. using Cadmium or ARM) 

•  desktop OS for development (e.g. using Eclipse IDE) 

•  cloud for cheap scalability (using Xen kernel backend) 

•  and soon GPGPU? FPGA? Intel SCC?  



Applications 

•  Dust Clouds 

•  Thousands of tiny virtual machines (~100k each) 

•  Same price as a few conventional “large” virtual machines 

•  Sprinkle them world-wide to run Tor anonymity nodes 

•  Self-scaling Services 

•  As load spikes, request more resources dynamically from cloud 

•  Detect resource imbalance and “migrate” globally on demand 

•  All requires low-latency, high-reliability cloud APIs 



Observations 

•  Static address space layouts permit multiple language runtimes to run 
simultaneously in one VM container. 

•  Alternative to Facebook compiling PHP to C++ using HipHop 

•  Partial evaluation has the potential save huge amounts of energy 

•  Already used in systems, e.g. libc/arch/x86_64 

•  Thinking multi-scale instead of multi-core is important for OS and 
language design: 

•  Newer multi-core look like multiple hosts in many ways (failure, coherency, 
communication latency). 



Questions? 

Open-source: 

http://github.com/avsm/melange 
http://github.com/avsm/mirage 
http://github.com/mirage 

Contact: 

     avsm2@cl.cam.ac.uk   

     avsm 


