
Distributed Systems Meet Economics: Pricing in the Cloud

Hongyi Wang† Qingfeng Jing‡ Rishan Chen◦ Bingsheng He† Zhengping Qian† Lidong Zhou†

†Microsoft Research Asia ‡Shanghai Jiao Tong University ◦Peking University

Abstract
Cloud computing allows users to perform computation

in a public cloud with a pricing scheme typically based
on incurred resource consumption. While cloud comput-
ing is often considered as merely a new application for
classic distributed systems, we argue that, by decoupling
users from cloud providers with a pricing scheme as the
bridge, cloud computing has fundamentally changed the
landscape of system design and optimization. Our pre-
liminary studies on Amazon EC2 cloud service and on a
local cloud computing testbed, have revealed an interest-
ing interplay between distributed systems and economics
related to pricing. We believe that this new angle of look-
ing at distributed systems potentially fosters new insights
into cloud computing.

1 Introduction

Recent cloud providers (e.g., Amazon Web Services,
Google App Engine, and Windows Azure) have enabled
users to perform their computation tasks in a public
cloud. These providers use a pricing scheme according
to incurred resource consumption. For example, Ama-
zon EC2 provides a virtual machine with a single CPU
core at the price of $0.095 per hour. This pay-as-you-go
model lets users utilize a public cloud at a fraction of the
cost of owning a dedicated private one, while allowing
providers to profit by serving a large number of users.
Case studies from these cloud providers [2, 10, 27] in-
dicate that a variety of applications have been deployed
in the cloud, such as storage backup, e-commerce and
high-performance computing. For a provider, it is a non-
trivial task to define a uniform pricing scheme for such a
diverse set of applications.

This cloud-computing paradigm has transformed a tra-
ditional distributed system into a “two-party” computa-
tion with pricing as the bridge. A provider designs its
infrastructure to maximize profit with respect to the pric-

ing scheme, while a user designs her application accord-
ing to the incurred cost. This is in contrast to a tradi-
tional distributed system, where the goal is to optimize
for throughput, latency, or other system metrics as a sin-
gle and whole system.

Pricing in cloud computing has two intertwined as-
pects. On the one hand, pricing has its root in sys-
tem design and optimization. Resource-consumption
based pricing is particularly sensitive to how a system
is designed, configured, optimized, monitored, and mea-
sured (as shown in Section 4). On the other hand,
pricing also has its root in economics, where key con-
cepts such as fairness [17] and competitive pricing in
a multi-provider marketplace affect the actual pricing.
The pricing-induced interplay between systems and eco-
nomics has fundamental implications on cloud comput-
ing, an important angle that should be explored by re-
searchers. In this paper, we explore several dimensions
of such an interplay.
Cost as an explicit and measurable system metric.
With pricing, the dollar cost of computation becomes an
explicit and measurable metric for system optimizations.
This begs the questions: how do we optimize a system
based on this new metric? How is this metric related to
traditional system metrics such as throughput? If both
providers and users optimize based on their dollar cost
and profit, does this lead to a globally optimal system
that is most effective in getting the work done at the low-
est cost? Clearly, pricing impacts the answers to those
questions.
Pricing fairness. The key concepts of pricing such as
competition and fairness affect choices in the design of
user applications and system infrastructures. As a start,
we investigate the pricing fairness in the cloud. Since
users and providers have different and often conflict-
ing incentives, pricing fairness balances user cost and
provider profit. Even within the scope of pricing based
on resource utilizations, we have choices on what to
charge (e.g., virtual machine time vs. actual CPU time)

and different approaches achieve different levels of fair-
ness.
Evolving system dynamics. The underlying systems for
cloud computing evolve over time: individual machines
might grow more powerful, have more CPU cores [6],
accelerator [13] and/or adopt new storage medium such
as flash in place of disks [16]. Will a provider gain a com-
petitive advantage by adopting those new technologies
for selected applications? Should pricing evolve along
with innovations in systems?
Cost of failures. Failures are bound to happen in cloud
computing, due to both hardware failures and software
issues [4]. Traditional system design cares mostly about
tolerating failures and about recovery from failures. In a
pay-as-you-go cloud, we have to worry also about the ex-
penses incurred by failures and more importantly face the
question of who is to be responsible for those expenses.
Under the current pricing scheme used by Amazon, those
expenses fall entirely on the shoulder of users, regardless
of root causes.

It is not our intention to answer all these questions in
this paper. Rather, we focus on making the case that
those problems are worth exploring in the context of the
current state of affairs in cloud computing. We do so
through our preliminary studies on Amazon EC2, one of
the major cloud providers, and with Spring, our home-
grown testbed. Amazon EC2 provides a real cloud ser-
vice, which we can study as a black box, while Spring
offers us the opportunity to investigate the underlying
distributed system. We find that (i) optimizing for cost
does not necessarily lead to an optimal system; optimiza-
tion is hard for users due to their limited knowledge of
the underlying mechanisms that a provider has in place;
(ii) pricing unfairness is evident with the current pricing
scheme used by Amazon; (iii) Different system config-
urations have a significant impact on the cost and profit;
(iv) failures do appear and incur non-negligible expenses
on users.

Organization. The rest of the paper is organized as
follows. We introduce the background on pricing in Sec-
tion 2. Section 3 provides an overview of our experimen-
tal methodologies, followed by the experimental results
in Section 4. We conclude and discuss future work in
Section 5.

2 Background on Pricing

This section introduces the background on the pricing
scheme, and related studies on pay-as-you-go charging.

2.1 Pricing
Pricing plays a key role in the marketplace, which has
been well studied in economics [17]. Among various

factors that impact pricing, fairness [19] and competi-
tion [17] are the most relevant to our current study.

Pricing fairness consists of two aspects: personal
and social fairness [19]. Personal fairness is subjec-
tive, meaning that price meets users’ personal expecta-
tion. Social fairness is objective, meaning that price is
the same for all users, does not give a provider unrea-
sonably high profits and so on. For example, the differ-
entiated economy class air ticket prices are socially un-
fair because some passengers have to pay more than oth-
ers. Maxwell summarized the fairness in economic ex-
change: what is priced, who gets price exceptions, what
is included in the price, and so on. For example, a fair
price should be charged to everyone, but adjusted for the
needy. We refer readers to Maxwell [19] for more de-
tails. In this paper, we focus on the social fairness of the
pricing scheme, and examine whether price is the same
for all users.

Competition unleashes the power of markets in eco-
nomics [17]. With competition, providers cannot set
their prices in a way most favorable to them. Instead,
they gain a competitive advantage through adopting new
technology and lowering their cost.

2.2 Pay-as-you-go Model

Pricing is not only important for economics, but also
helps to shape how systems are used; for example, pric-
ing can control congestion on Internet resources [18],
and adjust the computation resource demand and supply
in the grid [7].

In the pay-as-you-go model, the pricing scheme be-
comes an important bridge between users and providers.
The current practice among major cloud providers is
to price computing based on virtual-machine hours; for
example, Amazon charges $0.095 per virtual-machine
hour. Moreover, pricing schemes are evolving and more
pricing schemes are introduced. For example, Amazon
now has a set of different pricing schemes including
auction pricing. Additionally, several alternative pricing
schemes have been proposed for better system behavior
in the cloud. Singh et al. [23] suggested dynamic pric-
ing when reserving computation resources. Jimenez et
al. [20] developed a bilateral accounting model between
users and providers to avoid malicious overcharge. This
paper focuses on the common one among major cloud
providers, charging based on incurred virtual-machine
hours.

Evaluating and optimizing user expenses in a pay-as-
you-go cloud has recently attracted research interest [4,
8]. Napper et al. [21] and Walker [26] compared Amazon
EC2 with a private cloud for high-performance comput-
ing. The cost, availability, and performance of Amazon
services was studied with simple operations [22, 9]. In

contrast, this study focuses on both costs and profits with
respect to pricing, and the resulted interplay between sys-
tems and economics.

3 Methodology Overview

We have assembled a set of workloads to approximate a
typical workload in current cloud computing. With these
workloads, we use two complementary approaches for
evaluations. One is a black-box approach with Amazon
EC2. As other cloud providers such as Google and Mi-
crosoft use similar pricing schemes, we expect that our
pricing-related findings to be applicable to those as well.
Our second approach is to set up a cloud-computing
testbed, called Spring, so that we can perform fully-
controlled experiments with the full knowledge of how
the underlying system works.

3.1 Workloads
We have identified several popular applications to simu-
late different applications domains listed in the case stud-
ies in cloud providers [2, 10, 27].

Postmark. We use Postmark [15] as an I/O-intensive
benchmark, representing the file transactions for various
web-based applications. The default setting in our ex-
periment is as follows: the total file size is around 5 GB
(1000 files, 5000 KB each); the number of transactions
is 1000.

PARSEC. PARSEC [5] is a benchmark suite com-
posed of real-world applications. We choose Dedup
and BlackScholes to represent storage archival and
high-performance computing in the cloud, respectively.
Dedup compresses a file with de-duplication. BlackSc-
holes calculates the prices for European options. The de-
fault setting is as follows: Dedup has around 184 MB
input data for deduplication; the number of options for
BlackScholes is 10 million.

Hadoop. We use Hadoop 0.20.0 for large-scale data
processing. We choose WordCount and StreamSort from
the GridMix benchmark [11]. The default input data set
is 16GB for both applications.

3.2 Methodology on Amazon EC2
In the experiments with Amazon EC2, our execution is
charged according to the pricing scheme of Amazon. We
consider the amortized cost in a long running scenario,
and calculate user expenses as Costuser = Price × t,
where t is the total running time of the task in hours,
and Price is the price per virtual machine hour. We ex-
clude the costs on storage and on data transfer between
the client and the cloud, since they are negligible in our
experiments (less than 1% of the total cost).

3.3 Methodology on the Spring System

Spring virtualizes the underlying physical data center
and provides virtual machines to users. Spring con-
sists of two major modules, namely VMM (Virtual Ma-
chine Monitor) and an auditor. VMM is responsible for
VM (Virtual Machine) allocation, consolidation and mi-
gration among different physical machines. The audi-
tor calculates user expenses and estimates profits for the
provider. The estimation helps to understand the impact
of pricing in the cloud.

We estimate the provider profit by subtracting the to-
tal provider cost from the expected payment from users.
While the total user payment is directly measured from
incurred virtual machine hours, it is challenging to have
an accurate estimation on the provider profit in a real
data center. As a starting point, we adopt Hamilton’s
estimation of the total cost of a large-scale data cen-
ter [12]. Hamilton calculates the amortized cost of run-
ning a data center as the sum of server costs, power con-
sumption, power and cooling infrastructures and other
costs. Hamilton further defines full burdened power con-
sumption as the total power consumption of IT equip-
ments, and power and cooling infrastructures [12].

Following Hamilton’s estimations, we calculate the to-
tal cost of the full burdened power consumption to be
Cost full = (p × Praw × PUE), where p is the elec-
tricity price (dollars per kWh), Praw is the total energy
consumption of IT equipments including all the servers
and routers (kWh), PUE is the PUE value of the data
center [25]. PUE [25] is a metric to measure the effi-
ciency of a data center’s power distribution and mechan-
ical equipment.

The total provider cost is estimated with
Costprovider = (Cost full + Costamortized) × Scale,
where Costamortized is the total amortized server cost,
and Scale is the ratio of the estimated total cost to the
sum of the cost of full burdened power consumption and
Costamortized in Hamilton’s estimation.

To estimate Costamortized , we estimate the amortized
cost per sever to be (CamortizedUnit × tserver), where
CamortizedUnit is the amortized cost per hour per sever
and tserver is the elapsed time on the server (hours).

We further estimate Praw as the total power consump-
tion of servers and routers. For a server, we use a simple
linear regression model [14] estimating the energy con-
sumption based on resource utilization, i.e., Pserver =
Pidle + ucpu × c0 + uio × c1, given CPU utilization and
I/O bandwidth ucpu% and uio MB/sec, respectively, and
c0 and c1 are the coefficients in the model. We adopt the
power consumption model of the network router from a
previous study [3].

Instance Type CPU (#vir-
tual core)

RAM
(GB)

Storage
(GB)

Price
($/h)

Small 1 1.7 160 0.095
Medium 2 1.7 350 0.19

Table 1: The configurations and prices on different
VM types on Amazon (Linux, California, America, Jan-
2010)

4 Preliminary Evaluations

In order to identify various dimensions of the pricing-
induced interplay between systems and economics, we
have performed a series of experiments on both Amazon
EC2 and on Spring.

4.1 Experimental Setup
The same set of experiments is run on both Amazon EC2
and Spring.

Setup in Amazon EC2. We use the two default on-
demand virtual-machine types provided by EC2, namely
small and medium instances. These virtual machines run
Fedora Linux and are located in California, USA. Table 1
shows their configurations and prices.

Setup in Spring. We use VirtualBox [24] to imple-
ment a virtual machine in Spring. VirtualBox allows us
to specify the allocation of computation resources so that
we can approximate the configurations and prices of dif-
ferent kinds of instances on Amazon. The host OS is
Windows Server 2003; the guest OS is Fedora 10.

The physical machine configuration is shown in Ta-
ble 2. We use an eight-core machine to evaluate the
single-machine benchmarks, and a cluster consisting of
32 four-core machines to evaluate Hadoop. We assign a
CPU core exclusively to a VM to approximate a virtual
core in Amazon EC2. For example, we consolidate at
most four medium instances on the eight-core machine.

We also list the parameter values in our power con-
sumption model for both types of machines. We use a
power meter [1] to measure the actual power consump-
tion of a server, and construct the power consumption
model based on these measurements. We have vali-
dated the power consumption model, and the estimation
is close to the measured value given by a real power me-
ter.

For estimating the total dollar cost, we follow Hamil-
ton’s parameter settings on a data center of 50 thou-
sand servers [12]: PUE = 1.7, Scale = 2.24, energy
price p = $0.07 per kWh and amortized server unit cost
CamortizedUnit = $0.08 per hour.

As an example of evaluating the effect of hardware
changes, we evaluate the case of flash in place of disks.
In that evaluation, we use an Intel 80 GB X25-M SSD
(Solid State Drives) to replace a SATA hard drive. The

Eight-core machine Four-core machine
CPU Intel Xeon E5335 8-

way 2.00GHz
Intel Xeon X3360
Quad 2.83GHz

RAM (GB) 32 8
Disk RAID 5 (SCSI

disks)
RAID 0 (SATA
disks)

Network 1 Gigabit 1 Gigabit
Power model Pidle = 299, c0 =

0.46, c1 = 0.16
Pidle = 250, c0 =
0.4, c1 = 0.14

Table 2: Hardware configuration of machines in Spring

On a small instance On a medium instance
Elapsed
time
(sec)

Cost ($) Elapsed
time
(sec)

Cost ($)

Postmark 204.0 0.0054 203.2 0.0106
Dedup 45 0.0012 14 0.0008

BlackScholes 934 0.0246 215 0.0113

Table 3: Elapsed time and costs of single-machine
benchmarks on small and medium instances on EC2

current price of the SSD is around $350, and the price of
a SATA hard drive (500GB) is around $50. We adjust the
amortized cost in the machine with an SSD to $0.09 per
hour. Compared with hard disks, SSDs also offer a power
efficiency advantage, and we adjust power consumption
accordingly.

We study the system throughput of Spring in num-
bers of tasks finished per hour, as well as user costs and
provider profits. Additionally, we calculate the efficiency
of a provider’s investment using ROI (Return on Invest-
ment), i.e., ROI = Profit

Costprovider
× 100%.

4.2 Optimizing for Cost

We study the difference between optimizations for
cost and optimizations for performance on users and
providers separately. We first present the results of user
optimizations on EC2, since the results on Spring are
similar to those on EC2. Next, we present the results of
provider optimizations, including consolidation and dif-
ferent workload scheduling algorithms on Spring.

(a) Time for Hadoop

(b) Costs for Hadoop

Figure 1: Performance and costs for Hadoop vs. the
number of same-type instances on EC2

#VM per physical ma-
chine

One VM Two VMs Four VMs

Average elapsed time
(sec)

127 125.5 425

Average cost per task ($) 0.004 0.004 0.012
Total cost of users ($) 0.014 0.014 0.047
Praw (kWh) 0.046 0.024 0.038
Costprovider ($) 0.024 0.012 0.020
Profit ($) -0.009 0.002 0.028
ROI (%) -40.0% 17.2% 142.0%
Throughput (tasks/h) 28.3 56.4 33.9

Table 4: Effects of virtual-machine consolidation in
Spring (every four Postmark, small VM type)

4.2.1 User Optimizations on EC2

User optimizations on EC2 include application-level op-
timizations for a fixed instance type, choosing the suit-
able instance type, and tuning the number of instances.

For a fixed instance type, we tune the number of
threads for the elapsed time and cost on Postmark and
PARSEC. Such tuning improves both performance and
user cost. On current consumption-based pricing, there
is no gap between optimizations for performance and op-
timizations for cost.

Choosing the suitable instance type is important for
both performance and cost. Table 3 shows the elapsed
times and costs of optimized single-machine bench-
marks. Postmark has slightly larger elapsed time on a
small instance, but achieves almost 50% smaller cost on a
small instance than on a medium instance. This indicates
a conflict in choosing the suitable instance type between
for performance and for cost. In contrast, Dedup and
BlackScholes on a medium instance have a smaller exe-
cution time, and a smaller cost than those on a small in-
stance. This indicates that choosing the suitable instance
type for cost may not result in the best performance, and
vice versa.

Figure 1 shows the performance and cost of Hadoop
as we vary the number of instances from four to sixteen.
There is no clear patten in terms of cost when we vary
the number of instances and the instance types. Again,
the setting that achieves the minimum cost differs from
that of the best performance.

4.2.2 Provider Optimizations on Spring

We mainly focus on VM consolidation optimization on
Spring, which tune the number of concurrent VMs run-
ning on the same physical machine.

We first study the effect of virtual-machine consolida-
tion when running the same set of tasks on Spring. We
vary the number of VMs on the eight-core machine from
one to four. Tables 4 and 5 show the results for run-
ning Postmark and BlackScholes tasks continuously, re-

#VM per physical ma-
chine

One VM Two VMs Four VMs

Elapsed time (sec) 231.2 239.5 334.5
Average cost per task ($) 0.013 0.013 0.019
Total cost of users ($) 0.051 0.053 0.074
Praw (kWh) 0.080 0.043 0.032
Costprovider ($) 0.042 0.022 0.016
Profit ($) 0.010 0.031 0.058
ROI (%) 22.8% 140.8% 365.2%
Throughput (tasks/h) 15.6 30.1 40.0

Table 5: Effects of virtual-machine consolidation in
Spring (every four BlackScholes, medium VM type)

spectively. We report the number when the execution is
steady. We choose Postmark and BlackScholes to run on
small and medium instances respectively, as they have a
smaller cost on those VM types, similar to the results ob-
served on EC2. We do not present the results for Dedup,
since they are similar to those of BlackScholes.

We make the following three observations.

First, consolidation greatly reduces power consump-
tion. In this experiment, consolidation reduces around
150% and 21% on Praw for BlackScholes and Post-
mark,respectively.

Second, since consolidation increases the total cost for
users and decreases the cost of power consumption, a
provider’s profit increases significantly, so does its ROI.
In our estimation, without consolidation, a provider ac-
tually loses money on Postmark. With consolidation,
a provider enjoys a significant improvement in ROI,
with an increase of 180% and 340% on Postmark and
BlackScholes, respectively. To make profit, a provider
should choose a suitable consolidation strategy.

Finally, as more tasks are consolidated to the same
physical machine, the throughput reaches a peak at con-
solidating two VMs with Postmark, and then degrades.
Although a provider can make higher profit on consol-
idating more VMs, the system throughput can degrade
up to over 64% compared with the peak. This points to
a potential flaw in pricing: as a provider adopts a strat-
egy that maximizes its profit, the strategy could lead to
sub-optimal system throughput.

We further study multi-machine benchmarks on
Hadoop. Table 6 shows the results of two cases for run-
ning Hadoop on eight VMs. Consolidation also signif-
icantly increases a provider’s profit, with an increase of
135% and 118% on ROI for WordCount and StreamSort,
respectively. However, all these increases in the profit
come at the cost of degrading system throughput with a
reduction of 12% and 350% on WordCount and Stream-
Sort, respectively. This confirms the problem we have
seen in single-machine benchmarks.

WordCount StreamSort
#VM per physical ma-
chine

One Two One Two

Total cost of users ($) 0.412 0.461 0.592 2.815
Profit ($) 0.083 0.277 0.110 1.646
ROI (%) 25.0% 150.1% 22.8% 140.8%
Throughput (tasks/h) 3.8 3.4 2.7 0.6

Table 6: Effects of virtual-machine consolidation in
Spring (with Hadoop, eight VMs)

Topic #Threads Ratio
Clarification on charging (e.g., the defini-
tion of instance hours)

67 38.7%

Complaints on charging too high for cer-
tain scenarios (e.g., charging on the idle
instance)

34 19.7%

Cost comparison among different ven-
dors (Amazon, Google and Microsoft
etc)

19 11.0%

Different prices (Reserved mode, daily
charge, debugging fee etc)

25 14.5%

Others (Security, economics, software li-
censing etc)

28 16.2%

Table 7: Categorized threads in official forums on Ama-
zon EC2, Google App Engine and Windows Azure

4.3 Pricing Fairness

Personal fairness. To understand users’ concerns with
pricing fairness, we surveyed the official forums of re-
cent cloud providers. We have obtained the threads re-
lated to pricing by searching with keywords “price” or
“pricing”. We have found 173 threads about pricing
(up to Jan 10, 2010), each thread consisting of multiple
replies. We further manually categorize them according
to the topic, and the categorization is shown in Table 7.
Users mostly need clarification on how they are charged.
The second most popular topic is about complaints on
charing too high for certain scenarios, which is an indi-
cation of personal unfairness in the pricing scheme.

Social Fairness. We investigate the social fair-
ness of the pricing scheme by examining the variation
of costs for the same task. We use two metrics to
measure the cost variation: the coefficient of variation
(cv = stdev

mean × 100%), and the maximum difference
(maxDiff = Hi−Lo

Lo × 100%, where Hi and Lo are the
highest and lowest values among different runs, respec-
tively).

We first look at the variations of different runs on the
same instances in Amazon EC2. We run each single-
machine benchmark ten times. Table 8 shows the vari-
ations of execution time of the single-machine bench-
marks. The variations are significant. For example, the
worst case of Postmark incurs a cost that is 40% higher

Postmark Dedup BlackScholes
cv 9.1% 11.0% 3.9%

maxDiff 40.1% 38.8% 12.6%
Table 8: Variation of different runs on EC2

Figure 2: Variations among three instances (Postmark)
on EC2

than its best case.
We also investigate the variations among different con-

current instances, which represents the scenarios of dif-
ferent users using a cloud simultaneously. Figure 2
shows the cost of running Postmark ten times on three
different small instances. There is noticeable differences
among different instances. The average cost on Instance
3 is over 20% higher than those on Instances 1 and 2.

We have observed similar variations in Spring to those
in Amazon EC2 (as shown in Tables 4, 5 and 6 of Sec-
tion 4.2.2). As more VMs are consolidated onto the same
physical machine, users pay more money for the same
task. For example, postmark with “Four VMs” costs
around three times of that with “One VM”.

The cost variations on both Amazon and Spring indi-
cate social unfairness of the current pricing scheme.

4.4 Different Hardware Configurations
Figure 3 shows the costs and profits of running a Post-
mark task on a small instance with a hard disk and an
SSD. The elapsed times of Postmark are around 180 and
400 seconds on the SSD and on the hard disk, respec-
tively. Using the SSD greatly reduces the user’s cost by
120%, and slightly decreases the provider’s ROI from -
40% to -44%. By supporting cost-efficient services to
users, the provider has the power in adapting its price
scheme to its advantage. Furthermore, it is likely that a
provider needs to fine-tune its pricing structure, so that it
can balance the benefit to users and the profit to itself.

Figure 3: Costs and profits of running Postmark on a hard
disk and an SSD without consolidation in Spring.

4.5 Failures
During our study, we have met a few bugs in the bench-
marks on Amazon EC2, even after testing the implemen-
tations on Spring. Here is one example: we have suc-
cessfully executed Hadoop in Spring, but still met one
Hadoop exception with a message “Address already in
use”1 on Amazon EC2. Since this kind of bug origi-
nates from the software stack of Hadoop interacting with
Amazon EC2, users can hardly prevent such bugs with-
out paying them.

Bugs are not the only cause of failures; transient fail-
ures in the cloud infrastructure also occur. For example,
we observed a task failure when we ran StreamSort using
Hadoop on eight VMs in Spring, causing a sharp eight-
time increase in the total elapsed time. This shows that
transient failures in the underlying infrastructure could
be a significant factor for provisioning user costs.

5 Concluding Remarks

By embracing a pricing scheme that connects providers
with users, cloud computing has managed to bridge be-
tween distributed systems and economics. In this paper,
we focus on understanding the implications of this new
paradigm and its impact on distributed system research.
Our preliminary study has revealed interesting issues as a
result of the tensions between users and providers and be-
tween distributed systems and economics. We hope that
this will help launch an inter-disciplinary endeavor that
eventually contributes to the emergence of cloud com-
puting.

Acknowledgments

We are grateful to the anonymous reviewers, James
Larus, as well as the System Research Group of Mi-
crosoft Research Asia for their insightful comments.

References
[1] http://wattsupmeters.com/.

[2] Amazon Case Studies.
http://aws.amazon.com/solutions/case-studies/.

[3] G. Ananthanarayanan and R. H. Katz. Greening the switch. In
HotPower, 2008.

[4] M. Armbrust and A. Fox et al. Above the clouds: A Berkeley
view of cloud computing. Technical Report EECS-2009-28, UC
Berkeley, 2009.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In PACT, 2008.

1http://issues.apache.org/jira/browse/HADOOP-5655.

[6] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. Corey: An operating system for many cores. In OSDI,
2008.

[7] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic
models for resource management and scheduling in grid
computing. Concurrency and Computation: Practice and
Experience, 14(13–15).

[8] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The
cost of doing science on the cloud: the Montage example. In SC,
2008.

[9] S. L. Garfinkel. An evaluation of Amazon’s grid computing
services: EC2, S3 and SQS. Technical Report TR-08-07,
Harvard Univ., 2007.

[10] Google App Engine Developer Profiles.
http://code.google.com/appengine/casestudies.html.

[11] GridMix. http://github.com/yahoo/hadoop/tree/54428cc8dd4
37b4de9efe070e777023ec171a498/src/benchmarks/gridmix.

[12] J. Hamilton. http://perspectives.mvdirona.com/
2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx.

[13] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars:
a mapreduce framework on graphics processors. In PACT, 2008.

[14] A. Kansal and F. Zhao. Fine-grained energy profiling for
power-aware application design. In HotMetrics, 2008.

[15] J. Katcher. Postmark: a new file system benchmark. Technical
Report TR-3022, Network Appliance, 1997.

[16] Y. Li, B. He, Q. Luo, and Y. Ke. Tree indexing on solid state
drives. In Proceedings of VLDB Endowment, 2010.

[17] N. Mankiw. Principles of economics. South-Western Pub, 2008.

[18] R. Mason. Simple competitive Internet pricing. 2000.

[19] S. Maxwell. The Price is Wrong: Understanding What Makes a
Price Seem Fair and the True Cost of Unfair Pricing. Wiley,
2008.

[20] C. Molina-Jimenez, N. Cook, and S. Shrivastava. On the
feasibility of bilaterally agreed accounting of resource
consumption. In Service-Oriented Computing, 2009.

[21] J. Napper and P. Bientinesi. Can cloud computing reach the
top500? In UnConventional high performance computing
workshop, 2009.

[22] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel.
Amazon S3 for science grids: a viable solution? In DADC, 2008.

[23] G. Singh, C. Kesselman, and E. Deelman. Adaptive pricing for
resource reservations in shared environments. In Grid, 2007.

[24] Sun VirtualBox. http://www.virtualbox.org/.

[25] The Green Grid. The Green Grid data center power efficiency
metrics: PUE and DCiE. Technical report, 2007.

[26] E. Walker. Benchmarking Amazon EC2 for high-performance
scientific computing. The USENIX Magazine, 33(5), 2008.

[27] Windows Azure Case Studies.
http://www.microsoft.com/azure/casestudies.mspx.

