
Scripting the cloud with Skywriting

Derek G. Murray Steven Hand

University of Cambridge Computer Laboratory

Abstract

Recent distributed computing frameworks—such as

MapReduce, Hadoop and Dryad—have made it simple

to exploit multiple machines in a compute cloud. How-

ever, these frameworks use coordination languages that

are insufficiently expressive for many classes of com-

putation, including iterative and recursive algorithms.

To address this problem, and generalise previous ap-

proaches, we introduce Skywriting: a Turing-powerful,

purely-functional script language for describing dis-

tributed computations. In this paper, we introduce the

main features of Skywriting, and outline our novel coop-

erative task farming execution engine.

1 Introduction

Recent frameworks for data-intensive computing have

made it much easier to exploit multiple computers in

parallel [2, 11, 18]. One reason for this success is

that the frameworks provide a high-level interface that

frees the user from concerns about sockets, remote pro-

cedure calls, data movement and machine failure. In-

stead, the user specifies the computation in a coordina-

tion language (such as Sawzall [22], Pig [21], Hive [24]

or DryadLINQ [26]) that describes the data flow at a high

level. While these languages are useful, there are im-

portant classes of algorithm that they cannot express. In

this paper, we introduce Skywriting: a new coordination

language that generalises the existing languages and in-

creases their expressivity.

For example, others have observed that MapReduce

and Dryad cannot express iterative computations [13,

17]. Such computations repeatedly apply the same algo-

rithm in order to improve the current result until it meets

a convergence criterion: the PageRank algorithm is a

well-known example [10]. Since the number of iterations

is not known in advance, we need to express unbounded

iteration, but existing frameworks and languages force

the user to specify the entire computation when a job is

submitted. Hence an additional driver program running

on the client must ship data out of the cluster to evalu-

ate convergence, and, if required, submit multiple jobs:

this leads to additional job submission latency. More-

over, dividing a computation into several jobs reduces

the opportunity for high-level optimisations [20, 25].

We distinguish between coordination languages and

task languages for data-intensive computing. The task

language is a general-purpose programming language

that is used to express an individual step in a larger

computation. For example, the normal task language in

Hadoop is Java, which is used to implement the map()

and reduce() functions, but other languages may be

used [2]. The task language is usually Turing-powerful.

By contrast, existing coordination languages are less ex-

pressive, as they only describe a static, acyclic graph of

tasks and their dependencies.

In order to add unbounded iteration to the coordina-

tion language, we must make it Turing-powerful. As

a proof-of-concept, we have developed the Skywriting

script language (Section 2). Skywriting is a dynamically-

typed, purely-functional language, which provides an ex-

ecutable representation of a distributed job. A script can

create new tasks asynchronously, evaluate data depen-

dencies and perform unbounded (while-loop) iteration.

This enables Skywriting to describe a more general class

of distributed computations than previous languages.

We have also developed a new execution engine that

can execute Skywriting scripts. Our system must support

dynamically growing jobs, and therefore we have devel-

oped cooperative task farming (Section 3). In a typical

task-farming architecture, the master has complete con-

trol over the set of tasks that are assigned to workers.

Our system allows workers to spawn additional tasks in a

manner similar to Cilk [9]. Hence the workers cooperate

with the master in order to complete a distributed com-

putation. We describe our prototype system, and how it

can be used to execute Skywriting scripts.



1 function process_chunk(chunk, prev_result) {

2 // Execute native code for chunk processing.

3 // Returns a partial result.

4 };

5 function is_converged(curr_result, prev_result) {

6 // Execute native code for convergence test.

7 // Returns a boolean.

8 };

9 function iterative_alg(data_chunks) {

10 curr = ...; // Initial guess at the result.

11 do {

12 prev = curr;

13 curr = [];

14 for (chunk in data_chunks) {

15 curr += spawn(process_chunk, [chunk, prev]);

16 }

17 converged = *spawn(is_converged, [curr, prev]);

18 } while (!converged);

19 return curr;

20 };

21 input_data = [ref("file://cluster-1-37/input0"),

22 ref("file://cluster-2-23/input1"),

23 ...];

24 return iterative_alg(input_data);

Figure 1: Iterative computation implemented in Skywrit-

ing. input data is a list of n input chunks (e.g. of a

matrix), and curr is initialised to a list of n partial re-

sults.

2 The Skywriting language

Skywriting is a Turing-powerful language for describ-

ing distributed computations. In order to maximise de-

veloper familiarity, we have designed our language to

resemble JavaScript, with first-class functions, lexical

scoping and dynamic typing [12]. However, in order to

make the language purely functional, we impose the re-

striction that captured variables and parameters are read-

only. This restriction makes it straightforward to paral-

lelise the execution of a Skywriting script, which we dis-

cuss in Section 3.

Figure 1 shows an example of Skywriting syntax for

an iterative computation. The iterative alg() func-

tion takes a list of input data, makes an initial estimate

of the result, and repeatedly spawns tasks to process the

data until convergence is reached. The example high-

lights three novel features of our language, which we dis-

cuss in the remainder of this section. The input data are

provided as references (§2.1). Distributed computation is

initiated by spawn()-ing tasks (§2.2). Finally, data de-

pendencies are dereferenced using the *-operator (§2.3).

2.1 References

Skywriting uses references to add a layer of indirection

between the scripting language and the data-intensive

processing. In the simplest case, a reference is a name for

data that is stored in the cluster. It serves the same role

as a file name in GFS [14], or a DryadTable object in

DryadLINQ [26]. This indirection enables the language

to describe manipulations of a large volume of data with-

out loading it all into memory.

A reference is created by calling the built-in ref()

function, which takes one or more URIs that refer to

the data (Figure 1, lines 21–23). By providing multiple

URIs, a reference can point to several instances of the

same data, which enables data replication. Although the

ref() function allows a script to refer to arbitrary data,

we expect that most users will use library functions to

manage collections of references, in a similar manner to

how a DryadTable represents a list of data partitions in

DryadLINQ [26].

2.2 Task spawning

The built-in spawn() function asynchronously spawns

a new task with the given arguments. Its arguments in-

clude the function to be invoked, and optional arguments.

It returns one or more future references, which behave

like references (§2.1), but may refer to data that have not

yet been computed. This feature is based on explicit fu-

tures [15], which become determined only when derefer-

enced (§2.3).

A task is executed using our cooperative task farming

system, described in Section 3. Typically, one or more

of the arguments to spawn() will be a reference. If any

of the arguments is a future reference, the spawned task

will not be scheduled until all of the referenced data has

been computed by earlier tasks: thus the script implic-

itly builds an acyclic graph of task dependencies (§3.1).

Once the task is runnable, it is allocated to a worker,

and the framework ensures that all referenced data are

available locally at the worker. We use a multiple-queue

scheduler to ensure that a task usually runs “close” to

its input, which reduces the volume of data that must be

transferred across the network. In the future, we will

investigate more advanced scheduling algorithms, in-

cluding flow network approaches [19], and decentralised

work stealing [9].

Task spawning does not compromise the functional

purity of our language. As in other systems, we assume

that individual task execution—which may involve code

written in other languages—is deterministic and idem-

potent [11, 18]. Furthermore, the execution of a task has

no effect on the script’s execution context. However, re-

peated execution of a task with the same arguments may

lead to generating two different references to identical

data. This will not affect correctness, but reduces the ef-

ficiency of the system, by wasting storage and ignoring

opportunities for local execution. Therefore, we are in-

vestigating ways of memoising task execution, in a man-

ner similar to cached function calls in Vesta [16].



2.3 Dereferencing

Skywriting’s most powerful feature is its ability to in-

clude data dependencies in the computation. As Fig-

ure 1 (line 17) shows, the language includes a *-operator,

which dereferences the result of a previous task (in this

case, a convergence test). When the operator is applied

to a reference, the referenced value can be used like any

other Skywriting value. In particular, it can be used in

loops and conditional statements, which enables data-

dependent control-flow. We borrow the syntax from C,

because a reference in Skywriting is conceptually simi-

lar to a pointer in C and its related languages.

When a variable is dereferenced, the corresponding

data must be fetched and brought into the script envi-

ronment. Since Skywriting was not designed to be a

high-performance language, it is impractical to deref-

erence large volumes of data. Therefore, the example

in Figure 1 spawns an additional task that combines the

partial results from the distributed computation, and re-

turns a single boolean value. In order to dereference the

result, the referenced data must have been written in a

compatible serialisation format: the present implemen-

tation uses JavaScript Object Notation (JSON), due to

its similarity with the Skywriting syntax, and the avail-

ability of parsers and serializers for many programming

languages [4].

Figure 1 shows the *-operator being applied to a future

reference (§2.2). Since spawn()-ed tasks execute asyn-

chronously, the result may not yet have been produced

when the dereference attempt is made. We support this

case by blocking the current task and scheduling a contin-

uation (§3.4). The *-operator thereby provides implicit

synchronisation with other tasks.

2.4 Other features

As we have developed Skywriting, we have discovered

a need for additional language features, and we have im-

plemented these features as a set of built-in functions that

comprise our “standard library”. Here, we briefly sum-

marise the most important additional features.

Skywriting is an expressive coordination language, but

it is unlikely to be the most efficient implementation lan-

guage for data- or CPU-intensive computations. There-

fore we allow scripts to execute external code using the

built-in exec() function. We currently have bindings

for C, Java, .NET and UNIX pipe-based programs, and

other languages are supported through a plugin interface.

For advanced use, we have added features to Skywrit-

ing that allow introspection on both the cluster and the

currently-running job. For example, a script can call the

task() function on a future reference to obtain infor-

mation about the status of a spawned task. We support

task cancellation using the abort() function. The script

can also obtain information about the cluster nodes using

the workers() function. Hence it is possible to tailor a

job’s execution to the available facilities in the cluster,

by—for example—altering the degree of parallelism to

match the number of idle workers.

We also support custom scheduling policies using the

waituntil() function. The function takes a predicate

and a list of future references, and returns when the pred-

icate becomes true. For example, we provide predicates

that fire when any, all or m-out-of-n tasks complete, and

the user may supply custom predicates as a Skywriting

function. The combination of introspection and custom

scheduling enables us to implement straggler detection

and speculative task execution [11] in pure Skywriting,

and we are continuing to investigate more advanced poli-

cies.

3 Cooperative task farming

In order to run Skywriting programs, we need an exe-

cution framework that can execute jobs with a dynamic

number of tasks. To this end, we have developed a “co-

operative” task farming system, which distributes work

between a pool of worker machines, and allows workers

to spawn new tasks.

In this section, we describe the key features of our pro-

totype system. We begin by describing how task depen-

dencies are used to express a distributed data flow (§3.1).

We then introduce spawn lists, which enable workers to

spawn additional tasks and modify the workflow dynam-

ically (§3.2). We present two methods for executing Sky-

writing scripts in our system: a master-based interpreter

(§3.3), and distributed execution (§3.4). Finally, we dis-

cuss how our system can unify different coordination lan-

guages within a single framework (§3.5).

3.1 Task dependencies

The recent major systems for distributed computing—

including but not limited to MapReduce [11],

Hadoop [2], Dryad [18], Condor [23] and BOINC [7]—

form an equivalence class. Each system is capable of

executing a collection of tasks in parallel on a network

of computers, using the common task farming archi-

tecture. A master (alternatively: JobTracker [2], job

manager [18], matchmaker [23] or scheduling server [7])

maintains a queue of tasks, and several workers loop

forever retrieving tasks, processing them and storing the

results.

There may also be dependencies between tasks: typi-

cally, this means that one task consumes the output of an-

other. These dependencies may be explicit (as in Dryad’s

dataflow graph), implicit (e.g. all map() tasks must com-

plete before any reduce() task begins in MapReduce)

or trivial (i.e. a bag of independent tasks in BOINC or



Task program

Dependent

data items

Literal inputs Spawn list

Data outputs

Figure 2: Structure of a task, showing inputs and outputs.

Condor). The dependency graph must be acyclic: oth-

erwise the system would deadlock as two tasks would

(directly or indirectly) depend on each other [18].

Figure 2 shows the structure of a task in our system. A

task depends on one or more data items, which may be

produced by other tasks: these are equivalent to Skywrit-

ing references (§2.1). Therefore a task becomes runnable

when all of its input data items are available: data items

are decoupled from the task that produces them, which

enables additional dynamism in the dependency graph

(see the following subsection). The outputs of a task

must be named in advance, which allows the scheduler

to ensure that dependencies are acyclic.

3.2 Spawn lists

A key feature of cooperative task farming is that a worker

may spawn additional tasks in the execution of a job.

This requires functionality that is similar to fork()-ing

a process in UNIX, or spawning a function in Cilk [9].

Therefore, the workers must have a mechanism for ac-

cessing the task queue. We use spawn lists for this pur-

pose: as Figure 2 shows, a task may optionally emit a

list of task descriptors. The spawn list is a list of tasks

to be scheduled after the task has completed, and it is

populated dynamically at run-time. This feature makes it

possible to express unbounded iteration in a task farming

system.

For additional flexibility, a task may delegate its out-

put to a task in its spawn list. This is particularly useful

when implementing recursive, divide-and-conquer com-

putations. For example, consider the case shown in Fig-

ure 3. Task A takes a single input, x, and produces a

single output, y. However, A may decide that it can split

its work into two parallel tasks: B and C. We want A’s

successors—which are waiting for y to be produced—to

see the combined result of B and C. Therefore, A spawns

a continuation task, D, to which it delegates output y,

and which combines the results of B and C.

In order to maintain schedulability, we enforce two

constraints: (i) a task must produce all of its outputs or

spawn tasks to produce them, and (ii) a spawned task can

only depend on the inputs and outputs of the task that

spawned it. Together, these ensure that no task will be-

come orphaned and that no cycles will ever form in the

dependency graph. Of course, one corollary of delega-

A

D

C

B

x [y]

x y

spawns delegates

Figure 3: Example of output delegation for recursive

tasks. In this example, Task A spawns B, C and D, and

delegates its output, y, to D.

tion (and the Turing-powerfulness of Skywriting) is that

a scheduled task may never become runnable, but we do

not consider this to be a problem in practice. We prevent

“fork bombs” by limiting the number of tasks that can be

outstanding for a single job (or user).

3.3 Master-based interpreter

We now turn to executing a Skywriting script on our sys-

tem. The simplest approach is to run the interpreter in

a thread within the master process. This is similar to

the approach taken in Dryad [18] and Hadoop [2], which

both maintain the graph of dependent tasks in a single

process. In this model, the interpreter runs over the Sky-

writing script until it reaches a spawn() function or *-

operator. At this point, control returns to the execution

framework, which schedules a new task or fetches the

referenced data, respectively. However, if the script at-

tempts to dereference a future reference that has not yet

been produced, the interpreter must block until that result

is available.

The main advantage of this scheme is that it is ex-

tremely efficient for simple scripts, such as MapReduce-

or Dryad-style jobs with no data dependencies. In this

case, the interpreter terminates quickly, after spawning

the necessary tasks. Since the interpreter and task sched-

uler are colocated in the same process, the task spawning

latency is minimal.

For more complicated scripts that include data depen-

dencies and hence may be long-lived, this approach may

place too much load on the master. The master must

maintain a thread for each running script, and handle all

incoming dereferenced data. It may therefore become

a bottleneck if several scripts dereference data concur-

rently. Furthermore, an uncooperative user could carry



Skywriting 

interpreter

Dereferenced 

data

Script context Continuation, 

spawned tasks

Data outputs

Figure 4: Structure of a Skywriting interpreter task. A

continuation is spawned if the task blocks on unavailable

data.

out a denial of service attack either by (i) scheduling a

CPU-intensive script, or (ii) dereferencing a large vol-

ume of data. The following subsection addresses this

problem.

3.4 Distributed execution

Interpreting a Skywriting script is a simple computation,

and therefore we can run the interpreter as a task on

the cluster. Since Skywriting is a functional language,

we can easily exploit parallelism and data locality in the

script environment itself. However, in order to make the

interpreter fit within our cooperative task farming model,

we must decompose a script into one or more subtasks,

each comprising sequences of statements that can run in

a single task.

An individual interpreter task takes an execution con-

text (stack and environment) as input, executes one or

more statements, and outputs the updated context. As

Figure 4 shows, it may have other inputs and outputs:

Dereferenced data Any data dependencies are treated

as inputs to the task. This ensures that the task is

only executedwhen the necessary data have become

available, and it enables the scheduler to choose the

appropriate worker on which to execute the task, for

better data locality.

Continuation If the task attempts to use data that are

not yet available, it will spawn a continuation task

to be scheduled when the data become available.

Other spawned tasks If the task contains any invoca-

tions of the spawn() function, it will also output a

list of tasks to schedule.

The simplest way to subdivide a script is to block and

create a continuation every time the *-operator (§2.3) is

encountered. The continuation task would then receive

the dereferenced data as an input. However, if the script

dereferences several data items in succession, this may

not give the best performance. Therefore, we delay the

creation of a new task until the first time the dereferenced

data is used. We achieve this by creating lazily-evaluated

thunks for each instance of the *-operator.

Since Skywriting is a purely functional language, we

can evaluate independent functions, and even individual

expressions, as parallel tasks. However, it is clear that

not every expression should be parallelised in this man-

ner. We are investigating simple annotation-based and

adaptive schemes as future work.

Distributed execution provides many advantages over

a master-based interpreter. It reduces load on the master,

which improves scalability. The system handles all nec-

essary data movement, which simplifies the master and

gives the potential to exploit data locality. The cluster

scheduler can also account for the resources used by the

interpreter, which improves resource isolation.

However, because spawning tasks involves network

communication with the master, the job latency can in-

crease, which is noticeable for very short tasks. In our

implementation, we first attempt master-based interpre-

tation (§3.3), and only switch to distributed execution

when the script first attempts to perform a dereference.

3.5 Unifying other frameworks

Cooperative task farming is strictly more general than

the task farming schemes used in MapReduce, Hadoop,

Dryad and other frameworks. Other authors have re-

marked that it would be useful to combine multiple

frameworks on the same cluster [17]. We concur, and

we are implementing compatibility layers for Hadoop

and DryadLINQ. Our approach is to transform a Hadoop

or DryadLINQ job into the equivalent Skywriting script,

and execute it using our cooperative task farming system.

We must also provide Hadoop and DryadLINQ driver

programs to execute MapReduce tasks and DryadLINQ

vertices, respectively. This contrasts with Nexus [17],

which uses lightweight OS virtualisation to run exist-

ing frameworks in isolated containers. We prefer to

unify the frameworks under a common job representa-

tion, which raises the possibility of combining Hadoop

and DryadLINQ execution in a single job.

4 Related work

Several other projects have investigated new program-

ming models for cloud computing, beyond MapReduce

and Dryad.

There have been many projects that add program-

ming language support for data-intensive computing.

DryadLINQ uses the Language IntegratedQuery (LINQ)

extensions in recent .NET languages to allow users to

specify queries on top of distributed data sets [26]. Ya-

hoo’s Pig is a dataflow language that can be used to de-

fine a graph of dependent Hadoop jobs [21]. Facebook’s

Hive provides a more declarative, SQL-like query lan-

guage that can also generate a plan for Hadoop jobs [24].

None of these languages supports unbounded iteration or

recursion as a first-class construct: however, each can be



straightforwardly compiled into Skywriting, and we are

pursuing this as described in Subsection 3.5.

The Berkeley Orders Of Magnitude (BOOM) project

also introduces a new programming model for data-

intensive computing: “declarative, data-centric program-

ming” [5]. The authors use the Overlog logic language

to reimplement key pieces of distributed infrastructure,

such as Hadoop and HDFS. They reproduce previous en-

hancements to these systems using Overlog, and show

that it is possible to add new features (such as Paxos

replication [6]) with a small number of Overlog state-

ments. However, BOOM-MapReduce maintains the tra-

ditional map() and reduce() interface to Hadoop, so it

does not change the programming model from the user’s

perspective. Skywriting, by contrast, is an attempt to en-

hance the programming model for the cluster user.

CGL-MapReduce adds unbounded iteration to the

MapReduce programming model [13]. A CGL-

MapReduce computation has an additional “merge”

stage that combines all reduce() outputs together and

evaluates a termination condition on them. Therefore,

CGL-MapReduce can keep intermediate data in RAM

between iterations, if the input data are sufficiently

small. However, the programming model is limited to

MapReduce-style computation, and it is not possible

to compose CGL-MapReduce jobs into larger computa-

tions. It is straightforward to express iterative MapRe-

duce jobs as part of a Skywriting script.

Zaharia et al. have developed the Spark cluster com-

puting framework, which is optimised for iterative and

interactive computation [27]. Spark uses “resilient dis-

tributed datasets”, which are cached in RAM between

jobs, and which can be reconstructed if a machine fails.

A driver program—written in Scala—manipulates these

datasets through an optimised job submission interface,

which provides sufficient performance for interactive ap-

plications, and a substantial improvement over the equiv-

alent Hadoop invocations. The main goal of Skywriting

has been to obviate the need for a driver program, which

enables the whole computation to run in the cluster. This

reduces job submission overhead, and improves reliabil-

ity because the execution engine provides fault tolerance

for the whole job. However, Spark—like DryadLINQ—

provides the benefits of a strongly-typed high-level lan-

guage, and we are investigating how to augment an ex-

isting language with Skywriting’s distributed execution

features.

Spark runs on top of the Nexus “cluster operating sys-

tem” (recently renamed Mesos), which shares Skywrit-

ing’s aim of unifying and extending existing program-

ming models for data-intensive computing [17]. How-

ever, Nexus takes an operating system approach that con-

trasts with our language-based approach. A Nexus clus-

ter can be shared between several frameworks at once, in-

cluding Hadoop, Spark and MPI. Nexus uses lightweight

OS virtualistion to isolate the different frameworks, and a

second level of scheduling to allocate resources between

the frameworks. Existing framework schedulers then

perform task allocation for their individual jobs. Nexus

achieves the aim of runningmany frameworks on a single

cluster, but it focuses on sharing physical resources be-

tween existing cluster computing frameworks. By con-

trast, we advocate (automatically) translating computa-

tions from different frameworks into the unified Sky-

writing representation, which makes it possible to mix

paradigms (e.g. MapReduce and Dryad) in a single job.

5 Conclusions, status and future work

In this paper, we have introduced Skywriting, a new

script language for coordinating distributed computation.

Skywriting is more expressive than existing coordination

languages, and is particularly suited to expressing iter-

ative and recursive computation. We have also intro-

duced cooperative task farming, which is an extension

of task farming that supports dynamically-growing jobs,

such as those expressed in Skywriting scripts. Together,

Skywriting and its execution engine allow any distributed

computation to be implemented in a single job.

We have implemented a prototype of Skywriting that

includes all of the features described in this paper. The

interpreter and distributed execution engine comprise ap-

proximately 4000 lines of Python code. The source code

and a tutorial are available from the project website:

http://www.cl.cam.ac.uk/netos/skywriting/.

We are continuing to develop Skywriting and our pro-

totype execution engine. In future work, we also intend

to address the following questions, among others:

• How can we incorporate message-passing compu-

tation efficiently in our framework? Other frame-

works handle this by maintaining frequently-used

data in RAM [13, 27], and we seek general abstrac-

tions that can provide this support in Skywriting.

• Can we execute a Skywriting script across multiple

clouds? For example, we might store web service

data in Google App Engine [3], but want to process

it on Amazon EC2 [1].

• Could we achieve benefits by integrating Skywrit-

ing with an existing high-level language? Existing

frameworks harness the strong typing and library

support of mature languages, which further simpli-

fies distributed programming [26, 27].

• Does the Skywriting programming model extend

to multi- and many-core systems? As message

passing becomes more prevalent, there is a need

for new programming abstractions beyond shared

memory [8].



Acknowledgments

Thanks are due to our colleagues Malte Schwarzkopf,

Chris Smowton and Anil Madhavapeddy, who have con-

tributed to the further development of Skywriting. We

would also like to thank the anonymous reviewers for

their constructive comments and suggestions, and Matei

Zaharia for information about Spark and Nexus.

This work is supported by an AWS in Education Re-

search Grant from Amazon Web Services.

References

[1] Amazon EC2. http://aws.amazon.com/ec2/.

[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Google App Engine. http://code.google.com/

appengine/.

[4] JSON. http://www.json.org/.

[5] ALVARO, P., CONDIE, T., CONWAY, N., ELMELEEGY, K.,

HELLERSTEIN, J. M., AND SEARS, R. BOOM Analytics: Ex-

ploring Data-Centric, Declarative Programming for the Cloud. In

Proceedings of EuroSys (2010).

[6] ALVARO, P., CONDIE, T., CONWAY, N., HELLERSTEIN, J. M.,

AND SEARS, R. I do declare: consensus in a logic language. In

Proceedings of NetDB (2009).

[7] ANDERSON, D. P. BOINC: A system for public-resource com-

puting and storage. In Proceedings of the 5th international work-

shop on Grid Computing (2004).

[8] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T.,

ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND

SINGHANIA, A. The Multikernel: A new OS architecture for

scalable multicore systems. In Proceedings of SOSP (2009).

[9] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISER-

SON, C. E., RANDALL, K. H., AND ZHOU, Y. Cilk: an efficient

multithreaded runtime system. J. Parallel Distrib. Comput. 37, 1

(1996).

[10] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertex-

tual Web search engine. In Proceedings of WWW (1998).

[11] DEAN, J., AND GHEMAWAT, S. MapReduce: simplified data

processing on large clusters. In Proceedings of OSDI (2004).

[12] ECMA INTERNATIONAL. ECMA-262: ECMAScript Language

Specification, 5th ed. 2009.

[13] EKANAYAKE, J., PALLICKARA, S., AND FOX, G. MapRe-

duce for Data Intensive Scientific Analyses. In Proceedings of

eScience (2008).

[14] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google

File System. In Proceedings of SOSP (2003).

[15] HALSTEAD, JR., R. H. Multilisp: A Language for Concurrent

Symbolic Computation. ACM Trans. Program. Lang. Syst. 7, 4

(1985), 501–538.

[16] HEYDON, A., LEVIN, R., AND YU, Y. Caching function calls

using precise dependencies. In Proceedings of PLDI (2000).

[17] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,

JOSEPH, A. D., SHENKER, S., AND STOICA, I. Nexus: A Com-

mon Substrate for Cluster Computing. Tech. Rep. UCB/EECS-

2009-158, University of California, Berkeley, 2009.

[18] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-

TERLY, D. Dryad: distributed data-parallel programs from se-

quential building blocks. In Proceedings of EuroSys (2007).

[19] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U.,

TALWAR, K., AND GOLDBERG, A. Quincy: fair scheduling for

distributed computing clusters. In Proceedings of SOSP (2009).

[20] OLSTON, C., REED, B., SILBERSTEIN, A., AND SRIVASTAVA,

U. Automatic optimization of parallel dataflow programs. In

Proceedings of USENIX (2008).

[21] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND

TOMKINS, A. Pig Latin: A Not-So-Foreign Language for Data

Processing. In Proceedings of SIGMOD (2008).

[22] PIKE, R., DORWARD, S., GRIESEMER, R., AND QUINLAN, S.

Interpreting the data: Parallel analysis with Sawzall. Scientific

Programming 13, 4 (2005).

[23] THAIN, D., TANNENBAUM, T., AND LIVNY, M. Distributed

computing in practice: the Condor experience. Concurrency:

Practice and Experience 17, 2–4 (2005), 323–356.

[24] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P.,

ZHANG, N., ANTONY, S., LIU, H., AND MURTHY, R. Hive – A

Petabyte Scale Data Warehouse Using Hadoop. In Proceedings

of ICDE (2010).

[25] YU, Y., GUNDA, P. K., AND ISARD, M. Distributed Aggre-

gation for Data-Parallel Computing: Interfaces and Implementa-

tions. In Proceedings of SOSP (2009).

[26] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON,

U., GUNDA, P. K., AND CURREY, J. DryadLINQ: A System

for General-Purpose Distributed Data-Parallel Computing Using

a High-Level Language. In Proceedings of OSDI (2008).

[27] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,

SHENKER, S., AND STOICA, I. Spark: Cluster Computing with

Working Sets. In Proceedings of HotCloud (2010).


